Nonlin. Processes Geophys., 21, 5564 2014
www.nonlin-processes-geophys.net/21/555/2014/
doi:10.5194/npg-21-555-2014

© Author(s) 2014. CC Attribution 3.0 License.

$s920y uadQ

Scale invariant events and dry spells for medium-resolution local
rain data

A. Delucal?2and A. Corral 12

1Centre de Recerca Matematica, Edifici Cc, Campus Bellaterra, 08193 Bellaterra, Barcelona, Spain
2Departament de Matematiques, Universitat Autdnoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Correspondence toA. Deluca (adeluca@crm.cat) and A. Corral (acorral@crm.cat)

Received: 12 May 2012 — Revised: 7 February 2014 — Accepted: 14 February 2014 — Published: 25 April 2014

Abstract. We analyze distributions of rain-event sizes, rain- The concept of self-organized criticality (SOC) aims for
event durations, and dry-spell durations for data obtainedexplaining the origin of the emergence of structures across
from a network of 20 rain gauges scattered in a region of themany different spatial and temporal scales in a broad va-
northwestern Mediterranean coast. While power-law distri-riety of systemsBak, 1996 Jensen1998 Sornette 2004
butions model the dry-spell durations with a common expo-Christensen and Molone2005. Indeed, it has been found
nent 150+ 0.05, density analysis is inconclusive for event that for diverse phenomena that take place intermittently, in
sizes and event durations, due to finite size effects. Howterms of bursts of activity interrupting larger quiet periods,
ever, we present alternative evidence of the existence of scalthe size,s, of these bursty events or avalanches follows a
invariance in these distributions by means of different datapower-law distribution,

collapses of the distributions. These results demonstrate that

scaling properties of rain events and dry spells can also be(s) i (1)
observed for medium-resolution rain data.

over a certain range of wherePg(s) is the probability den-
sity of the event size and its exponent (and the sigr in-
1 Introduction dicating proportionality). The size, can be understood as a
measure of energy dissipation. If durations of events are mea-
The complex atmospheric processes related to precipitasured, a power-law distribution also holds. These power-law
tion and convection arise from the cooperation of diversedgjstributions provide an unambiguous proof of the absence of
non-linear mechanisms with different temporal and spatialcharacteristic scales within the avalanches, as power laws are
characteristic scales. Precipitation combines, for instanceghe signature of scale invariand@hristensen and Moloney
the O(100um) microphysics effects as evaporation with 2005,
O(1000km) planetary circulation of masses and moisture The main idea behind SOC is the claim that such scale
(Bodenschatz et al2010. Rain fields also present high jnvariance is achieved because of the existence of a non-
spatial and temporal intermittency as well as extreme vari-equilibrium continuous phase transition whose critical point
ability, in such a way that their intensity cannot be char-js an attractor of the dynamics when the system is slowly
acterized by its mean value. Despite the complexity of thegriven (Tang and Bak1988 Dickman et al. 1998 2000).
processes involved, surprising statistical regularities haveyhen the system settles at the critical point, scale invari-
been found: numerous geometric and radiative propertiegince and power-law behavior are ensured, as these peculiar-
of clouds present clear scaling or multiscaling behaviorities are the defining characteristics of critical phenomena
(Lovejoy, 1982 Cahalan and Josepli989 Peters et al.  (Christensen and Molong005. SOC has had a big im-
2009 Wood and F|e|d201]), aISO, I’aindrop arrival times and pact inthe geoscienceS, in particu|ar earthquaBeK(lgga
raindrop sizes, are well characterized by power-law distribu-Sornette and Sorneft#989, landslides and rock avalanches
tions over several of orders of magnitudgson et al.1993 (Malamud 2004), or forest fires lalamud et al.1998. Due
Lavergnat and Gol&2008. to the existence of power-law distributed events in them,
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these systems have been proposed as realizations of SOC iramics, as there are many alternative mechanisms of power-
the natural world; nevertheless, no evidence of an underlydaw genesis$ornette2004 Dickman 2003. In other words,
ing critical point has been presented. On the other hand, it iSOC implies power laws, but the reciprocal is not true, power
also possible to understand SOC in a broader sense, as th&ws are not a guarantee of SOC. Of particular relevance is
spontaneous emergence of scale invariance; therefore, SOie multifractal approach, which can also reproduce scale in-
is not considered a mechanism based on an attraction tosariance but using different observables. When applied to
wards a continuous phase transition, but arising from a differ+ainfall, this approach focus on the rain rate field, which is
ent phenomenology, where stochasticity and non-vanishindiypothesized to have multifractal support as a result from a
fluxes play a key role, as it happens in multifractal cascadesnultiplicative cascade process. From this point of view, alter-
(Schertzer and Lovejoyl994 2011, Hooge et al. 1994 native statistical models and new forecasting and downscal-
Lovejoy and Schertzep013. ing methods have emerge&dahertzer and Lovejoyl992
SOC observables have been explored in rainfall whileLovejoy and Schertzed 995 Deiddg 200Q Veneziano and
looking at precipitation as an avalanche process, and paytepore 2012.
ing attention to the properties of these avalanches, called rain We will study the scaling of the distributions of event ob-
events. To our knowledge, the first works following this ap- servables without ascribing this scaling to SOC or any other
proach are those dkndrade et al(1998 and Peters et al. mechanism. As we have seen, the number of studies address-
(2002 (Peters and Christense2002 2006. These authors ing this kind of scaling is rather limited, mostly due to the
defined, independently, a rain event as the sequence of raisupposed requirement that the data has to be of very high
occurrence with a rain rate (i.e., the activity) always greatertime and rate resolution. The goal of the paper is to extend the
than zero. Therefore, the focus of these approaches is not cevidence for power laws in rainfall, in particular in the dis-
the total amount of rain recorded in a fixed time period (for tribution of the observables related to rain events, studying
instance, one hour, one day, or one month), but on the raithe applicability of this paradigm when the rain data avail-
event, which is what defines in each case the time period o&ble is not of high resolution. With this purpose, we per-
rain-amount integration. In this way, the event size is the totalform an in-depth analysis of local rainfall records in a repre-
amount of rain collected during the duration of the event.  sentative region of the northwestern Mediterranean. For this
Andrade et al(1998 studied long-term daily local (i.e., lower (in comparison with previous studies) resolution, the
zero dimensional) rain records from weather stations inrange in which the power law holds can be substantially de-
Brazil, India, Europe, and Australia, with observation times creased. This may require the application of more refined fit-
ranging from a decade to a century approximately, with de-ting techniques and scaling methods. Thus, as a byproduct,
tection threshold 0.1 mmday. Although the dry spells (the we explore different scaling forms and develop a collapse
times between rain events) seemed to follow in some casenethod based on minimizing the distance between distribu-
a steep power-law distribution, the rain-event size distribu-tions that also gives an estimation of the power-law exponent.
tions were not reported, and therefore the connection beWith these tools we will be able to establish the existence of
tween SOC and rainfall could not really be checked. Later,scale-invariant behavior in the medium-resolution rain data
Peters et al(2002 analyzed high resolution rain data from analyzed.
a vertically pointing Doppler radar situated on the Baltic We proceed as follows: Sect. 2 describes the data used
coast, which provided rates at an altitude between 250 anéh the present analysis and defines the rain event, its size
300masl., covering an area of 70fwith detection thresh-  and duration, and the dry spell. Section 3 shows the corre-
old 0.0005 mmh' and temporal resolution of 1 min. Power- sponding probability densities and describes and applies an
law distributions for event sizes and for dry-spell durations accurate fitting technique for evaluating the power-law exis-
over several orders of magnitude were reported, with expotence. Section 4 introduces two collapse methods (parametric
nentsr, ~~ t, ~ 1.4. For the event—duration distribution the and non-parametric) in order to establish the fulfillment of
results were unclear, although a power law with an exponenscaling, independently of power-law fitting. Discussion and
1z ~ 1.6 was fit to the data. More recently, a study cover- conclusions are presented in Sect. 5.
ing 10 sites across different climates has checked the uni-
versality of rain-event statistics using rain data from opti-
cal gaugesHeters et al.2010. The data had a detection 2 Data and definitions
threshold of 0.2 mmht!, and were collected at intervals of
1min. The results showed unambiguous power-law distri-2.1 Data
butions of event sizes, with apparent universal exponents
7y = 1.17£0.03. Power-law distributions were also found for We have analyzed 20 stations in Catalonia (NE Spain) from
the dry spell durations, but for event durations the behaviorthe database maintained by the Agéncia Catalana de I'Aigua
was not conclusive. (ACA, 2019. These data come from a network of rain
Nevertheless, scale-free distributions of the avalanche-likegauges, called SICAT (Sistema Integral del Cicle de I'Aigua
observables are insufficient evidence for “classical” SOC dy-al Territori, formerly SAIH, Sistema Automatic d'Informacio
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Table 1. Characteristics of all the sites for the 9-year period 2000-2008. Every site is named by the corresponding river basin or subbasin
(the municipality is included in ambiguous cases); LI. stands for Llobregat rjygis the fraction (in %) of missing records (time missing
divided by total time);fp is the fraction (in %) of discarded timeg; is the fraction (in %) of rainy time (time with > 0 divided by total
non-discarded time, for a time resolutian = 5 min); a. rate is the annual rain rate in mmyehrcalculated only over non-discarded times;

c.rate is the rain rate in mnTH conditioned to rain, i.e., calculated over the (non-discarded) rainy tWpés the number of rain events

and N, the number of dry spells (the differences betwegrand N, are due to the missing records); the rest of symbols are explained in

the text.(s) is measured in mm, and) and{(g) in min. Sites are ordered by increasing annual rate. The table shows a positive correlation
betweenf;, the annual rately; andN,, and that these variables are negatively correlated {yithin contrast, the rate conditioned to rain

is roughly constant, taking values between 3.3 and 3.8 mmh

Site ™M b fr arate c.rate Ng Ny (s) (d) (q)

1 Gaia 0.08 371 1.6 4709 3.3 5021 5014 0.81 149 894
2 Foix 0.07 3.38 1.6 500.6 3.6 4850 4844 0.90 15.0 929

3 Baix LI. S.J. Despi  0.07 228 1.7 505.8 3.3 5374 5369 0.83 15.0 847
4 Garraf 0.09 330 1.6 507.8 3.7 4722 4716 094 152 956
5 Baix LI. Castellbell 0.06 281 1.7 5107 3.4 4950 4947 0.90 158 914
6 Francoli 0.44 13.37 1.8 528.2 3.4 4539 4540 0.91 16.1 887

7 Besos Barcelona 015 417 1.7 5318 3.5 4808 4803 0.95 16.2 928
8 Riera de La Bisbal  0.07 3.66 1.6 540.0 3.8 4730 4724 0.99 158 950

9 Besos Castellar 434 1359 2.0 6333 3.6 4918 4970 1.00 16.9 806
10 LI. Cardener 0.07 333 21 6524 3.5 6204 6197 0.92 15.7 723
11 Ridaura 0.12 241 20 6742 3.8 5780 5774 102 16.1 784
12 Dar6 0.06 209 22 6845 3.6 5553 5547 1.09 18.0 818
13 Tordera 0.08 204 23 68838 3.4 7980 7977 0.76 13.6 568
14 Baix Ter 0.07 271 23 7102 3.6 6042 6036 1.03 174 746
15 Cap de Creus 0.07 292 23 7415 3.7 5962 5955 1.09 17.7 754
16 Alt Llobregat 3.12 582 26 7428 3.3 6970 6988 0.90 16.7 621
17 Muga 0.06 256 24 7493 3.6 6462 6457 1.02 169 698
18 Alt Ter Sau 0.08 243 25 7721 3.6 6966 6961 0.97 16.3 647
19 Fluvia 3.09 474 23 7724 3.8 6287 6319 1.05 16.7 697

20 Alt Ter S. Joan 0.07 198 28 7951 3.3 8333 8327 0.84 155 452

Hidrologica), used to monitor the state of the drainage basins In order to make the files more manageable, the database
of the rivers that are born and die in the Catalan territory.reports zero-rain rates only every hour; then we consider time
The corresponding sites are listed in Tabland have lon-  voids larger than 1 h as operational errors. The ratio of these
gitudes and latitudes ranging fron?1051” to 3*7'35"E missing times to the total time covered in the record is de-
and from 421253’ to 432540" N. All data sets cover a noted asfy in Tablel, where it can be seen that this is usu-
time period starting on 1 January 2000, at 00:00 LT, andally below 0.1 %. However, there are three cases in which
ending either on 30 June or on 1 July 2009 (spanningits value is around 3 or 4 %. Other quantities reported in the
roughly 9.5years), except the Cap de Creus, which ends otable are the fraction of time corresponding to rain (or wet
19 June 2009. fraction), f,, the annual mean rate, and the mean rate con-
In all the stations, rain is measured by the same weigh-ditioned to rain periods. Nevertheless, note that for a fractal
ing precipitation gauge, the device calletivio from OTT point process a quantity gs depends on the time resolution;
Hydromet GmbH, either with a capacity of 250 or 1000 mm so, f, only makes sense for a concrete time division, in our
and working through the balance principle. It measures bottcase Ar = 5 min.
liquid or/and solid precipitation. The precipitation rate is
recorded in intervals ofAs =5min, with a resolution of 22 Rain event sizes, rain event durations, and dry spell
1.2mmh? (which corresponds to 0.1 mm in 5min). This durations
precipitation rate can be converted into an energy flux
through the latent heat of condensation of water, WhiChFoIIowing Andrade et al(1999 and Peters et al(2002),
yields Immht ~ 690W_rrr2, nevertheless, we have not \\e define a rain event as a sequence of consecutive
performed such conversion. Figute shows a subset of the 5y rates bigger than zero delimited by zero rates, i.e.,
time series for site 17 (Muga). {F(ta), F(byg 1), - (1)}, SUCh thatr(4;) > O for i =n,n +
1,...m with r(t,—1) = r(t,+1) = 0. Due to the resolution of
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the record, this is equivalent to take a threshold with a value
below 1.2 mmh?. It is worth mentioning that this simple
definition of rain events may be in conflict with those used
by the hydrologist community, so caution is required in or-
der to make comparisons between the different approaches 100 f
(Molini et al., 20117).
The first observable to consider is the durati@nof the

event, which is the time that the event lasts (a multiple of

HE
==
.

L : : : < [ l
Smin, in our case). The size of the event is defined as the £ : ' i o
total rain during the event (i.e., the rate integrated over the = 10| S S It} Booa
event duration), I 1 Tmollomnoon

m tm + +H H R et trh HE T ettt
s = Zr(t,-)At ~ /r(t)dt,

i=n 1 U ) ! !

n 2002 20022 20024 20026  2002.8 2003

measured in mm (and multiple of 0.1mm in our case, & tlyears)

1.2mmh1 x 5min). Notice that this event size is not the 1000 p
same as the usual rain depth, due to the different definition
of the rain event in each case. Figute shows as an illus-
tration the evolution of the rate for the largest event in the
record, which happens at the Muga site, whereasl€iglis-
plays the sequence of all event sizes in the same site for the
year 2002. Itis important to realize that this quantity is differ- ;i
ent to the one at Fidla. Regarding event durations, the time i T LR
series have a certain resemblance to Ea.as usually they 10z il 1
are (nonlinearly) correlated with event sizdelesca et a). P e O S A O |
2007. Further, the dry spells are the periods between con- S 1 o Il £ O A A
sequtive rgin events (then, thgy verifgr) = 0); we denptg 0'1283"; “”2362_’;'* '2;’6,:4 "”‘2552_’;"” ;&‘;‘;‘_;‘“”‘2"503
their durations by;. When a rain event, or a dry spell, is in- b) t (vears)

terrupted due to missing data, we discard that event or dry ' ' ' ' ' ' ' '
spell, and count the recorded duration as discarded time; the 100 r 1
fraction of these times in the record appears in Tablender
the symbolfp. Although in some cases the duration of the 80 f :
interrupted event or dry spell can be bounded from below or
from above (as in censored data), we have not attempted to
use that partial information.
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3 Power-law distributions

3.1 Probability densities

Due to the enormous variability of the three quantities just

defined, the most informative approach is to work with their (c)
probability distributions. Taking the size as an example, its_. . . . .
probability density,Ps(s), is defined as the probability that Fig. 1. (a) Subset of the rain rate time series for site 17 (Muga) for

L . . year 2002 (b) More reduced subset of the rain rate time series for
the size is betweenands +ds divided byds, withds — 0. 0 same site, corresponding to the largest rain event on the record,

N SN
Subsequentlyfy™ Ps(s)ds = 1. This implicitly assumes that  yth s — 2487 mm, on 11 April 2002. Time refers to hours since
s is considered as a continuous variable (but this will be cor-midnight. A very small rain event is also present at the beginning,

rected later, see more details on Appendl)xin general, we  with s = 0.3mm and separated to the main event by a dry spell of
illustrate all quantities with the event sizethe analogous durationg = 15min. (c) Corresponding event-size time series for
for d andq are obtained by replacingwith the symbol of  the same site, for year 2002.

each observable. The corresponding probability densities are

denoted asPp(d) and Py (q). Note that the annual number

densities Peters et al.2002 Peters and Christense2002
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2009 are trivially recovered multiplying the probability den-
sities by the total number of events or dry spells and dividing
by total time.

The results for the probability densiti#s (s), Po(d), and
Po(q) of all the sites under study are shown in F&g,
b, and c, respectively. In all cases the distributions show a
very clear behavior, monotonically decreasing and covering
a broad range of values. However, to the naked eye, a power- o* 10
law range is only apparent for the distributions of dry spells,

Po(q) (remember that a power law turns into a straight line 10° ¢ 8? RS 1% 1
in a log—log plot). Moreover, th@y(¢) are the broadest dis- T SN 1
tributions, covering a range of more than 4 orders of magni- s 10 ~ ‘

tude (from 5 min to about a couple of months), and present 10 107! 10°

in some cases a modest daily peak (in comparisdpeters  (a)
et al, 2002 with 1 day = 1440 min). In the opposite side, we , , ,
find the distributions of duration®)p (d), whose range is the P

shortest, from 5min to about 1day (two and a half orders
of magnitude), and for which no straight line is visible in
the plot; rather, the distributions appear as convex. The size
distributions,Pg(s), defined for about 3 orders of magnitude
(from 0.1 to 200 mm roughly), can be considered in between
the other two cases, with a visually shorter range of power-
law behavior.

3.2 Fitting and testing power laws

A guantitative method can put more rigor into these obser-
vations. The idea is based on the recipe proposedlayset ()
etal.(2009 — see als€orral et al(2011) — but improved and
generalized to our problem. Essentially, an objective proce-
dure is required in order to find the optimum range in which
a power law may hold. Taking again the event size for il-
lustration, we report the power-law exponent fit between the
values ofsyin andsmax Which yield the maximum number of
data in that range but with a value greater than 10 %. The
method is described iReters et al(2010 and in more de-
tail in Deluca and Corraf2013, but we summarize it in the
following paragraphs.

For a given value of the paiin andsmax, the maximum-
likelihood (ML) power-law exponent is estimated for the i
events whose size lies in that range. This exponent yields a fit 10° 10" 102 103 1(‘)4 ‘ 108
of the distribution, and the goodness of such a fit is evaluated) q (min)
by means of the Kolmogorov—Smirnov (KS) teBtéss et a.

1992. The purpose is to get@avalue, which is the probabil- Fig. 2. Probability densities for_ all the sites for thg whole time cov-
ity that the KS test gives a distance between true power-lavf"ed by the record di) event sizes(b) event durations, an) dry
data and its fit larger than the distance obtained between th%pel s

empirical data and its fit.

For instancep = 20 % would mean that truly power-law
distributed data were closer than the empirical data to their A« iy the case in which some parameter is estimated from
respective fits in 80 % of the cases, but in the rest 20 % of thgy, o qata there is no closed formula to calculate shelue,
cases a true power law were at a larger distance than the e perform Monte Carlo simulations in order to compute
pirical data. Therefore, in such a case the KS distance tUg,e gtatistics of the Kolmogorov—Smirnov distance and from
out to be somewhat large, buF not large enough to reject thaf,ore thep value. In this way, for eachmin andsmaxWe get
the data follow a power law with the ML exponent. a number of dataV, in that range and, repeating the pro-

cedure many times, a value. We look for the values of the

P4(a) (min™)

www.nonlin-processes-geophys.net/21/555/2014/ Nonlin. Processes Geophys., 2156352014



560 A. Deluca and A. Corral: Scale invariance for medium-resolution rain data

extremes{mnin andsmax) Which maximize the number of data aroundg = 100 min), or the algorithm has a tendency to in-
in between but with the restriction that tlpevalue has to be  clude the bump the distributions show between the daily peak
greater than 10 % (this threshold is arbitrary, but the conclu{g beyond 1000 min) and the tail. This makes the value of
sions do not change if it is moved). The maximization is per-the exponent smaller (around 1.25). Nevertheless, the value
formed sweeping 100 values gfin and 100 values afimax, of the exponent is much higher than the one obtained for the
in log-scale, in such a way that all possible ranges (withinequivalent problem of earthquake waiting times, where the
this log-resolution) are taken into account. We have to remarkOmori law leads to values around one, or less. This points
that, in contrast witliPeters et a2010, we have considered to a fundamental differences between both kind of processes
always discrete probability distributions, both in the ML fit (from a statistical point of view).

and in the simulations. Of course, it is a matter of discussion In summary, the power laws for the distributions of dura-
which approach (continuous or discrete) is more appropriatdions are too short to be relevant, and the fits for the sizes are
for discrete data that represent a continuous process. In arip the limit of what is acceptable (some cases are clear and
case, the differences in the outcomes are rather small. Nasome other not). Only the distributions of dry spells give re-
tice also that the method is not based on the estimation of thally good power laws, withr, = 1.50+ 0.05, and for more
probability densities shown in the previous subsections, whathan two decades in 6 sites.

would be inherently more arbitrarg{auset et a).2009.

The results of this method are in agreement with the vi-
sual conclusions obtained in the previous subsection, as cah
be seen in Tabl@. Starting with the size statistics, 13 out of
the 20 sites yield reasonable results, with an exponebé-

tween 1.43 and 1.54 over a logarithmic rangigx/smin from  owever, the fact that a power-law behavior does not exist
12 to more than 200. For the rest of the sites, the range iger a broad range of values does not rule out the existence of

too short, less than one decade (a decade is understood frog&a”ng or SOCChristensen and Moloneg008. In fact, the
now as an order of magnitude). In the application of the al-f,ifjiment of a power-law distribution in the form of EqLY

gorithm, it has b?en necessary to restrict the valusnfto  ig oniy valid when finite-size effects are “small”, which only
besmin > 0.2 mm; otherwise, as the distributions have a con-pa5hens for large enough systems. In general, when these ef-
cave shape (in log-scale) close to the origin (which meangg s are taken into account, scaling behavior leads to distri-

that there are many more events in that scale than at large{ ;tions of the form Christensen and Moloneg005 Peters
scales), the algorithm (which maximizes the number of data; 5 2010:

in a given range) prefers a short range with many data close

to the origin than a larger range with less data away frompg(s) = s~ %Gs(s/s¢) for s > s, 2

the origin. It is possible that a variation of the algorithm in

which the quantity that is maximized were different (for in- whereGs(x) is a scaling function that is essentially constant

stance related with the range), would not need the restrictiodor x <« 1 and decays fast for > 1, accounting in this way

in the minimum size. for the finite-size effects whenis above the crossover value,
For the distribution of durations the resulting power laws sz ; the sizes is just a lower cutoff limiting the validity of this

turn out to be very limited in range; only 4 sites give not too description. The pure power law only emergessor> oo;

short power laws, Witllmax/dmin from 6 to 12 andr, from nevertheless, a truncated power law holds over an apprecia-

1.66 to 1.74. The other sites yield extremely short ranges foble range if the scales given byands: are well separated

the power law be of any relevance. The situation is analo<i.€., s < s¢). As s¢ increases with system size, typically

gous to the case of the distribution of sizes, but the resultasss oc Ls (with Dy the so-called avalanche dimension, or

ing ranges are much shorter heReters et al2010. Notice ~ event-size dimension), the power-law conditidh ¢an only

that the excess of events with= 5 min, eliminated from the  be fulfilled for large enough system sizes.

fits imposingdmin > 10 min, has no counterpart in the value  Note that, in the case of a too short power-law range or a

of the smallest rate (not shown), and therefore, we concludgon-conclusive fit, we still could check the existence of scal-

that this extra number of events is due to problems in the timeng using Eq. 2) if we knews; or L. However,s; is difficult

resolution of the data. to measure, needing a parameterization of the scaling func-
Considerably more satisfactory are the results for the drytion, and it is not clear what the system sizés for rainfall.

spells. In all, 16 sites give consistent results, wighfrom It could be the vertical extension of the clouds, or the depth of

1.45 to 1.55 in a rang@max/gmin from 30 to almost 300. It  the troposphere. Nevertheless, it is important to realize that

is noticeable that in these casgsax is always below 1day. the scaling ansat2] still can be checked from data without

The removal by hand of dry spells around that value shoulcknowledge ofL or s¢. First, notice that the ansatz implies

enlarge a little the power-law range. In the rest of sites, ei-that thek-order moment of scales withl as

ther the range is comparatively too short (for example, for the

Gaia site, the power-law behavior 8p (¢) is interrupted at (s

Scaling

4.1 Non-parametric scaling

ky o LPs*H1779) for 1 < ¢y <k +1, 3)
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Table 2. Results of the power-law fitting and goodness-of-fit tests applied to event sizes, event durations, and dry-spell durations (in mm or
in min), for the period of nine and a half years specified in the main text. The table displays the minimum of the fittinganaed the

ratio between the maximum and the minimum of the fitting range (logarithmic rapgg/smin), total number of events, number of events

in fitting range (Vy, Ny, and Ny, for s, d, andg, respectively), and the power-law exponent with its uncertainty (one standard deviation)
calculated as stated iBauke(2007) and displayed between parenthesis as the variation of the last digit.

dmax

Site  smin imlar:( Ng Ny Ts dmin doin Ng Td qdmin Z?ﬁx Ny Ny Tq

1 0.2 180.5 5393 1886 1.54(2) 10 10.0 1668 1.67(4) 95 7.8 5387 743 1.75(7)
2 0.2 45 5236 1323 1.64(6) 10 40 1581 1.60(6) 5 273.0 5231 4729 1.46(1)
3 02 1555 5749 2111 153(2) 10 60 1726 166(>5) 10 80.0 5745 3207 1.53(2)
4 0.2 12.0 5108 1745 1.43(3) 10 3.5 1564 1.41(7) 5 196.0 5103 4520 1.47(1)
5 0.2 140.0 5289 2106 1.52(2) 10 3.5 1530 1.58(7) 20 47.3 5287 1706 1.45(2)
6 02 680 4924 1969 149(2) 10 35 1441 159(7) 20 313 4926 1537 1.47(3)
7 0.2 105.5 5219 2234 1.51(2) 10 3.5 1621 1.51(7) 5 256.0 5215 4734 1.51(1)
8 0.2 213.0 5112 2047 1.53(2) 10 40 1567 1.55(6) 15 65.0 5107 2098 1.50(2)
9 02 50 5366 1459 153(5) 10 40 1658 151(6) 10 90.0 5419 2889 1.55(2)
10 0.2 19.0 6691 2452 1.51(2) 10 3.5 2066 1.57(6) 25 33.0 6685 1758 1.48(3)
11 0.2 65.0 6224 2373 1.49(2) 10 5.0 1932 1.56(5) 45 468.3 6219 2005 1.24(1)
12 02 40 597 1500 1.53(6) 10 4.0 1889 1.49(6) 5 2350 5961 5376 1.47(1)
13 0.3 66.7 8330 1853 1.45(2) 10 125 2288 1.74(3) 130 158.5 8328 1501 1.27(2)
14 0.2 35 6525 1711 1.56(6) 10 50 2299 1.62(4) 5 215.0 6520 5906 1.47(1)
15 03 37 6485 1102 1.39(7) 10 50 2095 164(5) 15 497 6479 2560 1.51(2)
16 0.2 35 7491 1852 1.59(5) 10 40 2385 1.59(5) 5 2140 7510 6789 1.50(1)
17 0.2 80.5 6962 2853 1.52(2) 10 3.5 2087 1.60(6) 10 68.5 6958 3719 1.52(1)
18 02 415 7511 2847 151(2) 10 35 2238 157(6) 20 310 7507 2302 1.53(2)
19 0.2 99.5 6767 2742 1.47(2) 10 3.5 1958 1.60(6) 50 21.7 6800 1378 1.26(3)
20 0.2 3.5 9012 2047 1.69(5) 10 8.5 2972 1.66(3) 15 34.3 9007 3367 1.50(2)

if 51 < sg, seeChristensen and Moloneg2005. Second,

quadratic mean(s) and (s2), can be easily estimated from

Eq. ) can be written in a slightly different form, as a scaling data. Since no estimation of parameters is involved for this

law,

Ps(s) = L~ Ds% (s/LDS) for s > s, (4)
where the new scaling functigfg (x) is defined asFg(x) =
x"5Gs(x/a) (a is the constant of proportionality between
se and LPs). This form of Ps(s) (in fact, Ps(s, L)), with
an arbitraryFy, is the well-known scale-invariance condition
for functions with two variablesGhristensen and Moloney
2005. Changes of scale (linear transformationsy iand L
may leave the shape of the functi®g(s, L) unchanged (this

procedure, we call it non-parametric scaling.

The outcome forPs(s), Pp(d), and Po(g) is shown in
Fig. 3a, b, and c, with reasonable results, especially for the
distribution of dry spells. The plot suggests that the scal-
ing functionG of the dry-spell distribution has a maximum
aroundx >~ 1, but this is not in disagreement with our ap-
proach, which only assumed a constant scaling function for
smallx and a fast decay for large

Note that the quotients?)/(s) gives the scale for the
crossover valueg (assg o (s2)/(s), with a constant of pro-
portionality that depends on the scaling functi@nand on

is what scale invariance really means, power laws are just g, /s;), and therefore it is the ratio of the second moment to

particular case in one dimension).

Substituting LPs o (s2)/(s) and LPs% oc L2Ps /(s)
(s2)2/(s)2 (from the scaling of(s*), assumingr, < 2) into
Eq. @) leads to

Ps(s) = (5)2(s3)72Fs (s()/ (7)) (5)

where F5(x) is essentially the scaling functiafig(x), ab-

the mean and not the mean which describes the scaling be-
havior of the distribution. This can have important implica-
tions for extreme events: an increase in the value of the mean
is not proportional to an increase of the most extreme events,
represented by:. For the case of event sizes, we get val-
ues of(s2)/(s) between 10 and 30 mm (which is a variability
much higher than that ofs)), and therefore the condition

51 K s¢ is very well fulfilled (assuming that the moment ratio

sorbing the proportionality constants. Therefore, if scaling (s2)/(s) is of the same order as, and withs| 2~ smin), which

holds, a plot of(s2)2Ps(s)/(s)3 versuss(s)/(s2) for all the

is a test for the consistency of our approach. For dry spells

sites has to yield a collapse of the distributions into a single(q2>/<q) is between 5 and 13 days, which is even better for

curve, which drawsFs(x) (a similar procedure is outlined

the applicability of the scaling analysis. The case of the event

in Rosso et a).2009. In order to proceed, the mean and the durations is somewhat “critical”, witkd?) /(d) between 70
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104 F- : : , — 4.2 Parametric scaling
%‘ 10° Further, a scaling ansatz as E2).qr (4) allows an estimation
5 10 ¢ 1 of the exponenty, even in the case in which a power law can-
€ ol not be fit to the data. From the scaling of the momentsveé
£ | s get, takingk = 1, L?s o (s)/@%) and LPs% o (5)%/ (@)
o 1O ° o % (again witht, < 2); therefore, substituting into Ecf)(
% 10" | 03 : 14 T A
ot & e Ps(s) = (5) /@ Fs s/ @) ©)
X e
e oqof Yo 18 ] One only needs to find the value afthat optimizes the col-
w0t ®wo oo lapse of all the distributions, that is, that makes the previous
1(;2 equation valid, or at least as close to validity as possible. As
@) the scaling depends on the parametemwe refer to this pro-
, cedure as parametric scaling.
10% by 1 We therefore need a measurement to quantify distance be-
2 o | X ; tween rescaled distributions. In order to do that, we have
B %*%M chosen to work with the cumulative distribution function,
2 ol ] Rs(s) = [ Ps(s")ds', rather than with the density (to be
g s rigorous,Rg(s) is the complementary of the cumulative dis-
oy 107 F Ggy 1 1 tribution function, and is called survivor function or relia-
5 02l 05 o 13 i bility function in some contexts). Although in practice both
= % 1R Pg(s) andRg(s) contain the same probabilistic information,
:Q w03 o 1 T the reason to work wittRg(s) is double: the estimation of
v g - 19 the cumulative distribution function does not depend of an
104 10 - ) H ] arbitrarily selected bin widtlds (Press et al.1992, and it
107 10° 10 does not give equal weight to all scales in the representation
(b) d <d>/<d?> (dimensionless) of the function (i.e., in the number of points that constitute
105 the function). The scaling lawst and @) turn out to be,
_ 10* :ﬁ':;: 1 therefore,
-G %%kg . ] Rg(s) =L~ Psm=Dyg (s/LDs) @)
§ 10} I ] ~(-D/@-1)9) 1/(2-7)
Sl o Rs(s) = (s)" /@03 (5/(5) V2 ) (®)
o q =
§ 107 ¢ §é E . ] whereHs (x) and?—fg(x) are the corresponding scaling func-
=10 o 1 3 1 tions.
Nyoqg2 [ 06 e 18 R ] The first step of the method of collapse is to merge all
K . Wy the pairs{s, Rs(s)}; into a unique rescaled functia, y}.
Vs 9 20 : p S(S8) i _ . . y
W 11 e ‘ ‘ ‘ ;}f If i =1,...,20runs for all sites, angl=1, ..., M (i) for all
10 103 102 107 100 o'  thedifferent values that the size of events takes o ¢itete
(©) q <q>/<q>> (dimensionless) that M (i) < N;(i)),

Fig. 3. Collapse of the probability densities for all the sites for the x,(7) = log <5ji/<5>l~l/(27t)) ’
whole time covered by the record ¢&) event sizes(b) event dura-
tions, and(c) dry spells. Rescaling is performed using the first and y,(7) = log (Ri (Sji) <S>lgz—1)/(2—r)> ’
second moment of each distribution, following E§). (
wheres ; is the jth value of the size in sitg (s); the mean

and 120 min, which yields /j in the range from 14 to 24, On's in i, Ri(s;;) the cumulative distribution function in
Nevertheless, we observe that the conditipre s: for the andrt a possible value of the exponefyt The index¢ labels

power law to show up is stronger than the same condition foth€ new function, from 1 t¢ _y; M;(;), in such a way that
the scaling analysis to be valid. x¢(t) < xe41(7); this means that the pairg (1), ye() are
sorted by increasing.

Then, we just compute

D@ =Y ([xe(0) =2+ [y = yera @) . (9)

ve
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which represents the sum of all Euclidean distances between 41 [ ' ' '
the neighboring points in a (tentative) collapse plot in loga-

rithmic scale. The value aof which minimizes this function 10°

is identified with the exponent; in Eqg. (2). We have tested 101k

the algorithm applying it to SOC models whose exponents ¢ -

are well known (not shown). v O s »
The results of this method applied to our data sets, not g 10° | 8; . }g

only for the size distributions but also to the distributions of 1= | 03 = 14

d, are highly satisfactory. There is only one requirement: the "% | 08 8

removal of the first point in each distributiom £ 0.1 mm 100 F 89 e }g

andd = 5min), as with the ML fits. The exponents we find of 8o B

arer; = 1.52+0.12 andry; = 1.694-0.01, in agreement with 107 o ‘

the ones obtained by the power-law fitting method presented 107" 10°

above; the corresponding rescaled plots are shown iMFig.

Although the visual display does not allow to evaluate prop-
erly the quality of the collapse, the reduction in the value of
the functionD(7) is notable. Then, the performance of the
method is noteworthy, taking into account that the mean val-  10*

ues of the distributions show little variation in most cases. §

In addition, the shape of the scaling functigg can be ob- “:g 10

tained by plotting, as suggested by EB), (% Ps(s) versus L2l
g

s/(s)/@2=%) and the same for the other variahle Figure5
displays what is obtained for each distribution. In contrast, 10' b
the application of this method By (¢) does not yield con-
sistent results, ag, turns out to be rather small (1.24). Notice
that the existence of a daily peak in the distributions is an ob- ¢
stacle to a data collapse, as the peak prevents a good scaling.

d/<d> "

Fig. 4. Collapse of the probability densities for all the sites for the
5 Discussion and conclusions whole time covered by the record () event sizes an¢b) event
durations; rescaled using E®) (ith the exponentsz; = 1.52 and

We have performed an in-depth study of the properties ofty = 1.69, determined minimizing the Euclidean distance between
rain-event observables in rainfall in the Mediterranean re-parametrically collapsed distributions. Units are mm or min to the
gion in order to check if power-law distributions and scale corresponding powers appearing in the axes.
invariance can be useful for modeling rain events and dry
spells. The results support this hypothesis, which had not
been checked before in this region or for this kind of dataminimum detection rate of 0.2 mnth and a time resolution
resolution. For the distributions of rain-event sizes, we getAr = 1 min, foundr; >~ 1.17 for several sites across differ-
power-law exponents valid for one or two decades in the ma-ent climates, using essentially the same statistical techniques
jority of sites, with exponent valueg ~ 1.50+0.05. For  as in the present study. For dry-spell durations the exponents
the distributions of event durations, the fitting ranges arewere close in many cases#p~ 1.3. The difference between
shorter, reaching in the best case one decade, with exponentise value of the exponents may be due to data resolution (but
14 =~ 1.70£0.05. This range is expected to be shorter than forthen, our agreement with the values in the first paper may be
event sizes, given that these combine the event duration didertuitous). Changes in the detection threshold have a non-
tribution with the rain rateFeters et a.2010. And finally, trivial repercussion in the size and duration of the events and
the dry spell distributions yield the more notable power-law the dry spells (an increase in the threshold can split one sin-
fits, with exponents in the rangg ~ 1.504+0.05, in some  gle event into two or more separate ones but also can remove
cases for more than 2 decades. events). Further, better time resolution and lower detection

These results are compatible with the ones obtained fothreshold allow the detection of smaller events, enlarging
the Baltic sea byPeters et al(2002, which yieldedz, ~ the power-law range and reducing the weight from the part
7, ~ 1.4 andt; >~ 1.6. The agreement is remarkable, tak- close to the crossover point (where the distribution becomes
ing into account the different nature of the data analyzedsteeper); this trivially leads to smaller values of the expo-
and the disparate fitting procedures. However, the concornent. In the dry-spell case, the power-law range in this study
dance with the more recent results Péters et al(2010 is enough to guarantee that our estimation of the exponents
is not very good, quantitatively. That previous study, with a are robust, so the discrepancy wRleters et al(2010 may
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s i i i Nevertheless, future work should consider spatially ex-
tended events. Our measurements are taken in a point of the
surface which reflects information on the vertical scale, then,
the results could be affected by this. Another related but dif-
ferentissue are the correlations between the sites, which have

size, then there is neither a definite separation nor a funda-
mental difference between the smallest harmless rains and
the most hazardous storms. Further, it is generally believed
that the critical evolution of events in SOC systems implies
that, at a given instant, it is equally likely that the event in-
tensifies or weakens, which would make detailed prediction
unattainable. However, this view has been recently proved
: N wrong, as it has been reported that a critical evolution de-
02— 12 o ‘ e scribes the dynamics of some SOC systems only on average;
: further, the existence of finite size effects can be used for
prediction Garber et al.2009 Martin et al, 2010. Inter-
estingly, in the case of rain, it has been recently shown by
Molini et al. (2011 that knowledge of internal variables of
the system allows some degree of prediction for the duration
of the events, related also to the departure of the system from
quasi-equilibrium conditions.
Fig. 5. Inferred scaling functiongs andGp (except for a propor- Finally, we urge studies which explore the effects of reso-
tionality factor in thex axis) corresponding to the rescaled distribu- |ution and detection-threshold value in high-resolution rain
tions of s andd in Fig. 4, multiplied by s® andd®. Units in the data. A common misbelief in the SOC approach is that
abscissae are as i_n the previous plot, whereas in the ordinates theggajanches happen following a memoryless process, leading
are mnf~* and mirfe 1. therefore to ex ial distributi iting ti
ponential distributions for the waiting times
(Corral 2005. This has been refuted if a threshold on the

be due to the non-trivial effect of the change in the detectioniNtensity is presenfaczuski et 8l 2003. In this case, times
thresholds or differences on the measurement devices. between avalanches follow a power-law distribution, as we

On the other hand, finite size effects can explain the lim-find for dry spelis. o _
ited power-law range obtained ferandd observables, as In summary, we cor_1c|ude that the statistics of_ralnfall
it occurs in (self-organized and non-self-organized) critical 8/€Nts in the NW Mediterranean area studied are in agree-
phenomena. The finite-size analysis performed, in terms off€nt with the SOC-paradigm expectations but also with any
combinations of powers of the moments of the distributions,0ther mechanism for power-law genesis. This is the first time
supports this conclusion. The collapse of the distributions isthis study is realized for this region and it is a confirmation
a clear signature of scale invariance: different sites share &f What has been found for other places of the world, but in
common shape of the rain-event and dry-spell distributionsQUr case using data with lower resolution.
with differences in the scale of those distributions, depending
on system size. Then, in the ideal case of an infinite system
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Appendix A As the distributions are estimated from a finite number
of data, they display statistical fluctuations. The uncertainty

Details on the estimation of the probability density characterizing these fluctuations is simply related to the den-
sity by

In practice, the estimation of the density from data is per-

formed taking a value ofs large enough to guarantee sta- opg(s) 1
tistical significance, and then computg(s) asn(s)/(N;A), Ps(s) ~ /n(s)~
wheren(s) is the number of events with size in the range be- ) o
tweens ands +ds, N, the total number of events, amdis ~ Where op(s) is the standard deviation aPs(s) (do not

(A1)

defined as confound with the standard deviation of This is so be-
causer(s) can be considered a binomial variableif Mises
A=Rs([(s+ds)/Rs] — s/Rs]) 1964, and then, the ratio between its standard deviation and

mean fulfills 6,,(s)/(n(s)) =~ 1//n(s), with n(s)/Ns < 1.
where | x] is the integer part of andR; the resolution of  As Pg(s) is proportional to:(s), the same relation holds for
s, that is,R; = 0.1 mm (but note that high resolution means its relative uncertainty.
low Ry). Therefore A /R is the number of possible differ-
ent values of the variable in the interval considered. Notice
that usingA instead ofds in the denominator of the estima-
tion of Ps(s) allows one to take into account the discreteness
of s. If R, tended to zero, theA — ds and the discreteness
effects would become irrelevant.

How large doesds have to be to guarantee the sta-
tistical significance of the estimation dfs(s)? Working
with long-tailed distributions (where the variable covers a
broad range of scales) a very useful procedure is to take a
width of the intervalds that is not the same for afi, but
that is proportional to the scale, &s s + ds) = [s,, bs,),
[bso, b%sy), ..., [b¥s,, b¥Ts,), that is,ds = (b —1)s (with
b > 1). Given a value of, the corresponding value éfthat
associates with its bin is given byk = [log, (s/s,)]. Corre-
spondingly, the optimum choice to assign a point to the inter-
val [s, s +ds) is given by the valua/bs. This procedure is
referred to as logarithmic binning, because the intervals ap-
pear with fixed width in logarithmic scalélergarten2002.

In this paper we have generally takien- 1.58, in such a way
that® = 10, providing 5 bins per order of magnitude.
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