Nonlin. Processes Geophys., 21, 2236, 2014
www.nonlin-processes-geophys.net/21/217/2014/
doi:10.5194/npg-21-217-2014

© Author(s) 2014. CC Attribution 3.0 License.

$s920y uadQ

Large-amplitude electromagnetic waves in magnetized relativistic
plasmas with temperature

V. Mufioz!, F. A. Asenjc?, M. DomingueZ, R. A. LépeZ, J. A. Valdivial, A. Vifias®, and T. Hada®

1Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

2Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibafiez,
Santiago, Chile

3NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Greenbelt, MD, USA
4Department of Earth System Science and Technology, Kyushu University, Fukuoka, Fukuoka Prefecture 812-8581, Japan

Correspondence tdv. Mufioz (vmunoz@fisica.ciencias.uchile.cl)

Received: 16 September 2013 — Revised: 28 November 2013 — Accepted: 6 December 2013 — Published: 14 February 2014

Abstract. Propagation of large-amplitude waves in plasmasthe temperature at which the Alfvén speed is zero. For tem-
is subject to several sources of nonlinearity due to relativisticperatures above this critical value, the Alfvén branch is sup-
effects, either when particle quiver velocities in the wave pressed; however, if the background magnetic field increases,
field are large, or when thermal velocities are large due tothen Alfvén waves can propagate for larger temperatures.
relativistic temperatures. Wave propagation in these condi- There are at least two ways in which the above results can
tions has been studied for decades, due to its interest in sewe improved. First, nonlinear decays of the electromagnetic
eral contexts such as pulsar emission models, laser-plasmaave have been neglected; second, the kinetic treatment con-
interaction, and extragalactic jets. siders thermal effects only along the direction of propagation.
For large-amplitude circularly polarized waves propagat-We have approached the first subject by studying the para-
ing along a constant magnetic field, an exact solution of themetric decays of the exact wave solution found in the context
fluid equations can be found for relativistic temperatures. Re-of fluid theory. The dispersion relation of the decays has been
lativistic thermal effects produce: (a) a decrease in the efsolved, showing several resonant and nonresonant instabili-
fective plasma frequency (thus, waves in the electromagnetities whose dependence on the wave amplitude and plasma
branch can propagate for lower frequencies than in the coldemperature has been studied systematically. Regarding the
case); and (b) a decrease in the upper frequency cutoff fosecond subject, we are currently performing numerical 1-D
the Alfvén branch (thus, Alfvén waves are confined to a fre- particle in cell simulations, a work that is still in progress, al-
quency range that is narrower than in the cold case). It is alsthough preliminary results are consistent with the analytical
found that the Alfvén speed decreases with temperature, besnes.
ing zero for infinite temperature.
We have also studied the same system, but based on the
relativistic Vlasov equation, to include thermal effects along
the direction of propagation. It turns out that kinetic and fluid 1  Introduction
results are qualitatively consistent, with several quantitative
differences. Regarding the electromagnetic branch, the effeddue to their interest both in astrophysical and laboratory
tive plasma frequency is always larger in the kinetic model.plasmas, relativistic electron—positron plasmas have been a
Thus, kinetic effects reduce the transparency of the plasmasubject of study for decadeR(ffini et al, 2010. In astro-
As to the Alfvén branch, there is a critical, nonzero value of physics, they are relevant in systems such as accretion disks
around black holesBjérnsson et a).1996 Liang, 1979
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218 V. Mufioz et al.: Large-amplitude waves in relativistic plasmas

White and Lightman1989, models of the early universe siders thermal effects only along the direction of propagation.
(Gibbons et al. 1985 Tajima and Taniuti 1990 Tatsuno  In order to address the first subject, we have also studied the
et al, 2003 Lesch and Pohll992), supernova remnants and parametric decays of the exact wave solution found in the
active galactic nucleiHardy and Thoma200Q Reynolds  context of fluid theory I(6pez et al. 2012, results that are

et al, 1996, pulsar magnetosphereSuyrtis, 1991, Istomin shown in Sect4. There are several resonant and nonreso-
and Sobyanin2007 Manchester and Taylprl977 Stur- nant instabilities, whose dependence on the wave amplitude
rock, 1971), magnetars (neutron stars with magnetic fieldsand plasma temperature are studied systematically. Regard-
up to ~ 10" G) (Beskin et al. 1993, hypothetical quark ing the second subject, thermal effects in all directions with
stars Usov, 1998, and gamma-ray burstdifan 1999 respect to the background magnetic field can be readily taken
2004. Regarding laboratory plasmas, they have been coninto account in numerical simulations. Thus, we are currently
sidered in the study of ultra-intense laseBdaGchke et aJ.  performing numerical 1-D particle in cell simulations, a work
2006, and in laboratory and tokamak plasmaaitk and  that is still in progress,L(0pez et al. 2014 although prelim-
Greaves 1995. For instance, recent experiments on rela-inary results, shown in Seds, are consistent with the ana-
tivistic electron—positron creation with short ultra-intense lytical ones. Finally, in Sect6 results are summarized and
laser pulses~+ 10°°Wcm~2) have been performedChen  discussed.

et al, 2009, where measurements indicate the positron den-
sity to be~ 10%cm=3. Electron—positron pair production

is also expected to occur in large tokamaks, where up tf
about~ 10 positrons may be created in collisions between

runaway electrons and background particldglander and L . .
cold nonrelativistic plasmas. For instance, circularly pola-

Ward 2003. : X . )
; . rized Alfvén electromagnetic waves propagating parallel to
Of particular interest are effects related to wave propaga- L .
L . -~ an external magnetic field are an exact solution of the mag-
tion in these plasmas, such as proposed pulsar radio emission

processesL{uo et al, 2002, bulk acceleration of relativistic g?;oehg;?gggagg ﬁgﬁ@l(;qsg%/ellg)he; ctir;iu;rﬂshgfe IS
jets (wamoto and Takahay2009), jet fo'rmanon' Gawyey larized wave in a multiple ion species plasma with drifts
2.008. Wardle et al, 19.98' electron—positron pair annihila- . is a finite-amplitude solution of the cold plasma model
tion into one photon in the presence of a strong magnet'C(Gomberoff et al.1994. The nonlinear propagation of cir-
field (Harding 1986, and also in laboratory environments, in ' :

problems such as pair production by optical lasBiagchke cularly polarized electromagnetic waves in unmagnetized
et al, 2006 Chen et al.2011) electron—positron—ion plasmas has also been studied in the

In several of the environments mentioned above, relati-COId (Berezhiani and Mahajai994 and relativistically hot

- . (Berezhiani and Mahajat995 cases, showing the existence
vistic effects and temperature play an important role, thus )
of stable localized structures.

it is fundamental to understand wave propagation modes in . .
L . : . Here we propose an approach that permits one to find
relativistic plasmas with temperature. In this paper we will . . . L
: : . an exact solution for the propagation modes in a relativistic
focus on the particular case of circularly polarized electro- . ; .
maanetic waves. which. thouah simple. allows us to stud ineIectron—posﬂron plasma with constant, arbitrary tempera-
9 ’ : 9 Pe, y ture, within the context of a fluid theory. This can be done

detfml the effe_c'F O.f relativistic temperatures on wave propa-by basing our approach on the magnetofluid field unification
gation in relativistic hot plasmas. formalism Mahajan 2003
First, in Sect.2 it is shown that an exact solution can In this unification approach, the whole plasma is treated as

be found for the fully relativistic fluid equations, including . field wh he el i field i | ith
relativistic temperaturesAéenjo et al. 2009. The disper- aunigueie dW. eret ee ectromagngtlc leld is coup ed W't.
y X the charged fluid field through a function that carries statisti-

sion properties of the wave are studied, showing that two__- . ! ) .
. cal information of the system. This leads to a simple and el-
branches appear, an Alfvén branch and an electromagnetic

one, and also showing that relativistic effects increase th egant way of describing relativistic plasmas. The formalism

plasma transparency, and confine the Alfvén branch to }as also been used successfully to study wave propagation in

. relativistic two-fluid plasmasSoto-Chavez et gl2010, to
lower frequency and wave number range. Then, in Sct. . L . o N
. . . . . find equilibrium states via a variational principleifio et al,
the problem is considered from the point of view of a ki- 2010, and has been extended to non-Abelian fields in order
netic model Pominguez et a).2012. Although qualitative ’

agreement with the fluid results is found, a major differenceto study quark—gluon plasmaB4mbah et &) 2008.

between both models is the fact that, in the kinetic one, the, In this paper, we use the approach presentedaliajan

Alfvén branch is suppressed if the plasma temperature ié.zooa to dem;e th_e d|sper5|?n relation for g:lrcullarly pola-
large enough. rized waves of arbitrary amplitude propagating along a con-

There are at least two ways in which the above results can tant magnetic field, for arbitrary temperatures.
be improved. First, nonlinear decays of the electromagnetic
wave have been neglected; second, the kinetic treatment con-

Exact solution of relativistic fluid equations

Exact solutions for the plasma equations can be found for
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V. Mufoz et al.: Large-amplitude waves in relativistic plasmas 219

2.1 Magnetofluid unification the continuity equation

Usually, the interaction of particles with electromagnetic 3& 1V, (n.v ) 0 (6)
fields is described by introducing a “minimal coupling” in 9t R
the momentump — p—eA/c, whereA is the vector poten- and Maxwell equations. These yield
tial. This leads to an energy-momentum conservation equa-
tion. This equation and Maxwell equations describe the basioy . g — 457¢ (np—ne) , (7)
dynamics of charged relativistic particles in plasmas.

It has been suggestetiléhajan 2003 that the coupling
of a relativistic charged fluid, at a given temperature, with y . p _ 4_7TJ 10E ®)
the electromagnetic field can be described by an antisym- c c ot
metric field tensor that contains the statistical information of and, in the Lorentz gauge,
the system. Thus, the set of equations to describe the plasma
dynamics in the homentropic regime, for specjesre the 1 924 ) A A
Maxwell equations, the continuity equation, and the equationz 5.7 — v A=—_—J=— Zqi"j v 9)

J

qujMM;ll:O. (1)
_ . Also, we will considerp; =nT;, wheren =n;/y; is
The field M;is the tensor that couples the electromag- ihe plasma density in the rest franfesgnjo et al, 2009.

netic and fluid fields. This tensor is definedM#” = FM + An alternative form of Eqg.4) can also be found in terms
(mjc®/q;) S;.“’, with F/*” as the electromagnetic tensgyjis  of the enthalpy density (Gomberoff and Galvad 997).
the charge, and where the new antisymmetric te6§,‘(‘5r= The formalism of magnetofluid unificationM@hajan

) ) w\ ) 2003 is very general and allows us to study the dynamics of
o (fj Uj) —9 (ijj ) is introduced, representing the re- 5 charged fluid (plasma) in an electromagnetic field in a uni-
lativistic thermal fluid. HereU;‘ — (yj.yjvj/c)isthefour-  fied way, treating them as a single field. On the other hand,

velocity of the fluid,v; is the species velocity, it also provides a general framework to study various plasma
o\ —1/2 o\ —1/2 physics phenpmena, tgklng into account_ relativistic temper-

(4 V5 _(1 V5 5 ature effects in a consistent way. In particular, the effect of
Vi=\+—2 T2 ’ @) relativistic temperatures on wave propagation in plasmas can

be studied systematically. For the sake of simplicity, here we
andc is the speed of light. will consider an equal mass electron—positron plasma, where
The parametey; is a function of the temperatute. An 3 circularly polarized electromagnetic wave propagates along
explicit form for f(7;) can be obtained by assuming a given 3 constant background magnetic field.
statistical behavior for the gas. For instance, if the system fol-

lows a Maxwell-Jattner equilibrium distributioBérezhiani 2.2 Circularly polarized waves
and Mahajan1995 Mahajan 2003,
We consider a circularly polarized wave that propagates in

m ‘L‘2 . . . .
K3 <kz:T,-> the direction of a constant background magnetic field along
J(T) = m =fj» (3)  thez axis. Thus, the electric and magnetic fields are given by
2\ 57

Eo(z,t) = E [sin(koz — wot) X — coS(koz — wot) )7] ,  (10)

where K, and K3 are the modified Bessel functions of or- L A )
Bo(z,1) = B[cos(koz — wot) £ + sin(koz — wot) §] + Bo:2, (11)

ders 2 and 3, respectively, akd is the Boltzmann constant.
However, within the treatment carried out in this paper, no
explicit description for the functiorf is needed, and all the
analytical and numerical results that follow are independen
of the underlying particle distribution function.

Then the plasma dynamics turns out to be given by th

respectively, wherég is the wave number andy is the fre-
guency of the monochromatic wave.

Y The amplitudes of the electric and magnetic fields can be
erelated by Maxwell’s equations as

momentum equatiorMahajan 2003 E=%p (12)

0 qj 1 Cko

—+v; V) (fivjvj) == E+>v;xB)———Vp;. (4) . ”

ot mj ¢ mjn; Electrons and positrons have equal constant densiiies
which is the spacelike component of Ed),(with p; the  7e=n, and equal constant drift velocitiego = v-0Z, so that
pressure of species the pressure equation their velocity can be written as; = v + v.0, Wherev,; is

5 _ 5 transverse with respect to the background magnetic field. We

—+v;-V)pj= mj”_JCZ —+v;-V)fj, (5) will also denote their mass byp = me = m, and their charge

ot ' ' Vi ot by gp = —ge=e.

www.nonlin-processes-geophys.net/21/217/2014/ Nonlin. Processes Geophys., 2123672014



220 V. Mufioz et al.: Large-amplitude waves in relativistic plasmas

In principle, we assume that electrons and positrons have Finally, this leads to the following dispersion relation for
constant but different temperatures, so tfia# fp. It turns  an electron—positron plasmagenjo et al.2009:
out, as we will see below, that the purely transverse circu-
larly polarized wave is an exact solution of the field equa- 2 _ .22 _ Z wz( @ ) ’ 1)
tions, which is consistent with the assumption of no pressure = P\ fivjo — Q)
fluctuations, that is, no fluctuations jfi

The particle velocities induced by the wave field are purely, i, wp = \/m the electron plasma frequency. This
transverse, hence the amplitude of the circularly polarizedyighersion relation is an exact solution of the plasma equa-
velocity is proportional to the constant amplitude of the Cir- ;< for finite-amplitude circularly polarized propagating

cularly polarized vector potential field (which can be easily |\ 5\ along the magnetic field in a relativistic plasma with
shown in the Lorentz gauge, for instance), and the relatiViStiCtemperature.

factor, which can be written as It is interesting to note that Eq2{) differs from the cold
V2 2\ —1/2 plasma caseMatsukiyo and Hada2003 only by a fac-

yi = <1_ 4o @) ’ (13) tor f;. We can understand this as follows. For single par-
2 2 ticle motion, it is possible to convert a non-relativistic re-

_ _ sult into a relativistic one by changing; — y;m;. This is

is constant for both species. _ _ possible because mass is involved in the momentum equa-
This suggests that it is convenient to rewrite Maxwell's tion. However, this simple replacement is not possible for

equations in terms of the transverse veloaity, yielding a 5 fiuid, since velocity is related nonlinearly to momentum

wave equation for the vector potential throughy ;. Therefore, the average on momentin) is not
1 52 . gquivalent tofy;)(m;jvj). We can think, though, thqt_there
<V2 — —2—2> A=——],, (14) is some proportionality factor between both quantities, say
ce ot ¢ fj, such that(p;) = f;(y;)(m;v;). Thus, it would be pos-
where sible to convert a nonrelativistic fluid force equation into a
relativistic one with the same prescription as for single par-
J:= qunjv,j (15) ticles, (mjv;) — (p;), but, in order to take into account the
j statistics,m; — f;y;jm;. This is exactly what is needed to

. . , go from the cold fluid dispersion relatiorf{=y; =1 in
is the transverse current. The wave Elgl)( Poisson’s equa- Eq.21) to Eq. @1).

tion for the electrostatic potential For fy = fe=1 and no drift, the dispersion relation for a

V2<p — _4y qunj’ (16) cold relativistic plasma is rfzcoverematsukwo and Had,g
7 2003 Gomberoff and Galvdal997. The same result as in
Matsukiyo and Had#2003 can be obtained from a kinetic

the motion Eq.4), and the continuity equation approach Mufioz et al, 2006, in the limit where the velo-
In city distribution is a Dirac delta (see, e.g., Eq. (23Mafioz
B_t] =-V-(nv)), (17) etal, 2009.

At the opposite limit of very high temperature, the trans-
are the complete set of fluid equations that describe the/erse mode becomes a light madé? = w?, consistent with
plasma. the relativistic decrease in the effective plasma frequency.

Defining complex transverse quantities in the form
2.3 Analysis of the dispersion relation

CJ_ = Cx + lC) s (18)

_ In the rest of this paper, we will consider the case where both
we find that species have the same temperature, so fhat fe= f. In
€\ = Celtkoz—o0n (19) order to study the dispersion relation E§1Y we will nor-

malize all frequencies to the positron gyrofrequesky, =

Q¢, and velocities to the speed of light It is convenient

to define two adimensional parameters, related to the plasma
frequency and to the wave amplitude,

Then, the particle velocity in the wave field can be written in
terms of the wave magnetic field assenjo et al, 2009

o' q;BL
= : 2 2
Vj, fivio —Qcj mck ) (20) Yy ®p _ elA| _ e|lE | _ e|B] | 22)
Q2’ mc2  mco  mc?k

whereQ.; = qjBo/mc andw’ = w — kv,g are the gyrofre-
quency for both species and the Doppler shifted frequencyNotice thate corresponds to the particle transverse momen-
respectively. tum due to the wave.

Nonlin. Processes Geophys., 21, 21736 2014 www.nonlin-processes-geophys.net/21/217/2014/



V. Mufoz et al.: Large-amplitude waves in relativistic plasmas 221

In order to plot the dispersion relation, Eq&.3), (20), 5
and @1) are solved simultaneously for;, v; |, andw, for
a givenk, as outlined irMufoz et al.(20086.

In Fig. 1 the dispersion relatior2(Q) is plotted for various
values off, and fora = 1,« = 0.1. There are two branches:
an electromagnetic branch, with a lower cutoff at the effec- .
tive plasma frequency, and an Alfvén branch, which has an%
upper cutoff in wave number, and an upper cutoff in fre-
guency.

The solid line corresponds to the relativistic cold plasma,
f = 1. It can be seen that, as mentioned in SB@&, when
the temperature increases the effective plasma frequency de
creases, and the electromagnetic wave becomes a light wave
This effect can be better appreciated in Figwhere the ef-
fective plasma frequenczyvgff (given by the lower frequency
cutoff for the electromagnetic branch in Fib.is plotted for
the same values of used in Fig.l. wgﬁ also decreases due
to the relativistic effect on the mass, and thus we plot it as
a function ofa as well. However, for high enough tempera-
tures, the variation of the plasma frequency with wave am-
plitude is negligible. 2 '

Regarding the Alfvén branch, Fid. shows that it starts
at the origin following the usual linear dispersion relation,
w = vak. In this region,yp, ye ~ 1. Then, the Alfvén velo-
city can be obtained from Eq2() by first rewriting it in the
form: S

3

Fig. 1. Electromagnetic and Alfvén branches for the general disper-
sion relation, Eqg.41), for a = 1, « = 0.1. Solid line: cold plasma
case ( = 1); dashed linef = 2; dotted line:f = 10.

2

272 _ 2 2 w
ck“=w —wapm

If wf <« Q¢ which is always satisfied for low enough
frequencies, we find that the Alfvén velocity is given by

1 2
c (23) 0 3

[14+2fw2/92 o

. . Fig. 2. Effective plasma frequencxyjEff as a function of wave am-
p
As wave number increases along the Alfvén branch, ther":"plitude «, for various temperatures. Solid line: cold plasma case

is an upper frequency cutoffei given by (f = 1); dashed linef = 2; dotted line:f = 10.

Wcrit 1 o
Iy . (24)
Q f[ <f> ]
‘ follows that

Thus, when temperature increases, Alfvén waves are eventu-
ally confined to a very narrow frequency band. This can also
be seen in Figl.

Another '“teres“f_‘g feature of the Aliven branch is the where the plus (minus) sign corresponds to positrons (elec-
eX|_stence of a maximum value for the wave ”“mmax- trons), so the dispersion relation EQ1) can be written as
This upper cutoff occurs because one species (positrons, in
this case) becomes ultra-relativistic, essentially moving with w2
the speed of light in the wave field, thyg, = co. Electrons  ¢?k2 = w? — — (v1, —v1,) . (26)
do not resonate with the wave, $g is finite. In order to xc

obtain an analytic expression for the wave number cutoff forThe cutoff occurs for = 0, and in this limitv, , ~ —c (no-

the Alfvén branch, let us first notice that, from EQ0), it tice that the left-hand term in EQ5 is negative along the
Alfvén branch for all values dof), whereas, . becomes neg-
ligible. Thus, it follows that the maximum wave number is

Vg =

1vLj

= , 25
yiw— Qc; o c (25)

www.nonlin-processes-geophys.net/21/217/2014/ Nonlin. Processes Geophys., 2123672014



222 V. Mufioz et al.: Large-amplitude waves in relativistic plasmas

given by electron—positron plasma is solved. This corresponds to a
wp generalization of the numerical results shown in S2etnd
kmax = o (27) by Asenjo et al.(2009, for the case of a plasma with con-

This | istent with th ical It Noti stant longitudinal drift velocity. Then, the basic equations
IS 1S consistent wi e numerical result in FigNotice, of the kinetic model are presented in S&2 In Sect.3.3

in particular, thakmax depends only on wave amplitude, not dispersion relation of this wave is calculated. Then, in

on temper.atu.re. One coglq argue that, if the transygrse Palsact.3.4the kinetic dispersion relation obtained in S&x8
ticle velocity is ultra-relativistic, then thermal velocities are

not relevant is solved numerically, and results are compared with the cor-
S . . , responding fluid treatment. These results can also be found
Considering the change of sign ofo@ddk in the Alfvén P 9

branch, fork < k(werit) and k > k(wcrit), we will identify in Dominguez et al2012.

these regions as the normal and the anomalous zone of the 1 Fjyiq dispersion relation with drift

Alfvén branch, respectively.

We start by defining normalized variables= w/Q¢, y =
ck/ ¢, andB = p,/(mc), so that Eqg.21) can be written in

3 Kinetic model . )
normalized form as:

In Sect.2, an exact solution in the context of fluid theory was 2

- . . . 2 o Wp xyj—yB 1
obtained for a circularly polarized wave propagating along a0 = y* — x“ + =5 —, (28)
constant magnetic field in an electron—positron plasma with §2¢ j=p.e fxvi=yB)—0j v

temperature, and its temperature dependence was studied nu- _ ) N

merically. Relativistic thermal effects produce: (a) a decreas&n€reo; is the sign of the charge of specigso thap = 1,

in the effective plasma frequency (thus, waves in the electro@1doe = —1. o _ o
magnetic branch can propagate for lower frequencies than in N order to solve the fluid dispersion relation given by
the cold case); and (b) a decrease in the upper frequency culd- @8), the roots of the following quartic equation fpy

off for the Alfvén branch (thus, Alfvén waves are confined to Must be found:

a frequency range that is narrower than in the cold case). 4.2  32f

These results have been found in the context of a fluid® = Vi fo=v; <
model. However, effects such as Landau and cyclotron damp- 2
ing are absent in such a model, and thus it would be interest- ),,2 M _ (1+ /32> f2 — a2
ing to study to what extent the fluid results are modified by ! x?
kinetic effects. Many works have been devoted to the study of 2 ) 5
kinetic effects on wave propagation in relativistic electron— +7; [<1+ﬁ )f (vBf +0;) + yBer ]
positron plasmas, either in the absence of a magnetic field 1 ) 2 25 o
(Mufioz 2004 Liu and Liu, 2019, to analyze the counter-  — [(1+ﬂ )(yﬂ +0j)" + y B ] : (29)
streaming plasmas in pulsar environmen@rflon and Mel-
rose 2011), to study the effect of nonlinearities and wave  Equation 29) is the generalization of Eq. (15) Mufioz
damping Chaudhary et 812010, to model the propagation et al.(2000 for f # 1 andg # 0. In Sect2 the casef # 1
of Bernstein wavesGill and Heyl 2009, etc. was solved Asenjo et al. 2009. We now consider the gen-

In this section, we study the propagation of a large-eral case given by Eq29), to solve the dispersion relation
amplitude circularly polarized electromagnetic wave in agiven by Eq. 28) for both nonzero temperatureg ¢ 1) and
magnetized plasma, analyzing the consistency of the resultgonzero drift velocitiesg # 0).
obtained in Sect2 with those obtained from a kinetic treat-  To do this, we first choose fixed values for g, f and
ment Mufioz et al, 2006. In effect, the same system is «, and a trial value forx. Equation 29) is then solved for
studied, but starting from the relativistic Vlasov equation. yp andye. Only solutionsy; > 1 are physically acceptable.
The corresponding kinetic dispersion relation is numerically This yields several possible paifg,, ye). Each possible pair
studied for various temperatures, and results are compareeorresponds to a different branch of the dispersion relation.
with the purely fluid treatment. In our treatment, we assumeWhen a pair is chosen, then the right-hand size of £8) (
that kinetic effects are only important along the propagationcan be evaluated. However, it turns out that, in general, the
direction, which makes it necessary to generalize the resultsumber of acceptable solutions of EG9) for ye andyy is
in Sect.2, and to study the fluid dispersion relation ER1), greater than 2, and this number changes for each valge of
but in the presence of drift. This issue complicates the choice)gf

In order to gain intuition for developing the posterior ki-
netic analysis, in SecB.1, the fluid relativistic dispersion
relation of a circularly polarized electromagnetic wave prop-
agating along a constant background magnetic field in an

(vBf +0))

Nonlin. Processes Geophys., 21, 21736 2014 www.nonlin-processes-geophys.net/21/217/2014/



V. Mufoz et al.: Large-amplitude waves in relativistic plasmas 223

This is illustrated in Fig.3. For given values ofy,
a, and f, we solve Eq. 29) for a certain value ofx
and 8, obtaining four roots;/;"). We sort them such that

Re/V <Rey!? <Rey(¥ <Rey*. Figure3 shows, for a cer-

tain range of values of and 3, the regions where theh
branch for pOSitI’OﬂSy(s), is physically acceptable, that is,
real and greater than 1.

Figure 3 shows that forx > 0.8, approximately, there is
only one possible choice/,,§3). However, for lower values
of the frequency, there is a range of values fofwhere
more than one choice ofp is possible. For instance, for
x =0.400087,y = 0.3 andB = 4.4, the three possible values
areys” = 4.12392,? = 572992, ands> = 5.86722.

With a similar analysis in the case gf, now we choose
one of the possible branches fgy, and one of the branches
for ye, and we can calculate the right-hand side of E8) (
by solving for the value of for which it is zero. Notice that 10
it could still be the case that a chosen pa#, ye) yields an
Eq. 28) with no real solutions fok. It turns out that there is
only one choice of they, yp) pair for which a real root of
Eqg. 28) can be found.

In Fig. 4 we plot the solutions of the dispersion rela-
tion (28), obtained by the method outlined above. The solid
line, B =0, corresponds to the solution previously shown in
Fig. 1 (Asenjo et al. 2009, which shows that our treatment
leads to the correct limit in the absence of drift.

Notice that the Alfvén branch is much more sensitive to
variations in drift than the electromagnetic branch. For small _6
values of the frequency, it follows the usual linear dispersion
relation,w >~ vak, with v the Alfvén speedv, can be cal-
culated by noting that, in this regiop, ,, v ~ 1+ g2, and
by settingw <« Q¢ in Eq. 1). This yields

(ea

S N B~ N

10 T
10
va  20BVIHF2+va0) (14 2) 3o+ 2/ 1+ f2 o) ©) 3
¢ viov1+ B2 +2f (14 5?) ’ 5 6
where 4
2
Q L |
vao= — @y =0 2
is the Alfvén velocity in the nonrelativistic cold fluid case. 51 6 _
For 8 =0, the result in Eq.43) is recovered, which we 8
can rewrite as 10

|

VA_ b0 (32) 180 i 2 3

¢ vist2f X
In Fig. 5we plot the Alfvén velocity. In principley4 depends  Fig. 3. Isocontours of real solutions of Eq29) as a function
both on the drift velocity and the temperature. For illustration of normalized drift and normalized frequency, for positrons.
purposes, in Figh we have first taken a fixed temperature Each panel corresponds to a different bramqﬁ,), for the roots
(Fig. 5a), and then a fixed drift velocity (Fidgpb). Qualita-  of Eq. 29). A few contour levels are shown. Physically acceptable
tively similar results are obtained for other choicesfadind ~ solutions are in the regions wheyex, ) is real and greater than
B. What is important to notice is that the drift velocity and the 1. Fixed valuey = 0.3, = 0.1, and f = 1 were taken. (&) =1,
temperature have the opposite effect on the Alfvén speed: (P)s =2, and (C}s =3.
increases witt8, and decreases witfi.
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5 1.0
(a)
0.9 .
0.8 .
=
= =~
0.7 .
0.6 N
| | | |
09 1 2 3 4 5
p
y
Fig. 4. Solutions of the dispersion relation EQR1} for f =1, | :
a=0.1,v40 =1 (see Eq.31) below), and three values gf 8 =0 (b)
(solid line), 8 = 0.1 (dashed line)g = 0.2 (dotted line). 0.6 1
3.2 Kinetic model
2
In our treatment, we consider kinetic effects only along a =" 4} .
background magnetic fiel#o,z, and a cold fluid model in
the perpendicular directiorMufioz and Gomberoff2002
Mufioz, 2004).
As in Sect.2, the electromagnetic fields are described by
Egs. (L4)—(16), whereas the fluid is described by the continu- 0.2 ‘2 21 ' EI; 00
ity equation {7) and, in the transverse direction, the motion 6
equation 4) with zero temperature: f

d 1 Fig. 5. Alfvén velocity, Eq. 80), fora = 0.1,v40 = 1. (a) For fixed
<E Tj 'V> (vv)) = P (E T % B> : (33) temperature,f = 1, as a function of the drift velocity. (b) For
fixed drift velocity, 8 = 0, as a function of temperature, parameteri-

For the longitudinal direction, we consider the one- zedbyf.
dimensional Vlasov equation:

& +v-Vg;+ 4 (E + Ev x B) V,g;=0, (34) 3.3 Kinetic dispersion relation
ot m; c '

As in Sect.2, we now consider an electromagnetic wave
propagating in the electron—positron plasma. In the absence
of the wave, the plasma is considered to have no electric field,
a uniform background magnetic fielBp,z, equal densities

for each speciesifg = n,0 = no), and equal drifts for each

. . : ._species¥;o = v;02).

with n ;o as the equilibrium unperturbed density for species We consider a circularly polarized wave that propagates

J, and Poisson Eq16). _ along the axis, whose electric and magnetic fields are given
Thus, the total density and transverse current are given b)by Egs. (0) and (L1).

whereg; is the velocity distribution function for specigs
normalized so that

/dvgj(r,v,t)=nj0,

In terms of the transverse quantities Etg)( Maxwell and

nj :Zfdvgj (r,v,1), (35)  Viasov equations yield:
J
2
J, = ~/dv i(ryv, D v, 36 > 139 _ 4 _ o
d ;qf 8J Jt (36) <V T 292 AJ'__E;C]] dpvjigj(x,v,1).

respectively. (37)
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On the other hand, in order to introduce kinetic effects, wewith a given longitudinal drif{8. Thus, the equation to solve

consider the following form of the distribution function:

gj=no§j(z,17z,t)8(px—pf)S(py—pf) , (38)

in order to findy is Eq. 9), with f = 1. It must be solved
for each point in the8 axis, and once the integration is com-
plete, the right-hand size of Eql@ can be evaluated. Thus,
rather than finding a value of, sgy to generate the electro-

wherep/ is the transverse particle momentum obtained with .ma_lg.netic branch in the fluid dispersion relation, the proper
the cold fluid theory. In the absence of the wave, the adimeninfinite set of valueg.(g) must be found.

sional distribution function in Eq.38) must satisfyg.o =
&po, so that densities are equal.
Then, Eq. 87) can be written in the form:

1 92 4mno =
j

Note that we need to know;, in order to be able to

If only two physically acceptable values ¢f were ob-
tained for each value g8, then the problem would still be
easy, since one of them would correspond to the electro-
magnetic branch, and the other to the Alfvén branch, and
there would be no ambiguity in the calculation of the inte-
gral. However, as shown in Se@&.1, several values of;
are possible, both for electrons and positrons. Moreover, the
problem is now more complicated, since in the kinetic case,

solve the dispersion relation. To do this, we consider that inthere is an integral oves, thus a choice of branches fgy
the direction perpendicular to the magnetic field, the equaimust be made at each point of the integration path, and since
tions governing the system are the fluid equations, so that ththe number of valid values of; changes wittg (see Fig3),

transverse velocity is given by EQR®). In Dominguez et al.
(2012 it is shown that the following dispersion relation is
obtained:

(,()/

_ 122 2 2

gjo-

3.4 Numerical solution of the kinetic dispersion relation

We now solve the kinetic dispersion relation E4Q) First,
it is convenient to write it in normalized form;

fdﬂM&ozo,

2
“p
g xyj=By—oj v

a2 2

Cj=p.e

y2 —x%+ (42)

there is no guarantee that a choice for a giges valid along

the complete integration path. In fact, we have found that this
is not the case in general. By studying several families of pa-
rameters, we concluded that it is very difficult to find a gen-
eral, reliable algorithm to automate the choice, and some trial
and error is still involved in the results presented here.

The rest of the numerical procedure is equivalent to the
fluid case: once a proper choice pf(x, 8) is made, it is
used to find a value of such that Eqg.41) is satisfied, and
the process is repeated for a different value .of

Figure 6 shows the solution of the dispersion relation
Eq. (21) for three different temperatures. This figure should
be compared with Figl, where three temperatures corre-
sponding tof = 1, 2 and 10 were considered.

We should first notice that, in the Alfvén branch, which

~ There are two main issues to consider at this point. Onéiarts at the origin, there is a small-frequency region where
is the choice of the distribution function, and the other is theno modes are found (in this case~ 2). This is a result

choice ofy;.

of the technical issues regarding the choiceypfat each

Regarding the distribution function, since we are inter- hqint of the integration path, and illustrated in FigOn the
ested in comparing the kinetic dispersion relation with the jiner hand, the electromagnetic branch (for all wave num-

results in Sec®, which include the effects of relativistic tem-
perature, we takg,o = g.0 = go as a Maxwell-Boltzmann—
Juttner distribution:

o H@A+BAHY?

go(B, )= 2meKa(0)

Thus, in the kinetic treatment, thermal information is con-

tained in the normalized inverse temperature parametar
the fluid treatment described in Se2tthermal information
is contained in the parametgr

bers) and the Alfvén branch near the origin (for small values
of x = w/ Q¢ andy = ck/ Q¢) can always be obtained with-
out ambiguities in the choice of;.

Thus, we will focus the remainder of the discussion on the
electromagnetic branch and the region of the Alfvén branch
near the origin. Solving the numerical issues near the maxi-
mum frequency in the Alfvén branch may involve either im-
proving the numerical algorithms, or improving on the cold
model for the transverse motion (E88). In fact, prelimi-
nary results from PIC simulations (Seb).suggest that the

Once the distribution function is chosen, the numerical Alfvén branch is damped in the anomalous zone, and we plan

strategy is analogous to the one outlined in S8ct, ex-
cept that an integration along tifeaxis must be done. This

to study this elsewhere.

The first result to notice is that, indeed, the same branches

means that, for each trial frequency, the corresponding valas in the fluid case are found, an electromagnetic and an
ues ofy (8) must be found. Since, in the transverse direction, Alfvén branch. For very low temperatures, the cold result is

we consider a cold fluid model, the problem of findipds
equivalent to the one discussed in S&cl. for a cold fluid

www.nonlin-processes-geophys.net/21/217/2014/

recovered (see solid line in Fid). When the temperature is
increased ¢ decreases), it is observed that the effect of the
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Fig. 6. Solutions of the dispersion relation E40f for « = 0.1 and

25
1)

50

Fig. 7. Effective plasma frequency as a function of inverse normal-

40 = 1. Solid liney = 700 (f ~ 1); dashed lingt = 50 (f ~ 1.1); ized temperaturg:. Solid line: fluid model. Dashed line: kinetic

dotted linew = 3 (f ~ 2); dot dashed ling = 0.4 (f ~ 10). Atthe ~ Model.
scale of the figure, the dashed and solid lines for the electromagnetic
branch cannot be distinguished. Also, the dotted and dot dashed

lines for the Alfvén branch cannot be seen; this occurs because, for
high temperatures, the Alfvén branch disappears, as discussed late 0.8
in Fig. 8.

0.6

temperature is to decrease the effective plasma frequencys
and to decrease the upper frequency cutoff for the Alfvén == 4
branch. It is interesting to observe that this is qualitatively
equivalent to what is obtained in the fluid theory.

However, several quantitative differences are found. First, 0.2r

in the kinetic model, the effective plasma frequency is less

sensitive to variations in temperature than in the fluid model. 0.0 i

This is shown in Fig7, wherea)gff (solution of the electro- 0

magnetic branch, Edll with y = 0) is plotted as a function
of inverse normalized temperature for both models. For
any given temperature, the plasma frequency is always highe!

in the kinetic case than in the fluid case.

Regarding the Alfvén branch, analytical results can be ob-
tained from Eq. 40), which is consistent with the numeri-
cal procedures that yield Fi§. Takingw < Q¢ in Eq. (40)
yields the Alfvén velocity 0.6

0.8

2 _ Q :‘.
et 42) =04
c Vit f2(w) P

where

g0 (B, ) B?
1 =2 | dBg ——F——, 43
s =2 [ o © (43)

Ia(u) = 2 / dBo (B, 1) y/1+ 2. (44)

The kinetic result Eq.42), as well as the fluid result,
Eq. 23), are plotted as a function ¢f in Fig. 8, for various
selected values afy.

Nonlin. Processes Geophys., 21, 21736 2014

02 / #

0.0

Fig. 8. Alfvén speed as a function of inverse normalized tempera-
ture of 1. () Eq. @2) and(b) Eq. 30) (8 = 0), for various values
of VAO-
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We notice that increasing the temperature has the effectofl 15
decreasing the Alfvén speed (FBp). The same qualitative
behavior occurs in the fluid case (Fgb). However, in the
kinetic treatment, unlike the fluid case, the Alfvén branch is
suppressed for high temperatures. The threshold temperatur 10
(proportional to~1), below which the Alfvén branch ex- -
ists, is larger ifv4g increases. That is, if, say, the density is &
constant, the Alfvén branch exists for a larger range of tem-

peratures when the background magnetic field is increased 5+ -
The threshold can be obtained from E42); by noting that

it satisfies

0,240 — I1(pumin) =0. (45) 00 I1 ‘2 3 ‘Il
Figure9 shows the value gfmin for various values ob 4. If Va0

the density is fixed, Fig@ shows that Alfvén waves can prop- Fig. 9. Minimum value ofu as a function ob 4.
agate for larger values of the temperatuyrg,i is smaller) if
the background magnetic field is increasegy(increases).

T T

Figure 8 also shows that, for a given value of (fixed 0.8- g
amplitude of the background magnetic field, for instance), )
the maximum Alfvén speed is obtained in the cold limit.

The result obtained in Eg4®) is fully consistent with the 0.6+ -
fluid model in the cold limit. In fact, ifu — oo in Egs. @3 §
and @4), thenl; — 0 andI, — 2, thus recovering Eq2(). g

In Fig. 10we plot the maximum value of the Alfvén speed =~ 0.4- ]
as a function ofv4o as given by the kinetic model (E42
with a very large value oft), and by the fluid model (E®3, 0.2L i
with f =1).

The fact that both results match shows that, in spite of the
technical issues discussed above regarding the proper choic ~ 0.§% 05 10 15 20

of y at each point in the integration path, the kinetic model

presented here still yields the fluid result in the proper limit. V

A0
Fig. 10.Maximum Alfvén speed as a function of g, obtained from
solving the kinetic dispersion relation E4Q] for very low temper-
4 Parametric decays ature (solid line), and from the fluid model, EQ3] (dotted).

4.1 Parametric decays In Sect.4.3, the dispersion relation for the parametric de-

cays is presented. In Seet.4, this dispersion relation is

In this section we will consider the parametric perturba- . .
b P solved numerically and several features are discussed.

tions of finite-amplitude circularly polarized electromagnetic
waves in a relativistic electron—positron thermal plasma,4 » Exact solution

which were found in Sec2. Although simple, this anal-

ysis will allow us to study in detail the effect of rela- |n the parametric decay analysis, the exact circularly polari-
tivistic temperatures on wave propagation and its decayzed electromagnetic wave found in Sétorresponds to the
in relativistic hot plasmas. These decays have been studzeroth-order solution. Thus, zeroth-order fields are given by
ied for electron—positron plasmas in the weakly relativistic Egs. (L0) and (L1), with the corresponding quiver velocities
limit for linear polarization Gomberoff et al. 1997 Mufioz given by (see ER0)

and Gomberoff2000, and in the magnetizedMufioz and

Gomberoff 19988 and nonmagnetized casddyfioz and o o gjBio (46)
Gomberoff 19983 with circular polarization. Similarly, de- Y19/ = fojvojwo—Qqj ) mcko |

cays of circularly polarized Alfvén waves have been studied

(Matsukiyo and Hada2003, also in the weakly relativistic ~ which can be rewritten as

regime. On the other hand, the effect of relativistic tempera- i (koz—wof)

tures has not been considered in these studies. vioj = @jnjce : (47)
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with

O[j = O'jO{ , (48)
wQ

nj (49)

"~ fojvojwo— Qj

The dispersion relation for the pump wave is (see ).
wg_czkgzzwg< )
J

4.3 Parametric decays

wo

_— (50)
fojvojwo — Qc;j

Now we introduce small perturbations on the zeroth-order

solution given by the pump wave as described in S&&.
Thus, a physical quantit¢ is written in the formC = Co +
3C, whereCy corresponds to the pump wave solution, and
ICKLC.

To first order in the perturbed quantities, we obtain the fol-
lowing set of perturbed equationisipez et al. 2012

d
fo (g +vo; - V) (v0;8v; +8v;vo;)

+ fo(8v; - V) (vojv0;) + yo; (81‘

+vo,--V> (vojsf;)

qj 1 qj 1
=—|0E+ -voj x6B |+ —6v; x Bo— ——Vip;,
m c mc mno ’
a0p ;i a6 f;
Pj _ R fj,
ot J ot
aon ;
8’;’ +noV-8v; =0, (51)
V-5E=4anj8nj, (52)
J
and
47 106E
VxéB=— i(6n;v; 0V ; - 53
X p qu( njvj+tn; "J)"‘C Py (53)

J
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so that the dispersion relation is given by

F(k, ) = det(A) = 0. (57)

The matrix elementd,;; are given explicitly inLopez et al.
(2012. This turns out to yield a polynomial equation of de-
gree 12 forw (k).

In the cold, weakly relativistic case, we recover the results
previously found byMufioz and Gomberoff1998H.

When there is no pump wave,= 0, Eq. 67) yields the
normal modes that propagate in the plasma. At this limit, it is
not difficult to show that the dispersion relatidsv] becomes

Fsp(k,w)=D,D_SL =0, (58)
where
S=—-w’+ vgkz, (59)
202
L= Top—w2+v§k2, (60)
and
2 22 @[ o+ w4
D+=w+—ck+—% o oy (61)
(1)+ % (1).;,_ %
) 0 2 a)g w* w*
* * — —
D_:(,()_ —C k_ _% w*_&+w*+& ) (62)
- fo fo
and where we have defined
1 U
Ny ERIrTTT 63
Jo 14 f'(no)uf

Equation 69) suggests thais can be defined as an effective
sound velocity.

We now introduce perturbations on the transverse quanti- N Fig. 11 we compare the effective sound velocity as
ties (18) such thasC| « C, §C; < C,. We also assume 9given by Eq. 63) with the classical sound velocitys =
that longitudinal and transverse perturbations have the formv/ksT/m. For low temperatures both results are equivalent,

SC. = Re[éei(kz—wt)] _1 (éei(kz—a)t) + é*e—i(k*z—w*l)) , (54)
: 2
and

§C = C+ei(k+2*w+t) 4 C_ei(kfz*a)fl) ; (55)

respectively, wheré, = ko+k, k- = ko—k*, oy = wo+w
andw_ = wp—w*. With these definitions, and after a lengthy
but straightforward calculation (sd&pez et al. 2012 for
details), we obtain a set of equations for the variables

*) which can be put in

U+ea v+p7 viev vipa 5e, ﬁp, b+a b7
matrix form as

Ar=0, (56)

Nonlin. Processes Geophys., 21, 21736 2014

whereas for high temperatures the effective sound velocity
tends toc/+/3, which is a known result for hot relativistic
plasmasl(andau and Lifshitz1959.

Equation B8) shows that the normal modes correspond to
an electroacoustic wave (given I8y= 0), Langmuir waves
(L =0), and sideband wave®{ = 0). In the presence of
the pump waved # 0) these normal modes couple and give
rise to the parametric decays. We will study this in detail in
Sect4.4.

4.4 Numerical analysis of the dispersion relation

We now solve the dispersion relation E§7\ numerically.
To this end, for given values a¥ and u, we choose a
value of the normalized wave number of the pump wave,

www.nonlin-processes-geophys.net/21/217/2014/
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1.5

v/c
\

0 | | |
0 0.5 1.0 1.5 2.0
k,T/mc? %
2.5 T T

Fig. 11.Normalized sound velocity as a function of normalized tem- (b) S, D,
peraturex~1 = kT /mc?. Dashed line: classical resulf & 1), - |
vs/c = \/F Solid line: relativistic result (see E§3). The hori- ' P
zontal dotted line represents the limit valus/i3. 5 ’ 3) @)
yo = koc/ Q2¢, and we solve the dispersion relation of the - Lok 5) % g
pump wave to get the normalized pump wave frequency '
x0 = wo/ ¢, as outlined in SecR.1andAsenjo et al(2009.
Notice that, in particular, this implies a choice of a branch 0.51 )
for the pump wave, since a givég may correspond to up to 5)
three values ody. _ % 01 02 03 04 05 06

Then we solve Eq.57). In Fig. 12 the pump wave xp,
yo) has been chosen to lie in the Alfvén branch, near the ori- &
gin. Figure12a shows the solutions of EggY) for yo =1,
wp/ =1, 1/ =0.01 anda = 0, which is equivalent to 25 |
solving Eq. 68). There are 12 lines, two of which corre- ©
spond to the electroacoustic modes that are the real solu-
tions of S = 0. They are labeled &. andS_, corresponding 2'0\ ]
to forward and backward propagating modes, respectively.
Two other lines correspond to the Langmuir modes given L5F S 7
by L =0, and labeled a& ; (forward) andL_ (backward). )
The other eight lines correspond to the eight real solutions 1.0+ .
of D1 = 0. Four of these lines are parabolic and correspond
to the electromagnetic branches in Fig.and they are la- 05 4
beled asD_ in Fig. 12a. The two linesp+ also correspond
to solutions of Dy, but they resonate at the sideband fre- 0" i ‘ i i

guencyw+ = Q¢/fo, which in the cold case is the positron 0 01 02 03 04 05 06
gyrofrequency (see Eg6l and62). In terms of the normal- v

ized longitudinal frequency = o/ Q¢, the resonance occurs _ _ _ _ _

at x = +(—xg+ 1/fo), as shown in Fig12 Similarly, e,  Fi9- 12.(Color online) Solution of the dispersion relation Eg7)

are the two solutions that resonate at the sideband frequené}or':j“ée?o:’vya"e 1””;“?2’ = klc/ 3; Vsb g‘irr\?\z'f:feirﬁg:i?:g
_ . . . . . _ = c 0o=4, p c=4, = U. .

s = —$c/fo (Which, in the cold limit, is the electron gy wave at the Alfvén branchia) « = 0. (b) Sector of interest for

rofrequency), that is, at= £(=x0—1/f0). _ a=0,(c) «=0.1. Dotted lines represent the real part of the so-
We can see from Figl2a that there are several possible |ygon when it is complex.

crossings between solutions of the dispersion relation. At

these crossings, complex solutions can appear whgr0.

Since the polynomial being solved has real coefficients, theselisappearance of real solutions wheg 0 implies the pres-
solutions always occur as complex conjugate pairs, thus onence of unstable waves, corresponding to the parametric de-
of them has a positive imaginary frequency. Therefore, thecays of the pump wave.
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Only the crossings involving modes satisfying energy con- 0.02 R g, (a)
servationw; +wy = Lwg (¢ € ZT) can give rise to wave cou- > : : :
pling when the pump wave is switched an# 0). They are
marked with the labels from (1) to (5) in Fig2a. Crossing éo_m _
(1) is actually not considered here because it is unstable only =
in a narrow range of temperatures (aroynd ~ 0.01) and
its maximum growth rate is too small (18) compared with
the other crossings. Thus we focus our attention on cross-
ings (2)—(5) that are displayed in detail in Figb for o = 0.

Crossing (3) corresponds to a resonant coupling (), and a
crossings (2), (4) and (5) correspond to nonresonant cou-
plings.

Now we turn the pump wave on by consideriagz 0. In 0.08
Fig. 12c « = 0.1, and we notice that some crossings become
gaps. This means that at these crossings we have comple 0.06
solutions whose real parts are indicated as dotted lines, while x4
the real solutions correspond to the continuous lines. Hence,_ &
we now have instabilities, indicating wave coupling. For ex- ~ 0.02
ample, crossing (3) gives rise to a wave coupling between 0r
(S+, p-), corresponding to an ordinary decay instability in 0.3
which the pump wave decays into a forward-propagating 0.2
electroacoustic mode of frequeneyand a sideband wave
of frequencyw_. Crossing (4) leads to a nonresonant wave
coupling betweeng, p_), in which the pump wave decays
into two sideband waves of frequeney andw, . In the case
of crossing (5), there is no gap, and therefore no instability. g5, i R e (©)
Finally, crossing (2) represents an intersectionof,(e—) at i 5 P iiiidn
the origin, so it corresponds to an electromagnetic modula-
tional instability (ongtin and O. Sonneryi986. 5 005y H

As mentioned above, the appearance of gaps means the_F 0.02
there exist modes whose frequency has a honzero imaginan
part. There are several possible decays simultaneously, bu
not all of them will be equally relevant. We can quantify this
by calculating, for a given value af, the maximum imag-
inary part at each gap. By comparing these values for all

i
i
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gaps, we may then gain intuition regarding the relative im- o B 10°
portance of each decay for various valueg of his is shown 10 1 19
in Fig. 13. We define the imaginary part of the frequency as , N —— sy ()

I' = Im(x), and in each gap we seek its maximum valygy
(maximum growth rate), and we plot it againsand I/ .

The first interesting feature we observe is that the resonant
coupling (3) exhibits the expected linear dependence with
«, for smalle, while the nonresonant ones usually show a , 0.02
quadratic behavior for small values af Let us also note £
that, for every pump wave amplitude, the maximum growth — 0.01- - 0.3
rate always occurs fqr—1 < 0.3. In Fig.13a, b and d we see / 0.2
that for =1 > 0.1 the instabilities disappear, but Figj3c 0 y 01 «
shows that crossing (4) is still unstable, so for high tempera- 1072 107" 10° 0
tures crossing (4) is the dominant one. m

Another interesting feature is that, for some crossings,
there is a threshold value of below which there is no in-  Fig. 13. (Color online) Maximum growth rate for various pump
stability, and that this threshold depends on the temperawave amplitudesr and temperatures/&. Notice that the scale
ture. This can be seen in Fifida, which shows that cross- IS logarithmic scale for temperaturga) Crossing (2), p+, e-).
ing (3) leads to an instability only if > 0.07, approximately, ~(°) Crossing (3),§+, p-). (c) Crossing (4), b+, p-)- (d) Crossing
when 1/u = 0.03, whereas there is no threshold for the Iarger(S)’ (e~ p-)-

0037
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Fig. 14. Maximum growth rate vs. pump wave amplitude Nu-
merical labels for crossings are taken from Fi@. (a) Crossing
3). 8+, p-)- (b) Crossing (5),4~, p-).

Fig. 15.Imaginary part of frequency vs. normalized wave number,
for various values of the pump wave amplitude. Numerical labels
for crossings are taken from Fig2 (a) 1/u =0.01. (b) 1/ =
0.02.

temperatures shown in the plot. In the case of crossing (5
(Fig. 14b), there is a threshold for all temperatures. When
temperature is increased, smaller values @fre needed to
trigger the instability.

In Fig. 15 we have plotted the imaginary part of the fre- y R
quency as a function of the wave number, for different values § 0.044 ///” il -

0.08+

IS5
T

06- /%%’,”Z%Z%@
of o and a fixed value ofi. This figure gives us an indication ~ / W
of the wave band over which the wave coupling occurs. We
have labeled the instabilities as in FitRa. In Fig.15a we
take 1/ = 0.01, and as we expect for this range of values of 9
o, the resonant coupling (3) is the dominant one, being larger 10 10
and broader than the other, nonresonant, couplings (2), (4
and (5). This also occurs in Fig5b, for 1/u = 0.02. How-
ever, the wave band of active modes of crossing (3) has beefig. 16. (Color online) Maximum growth rate for various pump
significantly reduced, while the ones for crossings (2) and (4)vave amplitudes and temperatures/A, in logarithmic scale for
have slightly increased. In Fig5, crossing (5) does not ap- temperature, considering all existent crossings.
pear because it is stable for these temperatures.

Figure 15 suggests that the dominant coupling may be
different for different values o& and . We can appreci- amplitudes. Discontinuities in the derivative of the plotted
ate this in Fig.16, where we plot the maximum growth rate surface are an indication of a change of regime, where the
among all crossings for various temperatures and pump wavenaximum growth rate changes from one crossing to another.

0.02+

0.3

- 0.1
10° O o

1/n

www.nonlin-processes-geophys.net/21/217/2014/ Nonlin. Processes Geophys., 2123672014



232 V. Mufioz et al.: Large-amplitude waves in relativistic plasmas

0.5
— 1/p=0.01
0.4F |—- =01
- Lp=0.5 _
— 1 §HLRR § i oY
, 03 ‘ ""“"“”LI]H 3
£ - ‘ =
—~ I bm[i
0.2
0.1
00 5 L7
Yo .
-9
Fig. 17. Maximum growth rate vs. pump wave wave number, for 10
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In particular, for low temperatures the dominant behavior

is given by crossing (3), while for higher temperatures it is
given by crossing (4), which turns out to be the only cou-
pling present.

A similar analysis to the one presented in this section carFig. 18.Power spectrum of transverse magnetic fluctuations from a
be done for a pump wave in the electromagnetic branch ané!C simulation, forx = 0.01, wp/ Q¢ = 1. (a) u = 100,(b) = 7.
in the anomalous zone of the Alfvén branch (képez et al,

201 2for full details), with qualitatively similar results.

One interesting finding is that if the pump wave is in the
Alfvén branch,I'max is about an order of magnitude larger
than in Fig.16, when the pump is a wave in the normal
zone of the Alfvén branch. This difference can be observed in
Fig. 17, where we set a pump wave amplitugde= 0.04 and
a temperature.~1, and the maximum growth rate is plotted -0
for various values ofyg in the Alfvén branch. Whenyg ap-
proaches the anomalous zone, the instability becomes larger

8

(8 / .&1)301

5 Numerical simulations

In this section we present preliminary results from relati-
vistic particle simulations that are consistent with the find-
ings in Sects2, 3, and4. Simulations have been done with

a relativistic PIC code, with periodic boundary conditions,
and initial particle thermal velocities have been taken from a =
Maxwell-Boltzmann—Juttner distribution function. The de-
tailed description of the code, as well as more complete re-
sults, will be presented elsewhetspez et al. 2014).

First, by choosing an initial condition where particles only
have thermal velocities, we can obtain the normal mode dis-
persion relation from the power spectrum of magnetic fluc-
tuations. This is shown in Fid.8. Fig. 19.Same as Fidl8, but with curves from the analytical models

A good agreement with both fluid (Se@) and kinetic ~ superimposed. Blue dotted line: fluid dispersion relation, 2dj; (
(Sect.3) results is found, as shown in Fi@9, where the black dotted line: kinetic dispersion relation, E40). (a) . = 100,
curves corresponding to the appropriate dispersion relation&) # =7

1
(e /e)301
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Fig. 20.Power spectrum of density fluctuations for the PIC simula-
tion. The pump wave satisfies EQ1j, with « = 0.2 andu = 100,
and is taken from the Alfvén branch, witfy = 0.49, xo = 0.27.
(a) Simulation results(b) lines correspond to the fluid dispersion
relation of the parametric decays, E§7), for the same parame-
ters. Fig. 21. Growth rate for the decay instability shown in Fi2Q.

(a) Fluid result for the §+, p—) crossing.(b) Simulation results

for the same parameters.
(Figs. 1 and6) have been superimposed. In particular, both
expected branches are observed, the electromagnetic and the
Alfvén one. Regarding the Alfvén branch, in the simulation Posed, showing the consistency of the simulation and ana-
results it cannot be distinguished for wave numbers beyondytical results. In particular, the spectrum peak near 0.8
a certain critical value, which suggests that it is damped duean be identified as the result of the nonlinear coupling be-

to kinetic effects. tween a sound wav&; and ap_ sideband wave (see, e.g.,
Figure 19 also shows that the effective plasma frequency€rossing (3) in Fig12b). _
decreases with temperature (see Figsand 7), and that Finally, growth rates for the decays can be estimated from

the Alfvén velocity decreases with temperature as well (se¢he simulation. This is shown in Fig1, where the fluid and
Eq 23 and F|98) When the effective p|asma frequency and Simulation results are ShOWh. Again, bOth mOde|S are COﬂSiS-
Alfvén velocity are measured from the simulation results, tent.

they turn out to be consistent with the fluid and kinetic mo-

dels in Sects2 and3. 6 Conclusions
We have also studied the parametric decays of a circularly
polarized pump wave, following the model in Sedt.Fig- We have studied the propagation of large-amplitude, circu-

ure 20a shows the power spectrum of density fluctuations,larly polarized electromagnetic waves in electron—positron

when the initial condition is a pump wave consistent with plasmas, using fluid and kinetic models, and PIC simulations.
Egs. 0) and (1), with« = 0.2 andu = 100. Various modes Relativistic effects in the particle velocities have been intro-

corresponding to the parametric decays of the pump waveluced both for the quiver velocity induced by the wave, and

can be identified, with major wave activity near- 0.8. In for the random velocities induced by temperature. In the case
Fig. 20b the dispersion relation for the parametric decays inof the fluid model, relativistic temperatures have been consis-
the fluid model for the same parameters has been superintently introduced through a factgf related to the enthalpy
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density. For the kinetic model and the simulations, relativistic Alfvén branch is suppressed. The critical value depends on
temperatures have been introduced by assuming that the pathe background magnetic field. For larger values of the mag-
ticles follow a Maxwell-Jittner distribution function. Prop- netic field, the critical value increases, and thus Alfvén waves
agation of the wave has been assumed to occur along a coman propagate for larger temperatures.
stant background magnetic field. We also studied the fluid dispersion relation of the waves
In the case of the fluid model, an exact solution of the re-for nonzero drift, thus generalizing the numerical results in
lativistic fluid equations can be found. A critical assumption Sect.2. Besides, this analysis allowed us to study the depen-
is the fact that particle velocities are purely transverse withdence of the relativistic Lorentz factors on the drift, which
respect to the background magnetic field, which is true forwas later used to study the kinetic model as detailed in
circularly polarized electromagnetic waves of arbitrary am- Sect.3.4.
plitude. In particular, this means that no pressure or density We are also interested in the nonlinear evolution of the
fluctuations appear, and thAis constant. We plan to explore large-amplitude waves studied in Sed@sand 3. Thus, we
the possibility of extending the above analysis to include ahave also studied the parametric decays of this wave, in the
pressure tensoShadwick et al.2004), a case in which we context of the fluid model. We study the appearance, the
do not expect to find exact solutions, but which can certainlygrowth rate and instability range of the decays for various
be studied numerically. temperatures and pump wave amplitudes. We also consider
The fluid results show that two branches are present, apump waves in three possible regions: in the Alfvén branch
electromagnetic and an Alfvén branch. The electromagneti¢near the origin and in the anomalous zone), and in the elec-
branch has a lower cutoff at an effective plasma frequencytromagnetic branch. There are both resonant and nonreso-
wgff, which decreases with temperature and wave amplitudeant couplings when the pump wave is present. For high
due to the relativistic increase in effective mass of the parti-enough temperatures, though, most of the wave couplings
cles. disappear. For certain wave couplings there is a threshold
The Alfvén branch, on the other hand, shows several in-pump wave amplitude, such that instability arises only above
teresting features. For very small wave numbers it is non-the threshold.
dispersive, with an Alfvén velocity 4 that depends only on Finally, we have shown the consistency of the results
temperature, not wave amplitude. As wave number increasesbove with those obtained from a relativistic PIC simulation.
a maximum frequencyygrit, corresponding to a critical wave The existence of an electromagnetic and an Alfvén branch,
numberkgit, is reached. This upper cutoff depends both onthe decrease in the effective plasma frequency and the Alfvén
wave amplitude and temperature. Thus, as temperature invelocity with temperature, the confinement of the Alfvén
creases, Alfvén waves are confined to an ever narrower frebranch to a narrow region of wave numbers and frequencies
quency bandwidth. as temperature is increased, and the dispersion relation of the
In a fluid model, important effects such as Landau damp-parametric decays, have been shown to agree qualitatively
ing are absent. Thus, a kinetic description is necessary. Wand in some cases quantitatively with both analytical models.
have considered this problem too, studying the same prob- We expect to improve further on these results. For in-
lem, but based on the relativistic Vlasov equation, in orderstance, we have not studied the damping due to kinetic
to account for kinetic effects in the direction of the magnetic effects. Another improvement would be to consider a ki-
field. The dispersion relation of the waves is found and nu-netic model with a three-dimensional, rather than one-
merically solved. Results are qualitatively consistent with thedimensional, particle velocity distribution. Also, kinetic ef-
fluid model: the effective plasma frequency decreases, andects on the parametric decays need to be introduced, and
the frequency range of the Alfvén branch is reduced whensome analytical results are available for the relativistic case
the temperature is increased, so that electromagnetic wavedlufioz et al, 2006. We have also studied the nonlinear evo-
propagate in a larger frequency range with respect to the coldution of electromagnetic waves in this system by means of
case, whereas for Alfvén waves the opposite occurs, beinghe NLS equation, finding conditions for the existence of en-
confined to a frequency range that is narrower than in thevelope solitonsAsenjo et al.2012), localized structures that
cold case. can also be found in our simulation runs, and we plan to in-
However, quantitative results are different in both models.vestigate further these and other issues related to the prop-
Regarding the electromagnetic branch, it is found that the efagation of nonlinear waves in relativistic pair plasmas else-
fective plasma frequency is always larger in the kinetic modelwhere.
as compared with the fluid one. Thus, kinetic effects reduce
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