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Abstract. The numerical simulation of the nonlinear evolu-
tion of the parallel propagating Alfvén waves in a radially ex-
panding plasma is performed by using a kinetic-fluid model
(the Vlasov–MHD model). In our study, both the nonlinear
evolution of the Alfvén waves and the radial evolution of the
velocity distribution function (VDF) are treated simultane-
ously. On the other hand, important ion kinetic effects such
as ion cyclotron damping and instabilities driven by the non-
equilibrium ion velocity distributions are not included in the
present model. The results indicate that the steepened Alfvén
wave packets outwardly accelerate ions, which can be ob-
served as the beam components in the interplanetary space.
The energy of imposed Alfvén waves is converted into the
longitudinal fluctuations by the nonlinear steepening and the
nonlinear Landau damping. The wave shoaling due to the in-
homogeneity of the phase velocity is also observed.

1 Introduction

It is well known that nonlinear Alfvén waves are ubiquitously
observed in the solar wind (Bruno and Carbone, 2013). These
Alfvén waves are probably generated in the vicinity of the
solar photosphere, and may play an important role in heat-
ing and acceleration of the coronal and solar wind plasmas.
A lot of authors have already discussed the damping of the
Alfvén waves in coronal plasmas (Ofman, 2010a; Galinsky
and Shevchenko, 2013). In particular, the nonlinear damping
of low-frequency, quasi-parallel propagating Alfvén waves is
of great interest. This is because they can carry the momen-
tum and energy over a long distance, since the linear col-

lisionless damping of these waves is too small to dissipate
them (Barnes, 1966).

On the other hand, it is also known that the proton beams
are frequently observed in solar wind plasmas (Marsch,
2006). Recently, it was shown byAraneda et al.(2008) and
Matteini et al.(2010) that the protons trapped by the enve-
lope modulation (or corresponding longitudinal fluctuations)
due to the parametric instabilities of Alfvén waves can be
observed as the beam protons in the velocity space (Araneda
et al., 2008). Past studies (Araneda et al., 2008; Matteini et
al., 2010) assumed the uniform background plasmas and the
periodic system. However, the radial inhomogeneity of the
plasma density and the magnetic field may not be negligible
to discuss the nonlinear evolution of low-frequency Alfvén
waves in coronal plasmas, since the radial change of the non-
linearity and the non-WKB effects such as the reflection may
occur (e.g.,Chandran et al., 2011).

In the present paper, we firstly perform the numerical sim-
ulation of the nonlinear evolution of the parallel propagat-
ing Alfvén waves in a radially expanding plasma by using
a kinetic-fluid model (the Vlasov–MHD model) (Nariyuki
and Hada, 2007; Nariyuki et al., 2011, 2013). Actually, this
has already been discussed by a lot of authors by using
the magnetohydrodynamic (MHD) models (Suzuki and Inut-
suka, 2006; Tanaka et al., 2007). In our study, the radial evo-
lution of the Alfvén waves and the velocity distribution func-
tion (VDF) are treated simultaneously. Even if the isotropic
VDFs are assumed in the Vlasov–MHD model, as far as the
nonlinearity is relatively weak (δb/b <∼ 0.3) (Nariyuki and
Hada, 2007), the nonlinear evolution of the Alfvén waves
and the trapped ions observed in the Vlasov–MHD model
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agree with those in the ion hybrid simulation (Nariyuki et al.,
2011). In Sect. 2, the one-dimensional (1-D) Vlasov–MHD
model in the spherical coordinate and the simulation setup
are introduced briefly. Section 3 contains the numerical re-
sults. We discuss and summarize the results in Sects. 4 and
5, respectively.

2 Simulation setup

We consider a radially expanding flux tube, which is mea-
sured by the heliocentric distancer. To discuss both the non-
linear evolution of the transverse fluid motion due to the
Alfvén waves and the longitudinal (radial) ion kinetics, we
introduce the 1-D Vlasov–MHD model in the spherical coor-
dinate below. For simplicity, we here neglect the gravitational
force term, since it is relatively small and may not play im-
portant roles in the super Alfvénic solar wind atr > 10Rs,
whereRs is the solar radius.

The velocity distribution functions obey the Vlasov equa-
tion
df (x,v, t)

dt
=

∂f

∂t
+ v · ∇xf +

dv
dt

· ∇vf = 0, (1)

wheref (x,v, t) is the single particle distribution function,
and
dv
dt

= a =
q

m
(e+ v × b). (2)

v = (vx,vy,vz) is the particle velocity,e= (ex,ey,ez) the
electric field,b = (bx,by,bz) the magnetic field,m the rest
mass, andq the charge.

In the spherical coordinate (xs = (r,θ,φ), where x =

r sinθ cosφ,y = r sinθ sinφ,z = r cosθ), dv
dt

can be written
as
dv
dt

= a =
dvr

dt
ir +

dvθ

dt
iθ +

dvφ

dt
iφ

+
dir
dt

vr +
diθ
dt

vθ +
diφ
dt

vφ, (3)

whereij is the unit vector of thej = r,θ,φ component,v =

vs = (vr ,vθ ,vφ) = (dr
dt

, r dθ
dt

, r sinθ
dφ
dt

), anda = ar ir +aθ iθ +

aφ iφ . Notice thatvs is the function ofx. By transforming (1)
into the six-dimensional spherical coordinate ((xs,vs)), we
find (Larson, 1969)

df (x,v, t)

dt
=

df

dt
+

dr

dt

∂f

∂r
+

dθ

dt

∂f

∂θ
+

dφ

dt

∂f

∂φ

+
dvr

dt

∂f

∂vr

+
dvθ

dt

∂f

∂vθ

+
dvφ

dt

∂f

∂vφ

= 0, (4)

where

dvr

dt
=

v2
θ + v2

φ

r
+ ar , (5)

dvθ

dt
=

v2
φ cotθ − vrvθ

r
+ aθ , (6)

dvφ

dt
= −

vθvφ cotθ + vφvr

r
+ aφ . (7)

The relation (5)–(7) can be derived from Eq. (2).
We here define the longitudinal distribution function

g =

∫ ∫
f dvθdvφ . (8)

We assume the spherical symmetry (∂f
∂θ

=
∂f
∂φ

= 0) and
isotropic plasmas. By integrating Eq. (1) on vθ andvφ , we
obtain

∂g

∂t
+ vr

∂g

∂r
+

(
u2

⊥
+ 2Ti

r
+ Ar

)
∂g

∂vr

= −
2gvr

r
+

2gvruθ cosθ

r
, (9)

whereuj is thej component of the bulk velocity, andn =∫
gdvr , the number density. By taking the boundary condi-

tion f → 0 whenvθ,φ → ±∞,∫ ∫
ar

∂f

∂vr

dvθdvφ =

∫ ∫
∂arf

∂vr

dvθdvφ

= (er + uθbφ − uφbθ )
∂g

∂vr

≡ Ar

∂g

∂vr

(10)

where

guθ,φ =

∫ ∫
vθ,φf dvθdvφ . (11)

Equation (11) is valid in isotropic plasmas (Nariyuki et al.,
2013). We here take the ion massmi = 1, q = 1, and

gTi ≡

∫ ∫
(vθ,φ − uθ,φ)2f dvθdvφ, (12)

wherepi = nTi =
∫ ∫ ∫

(vr − ur)
2f dv =

∫
(vr − ur)

2gdvr .
When electrons can be treated as the massless fluid, we

obtain

er + uθbφ − uφbθ = −
1

qn

(
∂pe

∂r
+

1

r2

∂r2pb

∂r

)
, (13)

wherepb = (|b⊥|
2)/2, b⊥ = bθ iθ + bφ iφ , andpe is the elec-

tron pressure. Then, we find that

Ar = −
1

n

(
∂pe

∂r
+

1

r2

∂r2pb

∂r

)
. (14)

The first term on the right-hand side of Eq. (9) comes from
the sixth and seventh terms on the left-hand side of Eq. (4).
Notice that Eq. (9) is obtained for arbitraryf . While the sec-
ond term on the right-hand side of Eq. (9) comes from the
sixth term, we here neglect it by takingθ = π/2.

∂g′

∂t
+ vr

∂g′

∂r
+

(
|u′

⊥|
2
+ 2T ′

i

r3
+ Ar

)
∂g′

∂vr

= 0, (15)

∂ρ′u′

∂t
= −

∂urρ
′u′

∂r
+

∂Cb′

∂r
, (16)

∂b′

∂t
= −

∂

∂r

(
urb

′
− Bru

′
)
, (17)
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whereb = bθ + ibφ andu = uθ + iuφ are the complex trans-
verse magnetic field and velocity,g =

∫ ∫
f dvθvφ the longi-

tudinal VDFs (f (vr ,vθ ,vφ) is the original VDF),g′
= r2g,

u′
= ru, b′

= rb, T ′

i = r2Ti ,

Ar = −
1

ρ′

(
∂(p′

e + p′

b)

∂r
−

2p′
e

r

)
, (18)

ρ′
= r2ρ, ur the longitudinal velocity,pe the electron

pressure,pb = |b|
2/2, andp′

e(b) = r2pe(b). C = brr
2
= 100,

since the physical quantities are normalized to the parame-
ters at the inner boundary as shown below. We here assume
the isothermal electrons (pe/ρ = const.).

By integrating Eq. (15) on vr , we recover the continuity
equations and the momentum equation of the radial compo-
nent in the ideal MHD system (Suzuki and Inutsuka, 2006;
Tanaka et al., 2007). The ion pressurepi is also evalu-
ated by the integration ofg. Isotropic ions are assumed in
Eqs. (15)–(17) to close the system. Note that the assumption
of isotropic ions is reasonable as far as we concentrate on the
low-frequency wave dynamics in low beta plasmas, although
the VDFs of ions in the coronal and solar wind plasmas may
be anisotropic. This is because the pressure anisotropy ef-
fects in the dispersion relation of Alfvén waves are negligibly
small in low beta plasmas (see Sect. 4.2).

The simulation region of the present study is from 10Rs
to 110Rs. All the physical quantities are normalized to the
parameters atr = 10Rs as follows: the number densityn0 =

ρ0/mp = 2.9× 109 [m−3] (mp is the mass of protons), the
longitudinal magnetic fieldbr0 = 1.3× 10−6[T], the Alfvén
velocityVA0 = br0/

√
(µ0ρ0) = 5.0× 105 [m s−1] (µ0 is the

vacuum permeability), respectively. The space and time are
normalized to the solar radiusRs = 7× 108 [m] and T0 =

Rs/VA0 = 1.4× 103 [s], respectively. We use the uniform
mesh with 4000 grid points in ther direction and 1000 grid
points in thevr direction. The grid spacing is1r = 0.025,
1vr = 0.01 and the time step is1t = 2.5×10−4. The trans-
verse momentum Eq. (16) and the induction Eq. (17) are
solved by the second-order rational Runge–Kutta scheme
(Wambecq, 1978) for time integration and the second-order
central difference method for evaluating spatial derivatives.
The splitting scheme (Cheng, 1976) and the PIC (Positive In-
terpolation for hyperbolic Conservation laws) scheme are ap-
plied for time advancement of the Vlasov Eq. (15) (Umeda,
2009; Umeda et al., 2012). Note that no artificial dissipation
term is included in the Vlasov–MHD system. The detailed
numerical scheme to solve Eqs. (15)–(17) has also been de-
scribed in a past study (Nariyuki et al., 2011).

Since the solar wind may become super Alfvénic flow
within r < 10 (r = 10 is the inner boundary at 10Rs), we here
assume the constant radial velocityur0 =

1
ρ

∫
vrg0dvr = VA0

as the initial condition, whereg0 is the initial VDF. Then,
the initial densityρ = 100/r2 due to the conservation of the
mass flux. Thus, the critical point at which the solar wind
becomes super Alfvénic flow isrc = 10 in the present study.
The radial magnetic field isbr = 100/r2 due to the conser-

Fig. 1. The transverse magnetic field (b′
θ (gray solid lines),b′

φ (gray

dashed lines),±|b′
| (black bold lines) att = 11 (1.5× 104 [s])).

vation of magnetic flux. Note thatur > VA = br/
√

(µ0ρ) at
r > 10. Thus, the initial ion pressurep0 is assumed to be uni-
form. The initial ion beta isβi = p0/(b

2
r /2) = 0.02 atr = 10.

g0 =
1

√
πvth

exp(−(vr − ur0)
2/v2

th) wherev2
th = 2Ti(t = 0) =

0.002r.
The nonmonochromatic right-handed circularly polarized

Alfveń waves

b(r = 10) = a6
N
2

n=
−N

2
bp exp[i(ωnt + αn)] (19)

and v(r = 10) = −b(r = 10) are imposed at the lower
boundary, whereωn = VA0kn, kn = k0 ± n1k, 1k = π/50,
n is an integer, andN is the number of wave modes, respec-
tively. The phaseαn is given by a uniform random number
generator with a range[0,2π ]. The inner boundary condition
for g is fixed at the initial value. The open boundary condi-
tion is imposed at the upper boundary (r = 110). Initially,
βe = 0.02.

The imposed Alfvén waves are given as the white
noise (bp is independent ofωn). We here setω0 = 12.566
(ω0/T0 = 0.009[Hz]), andN = 60 (0.0076[Hz]< ω/T0 <

0.0104[Hz]) (Run A), N = 100 (0.0067[Hz]< ω/T0 <

0.0113[Hz]) (Run B), N = 140 (0.0058[Hz]< ω/T0 <

0.0122[Hz]) (Run C). At the early stage (t < 10π/ω0), the
linearly increasing wave amplitudea = t (ω0/10π) is set to
avoid the discontinuity of the wave front. During 10π/ω0 <

t < 11, we seta = 1 andbp as< |b(r = 10)| >= 0.2 (where
<> indicates time average), which is consistent with pre-
vious studies (e.g.,Maneva et al., 2013). After t > 11, the
imposed wave amplitude is diminished.

3 Results

In this section, we mainly show the results of Run B, since
those of runs A and C are essentially the same as those of
Run B. The difference between the runs is discussed in the
last part of this section.

Figure 1 shows the transverse magnetic field (b′
θ , b′

φ ,
±|b′

|) at t = 11. The imposed Alfvén wave packets have
the envelope modulation corresponding to the broadband fre-
quency spectra. Notice that the envelope modulation excites
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Fig. 2. The snapshot of the transverse magnetic field at(a) t = 16.5,
(b) t = 19.25, and(c) t = 22.0 in Run B.

the density fluctuation by the ponderomotive force (the sec-
ond term of the right-hand side of Eq.14) (Mjølhus, 1976;
Mio et al., 1976). Such longitudinal fluctuations can dis-
sipate through the nonlinear Landau damping (Nariyuki et
al., 2008, 2010; Markovskii et al., 2009). Figures2 and 3
show the snapshots of the transverse magnetic field (b′) and
g′ at (a) t = 16.5, (b) t = 19.25, and (c)t = 22.0, respec-
tively. As time elapses, nonlinear steepening of the envelope-
modulated Alfvén waves (Cohen and Kulsrud, 1975) is ob-
served (Figs.1 and 2). In Fig. 3, the ions accelerated by
the nonlinearly steepened wave front of the Alfvén waves
are observed. Some ions with the higher velocity than the
local phase velocity of the Alfvén waves move away from
the steepened wave front and form the stretched structure in
the phase space (Fig.3b, c). It is important that the acceler-
ated ions can be observed as the ion beams by the spacecraft
observation (Fig.4). For instance, sinceVA ' 10VA0/r, the
relative beam speed in Fig.4a isvr = 0.5 ' 1.8VA(r = 36),
which is consistent with the one observed in solar wind plas-
mas (Marsch, 2006).

Fig. 3. The snapshot ofg′ at (a) t = 16.5, (b) t = 19.25, and(c)
t = 22.0 in Run B. The white lines indicate|b′

|.

In the one-fluid system, the bulk kinetic energy corre-
sponding to the relative speed between core and beam pro-
tons is evaluated as the pressure and temperature parallel
to the ambient magnetic field. For instance, the temperature
evaluated by using the whole proton VDFs in Fig.4a is about
1.5 times larger than the one of the core proton. On the other
hand, the core proton temperature att = 16.5 and r = 36
(Fig. 3a) is 0.0525, while the one att = 22.0 andr = 36 is
0.0450. This suggests that the heating of ions by the nonlin-
ear Alfvén waves in the present study corresponds to the gen-
eration of the relative bulk kinetic energy, which can be free
energies to cause the beam instabilities. Actually, the present
model also does not include the other important kinetic ef-
fects. The quantitative results of heating in the present study
may be modified by the kinetic effects. To incorporate the
instabilities into the present model through the anisotropic
pressure is one of the important future issues.

Nonlin. Processes Geophys., 21, 339–346, 2014 www.nonlin-processes-geophys.net/21/339/2014/
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Fig. 4. The local VDFs (g′ at t = 22.0) at(a) r = 36 and(b) r = 41
in Run B.

Fig. 5. The snapshot of(a) the transverse magnetic field and(b) g′

at t = 22.0 in Run A.

Figures5 and6 show the snapshot of the transverse mag-
netic field andg′ at t = 22.0 in runs A and C, respectively. In
the resultant VDFs of all the runs (Figs.4c, 5b, and6b), the
accelerated ions can be observed. The number of generated
beams increases with increasing frequency range of the im-
posed Alfvén waves, since the wave length of the envelope
modulation becomes smaller.

Fig. 6. The snapshot of(a) the transverse magnetic field and(b) g′

at t = 22.0 in Run C.

Figure 7 shows the Elsasser variablesz′
p = u′

y − b′
y/

√
ρ

andz′
m = u′

y + b′
y/

√
ρ at t = 22.0. As shown in Fig.7, the

intensity of the sunward-propagating waves (zm) is much
less than the anti sunward-propagating waves (zp). Namely,
the non-WKB reflection by the background inhomogene-
ity (Suzuki and Inutsuka, 2006; Chandran et al., 2011) is
weak, and the parametric decay instability of Alfvén waves
(Tanaka et al., 2007) does not occur. The absence of the non-
WKB reflection indicates that the WKB (Wentzel–Kramers–
Brillouin) approximation is well satisfied in the present
study. The absence of the parametric decay instability of
Alfvén waves is discussed in the next section.

4 Discussion

4.1 Wave shoaling

In this subsection, we discuss the increase in nonlinearity
in the WKB Alfvén wave packets in the solar wind. It is
well known that the envelope-modulated Alfvén waves are
steepened by the nonlinearity (Cohen and Kulsrud, 1975).
The steepening converts the energy of transverse waves into
the one of longitudinal waves (parallel ion kinetic energy),
as shown in the previous section. This result suggests that
the simple steepening (parallel cascading) and nonlinear ion
Landau damping can play an important role in damping of
Alfvén waves. On the other hand, the modulational instabil-
ity does not occur due to the absence of the wave disper-
sion in the present system (Sakai and Sonnerup, 1983). No-
tice that the absence of the modulational instability does not
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Fig. 7. The Elsasser variablesz′
p = u′

y − b′
y/

√
ρ (gray solid line)

andz′
m = u′

y +b′
y/

√
ρ (black dashed line) att = 22.0 in (a) Run A,

(b) Run B, and(c) Run C.

affect the decrease in energy of envelope-modulated Alfvén
waves (Nariyuki et al., 2008). In contrast to the previous
studies (Suzuki and Inutsuka, 2006; Tanaka et al., 2007) in
which the MHD system was used, the decay instability is not
clearly observed in the present study. This is consistent with
the previous studies (Nariyuki et al., 2008; Markovskii et al.,
2009) in which the ion hybrid simulations in uniform plas-
mas were carried out. Actually, the growth rate of the decay
instability is small due to the small amplitude of each wave
number mode in the present study. Moreover, the growth rate
of the decay instability is weakened by the ion Landau damp-
ing of the longitudinal waves (Nariyuki and Hada, 2007).

By comparing both Figs.1 and2c, the contraction of the
wave length (2π/k) is also observed. This is due to the con-
servation of the wave frequency

ω = (ur + VA)k, (20)

where the phase velocityur + VA decreases with increas-
ing heliocentric distance. When the wave packets satisfy the
WKB approximation, the nonlinearity of the waves (Barnes,

1992)(
|b|

br

)2

= C0r

(
1+

VA

ur

)−2

∝
r3

(r + C1)2
, (21)

where the constantsC0 andC1 are determined by using the
boundary condition. Equation (21) indicates that the nonlin-
earity of the wave packets increases with increasing heliocen-
tric distance. The increase in the nonlinearity with the con-
traction of the wave length is similar to the wave shoaling
of the surface gravity waves. Whenur >> VA (r >> C1),

ω ' urk and
(

|b|

br

)2
∝ r. In this limit, the wave numberk is

the quasi-invariant and the waves can be described by using
the expanding box (Grappin et al., 1993; Grappin and Velli,
1996; Liewer et al., 2001; Hellinger and Travnicek, 2005; Of-
man et al., 2011). On the other hand, ifur << VA (r << C1),

k ∝ r and
(

|b|

br

)2
∝ r3. Thus, the nonlinearity|b|

br
at a certain

r becomes larger with increasing heliocentric distance from
the critical pointrc. This effect of inhomogeneity promotes
the nonlinear steepening and the ion acceleration by pondero-
motive force.

The polarization of the imposed waves does not affect the
time evolution of the system, since the wave dispersion due
to the Hall effect and the finite Larmor radius effect is ne-
glected in the present model. Notice that the nonlinear evolu-
tion of low-frequency Alfvén waves generates the higher fre-
quency waves. The linear damping (ion cyclotron damping)
and nonlinear damping (parametric instabilities) of the dis-
persive Alfvén waves are affected by the polarization (e.g.,
Liewer et al., 2001; Hellinger et al., 2005; Matteini et al.,
2010). Actually, while the polarization of Alfvén waves does
not affect the time evolution of the present dispersionless sys-
tem, dispersive left-handed porarized waves are unstable to
both decay and modulational instabilities in low beta plasmas
(Longtin and Sonnerup, 1986). To incorporate the non-MHD
effects (Chandran et al., 2011) such as the kinetic effects dis-
cussed in the next subsection into the present one-fluid model
is an important future issue.

4.2 Ion kinetics

In the uniform and periodic system, the phase space vortex
corresponding to the density fluctuations has also been ob-
served in the nonlinear stage (Araneda et al., 2008; Matteini
et al., 2010). In the present system, ions accelerated by the
ponderomotive force are observed as the rolled-up VDFs in
the phase space, while the vortex structures are not observed.
This may be because of the asymmetrical wave form ob-
served in Fig2. Note that the trapped ions in the uniform
system are the pseudo beam in the phase space, while the
detrapped ions observed in the present study can survive as
the real beam. However, the linear stability of the beams
could not be discussed in the present system, since inhomo-
geneity of the velocity space is decoupled from the trans-
verse wave dynamics due to the assumption of the isotropic

Nonlin. Processes Geophys., 21, 339–346, 2014 www.nonlin-processes-geophys.net/21/339/2014/
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velocity distribution function. Notice that the assumption of
the isotropic VDFs in the present model is only valid for
low beta plasmas such as those in the vicinity of the sun.
Although the protons observed in the solar wind have the
temperature anisotropy (Marsch, 2006; Bale et al., 2009;
Maruca et al., 2011), the phase velocity of Alfvén waves
evaluated by the Chew–Goldberger–Low (CGL) system is
close to the Alfvén velocity in low beta plasmas (Nariyuki
et al., 2013). The phase velocity of anti-sunward propagating
Alfvén waves in CGL system is

vφ = ur +
br

√
ρµ0

(
1−

µ0(p‖ − p⊥)

|b|2

) 1
2

, (22)

wherep‖ and p⊥ are the pressure parallel and perpendic-
ular to the total magnetic fieldb. Equation (22) indicates
that even if temperature (and pressure) anisotropy is large,
vφ ' ur + VA in low beta plasmas. For instance, by using an
empirical law of fast solar wind plasmas inHellinger et al.
(2011), vφ − ur ' 1.019VA (r = 20), 1.020VA (r = 40), and
1.018VA (r = 60), respectively. On the other hand, as dis-
cussed below, some important kinetic effects are not included
in the present model. Of course, even if the effect of tempera-
ture anisotropy on the phase velocity of Alfvén waves is neg-
ligible, the various instabilities can be caused by temperature
anisotropy (Matteini et al., 2013).

In the present study, Alfvén wave packets excite the lon-
gitudinal fluctuations (deformation of the VDFs). Maneva et
al. (2013) have recently confirmed the similar phase space
vortex in the expanding box model. Moreover, nonresonant
scattering of ions neglected in the present model can also af-
fect the local VDFs (Araneda et al., 2008; Dong and Singh,
2013). In addition, the wave-particle resonant interactions
between the Alfvén wave packets and ions become important
with increasing heliocentric distance, since the ion cyclotron
frequency decreases (Liewer et al., 2001). The Alfvén wave
steepening observed in the present study causes the paral-
lel cascading in the frequency space and may promote the
ion cyclotron damping. It is also noteworthy that the kinetic
instabilities driven by the beam components could not be de-
scribed in the present system. The beam instabilities are af-
fected by the inhomogeneity (e.g.,Ofman, 2010b; Hellinger
and Travnicek, 2011). To fill the gap between the past stud-
ies with the uniform system and the present study, further
implementation of kinetic simulations with mesoscale mod-
els such as the expanding box models (Liewer et al., 2001;
Hellinger and Travnicek, 2005; Ofman et al., 2011; Maneva
et al., 2013) is required.

5 Conclusions

In the present paper, we discuss numerically the ion accel-
eration by nonlinear Alfvén wave packets in the radially
expanding plasma. The results indicate that the steepened
Alfvén wave packets outwardly accelerate ions, which can

be observed as the beam components in the interplanetary
space. The wave shoaling of the WKB Alfvén waves is also
observed. On the other hand, as discussed in the previous
section, important ion kinetic effects such as ion cyclotron
damping and instabilities driven by the non-equilibrium
VDFs are not included in the present model and the quan-
titative results of the present study may be modified by the
kinetic effects. Actually, the effective heating and accelera-
tion of ions by the Alfvén waves are very weak in the present
study, while the ion beams are formed corresponding to the
envelope modulation. The non-equilibrium VDFs observed
in the runs still preserve the free energy to cause the insta-
bilities. In order to address the effective ion heating of solar
wind plasmas by low-frequency Alfvén waves, the kinetic
effects and the other non-MHD effects such as turbulent cas-
cading and collisions should be incorporated into the present
model.
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