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Abstract. Propagation of large-amplitude waves in plasmas
is subject to several sources of nonlinearity due to relativistic
effects, either when particle quiver velocities in the wave
field are large, or when thermal velocities are large due to
relativistic temperatures. Wave propagation in these condi-
tions has been studied for decades, due to its interest in sev-
eral contexts such as pulsar emission models, laser-plasma
interaction, and extragalactic jets.

For large-amplitude circularly polarized waves propagat-
ing along a constant magnetic field, an exact solution of the
fluid equations can be found for relativistic temperatures. Re-
lativistic thermal effects produce: (a) a decrease in the ef-
fective plasma frequency (thus, waves in the electromagnetic
branch can propagate for lower frequencies than in the cold
case); and (b) a decrease in the upper frequency cutoff for
the Alfvén branch (thus, Alfvén waves are confined to a fre-
quency range that is narrower than in the cold case). It is also
found that the Alfvén speed decreases with temperature, be-
ing zero for infinite temperature.

We have also studied the same system, but based on the
relativistic Vlasov equation, to include thermal effects along
the direction of propagation. It turns out that kinetic and fluid
results are qualitatively consistent, with several quantitative
differences. Regarding the electromagnetic branch, the effec-
tive plasma frequency is always larger in the kinetic model.
Thus, kinetic effects reduce the transparency of the plasma.
As to the Alfvén branch, there is a critical, nonzero value of

the temperature at which the Alfvén speed is zero. For tem-
peratures above this critical value, the Alfvén branch is sup-
pressed; however, if the background magnetic field increases,
then Alfvén waves can propagate for larger temperatures.

There are at least two ways in which the above results can
be improved. First, nonlinear decays of the electromagnetic
wave have been neglected; second, the kinetic treatment con-
siders thermal effects only along the direction of propagation.
We have approached the first subject by studying the para-
metric decays of the exact wave solution found in the context
of fluid theory. The dispersion relation of the decays has been
solved, showing several resonant and nonresonant instabili-
ties whose dependence on the wave amplitude and plasma
temperature has been studied systematically. Regarding the
second subject, we are currently performing numerical 1-D
particle in cell simulations, a work that is still in progress, al-
though preliminary results are consistent with the analytical
ones.

1 Introduction

Due to their interest both in astrophysical and laboratory
plasmas, relativistic electron–positron plasmas have been a
subject of study for decades (Ruffini et al., 2010). In astro-
physics, they are relevant in systems such as accretion disks
around black holes (Björnsson et al., 1996; Liang, 1979;
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White and Lightman, 1989), models of the early universe
(Gibbons et al., 1985; Tajima and Taniuti, 1990; Tatsuno
et al., 2003; Lesch and Pohl, 1992), supernova remnants and
active galactic nuclei (Hardy and Thoma, 2000; Reynolds
et al., 1996), pulsar magnetospheres (Curtis, 1991; Istomin
and Sobyanin, 2007; Manchester and Taylor, 1977; Stur-
rock, 1971), magnetars (neutron stars with magnetic fields
up to ∼ 1014G) (Beskin et al., 1993), hypothetical quark
stars (Usov, 1998), and gamma-ray bursts (Piran, 1999,
2004). Regarding laboratory plasmas, they have been con-
sidered in the study of ultra-intense lasers (Blaschke et al.,
2006), and in laboratory and tokamak plasmas (Zank and
Greaves, 1995). For instance, recent experiments on rela-
tivistic electron–positron creation with short ultra-intense
laser pulses (∼ 1020Wcm−2) have been performed (Chen
et al., 2009), where measurements indicate the positron den-
sity to be∼ 1016cm−3. Electron–positron pair production
is also expected to occur in large tokamaks, where up to
about∼ 1014 positrons may be created in collisions between
runaway electrons and background particles (Helander and
Ward, 2003).

Of particular interest are effects related to wave propaga-
tion in these plasmas, such as proposed pulsar radio emission
processes (Luo et al., 2002), bulk acceleration of relativistic
jets (Iwamoto and Takahara, 2002), jet formation (Sawyer,
2008; Wardle et al., 1998), electron–positron pair annihila-
tion into one photon in the presence of a strong magnetic
field (Harding, 1986), and also in laboratory environments, in
problems such as pair production by optical lasers (Blaschke
et al., 2006; Chen et al., 2011).

In several of the environments mentioned above, relati-
vistic effects and temperature play an important role, thus
it is fundamental to understand wave propagation modes in
relativistic plasmas with temperature. In this paper we will
focus on the particular case of circularly polarized electro-
magnetic waves, which, though simple, allows us to study in
detail the effect of relativistic temperatures on wave propa-
gation in relativistic hot plasmas.

First, in Sect.2 it is shown that an exact solution can
be found for the fully relativistic fluid equations, including
relativistic temperatures (Asenjo et al., 2009). The disper-
sion properties of the wave are studied, showing that two
branches appear, an Alfvén branch and an electromagnetic
one, and also showing that relativistic effects increase the
plasma transparency, and confine the Alfvén branch to a
lower frequency and wave number range. Then, in Sect.3
the problem is considered from the point of view of a ki-
netic model (Domínguez et al., 2012). Although qualitative
agreement with the fluid results is found, a major difference
between both models is the fact that, in the kinetic one, the
Alfvén branch is suppressed if the plasma temperature is
large enough.

There are at least two ways in which the above results can
be improved. First, nonlinear decays of the electromagnetic
wave have been neglected; second, the kinetic treatment con-

siders thermal effects only along the direction of propagation.
In order to address the first subject, we have also studied the
parametric decays of the exact wave solution found in the
context of fluid theory (López et al., 2012), results that are
shown in Sect.4. There are several resonant and nonreso-
nant instabilities, whose dependence on the wave amplitude
and plasma temperature are studied systematically. Regard-
ing the second subject, thermal effects in all directions with
respect to the background magnetic field can be readily taken
into account in numerical simulations. Thus, we are currently
performing numerical 1-D particle in cell simulations, a work
that is still in progress, (López et al., 2014) although prelim-
inary results, shown in Sect.5, are consistent with the ana-
lytical ones. Finally, in Sect.6 results are summarized and
discussed.

2 Exact solution of relativistic fluid equations

Exact solutions for the plasma equations can be found for
cold nonrelativistic plasmas. For instance, circularly pola-
rized Alfvén electromagnetic waves propagating parallel to
an external magnetic field are an exact solution of the mag-
netohydrodynamic equations even when the amplitude is
large (Barnes and Hollweg, 1974). Also, a circularly po-
larized wave in a multiple ion species plasma with drifts
is a finite-amplitude solution of the cold plasma model
(Gomberoff et al., 1994). The nonlinear propagation of cir-
cularly polarized electromagnetic waves in unmagnetized
electron–positron–ion plasmas has also been studied in the
cold (Berezhiani and Mahajan, 1994) and relativistically hot
(Berezhiani and Mahajan, 1995) cases, showing the existence
of stable localized structures.

Here we propose an approach that permits one to find
an exact solution for the propagation modes in a relativistic
electron–positron plasma with constant, arbitrary tempera-
ture, within the context of a fluid theory. This can be done
by basing our approach on the magnetofluid field unification
formalism (Mahajan, 2003).

In this unification approach, the whole plasma is treated as
a unique field where the electromagnetic field is coupled with
the charged fluid field through a function that carries statisti-
cal information of the system. This leads to a simple and el-
egant way of describing relativistic plasmas. The formalism
has also been used successfully to study wave propagation in
relativistic two-fluid plasmas (Soto-Chavez et al., 2010), to
find equilibrium states via a variational principle (Pino et al.,
2010), and has been extended to non-Abelian fields in order
to study quark–gluon plasmas (Bambah et al., 2006).

In this paper, we use the approach presented byMahajan
(2003) to derive the dispersion relation for circularly pola-
rized waves of arbitrary amplitude propagating along a con-
stant magnetic field, for arbitrary temperatures.
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2.1 Magnetofluid unification

Usually, the interaction of particles with electromagnetic
fields is described by introducing a “minimal coupling” in
the momentum,p → p−eA/c, whereA is the vector poten-
tial. This leads to an energy-momentum conservation equa-
tion. This equation and Maxwell equations describe the basic
dynamics of charged relativistic particles in plasmas.

It has been suggested (Mahajan, 2003) that the coupling
of a relativistic charged fluid, at a given temperature, with
the electromagnetic field can be described by an antisym-
metric field tensor that contains the statistical information of
the system. Thus, the set of equations to describe the plasma
dynamics in the homentropic regime, for speciesj , are the
Maxwell equations, the continuity equation, and the equation

qjUjµM
νµ
j = 0. (1)

The field M
µν
j is the tensor that couples the electromag-

netic and fluid fields. This tensor is defined asM
µν
j = Fµν

+(
mj c

2/qj

)
S

µν
j , with Fµν as the electromagnetic tensor,qj is

the charge, and where the new antisymmetric tensorS
µν
j =

∂µ
(
fjU

ν
j

)
− ∂ν

(
fjU

µ
j

)
is introduced, representing the re-

lativistic thermal fluid. Here,Uµ
j →

(
γj ,γjvj/c

)
is the four-

velocity of the fluid,vj is the species velocity,

γj =

(
1−

v2
j

c2

)−1/2

=

(
1−

v2
j

c2

)−1/2

, (2)

andc is the speed of light.
The parameterfj is a function of the temperatureT . An

explicit form forf (Tj ) can be obtained by assuming a given
statistical behavior for the gas. For instance, if the system fol-
lows a Maxwell–Jüttner equilibrium distribution (Berezhiani
and Mahajan, 1995; Mahajan, 2003),

f (Tj ) =

K3

(
mj c2

kBTj

)
K2

(
mj c2

kBTj

) ≡ fj , (3)

whereK2 andK3 are the modified Bessel functions of or-
ders 2 and 3, respectively, andkB is the Boltzmann constant.
However, within the treatment carried out in this paper, no
explicit description for the functionf is needed, and all the
analytical and numerical results that follow are independent
of the underlying particle distribution function.

Then the plasma dynamics turns out to be given by the
momentum equation (Mahajan, 2003)(

∂

∂t
+vj · ∇

)(
fjγjvj

)
=

qj

mj

(
E+

1

c
vj × B

)
−

1

mjnj

∇pj , (4)

which is the spacelike component of Eq. (1), with pj the
pressure of speciesj , the pressure equation(

∂

∂t
+ vj · ∇

)
pj = mj

nj

γj

c2
(

∂

∂t
+ vj · ∇

)
fj , (5)

the continuity equation

∂nj

∂t
+ ∇ ·

(
nj vj

)
= 0, (6)

and Maxwell equations. These yield

∇ · E = 4πe
(
np − ne

)
, (7)

∇ × B =
4π

c
J +

1

c

∂E

∂t
, (8)

and, in the Lorentz gauge,

1

c2

∂2A

∂t2
− ∇

2A =
4π

c
J =

4π

c

∑
j

qjnjvj . (9)

Also, we will considerpj = nR
j Tj , wherenR

j = nj/γj is
the plasma density in the rest frame (Asenjo et al., 2009).

An alternative form of Eq. (4) can also be found in terms
of the enthalpy densityh (Gomberoff and Galvão, 1997).

The formalism of magnetofluid unification (Mahajan,
2003) is very general and allows us to study the dynamics of
a charged fluid (plasma) in an electromagnetic field in a uni-
fied way, treating them as a single field. On the other hand,
it also provides a general framework to study various plasma
physics phenomena, taking into account relativistic temper-
ature effects in a consistent way. In particular, the effect of
relativistic temperatures on wave propagation in plasmas can
be studied systematically. For the sake of simplicity, here we
will consider an equal mass electron–positron plasma, where
a circularly polarized electromagnetic wave propagates along
a constant background magnetic field.

2.2 Circularly polarized waves

We consider a circularly polarized wave that propagates in
the direction of a constant background magnetic field along
thez axis. Thus, the electric and magnetic fields are given by

E0(z, t) = E
[
sin(k0z − ω0t) x̂ − cos(k0z − ω0t) ŷ

]
, (10)

B0(z, t) = B
[
cos(k0z − ω0t) x̂ + sin(k0z − ω0t) ŷ

]
+ B0zẑ , (11)

respectively, wherek0 is the wave number andω0 is the fre-
quency of the monochromatic wave.

The amplitudes of the electric and magnetic fields can be
related by Maxwell’s equations as

E =
ω0

ck0
B . (12)

Electrons and positrons have equal constant densitiesnp =

ne = n, and equal constant drift velocitiesvz0 = vz0ẑ, so that
their velocity can be written asvj = vtj + vz0, wherevtj is
transverse with respect to the background magnetic field. We
will also denote their mass bymp = me = m, and their charge
by qp = −qe = e.
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In principle, we assume that electrons and positrons have
constant but different temperatures, so thatfe 6= fp. It turns
out, as we will see below, that the purely transverse circu-
larly polarized wave is an exact solution of the field equa-
tions, which is consistent with the assumption of no pressure
fluctuations, that is, no fluctuations inf .

The particle velocities induced by the wave field are purely
transverse, hence the amplitude of the circularly polarized
velocity is proportional to the constant amplitude of the cir-
cularly polarized vector potential field (which can be easily
shown in the Lorentz gauge, for instance), and the relativistic
factor, which can be written as

γj =

(
1−

v2
tj

c2
−

v2
z0

c2

)−1/2

, (13)

is constant for both species.
This suggests that it is convenient to rewrite Maxwell’s

equations in terms of the transverse velocityvtj , yielding a
wave equation for the vector potential(

∇
2
−

1

c2

∂2

∂t2

)
A = −

4π

c
J t , (14)

where

J t =

∑
j

qjnjvtj (15)

is the transverse current. The wave Eq. (14), Poisson’s equa-
tion for the electrostatic potential

∇
2ϕ = −4π

∑
j

qjnj , (16)

the motion Eq. (4), and the continuity equation

∂nj

∂t
= −∇ ·

(
njvj

)
, (17)

are the complete set of fluid equations that describe the
plasma.

Defining complex transverse quantities in the form

C⊥ = Cx + iCy , (18)

we find that

C⊥ = Cei(k0z−ω0t) . (19)

Then, the particle velocity in the wave field can be written in
terms of the wave magnetic field as (Asenjo et al., 2009)

vj⊥
=

ω′

fjγjω′ − �cj

qjB⊥

mck
, (20)

where�cj = qjB0/mc and ω′
= ω − kvz0 are the gyrofre-

quency for both species and the Doppler shifted frequency,
respectively.

Finally, this leads to the following dispersion relation for
an electron–positron plasma (Asenjo et al., 2009):

ω2
− c2k2

=

∑
j=e,p

ω2
p

(
ω′

fjγjω′ − �cj

)
, (21)

with ωp =

√
4πne2/m the electron plasma frequency. This

dispersion relation is an exact solution of the plasma equa-
tions for finite-amplitude circularly polarized propagating
waves along the magnetic field in a relativistic plasma with
temperature.

It is interesting to note that Eq. (21) differs from the cold
plasma case (Matsukiyo and Hada, 2003) only by a fac-
tor fj . We can understand this as follows. For single par-
ticle motion, it is possible to convert a non-relativistic re-
sult into a relativistic one by changingmj → γjmj . This is
possible because mass is involved in the momentum equa-
tion. However, this simple replacement is not possible for
a fluid, since velocity is related nonlinearly to momentum
throughγj . Therefore, the average on momentum〈pj 〉 is not
equivalent to〈γj 〉〈mjvj 〉. We can think, though, that there
is some proportionality factor between both quantities, say
fj , such that〈pj 〉 = fj 〈γj 〉〈mjvj 〉. Thus, it would be pos-
sible to convert a nonrelativistic fluid force equation into a
relativistic one with the same prescription as for single par-
ticles,〈mjvj 〉 → 〈pj 〉, but, in order to take into account the
statistics,mj → fjγjmj . This is exactly what is needed to
go from the cold fluid dispersion relation (fj = γj = 1 in
Eq.21) to Eq. (21).

For fp = fe = 1 and no drift, the dispersion relation for a
cold relativistic plasma is recovered (Matsukiyo and Hada,
2003; Gomberoff and Galvão, 1997). The same result as in
Matsukiyo and Hada(2003) can be obtained from a kinetic
approach (Muñoz et al., 2006), in the limit where the velo-
city distribution is a Dirac delta (see, e.g., Eq. (23) inMuñoz
et al., 2006).

At the opposite limit of very high temperature, the trans-
verse mode becomes a light modec2k2

= ω2, consistent with
the relativistic decrease in the effective plasma frequency.

2.3 Analysis of the dispersion relation

In the rest of this paper, we will consider the case where both
species have the same temperature, so thatfp = fe = f . In
order to study the dispersion relation Eq. (21) we will nor-
malize all frequencies to the positron gyrofrequency�cp ≡

�c, and velocities to the speed of lightc. It is convenient
to define two adimensional parameters, related to the plasma
frequency and to the wave amplitude,

a =
ω2

p

�2
c
, α =

e|A|

mc2
=

e|E⊥|

mcω
=

e|B⊥|

mc2k
. (22)

Notice thatα corresponds to the particle transverse momen-
tum due to the wave.

Nonlin. Processes Geophys., 21, 217–236, 2014 www.nonlin-processes-geophys.net/21/217/2014/



V. Muñoz et al.: Large-amplitude waves in relativistic plasmas 221

In order to plot the dispersion relation, Eqs. (13), (20),
and (21) are solved simultaneously forγj , vj⊥, andω, for
a givenk, as outlined inMuñoz et al.(2006).

In Fig. 1 the dispersion relation (21) is plotted for various
values off , and fora = 1, α = 0.1. There are two branches:
an electromagnetic branch, with a lower cutoff at the effec-
tive plasma frequency, and an Alfvén branch, which has an
upper cutoff in wave number, and an upper cutoff in fre-
quency.

The solid line corresponds to the relativistic cold plasma,
f = 1. It can be seen that, as mentioned in Sect.2.2, when
the temperature increases the effective plasma frequency de-
creases, and the electromagnetic wave becomes a light wave.
This effect can be better appreciated in Fig.2, where the ef-
fective plasma frequencyωeff

p (given by the lower frequency
cutoff for the electromagnetic branch in Fig.1) is plotted for
the same values off used in Fig.1. ωeff

p also decreases due
to the relativistic effect on the mass, and thus we plot it as
a function ofα as well. However, for high enough tempera-
tures, the variation of the plasma frequency with wave am-
plitude is negligible.

Regarding the Alfvén branch, Fig.1 shows that it starts
at the origin following the usual linear dispersion relation,
ω = vAk. In this region,γp, γe ' 1. Then, the Alfvén velo-
city can be obtained from Eq. (21) by first rewriting it in the
form:

c2k2
= ω2

− 2f ω2
p

ω2

(f ω)2 − �2
c
.

If ωf � �c, which is always satisfied for low enough
frequencies, we find that the Alfvén velocity is given by

vA =
c√

1+ 2f ω2
p/�2

c

. (23)

As wave number increases along the Alfvén branch, there
is an upper frequency cutoffωcrit given by

ωcrit

�c
=

1

f

[
1+

(
α

f

)2/3
]−3/2

. (24)

Thus, when temperature increases, Alfvén waves are eventu-
ally confined to a very narrow frequency band. This can also
be seen in Fig.1.

Another interesting feature of the Alfvén branch is the
existence of a maximum value for the wave number,kmax.
This upper cutoff occurs because one species (positrons, in
this case) becomes ultra-relativistic, essentially moving with
the speed of light in the wave field, thus,γp = ∞. Electrons
do not resonate with the wave, soγe is finite. In order to
obtain an analytic expression for the wave number cutoff for
the Alfvén branch, let us first notice that, from Eq. (20), it

Fig. 1.Electromagnetic and Alfvén branches for the general disper-
sion relation, Eq. (21), for a = 1, α = 0.1. Solid line: cold plasma
case (f = 1); dashed line:f = 2; dotted line:f = 10.

Fig. 2. Effective plasma frequencyωeff
p as a function of wave am-

plitude α, for various temperatures. Solid line: cold plasma case
(f = 1); dashed line:f = 2; dotted line:f = 10.

follows that

ω

f γjω − �cj
= ±

1

α

v⊥j

c
, (25)

where the plus (minus) sign corresponds to positrons (elec-
trons), so the dispersion relation Eq. (21) can be written as

c2k2
= ω2

−
ω2

p

αc

(
v⊥p − v⊥e

)
. (26)

The cutoff occurs forω = 0, and in this limitv⊥p ' −c (no-
tice that the left-hand term in Eq.25 is negative along the
Alfvén branch for all values ofk), whereasv⊥e becomes neg-
ligible. Thus, it follows that the maximum wave number is
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given by

kmax =
ωp

c
√

α
. (27)

This is consistent with the numerical result in Fig.1. Notice,
in particular, thatkmax depends only on wave amplitude, not
on temperature. One could argue that, if the transverse par-
ticle velocity is ultra-relativistic, then thermal velocities are
not relevant.

Considering the change of sign of dω/dk in the Alfvén
branch, fork < k(ωcrit) and k > k(ωcrit), we will identify
these regions as the normal and the anomalous zone of the
Alfvén branch, respectively.

3 Kinetic model

In Sect.2, an exact solution in the context of fluid theory was
obtained for a circularly polarized wave propagating along a
constant magnetic field in an electron–positron plasma with
temperature, and its temperature dependence was studied nu-
merically. Relativistic thermal effects produce: (a) a decrease
in the effective plasma frequency (thus, waves in the electro-
magnetic branch can propagate for lower frequencies than in
the cold case); and (b) a decrease in the upper frequency cut-
off for the Alfvén branch (thus, Alfvén waves are confined to
a frequency range that is narrower than in the cold case).

These results have been found in the context of a fluid
model. However, effects such as Landau and cyclotron damp-
ing are absent in such a model, and thus it would be interest-
ing to study to what extent the fluid results are modified by
kinetic effects. Many works have been devoted to the study of
kinetic effects on wave propagation in relativistic electron–
positron plasmas, either in the absence of a magnetic field
(Muñoz, 2004; Liu and Liu, 2011), to analyze the counter-
streaming plasmas in pulsar environments (Verdon and Mel-
rose, 2011), to study the effect of nonlinearities and wave
damping (Chaudhary et al., 2010), to model the propagation
of Bernstein waves (Gill and Heyl, 2009), etc.

In this section, we study the propagation of a large-
amplitude circularly polarized electromagnetic wave in a
magnetized plasma, analyzing the consistency of the results
obtained in Sect.2 with those obtained from a kinetic treat-
ment (Muñoz et al., 2006). In effect, the same system is
studied, but starting from the relativistic Vlasov equation.
The corresponding kinetic dispersion relation is numerically
studied for various temperatures, and results are compared
with the purely fluid treatment. In our treatment, we assume
that kinetic effects are only important along the propagation
direction, which makes it necessary to generalize the results
in Sect.2, and to study the fluid dispersion relation Eq. (21),
but in the presence of drift.

In order to gain intuition for developing the posterior ki-
netic analysis, in Sect.3.1, the fluid relativistic dispersion
relation of a circularly polarized electromagnetic wave prop-
agating along a constant background magnetic field in an

electron–positron plasma is solved. This corresponds to a
generalization of the numerical results shown in Sect.2 and
by Asenjo et al.(2009), for the case of a plasma with con-
stant longitudinal drift velocity. Then, the basic equations
of the kinetic model are presented in Sect.3.2. In Sect.3.3
the dispersion relation of this wave is calculated. Then, in
Sect.3.4 the kinetic dispersion relation obtained in Sect.3.3
is solved numerically, and results are compared with the cor-
responding fluid treatment. These results can also be found
in Domínguez et al.(2012).

3.1 Fluid dispersion relation with drift

We start by defining normalized variablesx = ω/�c, y =

ck/�c, andβ = pz/(mc), so that Eq. (21) can be written in
normalized form as:

0 = y2
− x2

+
ω2

p

�2
c

∑
j=p,e

xγj − yβ

f
(
xγj − yβ

)
− σj

1

γj

, (28)

whereσj is the sign of the charge of speciesj , so thatσp = 1,
andσe = −1.

In order to solve the fluid dispersion relation given by
Eq. (28), the roots of the following quartic equation forγj

must be found:

0 = γ 4
j f 2

− γ 3
j

2f

x

(
yβf + σj

)
+ γ 2

j

[(
yβf + σj

)2
x2

−

(
1+ β2

)
f 2

− α2

]

+ γj

2

x

[(
1+ β2

)
f
(
yβf + σj

)
+ yβα2

]
−

1

x2

[(
1+ β2

)(
yβ + σj

)2
+ y2β2α2

]
. (29)

Equation (29) is the generalization of Eq. (15) inMuñoz
et al.(2006) for f 6= 1 andβ 6= 0. In Sect.2 the casef 6= 1
was solved (Asenjo et al., 2009). We now consider the gen-
eral case given by Eq. (29), to solve the dispersion relation
given by Eq. (28) for both nonzero temperatures (f 6= 1) and
nonzero drift velocities (β 6= 0).

To do this, we first choose fixed values fory, β, f and
α, and a trial value forx. Equation (29) is then solved for
γp andγe. Only solutionsγj ≥ 1 are physically acceptable.
This yields several possible pairs(γp,γe). Each possible pair
corresponds to a different branch of the dispersion relation.
When a pair is chosen, then the right-hand size of Eq. (28)
can be evaluated. However, it turns out that, in general, the
number of acceptable solutions of Eq. (29) for γe andγp is
greater than 2, and this number changes for each value ofβ.
This issue complicates the choice ofγj .
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This is illustrated in Fig.3. For given values ofy,
α, and f , we solve Eq. (29) for a certain value ofx
and β, obtaining four roots,γ (s)

j . We sort them such that

Reγ (1)
j ≤Reγ (2)

j ≤Reγ (3)
j ≤Reγ (4)

j . Figure3shows, for a cer-
tain range of values ofx andβ, the regions where thesth
branch for positrons,γ (s)

p , is physically acceptable, that is,
real and greater than 1.

Figure 3 shows that forx > 0.8, approximately, there is
only one possible choice,γ (3)

p . However, for lower values
of the frequency, there is a range of values ofβ where
more than one choice ofγp is possible. For instance, for
x = 0.400087,y = 0.3 andβ = 4.4, the three possible values
areγ

(1)
p = 4.12392,γ (2)

p = 5.72992, andγ (3)
p = 5.86722.

With a similar analysis in the case ofγe, now we choose
one of the possible branches forγp, and one of the branches
for γe, and we can calculate the right-hand side of Eq. (28)
by solving for the value ofx for which it is zero. Notice that
it could still be the case that a chosen pair(γp,γe) yields an
Eq. (28) with no real solutions forx. It turns out that there is
only one choice of the (γe,γp) pair for which a real root of
Eq. (28) can be found.

In Fig. 4 we plot the solutions of the dispersion rela-
tion (28), obtained by the method outlined above. The solid
line, β = 0, corresponds to the solution previously shown in
Fig. 1 (Asenjo et al., 2009), which shows that our treatment
leads to the correct limit in the absence of drift.

Notice that the Alfvén branch is much more sensitive to
variations in drift than the electromagnetic branch. For small
values of the frequency, it follows the usual linear dispersion
relation,ω ' vAk, with vA the Alfvén speed.vA can be cal-
culated by noting that, in this region,γ⊥p,γ⊥e ∼ 1+β2, and
by settingω � �c in Eq. (21). This yields

vA

c
=

2fβ
√

1+ β2 + vA0

√(
1+ β2

)
v2
A0 + 2f

√
1+ β2

v2
A0

√
1+ β2 + 2f

(
1+ β2

) , (30)

where

vA0 =
�c

ωp
(31)

is the Alfvén velocity in the nonrelativistic cold fluid case.
For β = 0, the result in Eq. (23) is recovered, which we

can rewrite as
vA

c
=

vA0√
v2
A0 + 2f

. (32)

In Fig.5 we plot the Alfvén velocity. In principle,vA depends
both on the drift velocity and the temperature. For illustration
purposes, in Fig.5 we have first taken a fixed temperature
(Fig. 5a), and then a fixed drift velocity (Fig.5b). Qualita-
tively similar results are obtained for other choices off and
β. What is important to notice is that the drift velocity and the
temperature have the opposite effect on the Alfvén speed:vA

increases withβ, and decreases withf .

Fig. 3. Isocontours of real solutions of Eq. (29) as a function
of normalized driftβ and normalized frequencyx, for positrons.

Each panel corresponds to a different branch,γ
(s)
p , for the roots

of Eq. (29). A few contour levels are shown. Physically acceptable
solutions are in the regions whereγ (x,β) is real and greater than
1. Fixed valuesy = 0.3, α = 0.1, andf = 1 were taken. (a)s = 1,
(b) s = 2, and (c)s = 3.
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Fig. 4. Solutions of the dispersion relation Eq. (21) for f = 1,
α = 0.1,vA0 = 1 (see Eq. (31) below), and three values ofβ: β = 0
(solid line),β = 0.1 (dashed line),β = 0.2 (dotted line).

3.2 Kinetic model

In our treatment, we consider kinetic effects only along a
background magnetic fieldB0zẑ, and a cold fluid model in
the perpendicular direction (Muñoz and Gomberoff, 2002;
Muñoz, 2004).

As in Sect.2, the electromagnetic fields are described by
Eqs. (14)–(16), whereas the fluid is described by the continu-
ity equation (17) and, in the transverse direction, the motion
equation (4) with zero temperature:(

∂

∂t
+ vj · ∇

)(
γ vj

)
=

qj

mj

(
E +

1

c
vj × B

)
. (33)

For the longitudinal direction, we consider the one-
dimensional Vlasov equation:

∂gj

∂t
+ v · ∇gj +

qj

mj

(
E +

1

c
v × B

)
· ∇v gj = 0, (34)

wheregj is the velocity distribution function for speciesj ,
normalized so that∫

dv gj (r,v, t) = nj0 ,

with nj0 as the equilibrium unperturbed density for species
j , and Poisson Eq. (16).

Thus, the total density and transverse current are given by

nj =

∑
j

∫
dvgj (r,v, t) , (35)

J t =

∑
j

qj

∫
dv gj (r,v, t) vj t , (36)

respectively.

Fig. 5.Alfvén velocity, Eq. (30), for α = 0.1,vA0 = 1. (a) For fixed
temperature,f = 1, as a function of the drift velocityβ. (b) For
fixed drift velocity,β = 0, as a function of temperature, parameteri-
zed byf .

3.3 Kinetic dispersion relation

As in Sect.2, we now consider an electromagnetic wave
propagating in the electron–positron plasma. In the absence
of the wave, the plasma is considered to have no electric field,
a uniform background magnetic fieldB0zẑ, equal densities
for each species (ne0 = np0 = n0), and equal drifts for each
species (vj0 = vz0ẑ).

We consider a circularly polarized wave that propagates
along thêz axis, whose electric and magnetic fields are given
by Eqs. (10) and (11).

In terms of the transverse quantities Eq. (18), Maxwell and
Vlasov equations yield:

(
∇

2
−

1

c2

∂2

∂t2

)
A⊥ = −

4π

mc

∑
j

qj

∫
dp vj⊥ gj (x,v, t) .

(37)
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On the other hand, in order to introduce kinetic effects, we
consider the following form of the distribution function:

gj = n0g̃j (z,pz, t)δ
(
px − p

f
x

)
δ
(
py − p

f
y

)
, (38)

wherepf is the transverse particle momentum obtained with
the cold fluid theory. In the absence of the wave, the adimen-
sional distribution function in Eq. (38) must satisfyg̃e0 =

g̃p0, so that densities are equal.
Then, Eq. (37) can be written in the form:(

∇
2
−

1

c2

∂2

∂t2

)
A⊥ = −

4πn0

mc

∑
j

qj

∫
dp⊥ vj⊥ g̃j (z,pz, t) . (39)

Note that we need to knowvj⊥ in order to be able to
solve the dispersion relation. To do this, we consider that in
the direction perpendicular to the magnetic field, the equa-
tions governing the system are the fluid equations, so that the
transverse velocity is given by Eq. (20). In Domínguez et al.
(2012) it is shown that the following dispersion relation is
obtained:

0 = k2c2
− ω2

+ ω2
p

∑
j

∫
dpz

ω′

ω′γj − �cj

g̃j0 . (40)

3.4 Numerical solution of the kinetic dispersion relation

We now solve the kinetic dispersion relation Eq. (40). First,
it is convenient to write it in normalized form:

y2
− x2

+
ω2

p

�2
c

∑
j=p,e

∫
dβ

xγj − βy

xγj − βy − σj

g̃j0

γj

= 0. (41)

There are two main issues to consider at this point. One
is the choice of the distribution function, and the other is the
choice ofγj .

Regarding the distribution function, since we are inter-
ested in comparing the kinetic dispersion relation with the
results in Sect.2, which include the effects of relativistic tem-
perature, we takẽgp0 = g̃e0 ≡ g̃0 as a Maxwell–Boltzmann–
Jüttner distribution:

g̃0 (β,µ) =
1

2mcK1(µ)
e−µ(1+β2)1/2

.

Thus, in the kinetic treatment, thermal information is con-
tained in the normalized inverse temperature parameterµ. In
the fluid treatment described in Sect.2, thermal information
is contained in the parameterf .

Once the distribution function is chosen, the numerical
strategy is analogous to the one outlined in Sect.3.1, ex-
cept that an integration along theβ axis must be done. This
means that, for each trial frequency, the corresponding val-
ues ofγ (β) must be found. Since, in the transverse direction,
we consider a cold fluid model, the problem of findingγ is
equivalent to the one discussed in Sect.3.1 for a cold fluid

with a given longitudinal driftβ. Thus, the equation to solve
in order to findγ is Eq. (29), with f = 1. It must be solved
for each point in theβ axis, and once the integration is com-
plete, the right-hand size of Eq. (40) can be evaluated. Thus,
rather than finding a value of, say,γe to generate the electro-
magnetic branch in the fluid dispersion relation, the proper
infinite set of valuesγe(β) must be found.

If only two physically acceptable values ofγj were ob-
tained for each value ofβ, then the problem would still be
easy, since one of them would correspond to the electro-
magnetic branch, and the other to the Alfvén branch, and
there would be no ambiguity in the calculation of the inte-
gral. However, as shown in Sect.3.1, several values ofγj

are possible, both for electrons and positrons. Moreover, the
problem is now more complicated, since in the kinetic case,
there is an integral overβ, thus a choice of branches forγj

must be made at each point of the integration path, and since
the number of valid values ofγj changes withβ (see Fig.3),
there is no guarantee that a choice for a givenβ is valid along
the complete integration path. In fact, we have found that this
is not the case in general. By studying several families of pa-
rameters, we concluded that it is very difficult to find a gen-
eral, reliable algorithm to automate the choice, and some trial
and error is still involved in the results presented here.

The rest of the numerical procedure is equivalent to the
fluid case: once a proper choice ofγj (x,β) is made, it is
used to find a value ofx such that Eq. (41) is satisfied, and
the process is repeated for a different value ofx.

Figure 6 shows the solution of the dispersion relation
Eq. (21) for three different temperatures. This figure should
be compared with Fig.1, where three temperatures corre-
sponding tof = 1, 2 and 10 were considered.

We should first notice that, in the Alfvén branch, which
starts at the origin, there is a small-frequency region where
no modes are found (in this casey ∼ 2). This is a result
of the technical issues regarding the choice ofγj at each
point of the integration path, and illustrated in Fig.3. On the
other hand, the electromagnetic branch (for all wave num-
bers) and the Alfvén branch near the origin (for small values
of x = ω/�c andy = ck/�c) can always be obtained with-
out ambiguities in the choice ofγj .

Thus, we will focus the remainder of the discussion on the
electromagnetic branch and the region of the Alfvén branch
near the origin. Solving the numerical issues near the maxi-
mum frequency in the Alfvén branch may involve either im-
proving the numerical algorithms, or improving on the cold
model for the transverse motion (Eq.38). In fact, prelimi-
nary results from PIC simulations (Sect.5) suggest that the
Alfvén branch is damped in the anomalous zone, and we plan
to study this elsewhere.

The first result to notice is that, indeed, the same branches
as in the fluid case are found, an electromagnetic and an
Alfvén branch. For very low temperatures, the cold result is
recovered (see solid line in Fig.4). When the temperature is
increased (µ decreases), it is observed that the effect of the
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Fig. 6.Solutions of the dispersion relation Eq. (40) for α = 0.1 and
vA0 = 1. Solid lineµ = 700 (f ' 1); dashed lineµ = 50 (f ' 1.1);
dotted lineµ = 3 (f ' 2); dot dashed lineµ = 0.4 (f ' 10). At the
scale of the figure, the dashed and solid lines for the electromagnetic
branch cannot be distinguished. Also, the dotted and dot dashed
lines for the Alfvén branch cannot be seen; this occurs because, for
high temperatures, the Alfvén branch disappears, as discussed later
in Fig. 8.

temperature is to decrease the effective plasma frequency,
and to decrease the upper frequency cutoff for the Alfvén
branch. It is interesting to observe that this is qualitatively
equivalent to what is obtained in the fluid theory.

However, several quantitative differences are found. First,
in the kinetic model, the effective plasma frequency is less
sensitive to variations in temperature than in the fluid model.
This is shown in Fig.7, whereωeff

p (solution of the electro-
magnetic branch, Eq.41 with y = 0) is plotted as a function
of inverse normalized temperatureµ, for both models. For
any given temperature, the plasma frequency is always higher
in the kinetic case than in the fluid case.

Regarding the Alfvén branch, analytical results can be ob-
tained from Eq. (40), which is consistent with the numeri-
cal procedures that yield Fig.6. Takingω � �c in Eq. (40)
yields the Alfvén velocity

vA

c
=

√
v2
A0 − I1(µ)

v2
A0 + I2(µ)

, (42)

where

I1(µ) = 2
∫

dβ
g0 (β,µ)β2√

1+ β2
, (43)

I2(µ) = 2
∫

dβg0 (β,µ)

√
1+ β2 . (44)

The kinetic result Eq. (42), as well as the fluid result,
Eq. (23), are plotted as a function ofµ in Fig. 8, for various
selected values ofvA0.

Fig. 7. Effective plasma frequency as a function of inverse normal-
ized temperatureµ. Solid line: fluid model. Dashed line: kinetic
model.

Fig. 8. Alfvén speed as a function of inverse normalized tempera-
ture ofµ. (a) Eq. (42) and(b) Eq. (30) (β = 0), for various values
of vA0.
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We notice that increasing the temperature has the effect of
decreasing the Alfvén speed (Fig.8a). The same qualitative
behavior occurs in the fluid case (Fig.8b). However, in the
kinetic treatment, unlike the fluid case, the Alfvén branch is
suppressed for high temperatures. The threshold temperature
(proportional toµ−1), below which the Alfvén branch ex-
ists, is larger ifvA0 increases. That is, if, say, the density is
constant, the Alfvén branch exists for a larger range of tem-
peratures when the background magnetic field is increased.
The threshold can be obtained from Eq. (42), by noting that
it satisfies

v2
A0 − I1 (µmin) = 0. (45)

Figure9 shows the value ofµmin for various values ofvA0. If
the density is fixed, Fig.9 shows that Alfvén waves can prop-
agate for larger values of the temperature (µmin is smaller) if
the background magnetic field is increased (vA0 increases).

Figure8 also shows that, for a given value ofvA0 (fixed
amplitude of the background magnetic field, for instance),
the maximum Alfvén speed is obtained in the cold limit.

The result obtained in Eq. (42) is fully consistent with the
fluid model in the cold limit. In fact, ifµ → ∞ in Eqs. (43)
and (44), thenI1 → 0 andI2 → 2, thus recovering Eq. (23).

In Fig. 10we plot the maximum value of the Alfvén speed
as a function ofvA0 as given by the kinetic model (Eq.42
with a very large value ofµ), and by the fluid model (Eq.23,
with f = 1).

The fact that both results match shows that, in spite of the
technical issues discussed above regarding the proper choice
of γ at each point in the integration path, the kinetic model
presented here still yields the fluid result in the proper limit.

4 Parametric decays

4.1 Parametric decays

In this section we will consider the parametric perturba-
tions of finite-amplitude circularly polarized electromagnetic
waves in a relativistic electron–positron thermal plasma,
which were found in Sect.2. Although simple, this anal-
ysis will allow us to study in detail the effect of rela-
tivistic temperatures on wave propagation and its decay
in relativistic hot plasmas. These decays have been stud-
ied for electron–positron plasmas in the weakly relativistic
limit for linear polarization (Gomberoff et al., 1997; Muñoz
and Gomberoff, 2000), and in the magnetized (Muñoz and
Gomberoff, 1998b) and nonmagnetized cases (Muñoz and
Gomberoff, 1998a) with circular polarization. Similarly, de-
cays of circularly polarized Alfvén waves have been studied
(Matsukiyo and Hada, 2003), also in the weakly relativistic
regime. On the other hand, the effect of relativistic tempera-
tures has not been considered in these studies.

Fig. 9.Minimum value ofµ as a function ofvA0.

Fig. 10.Maximum Alfvén speed as a function ofvA0, obtained from
solving the kinetic dispersion relation Eq. (40) for very low temper-
ature (solid line), and from the fluid model, Eq. (23) (dotted).

In Sect.4.3, the dispersion relation for the parametric de-
cays is presented. In Sect.4.4, this dispersion relation is
solved numerically and several features are discussed.

4.2 Exact solution

In the parametric decay analysis, the exact circularly polari-
zed electromagnetic wave found in Sect.2 corresponds to the
zeroth-order solution. Thus, zeroth-order fields are given by
Eqs. (10) and (11), with the corresponding quiver velocities
given by (see Eq.20)

v⊥0j =

(
ω0

f0jγ0jω0 − �cj

)
qjB⊥0

mck0
, (46)

which can be rewritten as

v⊥0j = αjηj ce
i(k0z−ω0t) , (47)
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with

αj = σjα , (48)

ηj =
ω0

f0jγ0jω0 − �cj

. (49)

The dispersion relation for the pump wave is (see Eq.21)

ω2
0 − c2k2

0 =

∑
j

ω2
p

(
ω0

f0jγ0jω0 − �cj

)
. (50)

4.3 Parametric decays

Now we introduce small perturbations on the zeroth-order
solution given by the pump wave as described in Sect.4.2.
Thus, a physical quantityC is written in the formC = C0 +

δC, whereC0 corresponds to the pump wave solution, and
δC � C.

To first order in the perturbed quantities, we obtain the fol-
lowing set of perturbed equations (López et al., 2012)

f0

(
∂

∂t
+ v0j · ∇

)(
γ0j δvj + δγjv0j

)
+ f0

(
δvj · ∇

)(
γ0jv0j

)
+ γ0j

(
∂

∂t
+ v0j · ∇

)(
v0j δfj

)
=

qj

m

(
δE +

1

c
v0j × δB

)
+

qj

mc
δvj × B0 −

1

mn0
∇δpj ,

∂δpj

∂t
= mc2nR

0j

∂δfj

∂t
,

∂δnj

∂t
+ n0∇ · δvj = 0, (51)

∇ · δE = 4π
∑
j

qj δnj , (52)

and

∇ × δB =
4π

c

∑
j

qj

(
δnjvj + nj δvj

)
+

1

c

∂δE

∂t
. (53)

We now introduce perturbations on the transverse quanti-
ties (18) such thatδC⊥ � C⊥, δCz � Cz. We also assume
that longitudinal and transverse perturbations have the form

δCz = Re
[
C̃ei(kz−ωt)

]
=

1

2

(
C̃ei(kz−ωt)

+ C̃∗e−i(k∗z−ω∗t)
)

, (54)

and

δC = c+ei(k+z−ω+t)
+ c−ei(k−z−ω−t) , (55)

respectively, wherek+ = k0 +k, k− = k0 −k∗, ω+ = ω0 +ω

andω− = ω0−ω∗. With these definitions, and after a lengthy
but straightforward calculation (seeLópez et al., 2012 for
details), we obtain a set of equations for the variablesr =(
v+e,v+p,v∗

−e,v
∗
−p, ṽe, ṽp,b+,b∗

−

)
, which can be put in

matrix form as

Ar = 0 , (56)

so that the dispersion relation is given by

F(k,ω) = det(A) = 0. (57)

The matrix elementsAij are given explicitly inLópez et al.
(2012). This turns out to yield a polynomial equation of de-
gree 12 forω(k).

In the cold, weakly relativistic case, we recover the results
previously found byMuñoz and Gomberoff(1998b).

When there is no pump wave,α = 0, Eq. (57) yields the
normal modes that propagate in the plasma. At this limit, it is
not difficult to show that the dispersion relation (57) becomes

FSD(k,ω) = D+D−SL = 0, (58)

where

S = −ω2
+ v2

sk2 , (59)

L =
2ω2

p

f0
− ω2

+ v2
sk2 , (60)

and

D+ = ω2
+ − c2k2

+ −
ω2

p

f0

(
ω+

ω+ −
�c
f0

+
ω+

ω+ +
�c
f0

)
, (61)

D− = ω∗
−

2
− c2k∗

−

2
−

ω2
p

f0

(
ω∗

−

ω∗
− −

�c
f0

+
ω∗

−

ω∗
− +

�c
f0

)
, (62)

and where we have defined

vs = c

√
1

f0

f ′(µ0)µ0

1+ f ′(µ0)µ
2
0

. (63)

Equation (59) suggests thatvs can be defined as an effective
sound velocity.

In Fig. 11 we compare the effective sound velocity as
given by Eq. (63) with the classical sound velocity,vs =
√

kBT/m. For low temperatures both results are equivalent,
whereas for high temperatures the effective sound velocity
tends toc/

√
3, which is a known result for hot relativistic

plasmas (Landau and Lifshitz, 1959).
Equation (58) shows that the normal modes correspond to

an electroacoustic wave (given byS = 0), Langmuir waves
(L = 0), and sideband waves (D± = 0). In the presence of
the pump wave (α 6= 0) these normal modes couple and give
rise to the parametric decays. We will study this in detail in
Sect.4.4.

4.4 Numerical analysis of the dispersion relation

We now solve the dispersion relation Eq. (57) numerically.
To this end, for given values ofα and µ, we choose a
value of the normalized wave number of the pump wave,
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Thus, a physical quantity C is written in the form C = C0 +
δC, where C0 corresponds to the pump wave solution, and
δC� C.

To first order in the perturbed quantities, we obtain the fol-
lowing set of perturbed equations (López et al., 2012)

f0

(
∂

∂t
+ v0j ·∇

)
(γ0jδvj + δγjv0j)

+ f0 (δvj ·∇)(γ0jv0j) + γ0j

(
∂

∂t
+ v0j ·∇

)
(v0jδfj)

=
qj
m

(
δE +

1

c
v0j × δB

)
+
qj
mc

δvj ×B0−
1

mn0
∇δpj ,

∂δpj
∂t

=mc2nR0j
∂δfj
∂t

,

∂δnj
∂t

+n0∇ · δvj = 0 , (51)

∇ · δE = 4π
∑
j

qjδnj , (52)

and

∇× δB =
4π

c

∑
j

qj(δnjvj +njδvj) +
1

c

∂δE

∂t
. (53)

We now introduce perturbations on the transverse quanti-
ties (18) such that δC⊥� C⊥, δCz � Cz . We also assume
that longitudinal and transverse perturbations have the form

δCz = Re
[
C̃ei(kz−ωt)

]
=

1

2

(
C̃ei(kz−ωt) + C̃∗e−i(k

∗z−ω∗t)
)
,

(54)

and

δC = c+e
i(k+z−ω+t) + c−e

i(k−z−ω−t) , (55)

respectively, where k+ = k0 +k, k− = k0−k∗, ω+ = ω0 +ω
and ω− = ω0−ω∗. With these definitions, and after a lengthy
but straightforward calculation [see (López et al., 2012) for
details], we obtain a set of equations for the variables r =
(v+e,v+p,v

∗
−e,v

∗
−p, ṽe, ṽp, b+, b

∗
−), which can be put in ma-

trix form as

Ar = 0 , (56)

so that the dispersion relation is given by

F (k,ω) = det(A) = 0 . (57)

The matrix elements Aij are given explicitly in López et al.
(2012). This turns out to yield a polynomial equation of de-
gree 12 for ω(k).

In the cold, weakly relativistic case, we recover the results
previously by Muñoz and Gomberoff (1998b).

When there is no pump wave, α= 0, Eq. (57) yields the
normal modes that propagate in the plasma. In this limit, it is
not difficult to show that the dispersion relation (57) becomes

FSD(k,ω) =D+D−SL= 0 , (58)

where

S =−ω2 + v2
sk

2 , (59)

L=
2ω2

p

f0
−ω2 + v2

sk
2 , (60)

and

D+ = ω2
+− c2k2

+−
ω2
p

f0

(
ω+

ω+− Ωc

f0

+
ω+

ω+ + Ωc

f0

)
, (61)

D− = ω∗−
2− c2k∗−

2−
ω2
p

f0

(
ω∗−

ω∗−− Ωc

f0

+
ω∗−

ω∗−+ Ωc

f0

)
, (62)

and where we have defined

vs = c

√
1

f0

f ′(µ0)µ0

1 + f ′(µ0)µ2
0

. (63)

Equation (59) suggests that vs can be defined as an effective
sound velocity.

In Fig. 11 we compare the effective sound velocity as
given by Eq. (63) with the classical sound velocity, vs =√
kBT/m. For low temperatures both results are equivalent,

whereas for high temperatures the effective sound velocity
tends to c/

√
3, which is a known result for hot relativistic

plasmas (Landau and Lifshitz, 1959).
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Fig. 11. Normalized sound velocity as a function of normalized tem-
perature µ−1 = kBT/mc

2. Dashed line: classical result (f = 1),
vs/c=

√
µ−1. Solid line: relativistic result [see Eq. (63)]. The hor-

izontal dotted line represents the limit value 1/
√

3.

Equation (58) shows that the normal modes correspond to
an electroacoustic wave (given by S = 0), Langmuir waves

Fig. 11.Normalized sound velocity as a function of normalized tem-
peratureµ−1

= kBT/mc2. Dashed line: classical result (f = 1),
vs/c =

√
µ−1. Solid line: relativistic result (see Eq.63). The hori-

zontal dotted line represents the limit value 1/
√

3.

y0 = k0c/�c, and we solve the dispersion relation of the
pump wave to get the normalized pump wave frequency
x0 = ω0/�c, as outlined in Sect.2.1andAsenjo et al.(2009).
Notice that, in particular, this implies a choice of a branch
for the pump wave, since a givenk0 may correspond to up to
three values ofω0.

Then we solve Eq. (57). In Fig. 12 the pump wave (x0,
y0) has been chosen to lie in the Alfvén branch, near the ori-
gin. Figure12a shows the solutions of Eq. (57) for y0 = 1,
ωp/�c = 1, 1/µ = 0.01 andα = 0, which is equivalent to
solving Eq. (58). There are 12 lines, two of which corre-
spond to the electroacoustic modes that are the real solu-
tions ofS = 0. They are labeled asS+ andS−, corresponding
to forward and backward propagating modes, respectively.
Two other lines correspond to the Langmuir modes given
by L = 0, and labeled asL+ (forward) andL− (backward).
The other eight lines correspond to the eight real solutions
of D± = 0. Four of these lines are parabolic and correspond
to the electromagnetic branches in Fig.1, and they are la-
beled asD± in Fig. 12a. The two linesp± also correspond
to solutions ofD±, but they resonate at the sideband fre-
quencyω± = �c/f0, which in the cold case is the positron
gyrofrequency (see Eqs.61 and62). In terms of the normal-
ized longitudinal frequencyx = ω/�c, the resonance occurs
at x = ±(−x0 + 1/f0), as shown in Fig.12. Similarly, e±

are the two solutions that resonate at the sideband frequency
ω± = −�c/f0 (which, in the cold limit, is the electron gy-
rofrequency), that is, atx = ±(−x0 − 1/f0).

We can see from Fig.12a that there are several possible
crossings between solutions of the dispersion relation. At
these crossings, complex solutions can appear whenα 6= 0.
Since the polynomial being solved has real coefficients, these
solutions always occur as complex conjugate pairs, thus one
of them has a positive imaginary frequency. Therefore, the

Fig. 12.(Color online) Solution of the dispersion relation Eq. (57).
Normalized wave numbery = kc/�c vs. normalized frequency
x = ω/�c for y0 = 1, ωp/�c = 1, 1/µ = 0.01. We take the pump
wave at the Alfvén branch.(a) α = 0. (b) Sector of interest for
α = 0, (c) α = 0.1. Dotted lines represent the real part of the so-
lution when it is complex.

disappearance of real solutions whenα 6= 0 implies the pres-
ence of unstable waves, corresponding to the parametric de-
cays of the pump wave.
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Only the crossings involving modes satisfying energy con-
servationω1 +ω2 = `ω0 (` ∈ Z+) can give rise to wave cou-
pling when the pump wave is switched on (α 6= 0). They are
marked with the labels from (1) to (5) in Fig.12a. Crossing
(1) is actually not considered here because it is unstable only
in a narrow range of temperatures (aroundµ−1

≈ 0.01) and
its maximum growth rate is too small (10−3) compared with
the other crossings. Thus we focus our attention on cross-
ings (2)–(5) that are displayed in detail in Fig.12b for α = 0.
Crossing (3) corresponds to a resonant coupling (` = 1), and
crossings (2), (4) and (5) correspond to nonresonant cou-
plings.

Now we turn the pump wave on by consideringα 6= 0. In
Fig. 12c α = 0.1, and we notice that some crossings become
gaps. This means that at these crossings we have complex
solutions whose real parts are indicated as dotted lines, while
the real solutions correspond to the continuous lines. Hence,
we now have instabilities, indicating wave coupling. For ex-
ample, crossing (3) gives rise to a wave coupling between
(S+, p−), corresponding to an ordinary decay instability in
which the pump wave decays into a forward-propagating
electroacoustic mode of frequencyω and a sideband wave
of frequencyω−. Crossing (4) leads to a nonresonant wave
coupling between (p+, p−), in which the pump wave decays
into two sideband waves of frequencyω− andω+. In the case
of crossing (5), there is no gap, and therefore no instability.
Finally, crossing (2) represents an intersection of (p+, e−) at
the origin, so it corresponds to an electromagnetic modula-
tional instability (Longtin and Ö. Sonnerup, 1986).

As mentioned above, the appearance of gaps means that
there exist modes whose frequency has a nonzero imaginary
part. There are several possible decays simultaneously, but
not all of them will be equally relevant. We can quantify this
by calculating, for a given value ofα, the maximum imag-
inary part at each gap. By comparing these values for all
gaps, we may then gain intuition regarding the relative im-
portance of each decay for various values ofα. This is shown
in Fig. 13. We define the imaginary part of the frequency as
0 = Im(x), and in each gap we seek its maximum value0max
(maximum growth rate), and we plot it againstα and 1/µ.

The first interesting feature we observe is that the resonant
coupling (3) exhibits the expected linear dependence with
α, for small α, while the nonresonant ones usually show a
quadratic behavior for small values ofα. Let us also note
that, for every pump wave amplitude, the maximum growth
rate always occurs forµ−1

≤ 0.3. In Fig.13a, b and d we see
that for µ−1 > 0.1 the instabilities disappear, but Fig.13c
shows that crossing (4) is still unstable, so for high tempera-
tures crossing (4) is the dominant one.

Another interesting feature is that, for some crossings,
there is a threshold value ofα below which there is no in-
stability, and that this threshold depends on the tempera-
ture. This can be seen in Fig.14a, which shows that cross-
ing (3) leads to an instability only ifα > 0.07, approximately,
when 1/µ = 0.03, whereas there is no threshold for the larger

Fig. 13. (Color online) Maximum growth rate for various pump
wave amplitudesα and temperatures 1/µ. Notice that the scale
is logarithmic scale for temperature.(a) Crossing (2), (p+, e−).
(b) Crossing (3), (S+, p−). (c) Crossing (4), (p+, p−). (d) Crossing
(5), (e−, p−).
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Fig. 14. Maximum growth rate vs. pump wave amplitudeα. Nu-
merical labels for crossings are taken from Fig.12. (a) Crossing
(3), (S+, p−). (b) Crossing (5), (e−, p−).

temperatures shown in the plot. In the case of crossing (5)
(Fig. 14b), there is a threshold for all temperatures. When
temperature is increased, smaller values ofα are needed to
trigger the instability.

In Fig. 15 we have plotted the imaginary part of the fre-
quency as a function of the wave number, for different values
of α and a fixed value ofµ. This figure gives us an indication
of the wave band over which the wave coupling occurs. We
have labeled the instabilities as in Fig.12a. In Fig.15a we
take 1/µ = 0.01, and as we expect for this range of values of
α, the resonant coupling (3) is the dominant one, being larger
and broader than the other, nonresonant, couplings (2), (4)
and (5). This also occurs in Fig.15b, for 1/µ = 0.02. How-
ever, the wave band of active modes of crossing (3) has been
significantly reduced, while the ones for crossings (2) and (4)
have slightly increased. In Fig.15, crossing (5) does not ap-
pear because it is stable for these temperatures.

Figure 15 suggests that the dominant coupling may be
different for different values ofα and µ. We can appreci-
ate this in Fig.16, where we plot the maximum growth rate
among all crossings for various temperatures and pump wave

Fig. 15. Imaginary part of frequency vs. normalized wave number,
for various values of the pump wave amplitude. Numerical labels
for crossings are taken from Fig.12. (a) 1/µ = 0.01. (b) 1/µ =

0.02.

Fig. 16. (Color online) Maximum growth rate for various pump
wave amplitudesα and temperatures 1/µ, in logarithmic scale for
temperature, considering all existent crossings.

amplitudes. Discontinuities in the derivative of the plotted
surface are an indication of a change of regime, where the
maximum growth rate changes from one crossing to another.
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Fig. 17. Maximum growth rate vs. pump wave wave number, for
α = 0.04 and various temperatures. The vertical lines indicate the
value ofy0 at which dω/dk = 0.

In particular, for low temperatures the dominant behavior
is given by crossing (3), while for higher temperatures it is
given by crossing (4), which turns out to be the only cou-
pling present.

A similar analysis to the one presented in this section can
be done for a pump wave in the electromagnetic branch and
in the anomalous zone of the Alfvén branch (seeLópez et al.,
2012for full details), with qualitatively similar results.

One interesting finding is that if the pump wave is in the
Alfvén branch,0max is about an order of magnitude larger
than in Fig.16, when the pump is a wave in the normal
zone of the Alfvén branch. This difference can be observed in
Fig. 17, where we set a pump wave amplitudeα = 0.04 and
a temperatureµ−1, and the maximum growth rate is plotted
for various values ofy0 in the Alfvén branch. Wheny0 ap-
proaches the anomalous zone, the instability becomes larger.

5 Numerical simulations

In this section we present preliminary results from relati-
vistic particle simulations that are consistent with the find-
ings in Sects.2, 3, and4. Simulations have been done with
a relativistic PIC code, with periodic boundary conditions,
and initial particle thermal velocities have been taken from a
Maxwell–Boltzmann–Jüttner distribution function. The de-
tailed description of the code, as well as more complete re-
sults, will be presented elsewhere (López et al., 2014).

First, by choosing an initial condition where particles only
have thermal velocities, we can obtain the normal mode dis-
persion relation from the power spectrum of magnetic fluc-
tuations. This is shown in Fig.18.

A good agreement with both fluid (Sect.2) and kinetic
(Sect.3) results is found, as shown in Fig.19, where the
curves corresponding to the appropriate dispersion relations

Fig. 18.Power spectrum of transverse magnetic fluctuations from a
PIC simulation, forα = 0.01,ωp/�c = 1. (a) µ = 100,(b) µ = 7.

Fig. 19.Same as Fig.18, but with curves from the analytical models
superimposed. Blue dotted line: fluid dispersion relation, Eq. (21);
black dotted line: kinetic dispersion relation, Eq. (40). (a) µ = 100,
(b) µ = 7.
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Fig. 20.Power spectrum of density fluctuations for the PIC simula-
tion. The pump wave satisfies Eq. (21), with α = 0.2 andµ = 100,
and is taken from the Alfvén branch, withy0 = 0.49, x0 = 0.27.
(a) Simulation results;(b) lines correspond to the fluid dispersion
relation of the parametric decays, Eq. (57), for the same parame-
ters.

(Figs.1 and6) have been superimposed. In particular, both
expected branches are observed, the electromagnetic and the
Alfvén one. Regarding the Alfvén branch, in the simulation
results it cannot be distinguished for wave numbers beyond
a certain critical value, which suggests that it is damped due
to kinetic effects.

Figure19 also shows that the effective plasma frequency
decreases with temperature (see Figs.2 and 7), and that
the Alfvén velocity decreases with temperature as well (see
Eq.23and Fig.8). When the effective plasma frequency and
Alfvén velocity are measured from the simulation results,
they turn out to be consistent with the fluid and kinetic mo-
dels in Sects.2 and3.

We have also studied the parametric decays of a circularly
polarized pump wave, following the model in Sect.4. Fig-
ure 20a shows the power spectrum of density fluctuations,
when the initial condition is a pump wave consistent with
Eqs. (10) and (11), with α = 0.2 andµ = 100. Various modes
corresponding to the parametric decays of the pump wave
can be identified, with major wave activity neary ∼ 0.8. In
Fig. 20b the dispersion relation for the parametric decays in
the fluid model for the same parameters has been superim-

Fig. 21. Growth rate for the decay instability shown in Fig.20.
(a) Fluid result for the (S+, p−) crossing.(b) Simulation results
for the same parameters.

posed, showing the consistency of the simulation and ana-
lytical results. In particular, the spectrum peak neary ∼ 0.8
can be identified as the result of the nonlinear coupling be-
tween a sound waveS+ and ap− sideband wave (see, e.g.,
crossing (3) in Fig.12b).

Finally, growth rates for the decays can be estimated from
the simulation. This is shown in Fig.21, where the fluid and
simulation results are shown. Again, both models are consis-
tent.

6 Conclusions

We have studied the propagation of large-amplitude, circu-
larly polarized electromagnetic waves in electron–positron
plasmas, using fluid and kinetic models, and PIC simulations.
Relativistic effects in the particle velocities have been intro-
duced both for the quiver velocity induced by the wave, and
for the random velocities induced by temperature. In the case
of the fluid model, relativistic temperatures have been consis-
tently introduced through a factorf related to the enthalpy
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density. For the kinetic model and the simulations, relativistic
temperatures have been introduced by assuming that the par-
ticles follow a Maxwell–Jüttner distribution function. Prop-
agation of the wave has been assumed to occur along a con-
stant background magnetic field.

In the case of the fluid model, an exact solution of the re-
lativistic fluid equations can be found. A critical assumption
is the fact that particle velocities are purely transverse with
respect to the background magnetic field, which is true for
circularly polarized electromagnetic waves of arbitrary am-
plitude. In particular, this means that no pressure or density
fluctuations appear, and thatf is constant. We plan to explore
the possibility of extending the above analysis to include a
pressure tensor (Shadwick et al., 2004), a case in which we
do not expect to find exact solutions, but which can certainly
be studied numerically.

The fluid results show that two branches are present, an
electromagnetic and an Alfvén branch. The electromagnetic
branch has a lower cutoff at an effective plasma frequency
ωeff

p , which decreases with temperature and wave amplitude
due to the relativistic increase in effective mass of the parti-
cles.

The Alfvén branch, on the other hand, shows several in-
teresting features. For very small wave numbers it is non-
dispersive, with an Alfvén velocityvA that depends only on
temperature, not wave amplitude. As wave number increases,
a maximum frequencyωcrit, corresponding to a critical wave
numberkcrit, is reached. This upper cutoff depends both on
wave amplitude and temperature. Thus, as temperature in-
creases, Alfvén waves are confined to an ever narrower fre-
quency bandwidth.

In a fluid model, important effects such as Landau damp-
ing are absent. Thus, a kinetic description is necessary. We
have considered this problem too, studying the same prob-
lem, but based on the relativistic Vlasov equation, in order
to account for kinetic effects in the direction of the magnetic
field. The dispersion relation of the waves is found and nu-
merically solved. Results are qualitatively consistent with the
fluid model: the effective plasma frequency decreases, and
the frequency range of the Alfvén branch is reduced when
the temperature is increased, so that electromagnetic waves
propagate in a larger frequency range with respect to the cold
case, whereas for Alfvén waves the opposite occurs, being
confined to a frequency range that is narrower than in the
cold case.

However, quantitative results are different in both models.
Regarding the electromagnetic branch, it is found that the ef-
fective plasma frequency is always larger in the kinetic model
as compared with the fluid one. Thus, kinetic effects reduce
the transparency of the plasma. As to the Alfvén branch, in
both models it is found that the Alfvén speed decreases with
temperature. In the fluid model, the Alfvén speed is zero for
infinite temperature. However, in the kinetic case there is a
critical, nonzero value of the temperature at which the Alfvén
speed is zero. For temperatures above this critical value, the

Alfvén branch is suppressed. The critical value depends on
the background magnetic field. For larger values of the mag-
netic field, the critical value increases, and thus Alfvén waves
can propagate for larger temperatures.

We also studied the fluid dispersion relation of the waves
for nonzero drift, thus generalizing the numerical results in
Sect.2. Besides, this analysis allowed us to study the depen-
dence of the relativistic Lorentz factors on the drift, which
was later used to study the kinetic model as detailed in
Sect.3.4.

We are also interested in the nonlinear evolution of the
large-amplitude waves studied in Sects.2 and 3. Thus, we
have also studied the parametric decays of this wave, in the
context of the fluid model. We study the appearance, the
growth rate and instability range of the decays for various
temperatures and pump wave amplitudes. We also consider
pump waves in three possible regions: in the Alfvén branch
(near the origin and in the anomalous zone), and in the elec-
tromagnetic branch. There are both resonant and nonreso-
nant couplings when the pump wave is present. For high
enough temperatures, though, most of the wave couplings
disappear. For certain wave couplings there is a threshold
pump wave amplitude, such that instability arises only above
the threshold.

Finally, we have shown the consistency of the results
above with those obtained from a relativistic PIC simulation.
The existence of an electromagnetic and an Alfvén branch,
the decrease in the effective plasma frequency and the Alfvén
velocity with temperature, the confinement of the Alfvén
branch to a narrow region of wave numbers and frequencies
as temperature is increased, and the dispersion relation of the
parametric decays, have been shown to agree qualitatively
and in some cases quantitatively with both analytical models.

We expect to improve further on these results. For in-
stance, we have not studied the damping due to kinetic
effects. Another improvement would be to consider a ki-
netic model with a three-dimensional, rather than one-
dimensional, particle velocity distribution. Also, kinetic ef-
fects on the parametric decays need to be introduced, and
some analytical results are available for the relativistic case
(Muñoz et al., 2006). We have also studied the nonlinear evo-
lution of electromagnetic waves in this system by means of
the NLS equation, finding conditions for the existence of en-
velope solitons (Asenjo et al., 2012), localized structures that
can also be found in our simulation runs, and we plan to in-
vestigate further these and other issues related to the prop-
agation of nonlinear waves in relativistic pair plasmas else-
where.
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