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Abstract. A series of laboratory experiments has been car-
ried out in a thermally driven rotating annulus to study the
onset of baroclinic instability, using horizontal and uniformly
sloping bottom topographies. Different wave flow regimes
have been identified and their phase boundaries – expressed
in terms of appropriate non-dimensional parameters – have
been compared to the recent numerical linear stability anal-
ysis ofvon Larcher et al.(2013). In the flat bottom case, the
numerically predicted alignment of the boundary between
the axisymmetric and the regular wave flow regime was
found to be consistent with the experimental results. How-
ever, once the sloping bottom end wall was introduced, the
detected behaviour was qualitatively different from that of
the simulations. This disagreement is thought to be the con-
sequence of nonlinear wave–wave interactions that could not
be resolved in the framework of the numerical study. This
argument is supported by the observed development of inter-
ference vacillation in the runs with sloping bottom, a mixed
flow state in which baroclinic wave modes exhibiting differ-
ent drift rates and amplitudes can co-exist.

1 Introduction

Based on the principle of hydrodynamical similarity, some
fundamental characteristics of Earth’s various large-scale at-
mospheric flow phenomena can be modelled using surpris-
ingly simple tabletop-size experimental set-ups. Under labo-
ratory conditions it is possible to control the governing phys-
ical parameters and thus to separate different processes that
cannot be studied independently in such a complex system
as the real atmosphere. Therefore, laboratory experiments

provide a remarkable test bed to validate numerical tech-
niques and models aiming to investigate flows observed in
the atmosphere and in the oceans.

A classic apparatus to demonstrate the basic large-scale
dynamics of the mid-latitude atmosphere is the differentially
heated rotating annulus, introduced byFultz et al.(1959) and
Hide (1958), based on the principles suggested by Vettin in
the mid-19th century (Vettin, 1857). The set-up (Fig.1) con-
sists of a cylindrical gap rotating around its vertical axis of
symmetry, with a cooled inner side wall and a heated outer
side wall, thus the working fluid (usually water or silicone
oil) experiences a radial temperature gradient. These bound-
ary conditions imitate the meridional differential incoming
solar-heat flux on Earth. The characteristic hydrodynamical
timescale scales with the temperature difference,1T , be-
tween the inner and the outer side wall, and without rotation,
the velocity field would be axisymmetric (note, that in such a
“sideways convection” configuration, where the heating and
cooling takes place at vertical boundaries, there is no mini-
mum1T , i.e. any finite temperature difference would initiate
an overturning flow.). However, since rotation is present, in
the co-rotating reference frame Coriolis’ force also acts on
the flow, with a magnitude proportional to the flow velocity
and the rotation rate,�.

The ratio of the revolution period and the aforemen-
tioned hydrodynamical timescale yields an appropriate non-
dimensional number for temperature-driven rotating sys-
tems, the thermal Rossby numberRoT (see Sect. 2). For a
fluid like water, in case ofRoT � 1, the flow is axisym-
metric and not significantly disturbed by rotation, whereas
for RoT � 1 (as in the case of cyclones and and anticy-
clones in the atmosphere) the dynamics is dominated by the
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Fig. 1. Schematic drawing of the set-up with a flat(a) and with a
sloping-bottom end wall. For the geometric parameters indicated,
see text. The anticlockwise direction of rotation is indicated.

Coriolis effect. Another important non-dimensional param-
eter, the Taylor number,T a, can be obtained similarly, by
measuring the timescale of viscous effects with respect to
the rotation period (more details in Sect. 2).RoT andT a are
used to characterise the different dynamical regimes in the
rotating annulus.

Between the axisymmetric and geostrophic turbulent flow
state at large Taylor numbers there is a certain region on the
T a–RoT regime diagram, where the velocity and tempera-
ture fields exhibit persistent regular wave-like patterns that
propagate along the azimuthal direction in the tank due to
baroclinic instability (see Fig.3, or for a more general qual-
itative view Fig. 1 ofvon Larcher and Egbers(2005)). The
boundary separating the axisymmetric and unstable states on
the regime diagram (e.g. the blue and green curves in Fig.3)
is referred to as the “transition curve”.

The basic underlying physics of such baroclinic waves
has been subject of extensive theoretical (e.g.Eady, 1949;
Mason, 1975; Lorenz, 1963), numerical (e.g.Seelig et al.,
2012; Read, 1992) and experimental (e.g.Früh and Read,
1997; von Larcher and Egbers, 2005; Harlander et al., 2012)
research throughout the past decades. Furthermore, some
studies focused on the quantitative comparison of tempera-
ture statistics (Gyüre et al., 2007) and propagation dynamics
of passive tracers (Jánosi et al., 2010) obtained from annulus
experiments and from actual atmospheric data.

The different types of vacillation phenomena (termed “am-
plitude”, “structural” and “interference” vacillation) have at-
tracted considerable attention within the community of geo-
physical fluid dynamics and of nonlinear systems, dating
back to the classic work ofLorenz(1963). The co-existence
of different baroclinic wave modes and their interactions in a
rotating annulus (with flat bottom) has been the scope of ex-
perimental studies, for example, byPfeffer and Fowlis(1968)
or Harlander et al.(2011).

As another example of simple laboratory-scale experi-
ments of geophysical relevance, rotating cylindrical tanks
with conical bottom end walls are broadly used as a mini-
mal model of the concept ofβ effect, and in particular to
demonstrate topographic (barotropic) Rossby waves, driven
by conservation of potential vorticity over a sloping bottom
(Rossby, 1949). In a baroclinic set-up, however (i.e. in a sys-
tem where the isopycnals do not coincide with the equipo-
tential surfaces) the formal analogy betweenβ effect and
such an end wall configuration does not hold. In this case
the introduction ofβ would inherently modify the underly-
ing dynamics, whereas the bottom end wall merely alters the
boundary conditions and leaves the equations of motion un-
changed. Yet, the sloping differentially heated configuration
still provides a useful insight to dispersion effects of baro-
clinic waves. The wave flow phenomena in a combined dif-
ferentially heated and sloping set-up have therefore been in-
vestigated experimentally, theoretically and numerically to a
large extent in the past decades.

To the best of the authors’ knowledge, the first in the se-
ries of laboratory studies addressing this issue was the work
of Fultz and Kaynor(1959), who observed the dispersion of
baroclinic waves in the presence of tilted bottom topography,
and tried to quantify the group velocities of the propagating
patterns. They also compared their results to the then-known
dispersion relation of barotropic Rossby waves.

Extensive analytical studies on the dynamics of baroclinic
instability over various types of bottom slope have also been
published starting from the early 1970s, using various ex-
tensions of Eady’s model. Within this theoretical frame-
work, Blusmack and Gierasch(1972) have shown that a
steep enough bottom slope can fully stabilize the system,
once the isopycnals are assumed to be monotonous and uni-
formly tilted. Mason(1975) further modified Eady’s model
to incorporate Ekman layer effects and applied it to inter-
pret his experimental results obtained in a baroclinic annu-
lar set-up with different bottom and top end wall configura-
tions.Mechoso(1980) extended the model of Blumsack and
Gierasch (1972) to include sloping rigid top and evaluated
the conditions of stability.

More recently, laboratory experiments have been con-
ducted in a similar configuration byWordsworth et al.(2008)
to elucidate the dynamics of the turbulent regime character-
ized by large Taylor and low thermal Rossby numbers. There,
the sloping boundaries were found to excite turbulent ed-
dies that produce multiple alternating jet structures (also re-
ported by Mason, 1975) via interaction with the zonal mean
flow. Similar phenomena have also been detected in inter-
nally heated “reversed” annuli with sloping end walls (e.g.
Bastin and Read, 1997, 1998). In these set-ups coherent ed-
dies were reported even for steeply sloping boundaries, con-
tradicting the predictions of the aforementioned theoretical
models. Similar disagreement has been found and thoroughly
discussed byIsachsen(2011) who compared Eady-based and
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numerically simulated tracer diffusivities in baroclinic flows
over sloping terrain.

A recent linear numerical study byvon Larcher et al.
(2013) investigated how the presence of a sloping bottom
end wall (combined with a free flat top surface) alters the
wave flow regime boundaries, applying the geometrical di-
mensions of the baroclinic wave tank used for experimental
works at the Brandenburg Technical University since about
2003, cf.,von Larcher and Egbers(2005). The linear sta-
bility analysis of that work revealed significant differences
between the flat and sloping bottom end wall configuration.
While the overall typical anvil shape of the wave flow regime
on theT a–RoT plane remains similar in the sloping bottom
case, the transition curve (more precisely, the neutral linear
stability curve) has shifted significantly towards lower val-
ues ofT a, and at higher values ofRoT a sharp reversal of the
curve has been found (Fig.3). The comparison of these nu-
merical results to the actual experiment was the main focus
and primary motivation of the present work. We also aimed
to obtain a more detailed picture on wave–wave interactions
and to gain a deeper insight to the structure of the transition
region between the axisymmetric and wave flow regimes.

Our paper is organized as follows. Section 2 outlines the
experimental set-up, the parameters that describe the state of
the system and the measurement techniques used. Section 3
discusses the applied data evaluation methods. The results
are presented in the four subsections of Sect. 4. In Sect. 5 we
summarize the results and discuss their implications on the
physics of the underlying dynamics.

2 Experimental apparatus and methods

Our experiments have been carried out in a circular lab-
oratory tank mounted on a turntable. The tank consisted
of three concentric cylinders, rotating at the same rate in
anticlockwise direction (at angular velocities between� =

0.13− 0.83 rad s−1), whose geometric centre coincided with
the axis of rotation, as depicted in Fig.1. In the inner cylin-
der, made of anodized aluminium, cold water was circulated,
the temperature of which was monitored by two thermocou-
ples and adjusted via a cooling thermostat. The “outer ring”
of the tank, that is, the annular gap between the two outer-
most cylinders (painted red and orange in Fig.1), made of
borosilicate glass, hosted the heating wire and contained wa-
ter as a heat conductive medium. The temperature difference
1T between the outer ring and the inner cylinder has been
varied between 2.4 and 8.0 K for the different experimen-
tal runs. The methods and characteristics of the temperature
control have been discussed in more detail byvon Larcher
and Egbers(2005).

The middle cavity of the annulus, ranging froma = 4.5 cm
to b = 12 cm in radial direction (Fig.1a), was filled up with
the working fluid – de-ionized water – to the height of
d = 13.5 cm, yielding radius ratioη = a/b = 0.38 and aspect

ratio0 = d/(b−a) = 1.8. The surface of this cylindrical gap
was free, which, besides of its importance as boundary con-
dition, also made it possible to use infrared thermography as
our measurement technique (infrared radiation is generally
absorbed by glass or acryllic, therefore thermography cannot
be applied for set-ups with rigid top).

The infrared camera was mounted above the middle of
the wave tank and was co-rotating with the set-up. In every
1t = 10 s, 626× 428 pixel thermograms were taken, cover-
ing the surface of the annulus with a resolution of∼ 0.03 K.
The patterns in these thermograms can be considered surface
temperature structures, since the penetration depth of the ap-
plied wavelength range into water is measured in millimetres.

The most important dynamic control parameters,� and
1T , can be expressed in terms of non-dimensional numbers.
The former is captured by the Taylor number,T a, defined as

T a =
4�2(b − a)5

ν2d
, (1)

whereν = 1.004×10−6 m2 s−1 is the kinematic viscosity of
water. The ratio of the characteristic velocity of the thermally
driven flow to the rotation rate yields the thermal Rossby
numberRoT (also known as Hide number in honour of Ray-
mond Hide), which serves as a non-dimensional1T scale:

RoT =
gdα1T

�2(b − a)2
, (2)

whereα = 2.07× 10−4 K−1 is the volumetric thermal ex-
pansion coefficient of freshwater andg represents the ac-
celeration due to gravity. Note, that when the horizon-
tal temperature difference1T is comparable to the vertical
one, that is,1Tz ≈ 1T holds (a fairly good assumption in
the present study), Eq. (2) corresponds to the Burger num-
ber (B), defined as the squared ratio of the Rossby defor-
mation radiusRd =

√
gdα1Tz/� to the gap widthb − a,

B = gdα1Tz/(�
2(b − a)2).

The physical properties of the working fluid are captured
by the Prandl numberPr:

Pr =
ν

κ
, (3)

expressing the ratio of the kinematic viscosity (ν) and ther-
mal conductivity (κ = 0.1434× 10−6 m2 s−1) of water (i.e.
in our casePr = 7.0).

The experiments were conducted the following way: af-
ter setting the values of the first target rotation rate and
the temperature difference, it took typically around 1.5–
3 h for the temperature control system to reach and stably
maintain the required1T . The thermographic measurements
started when quasi-stationarity of the temperature signals
was reached, and lasted for 2000–4000 s, that led to 200–400
snapshots per parameter point. After the first measurement
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was performed,T a was gradually increased or decreased
(keeping1T constant) over a period of 1000–2000 s. When
the next parameter point was reached, the thermographic
measurement started immediately. Thus, the transient flow
phenomena could also be recorded, before the system settled
its next quasi-equilibrium state. The typical duration scale
of this transient phase was 500–1000 s. In one measurement
session (typically lasting for 6 h) a maximum of 4 different
T a − RoT parameter pairs could be investigated.

The first series of experiments was conducted with flat
bottom topography (Fig.1a), whereas in the second series,
a conical sloping bottom obstacle made of polyamide was
placed in the cylindrical gap of the tank (Fig.1b). The slope
had an angle ofγ = 35◦ to the horizontal as in the paper by
von Larcher et al.(2013), and was decreasing towards the
outer side wall, so that the maximum depthd (reached at dis-
tanceb from the axis) coincided with that in the flat bottom
configuration.

3 Data processing

In this section we describe the techniques of data evaluation
and demonstrate them exemplarily for the reader’s conve-
nience using a typical experimental run (with flat bottom end
wall) where the flow was dominated by a regular wave pat-
tern, exhibiting 3-fold rotational symmetry.

In order to reduce the investigated parameter space, a
path-wise temperature series was extracted from each ther-
mographic image (as the one seen in Fig.2a). The one-
dimensional temperature dataT (θ; t) were obtained along a
circular contour at mid-radius (rmid ≡ (a + b)/2) (black cir-
cle in Fig.2a), as a function of the azimuthal angle (θ ), mea-
sured clockwise from the “uppermost” point of the circle.
The resulting data from this particular snapshot is shown by
the black curve of Fig.2b.

For the analysis of the azimuthal temperature fields dis-
crete spatial Fourier transform was used. After subtracting
the mean temperature〈T (θ; t)〉 (averaged over the whole
θ = [0;2π ] range at each time instantt), the remaining fluc-
tuations could be decomposed into amplitudesAm(t) and
phasesφm(t) of normal modes of quantized wave numbers
m = 1, . . .,6, as

T (θ; t) − 〈T (θ; t)〉 ≈

6∑
m=1

Am(t) · sin(mθ + φm(t)). (4)

Figure 2b demonstrates this step, showing three (exem-
plarily selected) components:m = 3 (red),m = 4 (blue) and
m = 6 (green). The temporal development of the amplitudes
of these three modes is presented in Fig.2c, using the same
color encoding. It is clearly visible, that after an initial tran-
sient phase, modem = 4 has decayed markedly, and from
then on the wave pattern was dominated by the leadingm = 3
andm = 6 modes. After thet = 500 s mark (vertical dashed

Fig. 2.The steps of data processing. The temperature values from a
“raw” thermographic image(a) are extracted along a circular con-
tour (black circle in(a)) to obtain one-dimensional temperature data
(b) for spatial Fourier transform. Modesm = 3,4 and 6 are shown
by red, blue and green graphs, respectively. The temporal develop-
ment of the amplitude(c) and “azimuthal distances”(d) of these
spectral components are shown using the same color coding.

line in Fig.2c and d), the system stayed in a quasi-stationary
state (the time instant which corresponds to the patterns of
Fig. 2a and b is marked by an orange vertical line).

Figure 2d shows the time seriesφm(t)/m for the above
three modes, a quantity that measures the “azimuthal dis-
tance” travelled by the given component pattern sincet = 0.
For better visualization, we extended the periodical[0;2π ]

range to[0;+∞) (so that the positive increments correspond
to anticlockwise propagation). This also makes it easier to
obtain values for the angular velocitiescm(t) of the different
modes, since

1

m

∂φm(t)

∂t
≡ cm(t), (5)

that is, the values ofcm(t) are the slopes of the curves in
Fig. 2d. Visibly, modesm = 3 andm = 6 propagated at the
same rate.

Looking at Fig.2a and b, it is apparent thatm = 3 is the
signature of the general 3-fold symmetry of the wave pattern,
whereas the presence of harmonicm = 6 is related to the
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“fine structure” of the baroclinic wave, most notably to the
cold vortices within the three warmer-than-average “lobes”.
Compared to these, the “azimuthal distance” ofm = 4 exhib-
ited irregular behaviour after its amplitude decayed. In this
case, the propagation ofm = 4 was labelled “non-physical”.
This curve is presented here as an example to demonstrate
that such signals could be easily distinguished from the
clearly regular drift of the other two modes. This irregular
behaviour can be thought of as a “random drift” of the phase
φm(t). The small amplitude of this component (see Fig.2c)
implies this being “noise” in the Fourier spectra instead of a
clear physical signal.

Besides spatial Fourier transforms, standard tools of non-
linear time series analysis have also been applied, some de-
tails of which will be briefly discussed in Sect. 4.4.

4 Results

Since the present study focused mainly on the transitions be-
tween the axisymmetric and the regular wave flow regimes,
our experiments were confined to a certain domain of the
T a–RoT parameter space in which such transitions were ex-
pected to occur according tovon Larcher et al.(2013). Their
numerical results are the outcomes of linear stability analyses
of non-axisymmetric perturbations – with horizontal wave
numbersm > 0 – applied to the basic axisymmetricm = 0
state. The latter has been obtained beforehand by iterating
the Boussinesq equations using a Fourier-spectral element
method. Their curves of neutral linear stability are depicted
in Fig. 3 (both for the flat and sloping bottom case). The
shaded area denotes the subset ofT a–RoT parameter pairs,
that could actually be reached and steadily maintained in our
set-up. This constraint is due to the fact that for temperature
differences1T < 1 K the thermal fluctuations coming from
technical constraints are almost comparable to the magnitude
of 1T . Therefore, the overlap between the region covered by
the numerical study and the one within the reach of our meth-
ods is rather small.

With both geometric configurations, the experiments were
carried out in the vicinity of the1T = 2.5 K and 7 K lines in
a domain ranging betweenT a = (0.124− 4.90) × 107 and
Ro = 0.55− 16.42. Note, that – as visible in Fig.3 – the
1T = 7 K curve already falls out of the range of the numer-
ical runs; here we applied linear extrapolation (dashed blue
line in Fig.3) to approximate the expected regime boundary.

From the alignment of the obtained neutral stability curves
– that, by definition, envelope the parameter regime where
baroclinic waves are expected to occur – it is possible to
formulate a hypothesis to test. If the linear stability anal-
ysis would be in itself sufficient to describe the dynamics,
one would expect to observe a transition from axisymmet-
ric to regular wave state in the flat bottom configuration at
one point of the constant-1T measurement series: the cor-
responding neutral stability curve (blue) intersects with the

Fig. 3. The neutral stability curves obtained byvon Larcher et al.
(2013) for flat (blue) and sloping (green) bottom end walls. The
lines of constant1T followed by our measurements are also in-
dicated (dashed lines), as well as the parameter region that can be
accessed with our techniques (grey shaded area).

lines of constant1T aroundRoT ≈ 2, as seen in the dia-
gram. However, at the same region of the parameter space
no such state transition is expected to occur for the sloping
arrangement, as the lines of constant1T apparently do not
cross the neutral stability curve (green) in this case. Testing
this hypothesis has been one of the primary objectives and
motivations of the experimental runs described below.

4.1 Experiments with flat bottom end wall

Here, we present the results of the first series of experiments,
which was conducted with flat bottom topography. Figure4
shows snapshots of four runs performed in the vicinity of the
transition boundary along the1T = 2.5 K curve, and their
respective Hovmöller plots. In agreement with the findings
of Früh and Read(1997) and alsovon Larcher and Egbers
(2005), it is visible that between the axisymmetric (AS) flow
regime (Fig.4a) and that of regular propagating wave pat-
terns (Fig.4c and d) lays a certain transitional range, char-
acterized by dispersive weak waves (hereafter denoted with
“WW”) of fluctuating wave amplitudes (Fig.4b). The dia-
gram of the flat bottom measurements is presented in Fig.5.
In the1T = (7-8) K region, data points obtained from earlier
experimental studies using the same configuration (Seelig et
al., 2012; Harlander et al., 2011) were also adopted.

The existence of multiple equilibria (i.e. different flow
types at the same values ofT a andRoT) is apparent from the
regime diagram, indicated by the fact that the region “WW”

www.nonlin-processes-geophys.net/21/237/2014/ Nonlin. Processes Geophys., 21, 237–250, 2014



242 M. Vincze et al.: Transitions in a baroclinic annulus with sloping bottom

Fig. 4. Thermographic snapshots (left) and Hovmöller plots (right)
of some experimental runs with flat bottom topography.(a) Ax-
isymmetric (m = 0) basic state (RoT = 2.73; T a = 3.31× 106),
(b) dispersive fluctuating weak wave (WW) state with traces of
modesm = 2,3 (RoT = 2.43; T a = 3.60× 106), (c) regular wave
with m = 2 being the dominant component (RoT = 1.98; T a =

4.59× 106), and(d) regular pattern with leading componentm = 3
(RoT = 1.55;T a = 5.78× 106).

of weak fluctuating waves visibly overlaps with the axisym-
metric regime in Fig.5. These damped waves of the “WW”
regime can be interpreted as the signs of the extreme sen-
sitivity of the system to small external perturbations in this
transient zone. Non-modal transient growth of small fluctua-
tions may be relevant in this regime, as discussed bySeelig et
al. (2012). Occasionally non-unique states emerged as well,
in which two given regular wave modes of different wave
numbers (typicallym = 2 andm = 3) were alternating, re-
placing each other on a typical timescale of∼ 10 revolu-
tions. This kind of dynamics is referred to as “intermittent

Fig. 5. The regime diagram for the flat bottom experiments. The
neutral numerical stability curve is marked by the blue solid curve
(extended as a dashed line for the region not covered byvon Larcher
et al.(2013)). Yellow circles indicate axisymmetric (AS) wave flow,
plus signs show data points where weak wave (WW) propagation
was observed, upward triangles and squares indicate intermittent
bursting (IB) and regular wave flow, respectively.

bursting” (IB), and has already been reported byvon Larcher
and Egbers(2005) (see also references therein).

The region where the transition from the axisymmetric
state to the wave flow regime occurs shows qualitative agree-
ment with the computed neutral linear stability curve (blue
graph in Fig.5) obtained byvon Larcher et al.(2013). The
azimuthal wave numberm = 2 of the first regular wave pat-
tern that appeared in the experiment after the transition (e.g.
Fig. 4c) is also consistent with the first unstable mode of the
numerical analysis in this parameter regime. We emphasize,
however, that a sharp transition curve cannot be determined
for the experiments, since the intermediate transient “WW”
state forms a rather smoothly changing continuum between
the AS and the steady wave regime.

4.2 Experiments with sloping bottom end wall

We now present our findings in the sloping bottom case. With
the introduction of sloping bottom topography, a certain type
of vacillation was observed which did not appear in the flat
bottom case. The steady wave patterns that occur regularly
in the flat bottom case (see Hovmöller plots in Fig.4c and
d) have not been observed in any of our sloping bottom ex-
periments. Instead, the dominant baroclinic wave mode ap-
peared in distorted form, modulated periodically by another
wave of different wave number and propagation rate. This su-
perposition phenomenon is illustrated by the snapshots and
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Fig. 6. Thermographic snapshots (left) and Hovmöller plots (right)
of three experimental runs exhibiting interference vacillation flows
with sloping bottom topography.(a) Involved modes:m = 2,3,5
(RoT = 1.59; T a = 6.04× 106), (b) involved modes:m = 3,2,1
(RoT = 1.53; T a = 1.35× 107), (c) involved modesm = 2,3,5
(RoT = 1.10;T a = 1.84×107). Note, that unlike in Fig.4, the con-
tributing wave numbers are not that manifest from pure visual in-
spection of the plots. The involved modes were determined using
the methods described in Sect. 4.3.

Hovmöller plots of Fig.6. The observed mechanism is re-
ferred to as interference vacillation (IV), cf.Lindzen et al.
(1982).

It is generally accepted that the presence ofβ effect en-
hances dispersion of baroclinic waves, as it was already
demonstrated experimentally in a similar set-up (including
sloping bottom topography) in the paper byFultz and Kaynor
(1959).

As an example, a clear signature of dispersion is presented
in Fig. 7, for an experiment performed atT a = 2.23× 107,
RoT = 0.93. Figure7a shows the temporal development of
the spatial Fourier amplitudes of componentsm = 3, 4 and
6, whereas in Fig.7b the spatial propagation of these modes
is shown (cf. Fig.2c and d for flat bottom). As visible in
Fig. 7a, during the initial transient “spin-up” phase, mode
m = 4 dominated the flow. This component later decayed in
amplitude, transferring its energy to them = 3 mode and its
m = 6 harmonic (which is the fingerprint of the fine struc-
ture of the baroclinic wave, as noted in Sect. 3). Yet, a

Fig. 7. The temporal development of the amplitudes(a) and “az-
imuthal distances” of modesm = 3 (red),m = 4 (blue) andm = 6
(green) for an experimental run with sloping bottom (T a = 2.23×

107 andRoT = 0.93).

perturbation that inherited the 4-fold symmetry of the tran-
sient initial state did not vanish, but continued to propagate
at a significantly larger phase velocity than that of the domi-
nant mode (see Fig.7b).

It is worth mentioning that the phase speed of a given
mode generally increased as its amplitude decreased. This
is visible from the comparison of Fig.7a and b: the propa-
gation ofm = 4 clearly accelerated untilt ≈ 700 s and then
stayed constant (see blue curve Fig.7b), meanwhile its am-
plitude showed the aforementioned decay until the samet ≈

700 s mark, and exhibited stationary behaviour afterwards
(see blue curve in Fig.7a). Qualitatively similar amplitude
vs. phase speed relations could be observed in the temporal
development of the other modes as well. These findings un-
derline the nonlinear property of the dynamics present in the
baroclinic annulus.

We summarize our findings for the sloping bottom case in
the regime diagram of Fig.8. In these experiments IV wave
patterns have been observed in the region of theT a–RoT
plane which was characterized by regular steady waves in
the flat bottom case. However, the overall structure of the
transition region remained quite similar to the one of Fig.5
(the flat bottom neutral stability line is marked by a dashed
blue line in Fig.8). This result shows that in this geometry
(in contrast with the flat bottom case) the actual regime tran-
sition does not occur along the neutral stability curve (green)
calculated byvon Larcher et al.(2013). The disagreement
between the linear stability analysis and the actual flow (as
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Fig. 8. Regime diagram for the sloping bottom experiments. The
neutral numerical stability curve for this case is marked by the
green solid curve. Circles indicate axisymmetric (AS) wave flow,
plus signs show data points where weak wave (WW) propagation
was observed, whereas upward triangles indicate interference vacil-
lation (IV) flow. For the data points exhibiting IV, the wave numbers
of the interacting wave triads are indicated.

well as the presence of IV) implies nonlinear wave–wave and
wave–background flow interactions that are enhanced by the
sloping bottom. As visible in Fig.8, the neutral linear stabil-
ity curve exhibits a sharp reversal at higher values ofRoT,
as well as a general destabilizing effect of the sloping bot-
tom end wall, which manifests itself in the fact that the curve
of the sloping case envelopes that of the flat bottom case
(see also Fig.3). Thus, without nonlinear interactions, regu-
lar wave propagation would be observed all over the experi-
mentally investigated parameter region in the sloping bottom
configuration.

4.3 Mode identification in the IV regime

The simplest form of wave–wave interactions is a three-wave
resonance, in which two coexisting waves of different wave
numbers and drift rates excite and amplify a third mode (e.g.
Plumb, 1977). The selection criteria of such resonant triads
are that the wave vectorski of the modes involved should
add up to zero, as

km ± km′ ± km′′ = 0, (6)

and also the following relationship should hold between the
spatial phases (φi) of the three interacting modes (Früh and
Read, 1997):

φm(t) − φm′(t) − φm′′(t) ≡ ϕm−m′−m′′(t) ≈ const. (7)

Fig. 9. Triad locking probability density functions for triads
m = 3,2,1 andm = 6,4,2, and their (9-point) moving-averaged,
“smoothed” versions in a sloping bottom experiment. See also the
legend. (RoT = 1.53;T a = 1.35× 107).

For an exactly resonant situation, termed “phase lock”, the
time seriesϕm−m′−m′′(t) would give a constant value be-
tween 0 and 2π . One can therefore define a probability den-
sity functionρm−m′−m′′(φ) of ϕm−m′−m′′(t), that practically
means a histogram of the time series. If marked phase co-
herence (i.e. triad resonance) is present, thenρm−m′−m′′(φ)

should exhibit a sharp peak, whereas, if Eq. (7) was not sat-
isfied, the distribution would be rather flat.

In terms of the azimuthal wave numbers, studied through-
out this paper, Eq. (6) can simply be formulated as

m ± m′
± m′′

= 0. (8)

As mentioned in Sect. 3, our Fourier transform scheme was
based on components of integer wave numbersm = 1 to 6.
Among these, five triad combinations can be selected that
fulfil Eq. (8). In order to identify the most dominant interact-
ing waves, the density functionsρm−m′−m′′(φ) of each triad
were analysed for all four experiments where IV was de-
tected. Two examples ofρm−m′−m′′(φ) are shown in Fig.9. In
this particular caseρ3−2−1(φ) exhibits a well-defined peak,
whereasρ6−4−2(φ) does not show any significant coherence
(see also the corresponding Hovmöller plot and the parame-
ters in Fig.6b).

The analysis of the triad locking density functions com-
bined with that of the amplitude and phase time series (e.g.
the ones in Fig.7) enabled us to identify the most dominantly
interacting modes in all four experiments where IV was de-
tected. The resulting wave numbers of the dominant triads
are marked in the regime diagram of Fig.8.
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Fig. 10. Hovmöller plots of the filtered radial patterns that corre-
spond to the frequencies of the azimuthal wave motions the triad of
m = 3 (a), m = 5 (b) andm = 2 (c). Red colours denote regions of
higher temperatures. The contour spacing was set to 0.1 K. Note the
wider temporal range inc) (RoT = 1.099;T a = 1.83× 107).

Although this investigation focused on the azimuthal wave
numbers, it is to be noted that the relation Eq. (8) is a neces-
sary but per se not a sufficient condition to fulfil the selection
criterion Eq. (6) of the wave vectors. Equations analogous to
Eq. (8) exist for the radial (l) and vertical (n) components of
the triad-forming wave vectors, in the form of

l ± l′ ± l′′ = n ± n′
± n′′

= 0. (9)

Since the vertical behaviour could not be directly detected
with our measurement techniques, we analysed the radial
patterns corresponding to the interacting azimuthal modes.
To reveal these structures, path-wise temperature series were
extracted from each thermographic frame (as described in
detail in Sect. 3), this time along a radial section ranging
from a to b and consisting of 110 grid points at each time
instant. As the next step, bandpass filtering has been ap-
plied to all of these 110 temperature records in the (disjoint)
fm = m · cm/(2π) ± 1.5× 10−41/s frequency ranges, taken
with the angular velocitiescm of the azimuthal modesm, ob-
tained from Eq. (5). Then the filtered time series were recom-
bined into Hovmöller plots like the ones presented in Fig.10
as typical examples. These show the radial wave motion as-
sociated with the frequencies of the dominant interacting

Fig. 11. Schematic draft of the spatial asymmetries between the
front and the wake sides of a baroclinic lobe. Note that the jet (or-
ange), meandering between cold (C) and warm (W) vortices accel-
erates (see arrows) and therefore compresses at the front side, com-
pared to the wake side.

triad (m = 5,3 and 2) of the experimental run atRoT = 1.099
andT a = 1.83× 107.

Visibly, the patterns in Fig.10a (m = 3) and Fig.10b
(m = 5) are more complex than pure standing wave modes
characterized by a single value ofl, yet a regular, spatially
correlated structure is present. In Fig.10b even a steady node
can be observed at radial distancer ≈ (r mid + b)/2 which
separates an inner domain from an outer one, oscillating at a
clear phase lag of one-fourth of a period. These Hovmöller
plots indicate that even in these narrow frequency bands (fm)
the radial dynamics is driven by the superposition of at least
two standing wave modes, some of which fulfil Eq. (9), while
others do not.

4.4 Time-reversal asymmetry and traces of nonlinearity

It has been generally observed that in the regular, non-
dispersive baroclinic waves of the flat bottom configura-
tion (e.g. the one in Fig.4d a jet is formed along the sur-
face streamlines, encompassing the “cold” eddies (see orange
strip in the schematic drawing of Fig.11). As the wave pat-
tern drifts (green arrow), the streamlines at the front of the
cold lobes compress (the jet accelerates) and thus the tem-
perature gradient steepens (“nonlinear steepening”). Mean-
while, in the wake of the cold vortices the gradient flattens.
This spatial asymmetry, a sign of nonlinear wave propaga-
tion, manifests itself as the time-reversal asymmetry of the
temperature time series obtained from co-rotating tempera-
ture measurements. A similar asymmetry has been reported
by Gyüre et al.(2007) in the regime of geostrophic tur-
bulence as well, in experiments with flat bottom end wall.
In the sloping bottom case, however, this structure is ex-
pected to be distorted by the wave–wave interactions. The
modulation caused by the other wave mode(s) involved in
the interference vacillation destabilizes the jet and leads to
mixing, which may reduce the asymmetry, thus providing
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Fig. 12. Correlation plot between step number ratios and average
step size ratios from surface temperature records for both bottom
end wall configurations. The values corresponding to the “shuffled”
surrogate time series are also presented. Dashed line denotes 1/x.
See also the legend.

further evidence for the existence of wave–wave interac-
tions. This hypothesis has been tested by analysing point-
wise surface temperature records from our experiments for
both geometries.

The time series were extracted from the same raw ther-
mographic images as the azimuthal temperature field data,
after selecting a location at radial distancermid ≡ (a + b)/2.
Naturally, the sampling time was the same as mentioned in
Sect. 3, i.e.1t = 10 s. In case of data loss (which may occur,
e.g. because of the occasional automatic recalibration of the
microbolometers in the infrared camera), linear interpolation
was applied to yield equally spaced data.

The aforementioned temporal asymmetry has been quan-
tified in terms of two simple quantities byGyüre et al.
(2007): the ratio of the number of warming and cooling steps
(Nw/Nc) in the time series of a given experimental run, and
the ratio of their mean magnitudes, averaged over the record,
〈1Tw〉/〈1Tc〉. The significant deviation of these parameters
from unity (i.e. the presence of temporal asymmetry in sta-
tionary time series) can be interpreted as a sign of nonlinear-
ity, as mentioned above. The same type of analysis has been
repeated in the present study.

Similarly to Gyüre et al.(2007), to define a 95 % confi-
dence interval, 20 random shuffled time series were produced
from the original signals of the experimental runs, for each
record. In order to achieve this, the iterative Fourier surro-
gate method bySchreiber and Schmitz(2008), and the open-
source software package TiSeAn 3.0.1 (by the same authors)

were applied. Besides conserving the histogram, this proce-
dure also keeps Fourier amplitudes intact (by shuffling only
the phases of the spectral components), but destroys all non-
linear correlations in the signal. The surrogate data produced
this way should theoretically exhibit full symmetry (i.e. both
Nw/Nc = 〈1Tw〉/〈1Tc〉 ≡ 1), yet, due to the finite length of
the time series, certain deviations are present. However, the
distribution of the parameter values for these shuffled sig-
nals is symmetric to 1, as shown by the small turquoise and
orange dots in the scatter plot of Fig.12, representing the
values obtained for the flat and sloping bottom surrogates,
respectively.

If the conditions of stationarity are fulfilled, the above de-
fined two measures of asymmetry should be inversely pro-
portional to each other; the smaller is the number of steps
in one direction (compared to that of the other direction),
the larger the average relative size of the magnitude of these
steps should be, to avoid increasing or decreasing trends.
Thus, the fact that all the data points of Fig.12 – both from
surrogates and actual signals – are scattered along thef (x) =

1/x curve (dashed line) implies that stationarity holds for our
experimental data.

The most important observation is that the scattering of
the data points obtained from the experiments with flat bot-
tom end wall (blue squares in Fig.12) shows a marked devia-
tion from unity (and from the distribution of the surrogates),
and is clearly asymmetric. For the vast majority of the re-
alizationsNw/Nc > 1 and〈1Tw〉/〈1Tc〉 < 1 can be found,
indicating nonlinearity. We note, that the extent and direc-
tion of this asymmetry obtained close to the axisymmetric
regime is in good agreement with the findings ofGyüre et
al. (2007), although, as mentioned above, their experiments
were performed in the turbulent regime (atT a = 9.43× 109

andRoT = 0.035). As expected, for the sloping bottom ex-
periments (red circles in Fig.12) no such tendency was ob-
served; the distribution of these data points is fairly symmet-
ric with respect to 1 and overlaps with that of their surrogates.
This result confirms our assumption that wave–wave interac-
tions in the sloping bottom experiments generally destroy the
structure of the jet encompassing the cold lobes and thus lead
to the reduction of steepening and to the homogenization of
the flow field.

5 Discussion

Two series of laboratory experiments have been performed in
a differentially heated rotating annulus set-up, recorded by
a co-rotating high precision infrared camera and evaluated
using digital image processing techniques, spatial Fourier
transforms and standard tools of nonlinear time series anal-
ysis. The most important motivation for these measurements
was to compare the alignment of the boundary between the
axisymmetric and the regular wave flow regimes on the pa-
rameter space spanned by the Taylor and thermal Rossby
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numbers with the curve of neutral linear stability, obtained
in a numerical study byvon Larcher et al.(2013).

In the first series of experiments the bottom end wall of
the tank was flat. As far as this geometry is concerned, our
experimental results showed a qualitative agreement with the
numerical results. It was pointed out, that between the ax-
isymmetric state and the domain of robust regular baroclinic
waves a transient behaviour can be observed, characterized
by uncertain, fluctuating wave patterns. The occurrence of
such transient flows makes it difficult to define a sharp tran-
sition from the axisymmetric to the wave state. This explains
why we find qualitative agreement only. The transient regime
exhibits multiple equilibria: vacillating decaying waves and
axisymmetric flow can both exist at the same values ofT a

andRoT. Because of their short lifespan and fluctuating am-
plitudes, no conclusive dispersion relation of these waves
could be obtained, but from the visual inspection of Hov-
möller plots as the one in Fig.4b, it can certainly be stated
that the drift rates of these waves clearly depend (among
other things) on the wave number (i.e. dispersion is present).
Once the stable wave flow regime is reached, dispersion
ceases to exist; all the (physically meaningful) Fourier com-
ponents propagate at the same rate, maintaining the complex
pattern of the steady baroclinic waves.

The second series of measurements was performed with
a sloping bottom placed in the annulus. The key issue that
has been addressed in this case was whether this modifica-
tion stabilizes or destabilizes the system. The classic theoret-
ical approach to this problem, for example, the one followed
by Mason(1975), is based on an extension of the classic
baroclinic instability theory ofEady (1949) to include Ek-
man layers. Mason obtained regime diagrams for different
top and bottom end wall configurations, including ones sim-
ilar to the cases studied here. In Fig.14 we repeat Figs. 20
and 21 of his original paper, overlaid onto each other to high-
light the differences. The stability parameter (T o), defined
as the ratio of the bottom slope to the slope of the isopyc-
nals, has the value ofT o = 0.327< 1 in the sloping case of
Fig. 14. Note, that this value as well as the geometric prop-
erties of the annulus described there differ from those of the
one used in our study, and so are the control parameters. Yet,
parameterT of the horizontal axis is equivalent toT a and
the Burger numberB of the vertical axis is proportional to
RoT (as the model assumes parallel, uniformly tilted isopyc-
nals), thus these curves are suitable for qualitative compari-
son with Fig.3. The main distinctive feature of the regime di-
agram for the sloping case (blue graph in Fig.14) compared
to that of the flat bottom case (red contour) is that the “lower
axisymmetric” regime has been destabilized. On the other
hand, the boundary between the wave flow regime and the
“upper” axisymmetric region remains basically unaffected.
We note, that our ongoing numerical simulations with the
same code as used byvon Larcher et al.(2013) for an inter-
mediate bottom slope of 14◦ shows no sharp reversal of the
linear stability curve (in contrast to the green curve of Fig.3).

Fig. 13.Schematic drawing of the qualitative background of baro-
clinic instability. For a flat bottom topography(a) a small horizon-
tal displacement of a fluid parcel leads to a larger displacement, i.e.
instability occurs. If the bottom topography is steep enough(b), ge-
ometric constraints inhibit destabilization in the bottom region.

Instead, at large values ofRoT the neutral stability line fol-
lows the curve, in agreement withMason(1975). Surpris-
ingly, these two analyses (both obtained forT o < 1) seem
to be consistent with our experimental findings, although,
based on a simple order-of-magnitude estimate (see later),
one would expect that for our case generallyT o > 1 holds.

According to Eady model-based linear stability analyses
(see, e.g.Blusmack and Gierasch, 1972; Mechoso, 1980) for
T o > 1 the flow is expected to be completely stabilized. The
schematic drawing of Fig.13 illustrates this argument. In the
“standard” case of baroclinic instability, a fluid parcel which
is moved by some initial perturbation parallel to the (flat)
bottom, though travelling along an equipotential, may reach
a region of higher density, since the thermal wind balance
keeps the isotherms tilted (Fig.13a). From here, the buoy-
ancy force lifts the parcel until it reaches its original isotherm
– at a larger geopotential. The increased potential energy
of the system is responsible for the excitation of baroclinic
waves. If, however, the slope of the bottom is steeper than
that of the isothermal surfaces, a parcel moving parallel to
the bottom is pushed back to its initial position by the buoy-
ancy, therefore no instability can arise in the bottom region
(Fig. 13b).

Within the framework of the geostrophic theory of thermal
wind, one can easily obtain an order-of-magnitude estimate
of the slopesT of isotherms (see, e.g.Pedlosky, 1979) in the
form of

sT =
f · U

gα1T
, (10)

where U denotes the characteristic velocity of the zonal
background flow (the other symbols denote the same quan-
tities as in Eq.2). Fortunately, there exist earlier PIV (parti-
cle image velocimetry)-based measurement data on the ve-
locity U from the sameT a–RoT parameter range and the
same geometry – albeit for flat bottom only – as reported by
Harlander et al.(2011). Based on these data, we can take
U ∼ 10−3 m s−1 as a safe (over-) estimation of the back-
ground flow. In the same spirit, we can substitute the smallest
applied temperature difference1T = 2.45 K, as well as the
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Fig. 14.Regime diagrams obtained byMason(1975) for flat (red)
and gently sloping (blue) bottom end walls, cf. Fig.3.

largest Coriolis parameterf = 2� = 1.12 s−1 into Eq. (10),
which yieldssmax

T ≈ 0.2, still significantly smaller than the
slope tan(γ ) = 0.7 of our bottom topography, yielding slope
ratioT o ≡ tan(γ )/sT ≈ 3.5 > 1. Therefore, based on this ar-
gument, one would expect that the instability is inhibited by
the slope, and thus the wave flow regime in theT a–RoT
plane would considerably shrink compared to the flat bottom
case.

The fact that neither the experiments, nor the numerical
simulations ofvon Larcher et al.(2013) showed such sta-
bilization may be explained by the fact that the slopes of the
isotherms are clearly not independent from the bottom topog-
raphy – as assumed in Eq. (10) – but instead,sT is directly
affected by the geometrical boundary conditions, which may
well decrease the value of stability parameterT o. Such con-
cerns are clearly not unprecedented: alreadyMason(1975)
remarked the difficulty he experienced applying his theo-
retical predictions (based on parallel, linear isopycnals) to
a real laboratory configuration of complex thermal profiles.
The fact that the thermal gradient is neither monotonic nor
uniform, may also lead to the development of localized baro-
clinic instability even if globallyT o > 1 can be assured, as
indicated byBastin and Read(1998). Moreover, the numeri-
cal results ofIsachsen(2011), who also found extensive wave
activity over a sloping terrain forT o > 1, suggest that be-
sides non-constant stratification, interior potential vorticity
gradients, neglected by the Eady theory, can be responsible
for such disagreements. Unfortunately with the experimen-
tation techniques applied here it was not possible to obtain
information directly on the thermal structure of the flow in
the deeper regions or on potential vorticity.

Due to the aforementioned difficulties of comparison with
theoretical predictions, we now restrict ourselves to discuss
only the comparison of the results from the simulation-based
stability analysis ofvon Larcher et al.(2013) and our ex-
perimental findings. To determine the regime boundaries of
Fig. 3, von Larcher et al.(2013) have carried out a linear
stability analysis relying on the spectral decomposition of

the azimuthal modes, and thus, obviously could not resolve
wave–wave interactions. However, as it is visible from our
experimental data, the actual physical eigenmodes of the sys-
tem are far not sinusoidal; single normal modes cannot be
found but they usually show up in pairs or triplets. As an ex-
ample, we refer to Figs.2d and7b, which demonstrate that
the spectral “fingerprint” of the 3-fold symmetric eigenmode
also always contains the harmonicm = 6, and a pattern that
corresponds to a singlem = 3 Fourier mode per se simply
cannot be excited. When the slope is present, this difference
becomes critical, since in this configuration multiple physical
eigenmodes can coexist that propagate at different drift rates,
giving way to energy transfer between modes. Such wave–
wave interactions can either destabilize or stabilize the sys-
tem; latter may be responsible for the disagreement between
the numerical and experimental results.

The fact that sloping bottom topography leads to dis-
persive propagation of co-existing waves in a differentially
heated rotating annulus was first noticed byFultz and Kaynor
(1959). By that time it was already well known, that in a
rotating set-up over such a bottom end wall barotropic to-
pographic Rossby waves may be excited (independently of
the thermal boundary conditions, driven by the conservation
of potential vorticity only). Therefore, it has been naturally
assumed byFultz and Kaynor(1959) that such waves are re-
sponsible for the observed behaviour as they modulate the
waves of baroclinic instability. Because of the limitations of
their measurement techniques, the results of the study are
not exactly conclusive, yet they triggered further study of
wave dispersion in similar set-ups.Pfeffer and Fowlis(1968)
andHarlander et al.(2011) reported dispersive phenomena
in the vicinity of the regime boundary between the “upper”
axisymmetric and the regular wave flow regime and between
two wave regimes, respectively, studying a flat bottom set-up
with free surface. Occasionally, the very same apparatus that
is investigated in the present paper – without slope but with
free surface – also exhibited IV in the regime boundary re-
gion (besides the IB-type behaviour mentioned in Sect. 4.1),
as noted byvon Larcher and Egbers(2005) andHarlander et
al. (2011).

In our set-up, aβ parameter can be defined as follows
(Vallis, 2006):

β =
f · tan(γ )

dmid
, (11)

taken withdmid = 10.85 cm, the water depth at mid-radius
rmid. In a two-layer modelMansbridge(1984) investigated
the effect of different values ofβ on the flow proper-
ties, and found that neighbouring modes can coexist ifδ ≡

βRoT/
√

Ek is larger than a certain threshold (the value of
which depends on mode numberm, and was found to be be-
tween 10 and 63). Here the Ekman numberEk can be defined
asEk = ν/(�L2), whereν ≈ 10−6 m2 s−1 is the kinematic
viscosity of water and the characteristic length was taken
to beL = rsmid = (a + b)/2. The values ofδ in our sloping
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bottom runs were ranging from 340 to 950 (i.e. way over the
aforementioned theoretical threshold) consistently with our
detection of IV.

Further experimental studies are under consideration, in-
volving direct velocity measurements applying the PIV tech-
nique to gain information on the flow field in the set-up.
Using that data one could separate the propagation rate of
the different baroclinic wave modes from the drift originat-
ing from the background flow. This will enable us to ob-
tain dispersion relations and – in the case of strongly non-
linear patterns – amplitude–velocity relations which would
lead to a deeper understanding of baroclinic waves in gen-
eral, and would support a better comparison of the results to
the predictions of different theories. We note that, assuming
quasi-geostrophic connection between the time-averaged ra-
dial gradient of the observed surface temperature field and
the zonal background flow, we already attempted to distin-
guish wave propagation from the flow. These trials however
did not lead to any conclusive connection between the afore-
mentioned quantities, which can be explained by the pres-
ence of multiple equilibria (i.e. that similar surface patterns
may correspond to different flow states if the whole three-
dimensional water body is concerned). Therefore, PIV-based
velocity measurements at different vertical levels would be
crucial, as they may shed light on these issues as well.

Acknowledgements.The authors thank the two anonymous ref-
erees, and referee #2 in particular for the significant contribution
to this paper. We thank Yongtai Wang for his crucial help in
performing the measurements. The fruitful discussions with Wolf-
Gerrit Früh and Kiril Alexandrov are also highly acknowledged.
We are also grateful for the discussions with the members of the
project group “Physical Mechanisms of Global Environmental
Processes” (Budapest, Hungary, Grant number NK100296). This
work has been funded by the German Science Foundation (DFG)
and is part of the DFG priority program MetStröm (SPP 1276).

Edited by: H. J. Fernando
Reviewed by: two anonymous referees

References

Bastin, M. E. and Read, P. L.: A laboratory study of baroclinic
waves and turbulence in an internally heated rotating fluid annu-
lus with sloping endwalls, J. Fluid Mech., 339, 173–198, 1997.

Bastin, M. E. and Read, P. L.: Experiments on the structure of baro-
clinic waves and zonal jets in an internally heated, rotating, cylin-
der of fluid, Phys. Fluids., 10, 374–389, 1998.

Blumsack, S. L. and Gierasch, P. J.: Mars: The effects of topography
on baroclinic instability, J. Atmos. Sci., 29, 1081–1089, 1972.

Eady, E. T.: Long waves and cyclone waves, Tellus, 13, 33–52,
1949.

Früh, W. G. and Read, P. L.: Wave interactions and the transition to
chaos of baroclinic waves in a thermally driven rotating annulus,
Phil. Trans. Roy. Soc. Lond. A, 355, 101–153, 1997.

Fultz, D. and Kaynor, R.: The propagation of frequency in experi-
mental baroclinic waves in a rotating annular ring, The Rossby
Memorial Volume, 359–371, New York, Rockefeller Institute
Press, 1959.

Fultz, D., Long, R. R., Owebs, G. V., Bohan, W., Kaynor, R., and
Weil, J.: Studies of thermal convection in a rotating cylinder with
some implications for large-scale atmospheric motions, Meteor.
Monogr., 4, 1–104, Am. Meteor. Soc., 1959.

Gyüre, B., Bartos, I., and Jánosi, I. M.: Nonlinear statistics of daily
temperature fluctuations reproduced in a laboratory experiment,
Phys. Rev. E, 76, 037301, doi:10.1103/PhysRevE.76.037301,
2007.

Harlander, U., von Larcher, Th., Wang, Y., and Egbers, C.: PIV-
and LDV-measurements of baroclinic wave interactions in a ther-
mally driven rotating annulus, Exp. Fluids, 51, 37–49, 2011.

Harlander, U., Wenzel, J., Alexandrov, K., Wang, Y., and Egbers, C.:
Simultaneous PIV and thermography measurements of partially
blocked flow in a differentially heated rotating annulus, Exp. Flu-
ids, 52, 1077–1087, 2012.

Hide, R.: An experimental study of thermal convection in a rotating
fluid, Phil. Trans. Roy. Soc. Lond. A, 250, 441–478, 1958.

Isachsen, P. E.: Baroclinic instability and eddy tracer transport
across sloping bottom topography: How well does a modi-
fied Eady model do in primitive equation simulations?, Ocean.
Model., 39, 183–199, 2011.

Jánosi, I. M., Kiss, P., Homonnai, V., Pattantyús-Ábrahám,
M., Gyüre, B., and Tél, T.: Dynamics of passive trac-
ers in the atmosphere: laboratory experiments and numerical
tests with reanalysis wind fields, Phys. Rev. E, 82, 046308,
doi:10.1103/PhysRevE.82.046308, 2010

Lindzen, R. S., Farrel, B., and Jacqmin, D.: Vacillation due to wave
interference: applications to the atmosphere and to annulus ex-
periments, J. Atmos. Sci., 39, 14–23, 1982.

Lorenz, E. N.: The mechanics of vacillation., J. Atmos. Sci., 20,
448–464, 1963.

Mansbridge, J. V.: Wavenumber transition in baroclinically unstable
flows, J. Atmos. Sci., 41, 925–930, 1984.

Mason, P. J.: Baroclinic waves in a container with sloping end walls,
Phil. Trans. Roy. Soc. Lond. A, 278, 397–445, 1975.

Mechoso, C. R.: Baroclinic instability of flows along sloping
boundaries, J. Atmos. Sci., 37, 1393–1399, 1980.

Pedlosky, J.: Geophysical fluid dynamics, Springer, New York,
1979.

Pfeffer, R. L. and Fowlis, W. W.: Wave dispersion in a rotating,
differentially heated cylindrical annulus of fluid, J. Atmos. Sci,
25, 361–361, 1968.

Plumb, R. A.: The stability of small amplitude Rossby waves in a
channel. J. Fluid Mech., 80, 705–720, 1977.

Read, P. L.: Applications of singular systems analysis to “baroclinic
chaos”, Physica D, 58, 455–468, 1992.

Rossby, C.-G.: On the dispersion of planetary waves in a barotropic
atmosphere, Tellus, 1, 1–5, 1949.

Schreiber, T. and Schmitz, A.: Surrogate time series, Physica D,
142, 346–382, 2000.

Seelig, T., Harlander, U., Faulwetter, R., and Egbers, C.: Irregu-
larity and singular vector growth of the differentially heated ro-
tating annulus flow, Theor. Comput. Fluid Dyn., 27, 415–432,
doi:10.1007/s00162-011-0255-5, 2012.

www.nonlin-processes-geophys.net/21/237/2014/ Nonlin. Processes Geophys., 21, 237–250, 2014

http://dx.doi.org/10.1103/PhysRevE.76.037301
http://dx.doi.org/10.1103/PhysRevE.82.046308
http://dx.doi.org/10.1007/s00162-011-0255-5


250 M. Vincze et al.: Transitions in a baroclinic annulus with sloping bottom

Vallis, G. K.: Atmospheric and oceanic fluid dynamics – funda-
mentals and large-scale circulation, Cambridge University Press,
Cambridge, 2006.

Vettin, F.: Über den aufsteigen Luftström, die Entstehung des
Hagels und der Wirbel-Stürme, Ann. Physik Chemie, 102, 246–
255, 1857.

von Larcher, Th. and Egbers, C.: Experiments on transitions of
baroclinic waves in a differentially heated rotating annulus, Non-
lin. Processes Geophys., 12, 1033–1041, doi:10.5194/npg-12-
1033-2005, 2005.

von Larcher, Th., Fournier, A., and Hollerbach, R.: The influence of
a sloping bottom endwall on the linear stability in the thermally
driven baroclinic annulus with a free surface, Theor. Comput.
Fluid Dynami., 26, 433–451, doi:10.1007/s00162-012-0289-3,
2013.

Wordsworth, R. D., Read, P. L., and Yamazaki, Y. H.: Turbulence,
waves, and jets in a differentially heated rotating annulus experi-
ment, Phys. Fluids, 20, 126602-1–126602-12, 2008.

Nonlin. Processes Geophys., 21, 237–250, 2014 www.nonlin-processes-geophys.net/21/237/2014/

http://dx.doi.org/10.5194/npg-12-1033-2005
http://dx.doi.org/10.5194/npg-12-1033-2005
http://dx.doi.org/10.1007/s00162-012-0289-3

