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Abstract. The concepts and models of multifractals have
been employed in various fields in the geosciences to charac-
terize singular fields caused by nonlinear geoprocesses. Sev-
eral indices involved in multifractal models, i.e., asymmetry,
multifractality, and range of singularity, are commonly used
to characterize nonlinear properties of multifractal fields.
An understanding of how these indices are related to the
processes involved in the generation of multifractal fields
is essential for multifractal modeling. In this paper, a five-
parameter binomial multiplicative cascade model is proposed
based on the anisotropic partition processes. Each partition
divides the unit set (1-D length or 2-D area) intoh equal sub-
sets (segments or subareas) andm1 of them received1 (> 0)
andm2 received2 (> 0) proportion of the mass in the pre-
vious subset, respectively, wherem1 + m2 ≤ h. The model
is demonstrated via several examples published in the litera-
ture with asymmetrical fractal dimension spectra. This model
demonstrates the various properties of asymmetrical mul-
tifractal distributions and multifractal indices with explicit
functions, thus providing insight into and an understanding
of the properties of asymmetrical binomial multifractal dis-
tributions.

1 Introduction

Singular physical, chemical and biological processes can re-
sult in anomalous energy release, mass accumulation or mat-
ter concentration, which are all generally confined to narrow
intervals in space or time (Cheng, 2007a). The end products
of these nonlinear processes can all be modeled as fractals
or multifractals. Singularity is a property of nonlinear nat-
ural processes, examples of which include but are not lim-

ited to cloud formation (Schertzer and Lovejoy, 1987), rain-
fall (Veneziano, 2002), hurricanes (Sornette, 2004), flooding
(Malamud et al., 1996; Cheng, 2008; Cheng et al., 2009),
landslides (Malamud et al., 2004), forest fires (Malamud et
al., 1996), earthquakes (Turcotte, 1997), mineral deposits
(Agterberg, 1995; Cheng et al., 1994; Cheng and Agterberg,
2009), and solar wind turbulence (Macek, 2007). Multifrac-
tal modeling involves quantification of multiscale singulari-
ties and various types of properties associated with distribu-
tion of singularities. In addition to the commonly used in-
dices such as multifractality and asymmetry of multifractal
distributions, other types of properties of multifractal dis-
tribution such as spatiotemporal stationarity (Lombardo et
al., 2012, 2013), lacunarity (Mandelbrot, 1983; Plotnick et
al., 1993; Cheng, 1997b) and variability (autocorrelation and
variogram) (Cheng and Agterberg, 1996) are also essen-
tial for characterization and application of multifractal dis-
tributions. Common questions in the application of multi-
fractal model to real-world problems are whether the phe-
nomenon depicts multifractality and the significance of the
multifractality in comparison with monofractals or nonfrac-
tals. Asymmetry of the multifractal distribution is another in-
teresting property of the multifractal distribution. Answering
these questions is necessary not only to understand the phe-
nomenon but also to choose methodologies for implemen-
tation (Cheng and Agterberg, 1996; Cheng, 1997a, 1999b).
In the current paper, a five-parameter binomial multiplica-
tive cascade process is introduced to illustrate the links be-
tween commonly used multifractal indices and the processes
involved in generation of the asymmetrical binomial multi-
fractal distribution.

To introduce the new model, we first present selected
mathematical notations and concepts of the multiplicative
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cascade process, a simple multifractal model and the asso-
ciated singularities. Several formalisms exist for represent-
ing multifractals, e.g., deterministic and stochastic models.
A complete review of various multifractal models is beyond
of the scope of this paper, and therefore, in this work, we
present only the relevant mathematical notation for the mul-
tifractal model based on partition functions (Halsey et al.,
1986). The main reason for choosing this model for discus-
sion is that, firstly, this partition functions-based model is
well known in most fields where multifractal modeling is
originally applied not only for 1-D time series but also for
2-D fields and, secondly, the similar discussion can be easily
extended to describe other multifractal models. For conve-
nience without loss of generality we will use a 1-D problem
for discussion. We assume a measureµ defined in a small
segment within a finite 1-D set T (e.g., a line segment), and
its value with a linear measuring sizeε satisfies

µ(ε) ∝ εα , (1)

where∝ stands for “proportional to” andα is the singular-
ity index (also known as the coarse Hölder exponent), andµ

is a function of scaleε that possesses an isotropic scale in-
variance property such that the following ratio of logarithmic
transformations ofµ andε yields a scale-independent index
whenε approaches zero:

α ∝
log[µ(ε)]

logε
. (2)

The values ofα usually vary within a finite interval [αmin,
αmax] for deterministic multifractals, but for other models
(e.g., an entire family of the universal multifractal models,
Schertzer and Lovejoy, 1987, that includes both theβ model,
Frisch et al., 1978, and the log-normal model, Yaglom, 1966)
the bound of singularity might be infinite (Lovejoy and
Schertzer, 2007). For certain models, the value of singularity
can be negative, and the fractal dimension can be negative
as well (Cheng, 1997a). According to the distribution of the
value ofα, the entire set (T) can be classified into subsets or
fractals, each of which possesses a different singularity value
αi and, accordingly, different fractal dimensions (f (αi) ≤ 1);
this is the reason why the field ofµ is described by the term
“multifractality”. The fractal dimension functionf (α) and
the singularityα can be estimated using various multifrac-
tal methods. Using the terminologies pertaining to the mul-
tifractal model based on the partition function (Halsey et al.,
1986), the three functions – the mass exponent function or
Renyi exponentτ(q), the coarse Hölder exponentα(q), and
the fractal spectrum functionf (α) – involved in the multi-
fractal model based on the partition functions have the fol-
lowing relationships (Halsey et al., 1986):∑

[µ(ε)]q ∝ ετ(q),

a(q) = τ ′(q), (3)

f (a) = aq − τ(q),

whereq is the order of moment, and the summation in the
first equation is applied for all segments of equal sizeε with
positive measureµ. If we assume that the numberNα(ε) of
segments with sizeε covers the entire subset bearing the sin-
gularity α, the fractal dimensionsf (α) of this subset are re-
lated by

Na(ε) ∝ ε−f (a) . (4)

The total measure of the subset can be expressed as

Na(ε)µa(ε) ∝ ε−f (a)+α . (5)

According to Eqs. (1)–(5) one can derive the following prop-
erties ofτ(q), α(q), andf (α) (Cheng, 1999a):

a ≥ f (a), (6a)

∂α

∂q
=

∂2τ(q)

∂q2
≤ 0, (6b)

∂2f (α)

∂α2
=

1
∂2τ

∂q2

< 0. (6c)

Equation (6a) holds true because the total measure of the sub-
set is less than the total measure of the entire set. If Eq. (6a) is
not true, then the total measure of the subset Eq. (5) will ap-
proach infinity whenε → 0. The proof of Eqs. (6b) and (6c)
can be found in Cheng (1999a). The properties of Eqs. (6b)
and (6c) ensure that the functionsτ(q) andf (α) are con-
cave functions andα(q) is a monotonic decreasing function.
The frequency distribution of the measure characterized by
singularityα in the entire set can be described by the frac-
tal dimension spectrum functionf (α). From this formula-
tion, we can extract the following properties. Whenq = 0
and α(0), f (α(0)) = −τ(0), reaching the maximum value
of f (α), which corresponds to the box-counting fractal di-
mension. If the measure covers the entire set, then the box-
counting dimension equals 1, otherwise it is less than 1.
When q = 1 andα(1), f (α(1)) = α(1) − τ(1). If the first
moment

∑
µ(ε) = constant, thenτ(1) = 0 andf (α(1)) =

α(1), corresponding to conservative measure, otherwise, if
τ(1) 6= 0, the measure is not conservative. The maximum
valuef (α(0)) or the box-counting dimension of the support
of µ atα(0) implies that the majority of the segments have a
measure characterized byα ≈ α(0), whereas segments with
valuesα > α(0) or α < α(0) are more irregular and have
fractal dimensionsf (α) < f (α(0)).

In addition to the complete fractal dimension spectrum,
functions of singularity or generalized dimension functions,
functions of order of moment, and several multifractal in-
dices are commonly used for characterization of multifrac-
tality and asymmetry of multifractal fields. For example, the
curvature of functionsτ(q), andf (α) or range of valueα(q)

can all be used for measuring multifractality (Cheng et al.,
1994; Cheng and Agterberg, 1996). Halsey et al. (1986) sug-
gested the use of the range of singularity1α = αmax− αmin
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to measure the multifractality, and Schertzer and Lovejoy
(1987) proposed a universal multifractality model that in-
volves three parameters, one of the indices based on the
curvature of co-dimension function for measuring multifrac-
tality. Cheng and Agterberg (1996) proposed an index for
measuring multifractality based on the curvature of mass
exponent function or Renyi exponentτ(q) at q = 1, 1τ =

− [τ(2) − 2τ(1) + τ(0)] or the second derivative−τ ′′(1),
among others. In terms of asymmetry indices, there are sev-
eral suggestions. For example, Shimizu et al. (2002) sug-
gested two ways to measure the asymmetry of multifractal
spectra: when a quadratic function fitted by the least square
method to the fractal dimension spectra around the position
of their maxima atα(0), a parameter (B) involved in the
quadratic function can be used to quantify the asymmetry
of the quadratic function. ParameterB serves as an asym-
metry parameter, which is zero for symmetric shapes and
positive or negative for a left- or right-skewed shape, respec-
tively. In their paper, the alternative index or the unsigned
ratio R = |

left slope
right slope|, which is equivalent toR = (α(0) −

αmin)/(αmax− α(0)), was proposed as an asymmetry index
with R > 1 indicating that the entire spectrum is bent to the
left (left-skewed) andR < 1 indicating that the curve is bent
to the right (right-skewed). These authors suggested the use
of a vector containing three indices (α(0), R, 1α) as a mea-
sure of the complexity of multifractals. Other similar asym-
metry indices were suggested and applied by Xie and Bao
(2004). In addition to the multifractality and asymmetry in-
dices, other characteristic values were also used, i.e., the box-
counting dimensionf (α(0)) = fmax and the dimensions of
extreme values at two ends of spectraf (αmax) andf (αmin).
It is worthwhile to mention that the estimation of Eq. (3)
can be affected by various factors including presence of fi-
nite size effect (FSE), additive white or color noise, short-
term memory or periodicities in multifractal signals. Some
indices such as1α may be meaningless if the whole range of
singularity functions cannot be accurately estimated. These
indices have to be used with caution (Grech and Pamuła,
2013). An understanding of the physical meaning of these
indices is essential for applications of these indices in geo-
sciences for interpretation of geoprocesses corresponding to
the formation of multifractal distributions. In the current pa-
per, a five-parameter binomial multiplicative cascade process
is introduced to illustrate the links between these indices and
the processes involved in generation of the asymmetrical bi-
nomial multifractal distribution. In the next section, we will
show how binomial multiplicative cascade processes can be
used to derive explicit functions of these indices and demon-
strate how these indices are related to the multiplicative cas-
cade processes in the generation of multifractal distributions.

2 Multiplicative cascade processes and multifractal
distributions

The theories and concepts of multiplicative cascade pro-
cesses (MCP) play a fundamental role in quantifying turbu-
lent intermittency and other nonlinear processes (Schertzer
and Lovejoy, 1985, Schertzer et al,. 1997). Therefore, MCP
has been extensively discussed in the literature (e.g., Gupta
and Waymire, 1993; Over and Gupta, 1996; Menabde and
Sivapalan, 2000; Serinaldi, 2010). The model of de Wijs
is a simple two-dimensional multiplicative cascade model
(de Wijs, 1951; Agterberg, 2001, 2007a) described in terms
of multiplicative canonical cascade processes (Lovejoy and
Schertzer, 2007). Other modified models exist, e.g., a cas-
cade model with functional redistribution rate (Agterberg,
2007b), a 2-D cascade model with anisotropic partition pro-
cesses (Cheng, 2005), a 2-D cascade model with variable and
conditional dependence partition processes (Cheng, 2012),
a generalized two-parameter binomial multiplicative model
that was proposed by Koscielny-Bunde et al. (2006) and ap-
plied for describing multifractal spectra of runoff time se-
ries, and a three-parameter binomial multifractal model that
was proposed by Macek (2007) and applied to character-
ize solar wind turbulence data based on a generalized two-
scale weighted cantor set for characterizing asymmetrical
multifractal distribution. Macek’s model has been success-
fully applied for modeling solar minimum and maximum val-
ues (Macek and Szczepaniak, 2008; Macek and Wawrzaszek,
2011). Macek’s model generates an asymmetrical multifrac-
tal distribution and can be used to fit asymmetrical multi-
fractal distributions. In this paper, a five-parameter binomial
multiplicative cascade model which gives explicit forms of
fundamental multifractal indices characterizing asymmetri-
cal multifractal distribution of real-world data, is proposed.
The new model gives explicit relationships between the mul-
tifractal indices and the parameters involved in the binomial
multiplicative cascade processes. Moreover, the new model
is able to generate an asymmetrical multifractal distribution
with nonzero fractal dimensions of the extreme values at two
ends of the spectrum, i.e.,f (αmax) 6= 0 andf (αmin) 6= 0. For
simplicity without loss of generality, we first introduce a 1-
D normal binomial multiplicative cascade model that leads
to a symmetrical multifractal distribution and subsequently
extend it to a more general binomial model that leads to an
asymmetrical multifractal distribution. Finally, several exam-
ples are used to demonstrate the use of the new model. The
similar discussions can be extended to 2-D multifractal mod-
els.

2.1 Normal binomial multiplicative cascade model and
symmetrical multifractal distribution

The simple version of de Wijs’ cascade model involves the
partitioning of each unit segment into two subsegments of
equal size. The concentration value (ρ) of a quantity in the
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unit segment can be written asd ·ρ for one half and(1−d)·ρ

for the other half (0< d < 1) such that the total mass is pre-
served. The coefficient of dispersiond is independent of seg-
ment size. At the beginning of the process, the value ofρ

for the first segment can be set equal to unity. Ifd > 0.5, the
maximum element concentration value aftern subdivisions is
µ = dn, and the minimum value isµ = (1− d)n; if d < 0.5,
the maximum and minimum concentrations are switched.
The general value of the concentration aftern subdivisions
can be represented asµ = dk(1− d)n−k, where 0≤ k ≤ n.

The number of segments with this value is

(
n

k

)
. In a random

cascade, larger and smaller values are assigned to segments
using a discrete random variable. The frequency distribution
of the element concentrations at any stage of this process
is referred to a “logbinomial” because the logarithmically
transformed concentration values satisfy a binomial distribu-
tion. The logbinomial converges to a log-normal distribution,
although its upper and lower value tails remain weaker than
those of the log-normal (Agterberg, 2007a). Due to its prop-
erty of self-similarity, the model of de Wijs was recognized
as a multifractal by Mandelbrot (1989), who adopted this ap-
proach for applications to the elements in Earth’s crust.

Let k/n = ξ , the value ofµ(ξ) = [dξ (1− d)1−ξ
]
n and the

number of cells with sizeεn = (1/2)n; µ(ξ) is thenN(εn) =(
n

k

)
. Therefore, the multifractal patterns generated by this

cascade process contain many local maxima and minima,
with singularities expressed as follows (Feder, 1988; Cheng,
2005):

α = −
ξ ln(d) + (1− ξ) ln(1− d)

ln2
, (7a)

f (α) = −
ξ lnξ + (1− ξ) ln(1− ξ)

ln2
, (7b)

where ξ is a value with 0≤ ξ ≤ 1. The fractal dimension
spectrumf (α) characterizes the dimension of the distribu-
tion of singularity.

To discuss the property of multifractals generated by mul-
tiplicative cascade processes, we use moment notation to de-
rive the functions involved in the general multifractal mod-
eling. The partition function at various scales can be defined
as

χq (εn) =

n∑
k=0

µk (εn)
q

(
n

k

)
=

n∑
k=0

[
dk (1− d)n−k

]q
(

n

k

)
=

[
dq

+ (1− d)q
]n

. (8)

Therefore, it can be rewritten as

χq (εn) = ε
−

log[dq
+(1−d)q ]

Log2
n = ε

τ(q)
n , (9)

where the mass function is

τ (q) = −
log

[
dq

+ (1− d)q
]

log2
(10)

and according to the relationship between the mass functions
and singularity functions, the singularity index and the fractal
dimension spectrum can be derived as follows:

a (q) =
∂τ (q)

∂q
= −

logddq
+ log(1− d)(1− d)q

log2
[
dq + (1− d)q

]
= −

ξ logd + (1− ξ) log(1− d)

log2
, (11)

where we set

ξ =
dq

dq + (1− d)q
(12)

and

f (a) = a (q)q − τ (q) = −
ξ logdq

+ (1− ξ) log(1− d)q

log2

+
log

[
dq

+ (1− dq)
]

log2

= −
ξ logξ + (1− ξ) log(1− ξ)

log2
. (13)

Equations (11) and (13) are indeed the same as Eqs. (7a)
and (7b). The following relation can be derived from
Eqs. (10)–(12)

∂α

∂q
=

∂2τ

∂q2
= −

dq(1− d)q
[
log

(
d

1−d

)]2

log2[dq + (1− d)q ]2
≤ 0.

This relation shows that the functionα(q) is a monotonic
decreasing function andτ(q) a concave function. Similarly,
according to Eq. (6c) the functionf (α) is also a concave
function. For the monotonic function ofα(q) and concave
functions ofτ(q) and f (α), the following multifractal in-
dices introduced in the Introduction are meaningful and can
be derived according to Eqs. (10)–(13) as follows:

αmax = α (−∞) = −
log(d)

log2
, αmin = α (∞) = −

log(1− d)

log2
,

α (0) = −
log[d (1− d)]

2 log2
,

1α = αmax− αmin = log
d

(1− d)
/ log2,

1αR = α (∞) − α (0) = −
1

2log2
log

d

1− d
,

1αL = α (0) − α (−∞) = −
1

2log2
log

d

1− d
,

R =
1αl

1αr

= 1,

1τ = −τ ′′(1) =
d(1− d)

log2

[
log

(
d

1− d

)]2

.

These relations show that both multifractality indices1α and
1τ are related to the choice ofd. As the valued approaches
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0.5, the values of these indices reduce to zero, and ifd = 0.5,
then1α = 0 and1τ = 0. According to the fractal dimen-
sion, the sets with maximum and minimum singularity have
dimensionsf (αmin) = f (αmax) = 0, and the set withα(0)

has the maximum dimensionf (α(0)) = 1.
To further illustrate the functions off (α) andα(q), we

draw the curves of these functions with various momentsq

and dispersion values ofd. For example, Fig. 1 shows the
results withd = 0.1, 0.3, and 0.45 and various ranges of
q. From Eqs. (11) and (13) as well as Fig. 1, we see that
the distribution of a spectrum function is symmetrical and
has the maximum value off (α) = 1 at the middle range
of the α(0) value, which corresponds to the valueξ = 0.5
and q = 0. This result indicates that the maximum dimen-
sion is 1 (1-D problem). From the curves in Fig. 1, we also
can observe that as the dispersiond increases from 0.1, 0.3
to 0.45, the range of theα value decreases and the curve
α(0) moves towards the left. From the distribution of theα

function, we can observe that the range ofα value increases
with the decrease in thed values (d < 0.5), but the range of
the momentq value decreases. Accordingly, the multifractal-
ity indices associated with these distributions are calculated
as1α = 3.17, 1.22, and 0.29, and1τ = 0.272, 0.094, and
0.006, respectively. Each of the two sets of values character-
izes the decreasing level of multifractality of the three multi-
fractal distributions. These results also show that for a mul-
tifractal field with a large singularity and a large dispersion
rate the available range of moments is usually small, which
is a key consideration in estimation of multifractal distribu-
tions using moment methods. When multifractal models are
applied to the real-world data it may encounter a problem for
estimating the full range of singularity, especially for the two
extreme large and small singularities due to limited resolu-
tion or finite size of data. There have been some methods for
edge effect correction such as the effect-correction method
proposed by Agterberg and Cheng (1996) and the gliding-
box method (Cheng, 1999b). The problem of finite size ef-
fects (FSE) is currently under intensive debate (Grech and
Pamuła, 2012, 2013). Therefore, some of the indices that in-
volve the values of extreme singularities and fractal dimen-
sions at two ends, such asf (αmax) andf (αmin), andαmax
andαmin, may involve large uncertainties and they have to
be used with caution. From this point of view, the multifrac-
tality indices based on curvatures of the functions, such as
1τ , may be superior to others, such as1α, based on the full
range of singularity. The former can be accurately estimated
by means of low order moments such asτ(2), τ(1), andτ(0).
Other factors affecting the accuracy of estimates of the multi-
fractal indices include but are not limited to the noise or trend
mixed with the data. Several suggestions such as filtering raw
data to reduce the mixing effects of raw data in multifrac-
tal modeling have been proposed for solving these types of
problems (Cheng, 2007b). Other frequently used techniques
include the multifractal, detrended fluctuation analysis (MF-
DFA) (Kantelhardt et al., 2002), which enables one to elimi-
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Fig. 1. (a)Singularity functionsα(q) obtained from the normal de
Wijs model withd = 0.1 (triangles), 0.3 (diamonds) and 0.45 (dots),
respectively. Value ranges ofq are different for models with differ-
ent values ofd. (b) The results of spectra functionsf (α) for differ-
ent values ofd.

nate polynomial trends in time series data. More information
about the MF-DFA and comparisons with other multifractal
methods can be found in Kantelhardt et al. (2002). MF-DFA
has also been extended to model 2-D sequence data (Rosas
et al., 2002; Gu and Zhou, 2006; Telesca et al., 2007; Telesca
and Lovallo, 2011).

2.2 General binomial asymmetrical multiplicative
cascade processes and asymmetrical multifractal
distribution

The multiplicative cascade processes introduced in the previ-
ous section involve symmetrical partition processes that gen-
erate multifractal distributions with symmetrical properties.
In this section, we introduce an asymmetrical cascade pro-
cess that generates asymmetrical multifractal distributions.
Each partition divides the unit length intoh equal segments
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and m1 of them received1(> 0) and m2 receivesd2(> 0)

proportion of the mass in the previous segment, respec-
tively, wherem1 + m2 ≤ h. For a closed system with preser-
vation of unit measure,d1 + d2 = 1. Otherwise,d1 + d2 < 1
or d1 + d2 > 1, corresponding to a loss or gain of mass dur-
ing the cascade processes, respectively. At thenth partition,
the segment length will beεn = (1/h)n, the segments are
subject tok times the segments with measured1/m1 and
n–k times the segments with measured2/m2, and thus the
measures of these segments areµκ = (d1/m1)

k(d2/m2)
n−k.

Therefore, the numbers of segments withµk will be Nk =

mk
1m

n−k
2

(
n

k

)
, and the partition function can be expressed

as

χq (εn) =

n∑
k=0

µk (εn)
q mk

1m
n−k
2

(
n

k

)

=

n∑
k=0

[
(d1/m1)

k (d2/m2)
n−k

]q

mk
1m

n−k
2

(
n

k

)
=

[
m

1−q

1 d
q

1 + m
1−q

2 d
q

2

]n

. (14)

From this partition function, one can derive the mass function
as

τ (q) = −

log
[
m

1−q

1 d
q

1 + m
1−q

2 d
q

2

]
logh

(15)

and further derive the singularity index functionα(q) as

α (q) = −
ξ log(d1/m1) + (1− ξ) log(d2/m2)

logh
, (16)

where

ξ =
m

1−q

1 d
q

1

m
1−q

1 d
q

1 + m
1−q

2 d
q

2

.

From Eqs. (15) and (16), we obtain the spectrum function as

f (α) = α (q)q − τ (q) = −

ξ log
(

ξ
m1

)
+ (1− ξ) log

(
1−ξ
m2

)
logh

. (17)

The multifractal spectra and singularity Eqs. (16) and (17)
have the following properties:

αmax = α (−∞) = −
log(d1/m1)

logh
,

αmin = α (∞) = −
log(d2/m2)

logh
,

α (0) = −
1

logh

[
m1 log(d1/m1) + m2 log(d2/m2)

m1 + m2

]
,

and

f (αmax) =
logm1

logh
,

f (αmin) =
logm2

logh
,

f (α(0)) =
log(m1 + m2)

logh
,

1fR =
f (α(0))

f (αmax)
=

log(m1 + m2)

logm1
,

1fL =
f (α(0))

f (αmin)
=

log(m1 + m2)

logm2
.

Therefore,

1α = −

log
(

d1/m1
d2/m2

)
logh

,

1R =
1fl

1fr

=
logm2

logm1
,

R =
1αL

1αR

=
α(0) − α(∞)

α (−∞) − α(0)
=

m2

m1
,

1τ =
d1d2

logh(d1 + d2)
2

[
log

(
d1/m1

d2/m2

)]2

.

Figure 2a and b show the curves off (α) andα generated by
the binomial multiplicative cascade processes with different
parameters for the partitions. It can be observed that the spec-
tra are asymmetrical, and the asymmetry index is equal to the
ratio of the two valuesm2 andm1 or R = m2/m1. The fractal
dimensions at the two ends of the spectra are related to the ra-
tio of the logarithmic transformation of values log(m1)/ logh

and log(m2)/ logh, which do not always reach zero; as a
matter of fact, these values reach zero only ifm1 = 1 and
m2 = 1, respectively. The box-counting dimension (or the
maximum value of the spectra) is related to the ratio of the
logarithmic transformation of the sum of the two scales and
the total segmenth, log(m1 + m2)/ logh ≤ 1; equality holds
only if m1 + m2 = h. Both multifractality indices (1α and
1τ ) are proportional to the logarithmic transformation of
(d1/m1)/(d2/m2). Thus far, the multifractal indices are ex-
plicitly related to the parameters involved in the multiplica-
tive cascade processes. Generally speaking, the larger the
values ofα(0), R, and 1α or 1τ , the more complex the
distribution, which has the consequences of stronger multi-
fractality, additional variability of the high values of measure
µ with positive singularityα < α(0) and spectra that bend to-
wards the right. These parameters can be used to mimic the
asymmetrical multifractal distribution that could have been
generated by the binomial multiplicative cascade processes.

The new model proposed in this paper is a general model
in comparison with thep model, Koscielny-Bunde’s model
and Macek’s model. For example, lettingd1 = p andd2 =

1− p, and m1/h = m2/h = 0.5, the five-parameter model
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Fig. 2. (a) Singularity functionsα(q) obtained from asymmetrical
de Wijs model values ofd1 = 0.1 andd2 = 0.9 and different parti-
tionsm1 = 2, m2 = 6, andh = 8 (dots),m1 = 4, m2 = 12, h = 16
(diamonds) andm1 = 8, m2 = 24, andh = 32 (triangles), respec-
tively. Ranges ofq value are similar for all models.(b) The results
of spectra functionf (α) for different partitions with valued1 = 0.1
andd2 = 0.9.

reduces to the standardp model (Meneveau and Sreeni-
vasan, 1987), which gives symmetrical multifractal spec-
tra with f (αmax) = 0 andf (αmin) = 0. Koscielny-Bunde’s
two-parameter model (Koscielny-Bunde et al., 2006) corre-
sponds to a special case of the five-parameter model if letting
d1 = a and d2 = b, d1 + d2 ≥ 1 andm1/h = m2/h = 1/2.
The model only involves two parameters,a andb, and1α =

log(a/b)/ log2 andR = 1, and gives symmetrical multifrac-
tal spectra withf (αmax) = 0 and f (αmin) = 0. Similarly,
Macek’s three-parameter model (Macek, 2007) corresponds
to a special case of the five-parameter model if lettingd1 = p

andd2 = 1− p, andm1/h = l1 andm2/h = l2. The model
involves three parametersp, l1, and l2. The five-parameter
model can not only describe asymmetrical multifractal spec-
tra but also gives explicit relationships between the multi-

fractal indices and the parameters involved in the binomial
multiplicative cascade processes. Moreover, the new model
is able to generate asymmetrical multifractal distributions
with nonzero fractal dimensions of the extreme values at two
ends of the spectrum, i.e.,f (αmax) 6= 0 andf (αmin) 6= 0. In
the 2-D cascade model with anisotropic partition processes
(Cheng, 2005), instead of the same values ofd1 andd2 for m1
andm2 subareas in the partition, it uses different values ofdi ,
i = 1, . . . ,h, among subareas. Therefore, the five-parameter
model proposed in the current paper is a special case of the
2-D anisotropic cascade model (Cheng, 2005).

3 Procedure of the general five-parameter model for
mimicking the binomial asymmetrical multifractal
distribution

It has been shown that the multiplicative cascade model with
the five parametersd1, d2, m1, m2 andh can not only gener-
ate asymmetrical multifractal distributions but also the multi-
fractal indices commonly used in the literature that can be ex-
plicitly expressed as a function of the five parameters. There-
fore, these indices, i.e., multifractality and asymmetry, can
be used to characterize the asymmetrical binomial multifrac-
tal distribution and the fractal dimension spectra. The proce-
dures are described as follows.

3.1 Step 1

The values ofm1, m2 andh can be estimated using the fol-
lowing three characteristic points of the fractal dimension
spectra:

m1 = ef (αmax) logh,

m2 = ef (αmin) logh,

h = e
log(m1+m2)

f (α(0)) .

With the values of maximum fractal dimensionf (α(0)) and
the dimensions at the two ends of the spectraf (αmax) and
f (αmin), we can form iterations abouth as the objective
function of inputh, which can be easily implemented in Mi-
crosoft Excel. For each iteration, an input value ofh will
yield an output value ofh. The input value ofh with the
newly calculated value ofh can be compared for decisions
with respect to the termination of the iteration processes. An
adjusted value ofh, e.g., the average of the estimated and the
input values ofh, can be used as the new input ofh for the
next step of the iteration. The iteration processes halt when
the input value ofh is close to the output values ofh. Next,
the other two values ofm1 andm2 are calculated accordingly.

3.2 Step 2

After the values of all three parametersm1, m2 and h are
estimated, the following relationships are used to determine
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the values ofd1 andd2:

d1 = e−m1αmaxlogh,

d2 = e−m2αmin logh .

To illustrate the application of the five-parameter binomial
multiplicative cascade model, in the next section we intro-
duce several examples. The fractal dimension functions cal-
culated and published in the literature are reanalyzed using
the five-parameter model.

4 Application examples

4.1 Example 1: de Wijs’s zinc values

De Wijs (1951) studied assay values from the Pulacayo
sphalerite-quartz vein in Bolivia. These data have been
analyzed using multifractal modeling and spatial analysis
(Cheng and Agterberg, 1996). It has been shown that these
data can be approximated using a binomial multiplicative
cascade model. The results of Cheng and Agterberg (1996)
will be further analyzed in this work by means of the five-
parameter binomial multiplicative cascade model. Cheng
(1999b) applied a gliding-box multifractal method to calcu-
late the fractal dimension spectra of the distribution of de
Wijs’s zinc values (Fig. 3a). The range of order of momentq

was between−20 and 20. The estimated values off (α) are
given as follows:

αmax = 1.30, αmin = 0.75, f (α(0)) = 1.00

f (αmax) = 0, f (αmin) = 0.13, α(0) = 1.013.

According to the iteration method introduced in the previous
section, we can estimate the values of five parameters as

h = 2.1, m1 = 1, m2 = 1.1

d1 = 0.38, d2 = 0.63.

Therefore,

1α = 0.75, 1τ = 0.033 andR = 1.1.

The curves off (α) based on the model with these five val-
ues are superimposed on the curve off (α) estimated by the
gliding-box multifractal method (see Fig. 3a). The results in-
dicate that the distribution is multifractal and is close to sym-
metrical.

4.2 Example 2: Szczepaniak and Macek’s solar wind
data

Szczepaniak and Macek (2008) modeled solar wind turbu-
lence using an asymmetrical multiplicative cascade model
based on a two-scale weighted cantor set with experimen-
tal data from solar wind measured in situ by the Advanced
Composition Explorer spacecraft during the solar maximum
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Fig. 3. Results showing fractal dimension functions (dots) calcu-
lated by previous authors published in literature and fitted by the
five-parameter binomial multiplicative cascade model proposed in
the current paper (solid line).(a) Fractal dimension spectrum cal-
culated for de Wijs’s zinc values by means of gliding-box method
(Cheng, 1999b) and binomial multiplicative cascade model with
m1 = 1, m2 = 1.1, h = 2.1, d1 = 0.38, andd2 = 0.63. (b) Fractal
dimension spectrum calculated for the energy transfer rate in the
solar wind turbulence at solar minimum (2006) fitted by the model
proposed by Szczepaniak and Macek (2008) (dashed line). The red
solid line fitted by the five-parameter binomial multiplicative cas-
cade model withm1 = 1, m2 = 1.74, h = 2.74, d1 = 0.738, and
d2 = 0.292.(c) Fractal dimension spectrum calculated for time se-
ries of synthetic earthquakes by Muñoz-Diosdado et al. (2004) and
binomial multiplicative cascade model withm1 = 7.17,m2 = 1.54,
h = 8.71,d1 = 0.779, andd2 = 0.226.(d) Fractal dimension spec-
trum calculated for human posture data by wavelet transform mod-
ulus multifractal method (WTMM) (Shimizu et al., 2002) and bi-
nomial multiplicative cascade model withm1 = 1.219,m2 = 1.00,
h = 2.69,d1 = 0.728, andd2 = 0.276.

(2001) and minimum (2006) at 1 AU. The results obtained
show the asymmetrical multifractal nature of the different
states of the solar wind. For comparison purposes, the fractal
dimension spectra for the solar minimum (2006) at 1 AU are
fitted using the five-parameter binomial multiplicative cas-
cade model. Based on the visual determination from the frac-
tal dimension spectrum of solar minimum (2006) in Fig. 3b,
the characteristic values off (α) are estimated as follows:

αmax = 1.77, αmin = 0.30, f (α(0)) = 1.00

f (αmax) = 0.55, f (αmin) = 0.00.

Accordingly, the values of the five parameters are estimated
as follows:

h = 2.74, m1 = 1, m2 = 1.74

d1 = 0.738, d2 = 0.292.
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Therefore,

1α = 1.469, 1τ = 0.198 andR = 1.74.

The curve fitted by the model with the five values above is
superimposed on the results obtained by Szczepaniak and
Macek (2008) (see Fig. 3b). It can be observed that the model
fits the data well. The values estimated for multifractality
and symmetry are slightly different from those obtained by
Szczepaniak and Macek (2008). The discrepancy is primar-
ily due to the differences in the fractal dimensions at the
right end of the spectra. It is noteworthy that the model that
Szczepaniak and Macek (2008) used to fit the data with the
curve reaches zero at both ends, whereas the curve fitted by
the new model reaches zero only at one end but not at the
other end. The results also indicate that the distribution has
strong multifractality and a left-skewed asymmetry. It should
be mentioned that the spectra curve shown in Fig. 3b was es-
timated with theq value ranging from−2 to 8. This indicates
that the values ofαmin andf (αmin) on the left end off (α)

are estimated with less uncertainty, whereas the values on the
right could involve large uncertainty due to a small range of
negativeq value.

4.3 Example 3: time series of synthetic earthquakes
(Muñoz-Diosdado et al., 2004)

Muñoz-Diosdado et al. (2004) modeled the time series of
synthetic earthquakes using multifractal distribution with
theoretical spectra generated via multiplicative processes.
This group found that the time series of synthetic earth-
quakes depicts multifractality, and the multifractal spectra
can be asymmetrical. The asymmetrical multifractal distribu-
tion was calculated with high accuracy by Muñoz-Diosdado
et al. (2004) with theq value ranging from−30 to 30. The
results were fitted using the five-parameter model. From vi-
sual determination of the fractal dimension spectra in Fig. 3c,
the characteristic values off (α) are estimated as follows:

αmax = 1.024, αmin = 0.886, f (α(0)) = 1.00

f (αmax) = 0.9, f (αmin) = 0.2.

Accordingly, the values of five parameters are estimated as
follows:

h = 8.71, m1 = 7.17, m2 = 1.54

d1 = 0.779, d2 = 0.226.

Therefore,

1α = 0.133, 1τ = 0.003 andR = 0.214.

The results show these data depict weak multifractality with
a strong right-skewed asymmetry.

4.4 Example 4: multifractal analysis of human posture
data by Shimizu et al. (2002)

Shimizu et al. (2002) analyzed human posture data using a
wavelet transform modulus multifractal method (WTMM)
(Muzy et al., 1991). This group proposed a vector of three
multifractal indices as a measure of the complexity in hu-
man standing data. Figure 3d shows an example of a fractal
spectrum obtained by Shimizu et al. (2002, Fig. 4d) from real
standing data from a randomly selected healthy subject. The
estimations off (α) were calculated with theq value ranging
from −10 to 10. Based on visual determination of the frac-
tal dimension spectra in Fig. 3d, the characteristic values of
f (α) are estimated as follows:

αmax = 0.52, αmin = 1.28, f (α(0)) = 0.805

f (αmax) = 0, f (αmin) = 0.2.

Accordingly, the values of five parameters are estimated as
follows:

h = 2.69, m1 = 1, m2 = 1.219

d1 = 0.728, d2 = 0.281.

Therefore,

1α = 0.76, 1τ = 0.118 andR = 1.219.

The results show the data depict strong multifractality and a
left-skewed asymmetry. The maximum fractal dimension of
the spectra is 0.805(< 1), which corresponds tom1 + m2 =

2.219< 2.69.

5 Conclusions and discussion

It has been demonstrated that the five-parameter binomial
multiplicative cascade model proposed in the current paper
can be used to simulate the generation of an asymmetrical
multifractal distribution. In addition to the explicit relation-
ships found between the parameters involved in the binomial
multiplicative cascade processes, the commonly used mul-
tifractal indices, i.e., multifractality, asymmetry, and fractal
dimensions of high and low values, provide insight into the
physical meaning of multifractal indices, which are intuitive
for the use of multifractal modeling of real-world data. The
theoretical discussions were followed by case studies with
published data in the literature that have also shown that
the five-parameter model is superior to other models such as
Macek’s model for the following two reasons: the new model
provides explicit relationships between the parameters in-
volved in the binomial multiplicative cascade processes and
multifractal indices, and more importantly, the new model is
able to generate more general asymmetrical multifractal dis-
tributions, e.g., nonzero fractal dimensions of the high and
low values,f (αmax) > 0 andf (αmin) > 0. It should be noted
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that although the binomial multiplicative cascade processes
can generate asymmetrical multifractal distributions, certain
multifractal distributions are due to other complex processes
for which binomial multifractal models may not be applica-
ble. The other weakness of the general binomial model is that
because the five parameters are estimated based on a multi-
fractal distribution estimated using other types of methods,
the accuracy of the parameters may be affected by the esti-
mated multifractal distribution due to various factors includ-
ing FSE bias and mixing trend in the real data. Nevertheless,
the model proposed in this paper is applicable to simple mul-
tifractal distributions commonly estimated from geoscience
data sets. The explicit relationships between the multiplica-
tive cascade processes and the basic multifractal indices are
useful for understanding the physical meaning of multifrac-
tal indices although the multifractal distribution might not
be generated by binomial cascade processes. However, other
properties of the generalized binomial multifractal distribu-
tion such as spatiotemporal stationarity, lacunarity and vari-
ability remain for further investigation.
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