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Abstract. We analyze distributions of rain-event sizes, rain-
event durations, and dry-spell durations for data obtained
from a network of 20 rain gauges scattered in a region of the
northwestern Mediterranean coast. While power-law distri-
butions model the dry-spell durations with a common expo-
nent 1.50± 0.05, density analysis is inconclusive for event
sizes and event durations, due to finite size effects. How-
ever, we present alternative evidence of the existence of scale
invariance in these distributions by means of different data
collapses of the distributions. These results demonstrate that
scaling properties of rain events and dry spells can also be
observed for medium-resolution rain data.

1 Introduction

The complex atmospheric processes related to precipita-
tion and convection arise from the cooperation of diverse
non-linear mechanisms with different temporal and spatial
characteristic scales. Precipitation combines, for instance,
the O(100µm) microphysics effects as evaporation with
O(1000 km) planetary circulation of masses and moisture
(Bodenschatz et al., 2010). Rain fields also present high
spatial and temporal intermittency as well as extreme vari-
ability, in such a way that their intensity cannot be char-
acterized by its mean value. Despite the complexity of the
processes involved, surprising statistical regularities have
been found: numerous geometric and radiative properties
of clouds present clear scaling or multiscaling behavior
(Lovejoy, 1982; Cahalan and Joseph, 1989; Peters et al.,
2009; Wood and Field, 2011); also, raindrop arrival times and
raindrop sizes, are well characterized by power-law distribu-
tions over several of orders of magnitude (Olsson et al., 1993;
Lavergnat and Golé, 2006).

The concept of self-organized criticality (SOC) aims for
explaining the origin of the emergence of structures across
many different spatial and temporal scales in a broad va-
riety of systems (Bak, 1996; Jensen, 1998; Sornette, 2004;
Christensen and Moloney, 2005). Indeed, it has been found
that for diverse phenomena that take place intermittently, in
terms of bursts of activity interrupting larger quiet periods,
the size,s, of these bursty events or avalanches follows a
power-law distribution,

PS(s) ∝
1

sτs
, (1)

over a certain range ofs, wherePS(s) is the probability den-
sity of the event size andτs its exponent (and the sign∝ in-
dicating proportionality). The size,s, can be understood as a
measure of energy dissipation. If durations of events are mea-
sured, a power-law distribution also holds. These power-law
distributions provide an unambiguous proof of the absence of
characteristic scales within the avalanches, as power laws are
the signature of scale invariance (Christensen and Moloney,
2005).

The main idea behind SOC is the claim that such scale
invariance is achieved because of the existence of a non-
equilibrium continuous phase transition whose critical point
is an attractor of the dynamics when the system is slowly
driven (Tang and Bak, 1988; Dickman et al., 1998, 2000).
When the system settles at the critical point, scale invari-
ance and power-law behavior are ensured, as these peculiar-
ities are the defining characteristics of critical phenomena
(Christensen and Moloney, 2005). SOC has had a big im-
pact in the geosciences, in particular earthquakes (Bak, 1996;
Sornette and Sornette, 1989), landslides and rock avalanches
(Malamud, 2004), or forest fires (Malamud et al., 1998). Due
to the existence of power-law distributed events in them,
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these systems have been proposed as realizations of SOC in
the natural world; nevertheless, no evidence of an underly-
ing critical point has been presented. On the other hand, it is
also possible to understand SOC in a broader sense, as the
spontaneous emergence of scale invariance; therefore, SOC
is not considered a mechanism based on an attraction to-
wards a continuous phase transition, but arising from a differ-
ent phenomenology, where stochasticity and non-vanishing
fluxes play a key role, as it happens in multifractal cascades
(Schertzer and Lovejoy, 1994, 2011; Hooge et al., 1994;
Lovejoy and Schertzer, 2013).

SOC observables have been explored in rainfall while
looking at precipitation as an avalanche process, and pay-
ing attention to the properties of these avalanches, called rain
events. To our knowledge, the first works following this ap-
proach are those ofAndrade et al.(1998) andPeters et al.
(2002) (Peters and Christensen, 2002, 2006). These authors
defined, independently, a rain event as the sequence of rain
occurrence with a rain rate (i.e., the activity) always greater
than zero. Therefore, the focus of these approaches is not on
the total amount of rain recorded in a fixed time period (for
instance, one hour, one day, or one month), but on the rain
event, which is what defines in each case the time period of
rain-amount integration. In this way, the event size is the total
amount of rain collected during the duration of the event.

Andrade et al.(1998) studied long-term daily local (i.e.,
zero dimensional) rain records from weather stations in
Brazil, India, Europe, and Australia, with observation times
ranging from a decade to a century approximately, with de-
tection threshold 0.1 mmday−1. Although the dry spells (the
times between rain events) seemed to follow in some case
a steep power-law distribution, the rain-event size distribu-
tions were not reported, and therefore the connection be-
tween SOC and rainfall could not really be checked. Later,
Peters et al.(2002) analyzed high resolution rain data from
a vertically pointing Doppler radar situated on the Baltic
coast, which provided rates at an altitude between 250 and
300 ma.s.l., covering an area of 70 m2, with detection thresh-
old 0.0005 mmh−1 and temporal resolution of 1 min. Power-
law distributions for event sizes and for dry-spell durations
over several orders of magnitude were reported, with expo-
nentsτs ' τq ' 1.4. For the event–duration distribution the
results were unclear, although a power law with an exponent
τd ' 1.6 was fit to the data. More recently, a study cover-
ing 10 sites across different climates has checked the uni-
versality of rain-event statistics using rain data from opti-
cal gauges (Peters et al., 2010). The data had a detection
threshold of 0.2 mmh−1, and were collected at intervals of
1 min. The results showed unambiguous power-law distri-
butions of event sizes, with apparent universal exponents
τs = 1.17±0.03. Power-law distributions were also found for
the dry spell durations, but for event durations the behavior
was not conclusive.

Nevertheless, scale-free distributions of the avalanche-like
observables are insufficient evidence for “classical” SOC dy-

namics, as there are many alternative mechanisms of power-
law genesis (Sornette, 2004; Dickman, 2003). In other words,
SOC implies power laws, but the reciprocal is not true, power
laws are not a guarantee of SOC. Of particular relevance is
the multifractal approach, which can also reproduce scale in-
variance but using different observables. When applied to
rainfall, this approach focus on the rain rate field, which is
hypothesized to have multifractal support as a result from a
multiplicative cascade process. From this point of view, alter-
native statistical models and new forecasting and downscal-
ing methods have emerged (Schertzer and Lovejoy, 1992;
Lovejoy and Schertzer, 1995; Deidda, 2000; Veneziano and
Lepore, 2012).

We will study the scaling of the distributions of event ob-
servables without ascribing this scaling to SOC or any other
mechanism. As we have seen, the number of studies address-
ing this kind of scaling is rather limited, mostly due to the
supposed requirement that the data has to be of very high
time and rate resolution. The goal of the paper is to extend the
evidence for power laws in rainfall, in particular in the dis-
tribution of the observables related to rain events, studying
the applicability of this paradigm when the rain data avail-
able is not of high resolution. With this purpose, we per-
form an in-depth analysis of local rainfall records in a repre-
sentative region of the northwestern Mediterranean. For this
lower (in comparison with previous studies) resolution, the
range in which the power law holds can be substantially de-
creased. This may require the application of more refined fit-
ting techniques and scaling methods. Thus, as a byproduct,
we explore different scaling forms and develop a collapse
method based on minimizing the distance between distribu-
tions that also gives an estimation of the power-law exponent.
With these tools we will be able to establish the existence of
scale-invariant behavior in the medium-resolution rain data
analyzed.

We proceed as follows: Sect. 2 describes the data used
in the present analysis and defines the rain event, its size
and duration, and the dry spell. Section 3 shows the corre-
sponding probability densities and describes and applies an
accurate fitting technique for evaluating the power-law exis-
tence. Section 4 introduces two collapse methods (parametric
and non-parametric) in order to establish the fulfillment of
scaling, independently of power-law fitting. Discussion and
conclusions are presented in Sect. 5.

2 Data and definitions

2.1 Data

We have analyzed 20 stations in Catalonia (NE Spain) from
the database maintained by the Agència Catalana de l’Aigua
(ACA, 2014). These data come from a network of rain
gauges, called SICAT (Sistema Integral del Cicle de l’Aigua
al Territori, formerly SAIH, Sistema Automàtic d’Informació
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Table 1. Characteristics of all the sites for the 9-year period 2000–2008. Every site is named by the corresponding river basin or subbasin
(the municipality is included in ambiguous cases); Ll. stands for Llobregat river;fM is the fraction (in %) of missing records (time missing
divided by total time);fD is the fraction (in %) of discarded times;fr is the fraction (in %) of rainy time (time withr > 0 divided by total
non-discarded time, for a time resolution1t = 5 min); a. rate is the annual rain rate in mmyear−1, calculated only over non-discarded times;
c. rate is the rain rate in mmh−1 conditioned to rain, i.e., calculated over the (non-discarded) rainy time;Ns is the number of rain events
andNq the number of dry spells (the differences betweenNs andNq are due to the missing records); the rest of symbols are explained in
the text.〈s〉 is measured in mm, and〈d〉 and〈q〉 in min. Sites are ordered by increasing annual rate. The table shows a positive correlation
betweenfr , the annual rate,Ns andNq , and that these variables are negatively correlated with〈q〉. In contrast, the rate conditioned to rain
is roughly constant, taking values between 3.3 and 3.8 mmh−1.

Site fM fD fr a. rate c. rate Ns Nq 〈s〉 〈d〉 〈q〉

1 Gaià 0.08 3.71 1.6 470.9 3.3 5021 5014 0.81 14.9 894
2 Foix 0.07 3.38 1.6 500.6 3.6 4850 4844 0.90 15.0 929
3 Baix Ll. S.J. Despí 0.07 2.28 1.7 505.8 3.3 5374 5369 0.83 15.0 847
4 Garraf 0.09 3.30 1.6 507.8 3.7 4722 4716 0.94 15.2 956
5 Baix Ll. Castellbell 0.06 2.81 1.7 510.7 3.4 4950 4947 0.90 15.8 914
6 Francolí 0.44 13.37 1.8 528.2 3.4 4539 4540 0.91 16.1 887
7 Besòs Barcelona 0.15 4.17 1.7 531.8 3.5 4808 4803 0.95 16.2 928
8 Riera de La Bisbal 0.07 3.66 1.6 540.0 3.8 4730 4724 0.99 15.8 950
9 Besòs Castellar 4.34 13.59 2.0 633.3 3.6 4918 4970 1.00 16.9 806
10 Ll. Cardener 0.07 3.33 2.1 652.4 3.5 6204 6197 0.92 15.7 723
11 Ridaura 0.12 2.41 2.0 674.2 3.8 5780 5774 1.02 16.1 784
12 Daró 0.06 2.09 2.2 684.5 3.6 5553 5547 1.09 18.0 818
13 Tordera 0.08 2.04 2.3 688.8 3.4 7980 7977 0.76 13.6 568
14 Baix Ter 0.07 2.71 2.3 710.2 3.6 6042 6036 1.03 17.4 746
15 Cap de Creus 0.07 2.92 2.3 741.5 3.7 5962 5955 1.09 17.7 754
16 Alt Llobregat 3.12 5.82 2.6 742.8 3.3 6970 6988 0.90 16.7 621
17 Muga 0.06 2.56 2.4 749.3 3.6 6462 6457 1.02 16.9 698
18 Alt Ter Sau 0.08 2.43 2.5 772.1 3.6 6966 6961 0.97 16.3 647
19 Fluvià 3.09 4.74 2.3 772.4 3.8 6287 6319 1.05 16.7 697
20 Alt Ter S. Joan 0.07 1.98 2.8 795.1 3.3 8333 8327 0.84 15.5 452

Hidrològica), used to monitor the state of the drainage basins
of the rivers that are born and die in the Catalan territory.
The corresponding sites are listed in Table1 and have lon-
gitudes and latitudes ranging from 1◦10′51′′ to 3◦7′35′′ E
and from 41◦12′53′′ to 43◦25′40′′ N. All data sets cover a
time period starting on 1 January 2000, at 00:00 LT, and
ending either on 30 June or on 1 July 2009 (spanning
roughly 9.5 years), except the Cap de Creus, which ends on
19 June 2009.

In all the stations, rain is measured by the same weigh-
ing precipitation gauge, the device calledPluvio from OTT
Hydromet GmbH, either with a capacity of 250 or 1000 mm
and working through the balance principle. It measures both
liquid or/and solid precipitation. The precipitation rate is
recorded in intervals of1t = 5 min, with a resolution of
1.2 mmh−1 (which corresponds to 0.1 mm in 5 min). This
precipitation rate can be converted into an energy flux
through the latent heat of condensation of water, which
yields 1mmh−1

' 690Wm−2, nevertheless, we have not
performed such conversion. Figure1a shows a subset of the
time series for site 17 (Muga).

In order to make the files more manageable, the database
reports zero-rain rates only every hour; then we consider time
voids larger than 1 h as operational errors. The ratio of these
missing times to the total time covered in the record is de-
noted asfM in Table1, where it can be seen that this is usu-
ally below 0.1 %. However, there are three cases in which
its value is around 3 or 4 %. Other quantities reported in the
table are the fraction of time corresponding to rain (or wet
fraction),fr , the annual mean rate, and the mean rate con-
ditioned to rain periods. Nevertheless, note that for a fractal
point process a quantity asfr depends on the time resolution;
so,fr only makes sense for a concrete time division, in our
case,1t = 5 min.

2.2 Rain event sizes, rain event durations, and dry spell
durations

Following Andrade et al.(1998) and Peters et al.(2002),
we define a rain event as a sequence of consecutive
rain rates bigger than zero delimited by zero rates, i.e.,
{r(tn),r(tn+1), . . . r(tm)}, such thatr(ti) > 0 for i = n,n +

1, . . .m with r(tn−1) = r(tm+1) = 0. Due to the resolution of
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the record, this is equivalent to take a threshold with a value
below 1.2 mmh−1. It is worth mentioning that this simple
definition of rain events may be in conflict with those used
by the hydrologist community, so caution is required in or-
der to make comparisons between the different approaches
(Molini et al., 2011).

The first observable to consider is the duration,d, of the
event, which is the time that the event lasts (a multiple of
5 min, in our case). The size of the event is defined as the
total rain during the event (i.e., the rate integrated over the
event duration),

s ≡

m∑
i=n

r(ti)1t '

tm∫
tn

r(t)dt,

measured in mm (and multiple of 0.1 mm in our case,
1.2mmh−1

× 5min). Notice that this event size is not the
same as the usual rain depth, due to the different definition
of the rain event in each case. Figure1b shows as an illus-
tration the evolution of the rate for the largest event in the
record, which happens at the Muga site, whereas Fig.1c dis-
plays the sequence of all event sizes in the same site for the
year 2002. It is important to realize that this quantity is differ-
ent to the one at Fig.1a. Regarding event durations, the time
series have a certain resemblance to Fig.1c, as usually they
are (nonlinearly) correlated with event sizes (Telesca et al.,
2007). Further, the dry spells are the periods between con-
secutive rain events (then, they verifyr(t) = 0); we denote
their durations byq. When a rain event, or a dry spell, is in-
terrupted due to missing data, we discard that event or dry
spell, and count the recorded duration as discarded time; the
fraction of these times in the record appears in Table1, under
the symbolfD. Although in some cases the duration of the
interrupted event or dry spell can be bounded from below or
from above (as in censored data), we have not attempted to
use that partial information.

3 Power-law distributions

3.1 Probability densities

Due to the enormous variability of the three quantities just
defined, the most informative approach is to work with their
probability distributions. Taking the size as an example, its
probability density,PS(s), is defined as the probability that
the size is betweens ands +ds divided byds, with ds → 0.
Subsequently,

∫
∞

0 PS(s)ds = 1. This implicitly assumes that
s is considered as a continuous variable (but this will be cor-
rected later, see more details on AppendixA). In general, we
illustrate all quantities with the event sizes, the analogous
for d andq are obtained by replacings with the symbol of
each observable. The corresponding probability densities are
denoted asPD(d) andPQ(q). Note that the annual number
densities (Peters et al., 2002; Peters and Christensen, 2002,
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Fig. 1. (a)Subset of the rain rate time series for site 17 (Muga) for
year 2002.(b) More reduced subset of the rain rate time series for
the same site, corresponding to the largest rain event on the record,
with s = 248.7 mm, on 11 April 2002. Time refers to hours since
midnight. A very small rain event is also present at the beginning,
with s = 0.3 mm and separated to the main event by a dry spell of
durationq = 15 min. (c) Corresponding event-size time series for
the same site, for year 2002.
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2006) are trivially recovered multiplying the probability den-
sities by the total number of events or dry spells and dividing
by total time.

The results for the probability densitiesPS(s), PD(d), and
PQ(q) of all the sites under study are shown in Fig.2a,
b, and c, respectively. In all cases the distributions show a
very clear behavior, monotonically decreasing and covering
a broad range of values. However, to the naked eye, a power-
law range is only apparent for the distributions of dry spells,
PQ(q) (remember that a power law turns into a straight line
in a log–log plot). Moreover, thePQ(q) are the broadest dis-
tributions, covering a range of more than 4 orders of magni-
tude (from 5 min to about a couple of months), and present
in some cases a modest daily peak (in comparison toPeters
et al., 2002, with 1 day = 1440 min). In the opposite side, we
find the distributions of durations,PD(d), whose range is the
shortest, from 5 min to about 1 day (two and a half orders
of magnitude), and for which no straight line is visible in
the plot; rather, the distributions appear as convex. The size
distributions,PS(s), defined for about 3 orders of magnitude
(from 0.1 to 200 mm roughly), can be considered in between
the other two cases, with a visually shorter range of power-
law behavior.

3.2 Fitting and testing power laws

A quantitative method can put more rigor into these obser-
vations. The idea is based on the recipe proposed byClauset
et al.(2009) – see alsoCorral et al.(2011) – but improved and
generalized to our problem. Essentially, an objective proce-
dure is required in order to find the optimum range in which
a power law may hold. Taking again the event size for il-
lustration, we report the power-law exponent fit between the
values ofsmin andsmax which yield the maximum number of
data in that range but with ap value greater than 10 %. The
method is described inPeters et al.(2010) and in more de-
tail in Deluca and Corral(2013), but we summarize it in the
following paragraphs.

For a given value of the pairsmin andsmax, the maximum-
likelihood (ML) power-law exponent is estimated for the
events whose size lies in that range. This exponent yields a fit
of the distribution, and the goodness of such a fit is evaluated
by means of the Kolmogorov–Smirnov (KS) test (Press et al.,
1992). The purpose is to get ap value, which is the probabil-
ity that the KS test gives a distance between true power-law
data and its fit larger than the distance obtained between the
empirical data and its fit.

For instance,p = 20 % would mean that truly power-law
distributed data were closer than the empirical data to their
respective fits in 80 % of the cases, but in the rest 20 % of the
cases a true power law were at a larger distance than the em-
pirical data. Therefore, in such a case the KS distance turns
out to be somewhat large, but not large enough to reject that
the data follow a power law with the ML exponent.
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Fig. 2. Probability densities for all the sites for the whole time cov-
ered by the record of(a) event sizes,(b) event durations, and(c) dry
spells.

As in the case in which some parameter is estimated from
the data there is no closed formula to calculate thep value,
we perform Monte Carlo simulations in order to compute
the statistics of the Kolmogorov–Smirnov distance and from
there thep value. In this way, for eachsmin andsmax we get
a number of dataN̄s in that range and, repeating the pro-
cedure many times, ap value. We look for the values of the
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extremes (smin andsmax) which maximize the number of data
in between but with the restriction that thep value has to be
greater than 10 % (this threshold is arbitrary, but the conclu-
sions do not change if it is moved). The maximization is per-
formed sweeping 100 values ofsmin and 100 values ofsmax,
in log-scale, in such a way that all possible ranges (within
this log-resolution) are taken into account. We have to remark
that, in contrast withPeters et al.(2010), we have considered
always discrete probability distributions, both in the ML fit
and in the simulations. Of course, it is a matter of discussion
which approach (continuous or discrete) is more appropriate
for discrete data that represent a continuous process. In any
case, the differences in the outcomes are rather small. No-
tice also that the method is not based on the estimation of the
probability densities shown in the previous subsections, what
would be inherently more arbitrary (Clauset et al., 2009).

The results of this method are in agreement with the vi-
sual conclusions obtained in the previous subsection, as can
be seen in Table2. Starting with the size statistics, 13 out of
the 20 sites yield reasonable results, with an exponentτs be-
tween 1.43 and 1.54 over a logarithmic rangesmax/smin from
12 to more than 200. For the rest of the sites, the range is
too short, less than one decade (a decade is understood from
now as an order of magnitude). In the application of the al-
gorithm, it has been necessary to restrict the value ofsmin to
besmin ≥ 0.2 mm; otherwise, as the distributions have a con-
cave shape (in log-scale) close to the origin (which means
that there are many more events in that scale than at larger
scales), the algorithm (which maximizes the number of data
in a given range) prefers a short range with many data close
to the origin than a larger range with less data away from
the origin. It is possible that a variation of the algorithm in
which the quantity that is maximized were different (for in-
stance related with the range), would not need the restriction
in the minimum size.

For the distribution of durations the resulting power laws
turn out to be very limited in range; only 4 sites give not too
short power laws, withdmax/dmin from 6 to 12 andτd from
1.66 to 1.74. The other sites yield extremely short ranges for
the power law be of any relevance. The situation is analo-
gous to the case of the distribution of sizes, but the result-
ing ranges are much shorter here (Peters et al., 2010). Notice
that the excess of events withd = 5 min, eliminated from the
fits imposingdmin ≥ 10 min, has no counterpart in the value
of the smallest rate (not shown), and therefore, we conclude
that this extra number of events is due to problems in the time
resolution of the data.

Considerably more satisfactory are the results for the dry
spells. In all, 16 sites give consistent results, withτq from
1.45 to 1.55 in a rangeqmax/qmin from 30 to almost 300. It
is noticeable that in these casesqmax is always below 1 day.
The removal by hand of dry spells around that value should
enlarge a little the power-law range. In the rest of sites, ei-
ther the range is comparatively too short (for example, for the
Gaià site, the power-law behavior ofPQ(q) is interrupted at

aroundq = 100 min), or the algorithm has a tendency to in-
clude the bump the distributions show between the daily peak
(q beyond 1000 min) and the tail. This makes the value of
the exponent smaller (around 1.25). Nevertheless, the value
of the exponent is much higher than the one obtained for the
equivalent problem of earthquake waiting times, where the
Omori law leads to values around one, or less. This points
to a fundamental differences between both kind of processes
(from a statistical point of view).

In summary, the power laws for the distributions of dura-
tions are too short to be relevant, and the fits for the sizes are
in the limit of what is acceptable (some cases are clear and
some other not). Only the distributions of dry spells give re-
ally good power laws, withτq = 1.50± 0.05, and for more
than two decades in 6 sites.

4 Scaling

4.1 Non-parametric scaling

However, the fact that a power-law behavior does not exist
over a broad range of values does not rule out the existence of
scaling or SOC (Christensen and Moloney, 2005). In fact, the
fulfillment of a power-law distribution in the form of Eq. (1)
is only valid when finite-size effects are “small”, which only
happens for large enough systems. In general, when these ef-
fects are taken into account, scaling behavior leads to distri-
butions of the form (Christensen and Moloney, 2005; Peters
et al., 2010):

PS(s) = s−τsGS(s/sξ ) for s > sl , (2)

whereGS(x) is a scaling function that is essentially constant
for x � 1 and decays fast forx � 1, accounting in this way
for the finite-size effects whens is above the crossover value,
sξ ; the sizesl is just a lower cutoff limiting the validity of this
description. The pure power law only emerges forsξ → ∞;
nevertheless, a truncated power law holds over an apprecia-
ble range if the scales given bysl andsξ are well separated
(i.e., sl � sξ ). As sξ increases with system size, typically
assξ ∝ LDs (with Ds the so-called avalanche dimension, or
event-size dimension), the power-law condition (1) can only
be fulfilled for large enough system sizes.

Note that, in the case of a too short power-law range or a
non-conclusive fit, we still could check the existence of scal-
ing using Eq. (2) if we knewsξ or L. However,sξ is difficult
to measure, needing a parameterization of the scaling func-
tion, and it is not clear what the system sizeL is for rainfall.
It could be the vertical extension of the clouds, or the depth of
the troposphere. Nevertheless, it is important to realize that
the scaling ansatz (2) still can be checked from data without
knowledge ofL or sξ . First, notice that the ansatz implies
that thek-order moment ofs scales withL as

〈sk
〉 ∝ LDs (k+1−τs ) for 1 < τs < k + 1, (3)
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Table 2.Results of the power-law fitting and goodness-of-fit tests applied to event sizes, event durations, and dry-spell durations (in mm or
in min), for the period of nine and a half years specified in the main text. The table displays the minimum of the fitting range,smin, and the
ratio between the maximum and the minimum of the fitting range (logarithmic range,smax/smin), total number of events, number of events
in fitting range (N̄s , N̄d , andN̄q , for s, d, andq, respectively), and the power-law exponent with its uncertainty (one standard deviation)
calculated as stated byBauke(2007) and displayed between parenthesis as the variation of the last digit.

Site smin
smax
smin

Ns N̄s τs dmin
dmax
dmin

N̄d τd qmin
qmax
qmin

Nq N̄q τq

1 0.2 180.5 5393 1886 1.54(2) 10 10.0 1668 1.67(4) 95 7.8 5387 743 1.75(7)
2 0.2 4.5 5236 1323 1.64(6) 10 4.0 1581 1.60(6) 5 273.0 5231 4729 1.46(1)
3 0.2 155.5 5749 2111 1.53(2) 10 6.0 1726 1.66(5) 10 80.0 5745 3207 1.53(2)
4 0.2 12.0 5108 1745 1.43(3) 10 3.5 1564 1.41(7) 5 196.0 5103 4520 1.47(1)
5 0.2 140.0 5289 2106 1.52(2) 10 3.5 1530 1.58(7) 20 47.3 5287 1706 1.45(2)
6 0.2 68.0 4924 1969 1.49(2) 10 3.5 1441 1.59(7) 20 31.3 4926 1537 1.47(3)
7 0.2 105.5 5219 2234 1.51(2) 10 3.5 1621 1.51(7) 5 256.0 5215 4734 1.51(1)
8 0.2 213.0 5112 2047 1.53(2) 10 4.0 1567 1.55(6) 15 65.0 5107 2098 1.50(2)
9 0.2 5.0 5366 1459 1.53(5) 10 4.0 1658 1.51(6) 10 90.0 5419 2889 1.55(2)
10 0.2 19.0 6691 2452 1.51(2) 10 3.5 2066 1.57(6) 25 33.0 6685 1758 1.48(3)
11 0.2 65.0 6224 2373 1.49(2) 10 5.0 1932 1.56(5) 45 468.3 6219 2005 1.24(1)
12 0.2 4.0 5967 1500 1.53(6) 10 4.0 1889 1.49(6) 5 235.0 5961 5376 1.47(1)
13 0.3 66.7 8330 1853 1.45(2) 10 12.5 2288 1.74(3) 130 158.5 8328 1501 1.27(2)
14 0.2 3.5 6525 1711 1.56(6) 10 5.0 2299 1.62(4) 5 215.0 6520 5906 1.47(1)
15 0.3 3.7 6485 1102 1.39(7) 10 5.0 2095 1.64(5) 15 49.7 6479 2560 1.51(2)
16 0.2 3.5 7491 1852 1.59(5) 10 4.0 2385 1.59(5) 5 214.0 7510 6789 1.50(1)
17 0.2 80.5 6962 2853 1.52(2) 10 3.5 2087 1.60(6) 10 68.5 6958 3719 1.52(1)
18 0.2 41.5 7511 2847 1.51(2) 10 3.5 2238 1.57(6) 20 31.0 7507 2302 1.53(2)
19 0.2 99.5 6767 2742 1.47(2) 10 3.5 1958 1.60(6) 50 21.7 6800 1378 1.26(3)
20 0.2 3.5 9012 2047 1.69(5) 10 8.5 2972 1.66(3) 15 34.3 9007 3367 1.50(2)

if sl � sξ , seeChristensen and Moloney(2005). Second,
Eq. (2) can be written in a slightly different form, as a scaling
law,

PS(s) = L−DsτsFS

(
s/LDs

)
for s > sl , (4)

where the new scaling functionFS(x) is defined asFS(x) ≡

x−τsGS(x/a) (a is the constant of proportionality between
sξ and LDs ). This form of PS(s) (in fact, PS(s,L)), with
an arbitraryFS , is the well-known scale-invariance condition
for functions with two variables (Christensen and Moloney,
2005). Changes of scale (linear transformations) ins andL

may leave the shape of the functionPS(s,L) unchanged (this
is what scale invariance really means, power laws are just a
particular case in one dimension).

Substituting LDs ∝ 〈s2
〉/〈s〉 and LDsτs ∝ L2Ds /〈s〉 ∝

〈s2
〉
2/〈s〉3 (from the scaling of〈sk

〉, assumingτs < 2) into
Eq. (4) leads to

PS(s) = 〈s〉3
〈s2

〉
−2F̃S

(
s〈s〉/〈s2

〉

)
, (5)

whereF̃S(x) is essentially the scaling functionFS(x), ab-
sorbing the proportionality constants. Therefore, if scaling
holds, a plot of〈s2

〉
2PS(s)/〈s〉3 versuss〈s〉/〈s2

〉 for all the
sites has to yield a collapse of the distributions into a single
curve, which drawsF̃S(x) (a similar procedure is outlined
in Rosso et al., 2009). In order to proceed, the mean and the

quadratic mean,〈s〉 and 〈s2
〉, can be easily estimated from

data. Since no estimation of parameters is involved for this
procedure, we call it non-parametric scaling.

The outcome forPS(s), PD(d), andPQ(q) is shown in
Fig. 3a, b, and c, with reasonable results, especially for the
distribution of dry spells. The plot suggests that the scal-
ing functionGQ of the dry-spell distribution has a maximum
aroundx ' 1, but this is not in disagreement with our ap-
proach, which only assumed a constant scaling function for
smallx and a fast decay for largex.

Note that the quotient〈s2
〉/〈s〉 gives the scale for the

crossover valuesξ (assξ ∝ 〈s2
〉/〈s〉, with a constant of pro-

portionality that depends on the scaling functionGS and on
sl/sξ ), and therefore it is the ratio of the second moment to
the mean and not the mean which describes the scaling be-
havior of the distribution. This can have important implica-
tions for extreme events: an increase in the value of the mean
is not proportional to an increase of the most extreme events,
represented bysξ . For the case of event sizes, we get val-
ues of〈s2

〉/〈s〉 between 10 and 30 mm (which is a variability
much higher than that of〈s〉), and therefore the condition
sl � sξ is very well fulfilled (assuming that the moment ratio
〈s2

〉/〈s〉 is of the same order assξ , and withsl ' smin), which
is a test for the consistency of our approach. For dry spells
〈q2

〉/〈q〉 is between 5 and 13 days, which is even better for
the applicability of the scaling analysis. The case of the event
durations is somewhat “critical”, with〈d2

〉/〈d〉 between 70
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Fig. 3. Collapse of the probability densities for all the sites for the
whole time covered by the record of:(a) event sizes,(b) event dura-
tions, and(c) dry spells. Rescaling is performed using the first and
second moment of each distribution, following Eq. (5).

and 120 min, which yieldsdξ/dl in the range from 14 to 24.
Nevertheless, we observe that the conditionsl � sξ for the
power law to show up is stronger than the same condition for
the scaling analysis to be valid.

4.2 Parametric scaling

Further, a scaling ansatz as Eq. (2) or (4) allows an estimation
of the exponentτs , even in the case in which a power law can-
not be fit to the data. From the scaling of the moments ofs we
get, takingk = 1, LDs ∝ 〈s〉1/(2−τs ) andLDsτs ∝ 〈s〉τs/(2−τs )

(again withτs < 2); therefore, substituting into Eq. (4),

PS(s) = 〈s〉−τs/(2−τs )F̂S
(
s/〈s〉1/(2−τs )

)
. (6)

One only needs to find the value ofτs that optimizes the col-
lapse of all the distributions, that is, that makes the previous
equation valid, or at least as close to validity as possible. As
the scaling depends on the parameterτs , we refer to this pro-
cedure as parametric scaling.

We therefore need a measurement to quantify distance be-
tween rescaled distributions. In order to do that, we have
chosen to work with the cumulative distribution function,
RS(s) ≡

∫
∞

s
PS(s′)ds′, rather than with the density (to be

rigorous,RS(s) is the complementary of the cumulative dis-
tribution function, and is called survivor function or relia-
bility function in some contexts). Although in practice both
PS(s) andRS(s) contain the same probabilistic information,
the reason to work withRS(s) is double: the estimation of
the cumulative distribution function does not depend of an
arbitrarily selected bin widthds (Press et al., 1992), and it
does not give equal weight to all scales in the representation
of the function (i.e., in the number of points that constitute
the function). The scaling laws (4) and (6) turn out to be,
therefore,

RS(s) = L−Ds (τs−1)HS

(
s/LDs

)
(7)

RS(s) = 〈s〉−(τs−1)/(2−τs )ĤS
(
s/〈s〉1/(2−τs )

)
, (8)

whereHS(x) andĤS(x) are the corresponding scaling func-
tions.

The first step of the method of collapse is to merge all
the pairs{s,RS(s)}i into a unique rescaled function{x,y}.
If i = 1, . . . ,20 runs for all sites, andj = 1, . . . ,Ms(i) for all
the different values that the size of events takes on sitei (note
thatMs(i) ≤ Ns(i)),

x`(τ ) ≡ log
(
sji/〈s〉

1/(2−τ)
i

)
,

y`(τ ) ≡ log
(
Ri

(
sji

)
〈s〉

(τ−1)/(2−τ)
i

)
,

wheresji is thej th value of the size in sitei, 〈s〉i the mean
on s in i, Ri(sji) the cumulative distribution function ini,
andτ a possible value of the exponentτs . The index̀ labels
the new function, from 1 to

∑
∀i Ms(i), in such a way that

x`(τ ) ≤ x`+1(τ ); this means that the pairsx`(τ ),y`(τ ) are
sorted by increasingx.

Then, we just compute

D(τ) ≡

∑
∀`

([
x`(τ ) − x`+1(τ )

]2
+

[
y`(τ ) − y`+1(τ )

]2
)

, (9)
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which represents the sum of all Euclidean distances between
the neighboring points in a (tentative) collapse plot in loga-
rithmic scale. The value ofτ which minimizes this function
is identified with the exponentτs in Eq. (2). We have tested
the algorithm applying it to SOC models whose exponents
are well known (not shown).

The results of this method applied to our data sets, not
only for the size distributions but also to the distributions of
d, are highly satisfactory. There is only one requirement: the
removal of the first point in each distribution (s = 0.1 mm
andd = 5 min), as with the ML fits. The exponents we find
areτs = 1.52±0.12 andτd = 1.69±0.01, in agreement with
the ones obtained by the power-law fitting method presented
above; the corresponding rescaled plots are shown in Fig.4.
Although the visual display does not allow to evaluate prop-
erly the quality of the collapse, the reduction in the value of
the functionD(τ) is notable. Then, the performance of the
method is noteworthy, taking into account that the mean val-
ues of the distributions show little variation in most cases.
In addition, the shape of the scaling functionGS can be ob-
tained by plotting, as suggested by Eq. (2), sτs PS(s) versus
s/〈s〉1/(2−τs ), and the same for the other variable,d. Figure5
displays what is obtained for each distribution. In contrast,
the application of this method toPQ(q) does not yield con-
sistent results, asτq turns out to be rather small (1.24). Notice
that the existence of a daily peak in the distributions is an ob-
stacle to a data collapse, as the peak prevents a good scaling.

5 Discussion and conclusions

We have performed an in-depth study of the properties of
rain-event observables in rainfall in the Mediterranean re-
gion in order to check if power-law distributions and scale
invariance can be useful for modeling rain events and dry
spells. The results support this hypothesis, which had not
been checked before in this region or for this kind of data
resolution. For the distributions of rain-event sizes, we get
power-law exponents valid for one or two decades in the ma-
jority of sites, with exponent valuesτs ' 1.50± 0.05. For
the distributions of event durations, the fitting ranges are
shorter, reaching in the best case one decade, with exponents
τd ' 1.70±0.05. This range is expected to be shorter than for
event sizes, given that these combine the event duration dis-
tribution with the rain rate (Peters et al., 2010). And finally,
the dry spell distributions yield the more notable power-law
fits, with exponents in the rangeτq ' 1.50± 0.05, in some
cases for more than 2 decades.

These results are compatible with the ones obtained for
the Baltic sea byPeters et al.(2002), which yieldedτs '

τq ' 1.4 and τd ' 1.6. The agreement is remarkable, tak-
ing into account the different nature of the data analyzed
and the disparate fitting procedures. However, the concor-
dance with the more recent results ofPeters et al.(2010)
is not very good, quantitatively. That previous study, with a
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Fig. 4. Collapse of the probability densities for all the sites for the
whole time covered by the record of(a) event sizes and(b) event
durations; rescaled using Eq. (6) with the exponents:τs = 1.52 and
τd = 1.69, determined minimizing the Euclidean distance between
parametrically collapsed distributions. Units are mm or min to the
corresponding powers appearing in the axes.

minimum detection rate of 0.2 mmh−1 and a time resolution
1t = 1 min, foundτs ' 1.17 for several sites across differ-
ent climates, using essentially the same statistical techniques
as in the present study. For dry-spell durations the exponents
were close in many cases toτq ' 1.3. The difference between
the value of the exponents may be due to data resolution (but
then, our agreement with the values in the first paper may be
fortuitous). Changes in the detection threshold have a non-
trivial repercussion in the size and duration of the events and
the dry spells (an increase in the threshold can split one sin-
gle event into two or more separate ones but also can remove
events). Further, better time resolution and lower detection
threshold allow the detection of smaller events, enlarging
the power-law range and reducing the weight from the part
close to the crossover point (where the distribution becomes
steeper); this trivially leads to smaller values of the expo-
nent. In the dry-spell case, the power-law range in this study
is enough to guarantee that our estimation of the exponents
are robust, so the discrepancy withPeters et al.(2010) may
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Fig. 5. Inferred scaling functionsGS andGD (except for a propor-
tionality factor in thex axis) corresponding to the rescaled distribu-
tions of s andd in Fig. 4, multiplied by sτs anddτd . Units in the
abscissae are as in the previous plot, whereas in the ordinates these
are mmτs−1 and minτd−1.

be due to the non-trivial effect of the change in the detection
thresholds or differences on the measurement devices.

On the other hand, finite size effects can explain the lim-
ited power-law range obtained fors and d observables, as
it occurs in (self-organized and non-self-organized) critical
phenomena. The finite-size analysis performed, in terms of
combinations of powers of the moments of the distributions,
supports this conclusion. The collapse of the distributions is
a clear signature of scale invariance: different sites share a
common shape of the rain-event and dry-spell distributions,
with differences in the scale of those distributions, depending
on system size. Then, in the ideal case of an infinite system,
the power laws would lack an upper cutoff. Moreover, the
collapse of the distributions allows an independent estimate
of the power-law exponents, which, for event durations and
sizes, are in surprising agreement with the values obtained by
the maximum-likelihood fit. For dry spell durations, a daily
peak in the distributions hinders their collapse.

Nevertheless, future work should consider spatially ex-
tended events. Our measurements are taken in a point of the
surface which reflects information on the vertical scale, then,
the results could be affected by this. Another related but dif-
ferent issue are the correlations between the sites, which have
not been taken into account. Further, in order to establish a
link with SOC or not, one would need to measure, simulta-
neously, other variables, such as water vapor content (Peters
and Neelin, 2006). Our results show that these studies can be
undertaken without high-resolution rain data.

The implications of the results for hazard assessment are
also of great interest: if there is not a characteristic rain-event
size, then there is neither a definite separation nor a funda-
mental difference between the smallest harmless rains and
the most hazardous storms. Further, it is generally believed
that the critical evolution of events in SOC systems implies
that, at a given instant, it is equally likely that the event in-
tensifies or weakens, which would make detailed prediction
unattainable. However, this view has been recently proved
wrong, as it has been reported that a critical evolution de-
scribes the dynamics of some SOC systems only on average;
further, the existence of finite size effects can be used for
prediction (Garber et al., 2009; Martin et al., 2010). Inter-
estingly, in the case of rain, it has been recently shown by
Molini et al. (2011) that knowledge of internal variables of
the system allows some degree of prediction for the duration
of the events, related also to the departure of the system from
quasi-equilibrium conditions.

Finally, we urge studies which explore the effects of reso-
lution and detection-threshold value in high-resolution rain
data. A common misbelief in the SOC approach is that
avalanches happen following a memoryless process, leading
therefore to exponential distributions for the waiting times
(Corral, 2005). This has been refuted if a threshold on the
intensity is present (Paczuski et al., 2005). In this case, times
between avalanches follow a power-law distribution, as we
find for dry spells.

In summary, we conclude that the statistics of rainfall
events in the NW Mediterranean area studied are in agree-
ment with the SOC-paradigm expectations but also with any
other mechanism for power-law genesis. This is the first time
this study is realized for this region and it is a confirmation
of what has been found for other places of the world, but in
our case using data with lower resolution.
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Appendix A

Details on the estimation of the probability density

In practice, the estimation of the density from data is per-
formed taking a value ofds large enough to guarantee sta-
tistical significance, and then computePS(s) asn(s)/(Ns1),
wheren(s) is the number of events with size in the range be-
tweens ands + ds, Ns the total number of events, and1 is
defined as

1 =Rs (b(s + ds)/Rsc − bs/Rsc) ,

wherebxc is the integer part ofx andRs the resolution of
s, that is,Rs = 0.1 mm (but note that high resolution means
low Rs). Therefore,1/Rs is the number of possible differ-
ent values of the variable in the interval considered. Notice
that using1 instead ofds in the denominator of the estima-
tion of PS(s) allows one to take into account the discreteness
of s. If Rs tended to zero, then1 → ds and the discreteness
effects would become irrelevant.

How large doesds have to be to guarantee the sta-
tistical significance of the estimation ofPS(s)? Working
with long-tailed distributions (where the variable covers a
broad range of scales) a very useful procedure is to take a
width of the intervalds that is not the same for alls, but
that is proportional to the scale, as[s,s + ds) = [so,bso),
[bso,b

2so), . . . , [b
kso,b

k+1so), that is, ds = (b − 1)s (with
b > 1). Given a value ofs, the corresponding value ofk that
associatess with its bin is given byk = blogb(s/so)c. Corre-
spondingly, the optimum choice to assign a point to the inter-
val [s,s + ds) is given by the value

√
bs. This procedure is

referred to as logarithmic binning, because the intervals ap-
pear with fixed width in logarithmic scale (Hergarten, 2002).
In this paper we have generally takenb ' 1.58, in such a way
thatb5

= 10, providing 5 bins per order of magnitude.

As the distributions are estimated from a finite number
of data, they display statistical fluctuations. The uncertainty
characterizing these fluctuations is simply related to the den-
sity by

σPS
(s)

PS(s)
'

1
√

n(s)
, (A1)

where σPS
(s) is the standard deviation ofPS(s) (do not

confound with the standard deviation ofs). This is so be-
causen(s) can be considered a binomial variable (von Mises,
1964), and then, the ratio between its standard deviation and
mean fulfills σn(s)/〈n(s)〉 ' 1/

√
n(s), with n(s)/Ns � 1.

As PS(s) is proportional ton(s), the same relation holds for
its relative uncertainty.
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