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Abstract. Several consistency diagnostics have been pro-
posed to evaluate variational assimilation schemes. The
“Bennett-Talagrand” criterion in particular shows that the
cost-function at the minimum should be close to half the
number of assimilated observations when statistics are cor-
rectly specified. It has been further shown that sub-parts of
the cost function also had statistical expectations that could
be expressed as traces of large matrices, and that this could
be exploited for variance tuning and hypothesis testing.

The aim of this work is to extend those results using stan-
dard theory of quadratic forms in random variables. The
first step is to express the sub-parts of the cost function as
quadratic forms in the innovation vector. Then, it is possi-
ble to derive expressions for the statistical expectations, vari-
ances and cross-covariances (whether the statistics are cor-
rectly specified or not). As a consequence it is proven in par-
ticular that, in a perfect system, the values of the background
and observation parts of the cost function at the minimum are
positively correlated. These results are illustrated in a simpli-
fied variational scheme in a one-dimensional context.

These expressions involve the computation of the trace of
large matrices that are generally unavailable in variational
formulations of the assimilation problem. It is shown that the
randomization algorithm proposed in the literature can be ex-
tended to cover these computations, yet at the price of addi-
tional minimizations. This is shown to provide estimations of
background and observation errors that improve forecasts of
the operational ARPEGE model.

1 Introduction

Most operational data assimilation schemes in meteorol-
ogy are loosely based on statistical linear estimation (e.g.
Talagrand, 2010. The variational formulation (Le Dimet and

Talagrand, 1986; Courtier et al., 1998; Rabier et al., 2000)
has proven very effective in assimilating directly and mas-
sively satellite observations, which has been a source of
huge progress in numerical weather prediction (Simmons
and Hollingsworth, 2002; Rabier, 2005). The cost function
to be minimized measures the distances of the atmospheric
state to the observations and to the background, weighted
by the inverse of their error covariances. These error statis-
tics are unfortunately not very well known. Common meth-
ods to estimate observation errors include the innovation ap-
proach (Hollingsworth and Lonnberg, 1986; Daley, 1993),
where observation error statistics are taken to be spatially
uncorrelated and are deduced from the innovation covari-
ance. Background error statistics are estimated within an
existing data assimilation scheme, for instance using fore-
casts at different ranges valid at the same time (Parrish
and Derber, 1992; Derber and Bouttier, 1999) or, more re-
cently and inspired by the Ensemble Kalman Filter (e.g.
Evensen, 2003), ensembles of perturbed variational assimi-
lations (Fisher, 2003; Kucukkaraca and Fisher, 2006; Belo-
Pereira and Berre, 2006).

Despite this recent progress, it is still necessary and useful
to check for the consistency between the prescribed statistics
and the a posteriori error statistics. Any inconsistency could
help to point out imperfections in the specification of the
statistics. Objective assessment of the quality of assimilation
schemes can only be performed against independent observa-
tions that are not used in the estimation process (Talagrand,
1999). Yet internal consistency diagnostics can also prove
useful. Two applications of these kinds of diagnostics have
been proposed: hypothesis testing (Muccino et al., 2004) and
variance tuning (Desroziers and Ivanov, 2001; Chapnik et al.,
2006).

Hypothesis testing formally checks whether the obtained
solution is consistent with the hypotheses made concerning
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188 Y. Michel: Diagnostics on the cost-function

the errors in the innovation vector. In the perfect case, the
minimum value of the cost function has aχ2

p distribution
wherep is the number of scalar observations assimilated in
the system (Bennett et al., 1993; Talagrand, 1999). However,
the values of the cost function were found to differ signif-
icantly from their expectation in a series of data assimila-
tion experiments with an ocean model (Bennett et al., 2000).
Muccino et al.(2004) also studied how various errors in the
specified error covariance matrices were affecting the distri-
bution of the value of the cost function at the minimum. A
Kolmogorov–Smirnov test was used to identify departures
from theχ2 distribution, with significant skill in some cases.

When certain sets of observations are taken to have un-
correlated errors, it is possible to split the observation term
further as the sum of sub-functions. The expectation of these
sub-functions can still be expressed (Talagrand, 1999) as the
trace of large matrices.Desroziers and Ivanov(2001) (here-
after DI01) proposed to estimate these traces using a ran-
domization algorithm. They also proposed an iterative ap-
proach for tuning the variances. It enforces consistency be-
tween the observed value of the sub-parts of the cost func-
tions and their theoretical expectations as computed by the
randomized trace estimation. This method was later shown
(Chapnik et al., 2004) to be similar to a maximum-likelihood
approach. Operational implementation of the scheme in the
global model ARPEGE1 from Météo-France was achieved
by Chapnik et al.(2006), and the tuning of observation er-
ror variances yielded a positive impact on both analyses and
forecasts. The implementation in a limited area model was
discussed bySadiki and Fischer(2005). They proposed in
particular the use of time or space averages to improve sam-
pling. Finally, the ensemble of variational assimilations with
perturbed observations as implemented at Météo-France and
ECMWF (Kucukkaraca and Fisher, 2006) typically uses as-
similations with perturbed backgrounds and observations.
Desroziers et al.(2009) then showed that the previous sta-
tistical expressions were a direct by-product of such an en-
semble.

More precisely,Dee(1995) andDee and da Silva(1999)
have introduced the maximum-likelihood approach for the
estimation of covariance parameters in meteorology. The
likelihood function to be optimized with respect to these co-
variance parameters is the sum of a quadratic form in the
innovation vector and the log-determinant of a precision (in-
verse covariance) matrix. Because of the very large size of
the innovation vector (currently of the order of 106 elements
in the ARPEGE 4D-Var), a direct computation (using for in-
stance Choleski decomposition) is not feasible. The approach
that was favored in meteorology is to evaluate the deriva-
tives (rather than the absolute values) of the likelihood func-
tion and then using stochastic trace estimation techniques,
as demonstrated byPurser and Parrish(2003) in an ideal-

1“Action de Recherche Petite Echelle Grande Echelle”, see
Pailleux et al., 2000for a historical description

ized context. This stochastic approximation is nearly opti-
mal in a well-define sense as proven byStein et al.(2013).
It is also possible that direct evaluation of the log-likelihood
may become feasible even in high dimensions as shown by
Aune et al.(2012). This required in particular (i) more ef-
ficient evaluation of the trace with probing vectors (Bekas
et al., 2007) and (ii) Krylov subspace methods for matrix in-
versions (Saad, 2003). These approaches look very promis-
ing, but as recognized byPurser and Parrish(2003), it is
still necessary to experiment with various aspects in mete-
orology including non-linear observation operators and in-
troduction of a prior term (to stabilize the solution when the
number of estimated parameters become large). This study
rather builds upon the simpler but convenient approach taken
in DI01 for variance tuning. However, it should be stressed
that this approach is unlikely to be easily extended to the esti-
mation of other paramaters such as localisation lengthscales
(Houtekamer and Mitchell, 2001), or to the heteromorphic
case where there is a need to compare log-likelihoods asso-
ciated with covariances that use completely different sets of
parameters (Purser and Parrish, 2003).

The aim of this paper is to present a different way of deriv-
ing the Bennett-Talagrand criterion. The sub-parts of the cost
function at the minimum are expressed as quadratic forms in
the innovation vector. This allows the application of the the-
ory of quadratic forms in random variables as summarized in
Mathai and Provost(1992) (hereafter M92). The statistical
expectation, variances and cross-covariances between sub-
parts of the cost-function at the minimum are shown to be
related to the trace of matrices in the assimilation. This re-
lies on the assumption that the innovation vector is normally
distributed, but some extensions to the Non-Gaussian case
have also been derived for some specific distributions. The
derivation of these expressions is outlined in Sect. 2. Practi-
cal estimation of these terms based on the randomized trace
algorithm is demonstrated in Sect. 3. The use of these formu-
las for variance tuning in the operational ARPEGE model is
illustrated in Sect. 4.

2 Statistical distribution of the values of the terms in the
cost-function at the minimum

2.1 Variational framework

The best estimate of the atmospheric state,xa, is obtained as
the solution of the minimization of the cost function:

J (x) = Jb(x) + Jo(x)

=
1

2

{
(x − xb)

TB−1(x − xb)

+
[
yo −H(x)

]T R−1 [yo −H(x)
]}

(1)

where any time index has been dropped for convenience.
Jb(x) andJo(x) stand for the background and observation
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terms of the cost-function respectively.B andR are the back-
ground and observation error covariance matrices, andH is
the non-linear observation operator including model time in-
tegration in the 4D-Var framework. This cost-function is usu-
ally solved by a sequence of quadratic minimizations using
linearized operators, an algorithm known in meteorology as
incremental 4D-Var (Courtier et al., 1994). Here we are only
interested in the final value of the cost function (at the mini-
mum), but of course preconditioning in minimizing Eq. (1)
is a crucial problem in practice (e.g.Lorenc, 1997; Gauthier
et al., 1999). A Bayesian derivation of Eq. (1) is provided by
Lorenc(1986).

Introducing the innovation vector

d = yo −H (xb) (2)

the linearized cost-function (still writtenJ ) is expressed as:

δx = x − xb

J (δx) = Jb (δx) + Jo (δx)

=
1

2

{
δT
x B−1δx + [d − Hδx ]T R−1 [d − Hδx ]

}
(3)

whereH is the linearized observation operator and where
every term is now quadratic.

A common derivation of the Bennett-Talagrand criterion
casts the problem (3) into a single term using a general-
ized observation operator (Talagrand, 1999; Desroziers and
Ivanov, 2001). This is not necessary for deriving the statis-
tical moments of̃J = J (xa). An alternative way is to write
down the solution of Eq. (3) in the standard form involving
the data assimilation operator (or gain matrix)K :

xa− xb = Kd (4)

K is a representation of performing variational assimilation
for the analysis increments. The background term at the mi-
nimum J̃b is therefore:

J̃b =
1

2
dTKTB−1Kd (5)

and similarly, the observation term at the minimum̃Jo is:

J̃o =
1

2
dT (I − HK )T R−1 (I − HK )d (6)

From Eq. (3), it is also possible to express the observation
term before the minimization̂Jo as

Ĵo =
1

2
dTR−1d (7)

andĴb = 0. This explicitly shows that these terms are (halves
of) quadratic forms in the innovation vectord.

In general, observation errors are taken to be diagonal or
block-diagonal, with each block corresponding to a given in-
strument, and observation errors are taken to be uncorrelated

between instruments. FollowingChapnik et al.(2004), this is
written as a projection operator5o

i operating on the observa-
tion vectory and giving a subsetyi = 5o

i y of the observa-
tions, with i = 1, . . . ,P and whereP is the number of such
subsets. Up to a reordering, the matrixR can be written in
the block-diagonal form:

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...

0 0 · · · RP


whereRi = 5o

i R5o
i

T are observation error covariance matri-
ces for theith-subset of observations. The inverse covariance
matrix R−1 is also block-diagonal, with elementsR−1

i , and
the observation cost-function can be split intoP contribu-
tionsJ i

o (either at the minimum or before the minimization):

J̃ i
o =

1

2
dT (I − HK )T 5o

i
TRi

−15o
i (I − HK )d (8)

Ĵ i
o =

1

2
dT5o

i
TRi

−15o
i d (9)

which are quadratic forms in the innovation vector.
In general the background error covariance matrix is not

block-diagonal as the different variables are correlated. This
was neglected in DI01, but it can be taken into account by in-
troducing the parameter transformKp that changes variables
into uncorrelated ones (Derber and Bouttier, 1999; Bannister,
2008). Different spatial autocovariance blocksBi are speci-
fied for each unbalanced variable. This can be written as:

B = Kp


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...

0 0 · · · BS

KT
p

= Kp

i=S∑
i=1

5b
i

T
Bi5

b
i KT

p

where usually there areS = 3–5 control variables (usu-
ally vorticity or streamfunction, unbalanced divergence or
velocity potential, and some form of unbalanced temperature
and humidity, seeBannister(2008) for a review and compa-
rison between various implementations).Kp is generally for-
mulated as a lower-triangular non-singular matrix with left-
inverseK−1

p . The projection matrix5b
i is used to extract the

ith-component of the background vector in unbalanced space
and can be written explicitely with blocks being either the
zero matrix0 or the identity matrixI in ith position:

5b
i =

(
0 · · · 0 I 0 · · · 0

)
.
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Using this formulation allows us to split the background term
into S contributionsJ i

b that are, again, quadratic forms ind:

J̃b =

S∑
i=1

J̃ i
b

J̃ i
b =

1

2
dTKTK−T

p 5b
i

T
Bi

−15b
i K−1

p Kd (10)

There may be additional penalty terms in the cost func-
tion, related for instance to the coupling information in a li-
mited area model (Guidard and Fischer, 2008) or to the weak
constraint digital filter (Gauthier and Thépaut, 2001). These
terms will not be considered explicitly here, but they can be
put into similar quadratic forms. The digital filter expresses
a constraint on the increments which are directly related to
the innovation vector. The coupling information requires an
extended definition of the information vector, and this issue
may be addressed in future work.

2.2 Moments

The innovation vector is a random variable, so are the back-
ground and observation terms at the minimum, and it is pos-
sible to explicitly derive their expectation, but also their vari-
ances and covariances in the Gaussian case. Note that this
Gaussian assumption can be relaxed for some classes of dis-
tributions; see e.g.Mathai et al.(1995) for the case of ellip-
tically contoured distributions andGenton et al.(2001) for
skew-normal ones.

2.2.1 Expectations

Without any loss of generality in this section (other than
existence of second order moments), we will denote the first
two moments of the innovation vector by:

µ = E(d)

6 = Cov(d)

where E(·) is the expectation and Cov(·) the covariance.
Here,µ and6 are the actual (i.e. measured) mean and co-
variance of the innovation vector that may differ from their
assumed values given in Eqs. (14) and (15). Then, it can be
seen by applying the trace operator (M92, Corollary 3.2b.1)
that the expectation of any quadratic form ind is:

E
(
dTAd

)
= Tr(A6) + µTAµ (11)

where Tr(·) is the trace (which is a linear operator). This re-
sult is robust as it holds for any distribution ofd with finite
first-two moments (Ménard et al., 2000). Equation (11) can
be readily applied to the previously derived quadratic forms.
In particular the expectation of background and observation

terms follows:

E
(
J̃b
)
=

1

2
Tr
(
KTB−1K6

)
+

1

2
µTKTB−1Kµ (12)

E
(
J̃o
)
=

1

2
Tr
[
(I − HK )T R−1 (I − HK )6

]
+

1

2
µT (I − HK )T R−1 (I − HK )µ (13)

No hypothesis has been made on the distribution of the in-
novation yet. These equations are valid for any data assimi-
lation scheme with possibly incorrect error covariance matri-
ces (and henceK ).

Now, in a well specified system, we would have unbiased
innovation and well-prescribed statistics:

µ = 0 (14)

6 = D ≡ HBHT
+ R (15)

The gain matrix can also be written as:

K = BHT (HBHT
+ R

)−1
= BHTD−1

which allows us to write the following expressions:

B−1KD = HT

R−1 (I − HK )D = I

Thus, when6 = D, the expectation of background and ob-
servation terms take the form

E
(
J̃b
)

=
1
2Tr

[
KTHT

]
=

1
2Tr(HK ) (16)

E
(
J̃o
)

=
1
2Tr

[
(I − HK )T]

=
1
2Tr(I − HK ) (17)

as previously derived byBennett et al.(1993), Talagrand
(1999), andDesroziers and Ivanov(2001).

New results are obtained by applying a similar calculation
with sub-terms of the background cost function at the mini-
mum:

E
(
J̃ i

b

)
=

1

2
Tr
[
KTK−T

p 5b
i

T
B−1

i 5b
i K−1

p BHT
]

=
1

2
Tr

[
HTKTK−T

p 5b
i

T
B−1

i 5b
i

i=S∑
j=1

5b
j

T
Bj5

b
j KT

p

]

=
1

2
Tr
[
HTKTK−T

p 5b
i

T
5b

i KT
p

]
=

1

2
Tr
[
Kp5

b
i

T
5b

i K−1
p KH

]
. (18)

The expectation of any sub-term of the observation cost
function at the minimum is derived in a similar way:

E
(
J̃ i

o

)
=

1

2
Tr
[
5i

o
T
5i

o (I − HK )
]
. (19)

Analogous expressions can be obtained for the sub-term of
the observation cost function before the minimization (Eqs.7
and9).
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2.2.2 Variances

In general, the variance of the quadratic forms will depend on
the fourth-order moment ofd. If the innovation vector has a
Gaussian distribution, then its fourth-order moment can be
expressed as a function of the first two ones, and the vari-
ance of the quadratic forms can be expressed following M92
(theorem 3.2b.2):

Var
(
dTAd

)
= 2Tr

[
(A6)2

]
+ 4µTA6Aµ. (20)

This formula can be readily applied to the previous quadratic
forms (without assuming perfect statistics). Now, in the par-
ticular case of a system with well-specified statistics verify-
ing Eqs. (14)–(15) we have:

Var
(
J̃b
)
=

1

2
Tr
[
(HK )2

]
(21)

Var
(
J̃o
)
=

1

2
Tr
[
(I − HK )2

]
. (22)

The results do not seem to appear in the standard literature on
data assimilation for the atmosphere, yet analogous formulas
appear inBennett et al.(2000) within the formalism of the
representer method. They can be extended to sub-parts of the
cost function (not shown).

Before deriving cross-covariances in the next section, one
can point out that̃Jb andJ̃o should be positively correlated.
Indeed, using the fact that 2̃J has aχ2

p distribution, we can
deduce that:

Var
(
J̃
)
= p/2

= VarJ̃b + VarJ̃o + 2Cov
(
J̃b, J̃o

)
.

The matricesHK and I − HK have eigenvalues between 0
and 1 (?), therefore:

Tr
[
(HK )2

]
+ Tr

[
(I − HK )2

]
≤ Tr(HK ) + Tr(I−HK ) = Tr(I) = p.

Thus it is necessary that

Cov
(
J̃b, J̃o

)
≥ 0. (23)

In other words, in a system with well-specified statistics,
J̃b and J̃o are positively correlated. This may sound like a
counter-intuitive result, as one could expect the random fluc-
tuations ofJ to be “split” (with anticorrelations) betweeñJb
and J̃o, but this is not the case. Rather, the random fluctua-
tions go in the same direction.

2.2.3 Covariances

The covariance between (sub)terms of the cost function can
be calculated as follows (M92, theorem 3.2d.4):

Cov
(
dTA1d,dTA2d

)
= 2Tr(A16A26)

+ 4µTA16A2µ (24)

In particular, in a well-specified system:

Cov
(
J̃b, J̃o

)
=

1

2
Tr [HK (I − HK )] (25)

The magnitude of the correlation depends on how Tr(HK )

and Tr[(HK )2
] differ. This highlights that it could be useful

to estimate Tr
[
(HK )2

]
in operational schemes. Also, further

expressions can be derived for the cross-covariances between
sub-parts of the cost function (not shown).

2.3 Distribution

Beyond the statistical moments, it may be of some interest
to get information on the distribution of the sub-parts of the
cost function at the minimum. The random variable 2J̃ has
a variance that is double of its expectation, as expected for a
χ2

p-distributed variable. In view of Eqs. (16)–(21) and (17)–

(22), this is generally not the case for 2̃Jo, 2J̃b (nor their sub-
parts). Thus they do not follow aχ2 distribution – see also the
necessary and sufficient conditions in the chapter 5 of M92.
However, they are linear combinations ofχ2 distributions in
the Gaussian case (M92).

Albeit the previous expressions may be thought to be re-
stricted to variational assimilation, they would also apply to
an ensemble variant of the Kalman filter provided that the as-
sociated cost function can be computed (Ménard and Chang,
2000; Talagrand, 2010).

3 Practical estimation and potential use

This section introduces the randomized trace algorithm to
compute the previous statistical expressions. They could be
used for hypothesis testing. Rather, we focus on their use
when tuning global scaling factors for matricesB andR.

3.1 Application of the randomized trace estimator

The previous expressions involve the computation of the
trace of large matrices that are unavailable in large-size data
assimilation schemes used in operations in meteorology. Fol-
lowing DI01, it is however possible to estimate them with a
randomized trace estimator:

Tr(A) '
1

M

M∑
i=1

ηT
i Aηi (26)

where ηi are independent random vectors whose compo-
nents follow a standardN (0,1) normal distribution (Girard,
1991) or Rademacher (±1 with probability 1/2) distribu-
tion (Hutchinson, 1989). The Hutchinson estimator has lower
variance than Girard’s but requires more samples to achieve
a given relative precision (Avron and Toledo, 2011). In ad-
dition, using the Gaussian distribution is more natural in
data assimilation and allows Tr(HK ) to be computed as
a by-product of an ensemble of variational assimilations
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192 Y. Michel: Diagnostics on the cost-function

(Desroziers et al., 2009). It is shown next that randomized
estimation of traces in new formulas (21,22, and25) is possi-
ble through perturbed minimizations (as in DI01), yet at the
cost of an additional minimization. Indeed,K (the assimila-
tion algorithm) has to be applied three times.

Instead of the direct application of Eq. (26), DI01 take the
approach of further introducing the square root forms of the
error covariance matricesB = B1/2BT/2 and R = R1/2RT/2.
Then, using the fact that the trace is invariant under cyclic
permutations (not general ones), the randomized estimate
(26) required in Eqs. (21), (22), and (25) follows:

Tr
[
(HK )2

]
= Tr

(
HKHKR 1/2RT/2R−1

)
= Tr

(
RT/2R−1HKHKR 1/2

)
'

1

M

M∑
i=1

(
R1/2ηi

)T
R−1HKHK

(
R1/2ηi

)
=

1

M

M∑
i=1

δyo
i

TR−1HKHK δyo
i

=
1

M

M∑
i=1

δyo
i

TR−1HKH
(
δx∗

a − δxa|yo

)
=

1

M

M∑
i=1

δyo
i

TR−1H
(
δx∗∗

a − δxa|yo

)
where

δx∗
a = δxa|yo+δyo

i

δx∗∗
a = δxa|

yo+H(δx∗
a−δxa|yo)

(27)

and δyo
i = R1/2ηi are sets of perturbations of observations

(accordingly to the error covariance matrixR). Thus, at least
three (2M +1) minimizations are necessary for the computa-
tion of this trace: first with original observations to give the
unperturbed analysis incrementδxa|yo

, then with perturbed
observations to give the perturbed analysis incrementδx∗

a,
and finally the difference between those analysis increments
is brought into observation space and used as a perturbation
of observation in a third analysis giving the analysis incre-
mentδx∗∗

a . The trace computation then follows, provided that
R−1 is available as an operator, which is easy if observations
errors are taken uncorrelated as it is usually the case.

DI01 have provided an independent computation of
Tr(KH ) = Tr(HK ). It is also possible to derive a similar
computation of Tr

[
(HK )2]

= Tr
[
(KH )2], as:

Tr
[
(KH )2

]
= Tr

(
KHKHB 1/2BT/2B−1

)
= Tr

(
BT/2B−1KHKHB 1/2

)
'

1

M

M∑
i=1

(
B1/2εi

)T
B−1KHKH

(
B1/2εi

)

=
1

M

M∑
i=1

δxb
i

T
B−1KHKH δxb

i

= −
1

M

M∑
i=1

δxb
i

T
B−1KH

(
δx◦

a − δxa|
xb

)
= −

1

M

M∑
i=1

δxb
i

T
B−1(δx◦◦

a − δxa|
xb

)
where

δx◦
a = δxa|

xb+δxb
i

δx◦◦
a = δxa|

xb+δx◦
a−δxa|

xb
(28)

andδxb
i = B1/2εi are sets of background perturbations. Thus,

at least three minimizations are necessary for the computa-
tion of this trace: first with original background; second with
a perturbed background, third with a background perturbed
by differences of analysis increments. This last formula may
be simplified when working withB1/2-preconditioning (e.g.
Bannister, 2008as it can be expressed in terms of the con-
trol variable. Also, those computations only involve analysis
increments where observations or background have been per-
turbed, and they can still be computed when using a weakly
non-linear algorithm.

Finally, another way to compute directly the expectations
and covariances of the sub-parts of the cost function is
the “simulated optimal innovation technique” introduced by
Chapnik et al.(2006). In this approach, pseudo-observations
and pseudo-backgrounds are generated with errors that are
exactly consistent with the prescribed error statistics. Then,
assimilation of these synthetic observations will result into
sub-parts of the cost function that exactly follow the previ-
ous expressions. This is a Monte-Carlo approach to compute
the expectations and covariances in the specific case where
assimilation statistics are correctly specified.

3.2 A simplified framework

If one wants to compare the theoretical statistics to the ob-
served ones, the obvious problem lies in the fact that there
is only one realization of the observations (and thus of the
innovation vector) in the real atmosphere. The expectation of
the cost-function can be estimated from a single realization
(Chapnik et al., 2004), yet for some observation types the
use of space or time averages to build samples large enough
is required (Sadiki and Fischer, 2005). Obviously, comput-
ing the variance of the cost-function requires many samples,
thus the use of space or time averages. This kind of ergod-
icity assumption raises questions in itself, such that we will
start investigating the use of these formulas first in a simpli-
fied framework where independent Monte-Carlo realizations
of the innovation vector can be easily generated. Such an ap-
proach was also used inMuccino et al.(2004) with the same
purpose.
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For that purpose, a simplified one-dimensional variational
assimilation framework has been set up in a similar way as
in DI01. The goal is to analyze a single variable (say temper-
ature) on a circular domain (say on an earth meridian), min-
imizing Eq. (3). A conjugate gradient algorithm withB1/2-
preconditioning is used for the minimization. It involves a
maximum of 100 iterations, which is sufficient for conver-
gence unless correlated observation errors are specified (this
is verified a posteriori). Background errors have homoge-
neous standard deviationσb = 1K. The correlation function
c is chosen to belong to the Matérn class (Rasmussen and
Williams, 2006) with “smoothness” parameterν = 1, corre-
sponding to:

c(x) =

(
1+

√
3x

`

)
exp

(
−

√
3x

`

)

where the length-scale is chosen to be` = 250km; see
Michel (2013) for details. The observation operator is a peri-
odic linear interpolation. Observations are taken to be equally
spaced, which allows easy inclusion of spatial correlations
if needed, using the same model asB but in observation
space. In order to roughly simulate the characteristics of op-
erational data assimilation, the number of variables is taken
asn = 1000 and there arep = 500 observations with preci-
sionσo = 1K. The fields are illustrated in Fig.1. In this par-
ticular case, the value of the cost-function at the minimum
is J̃ = 245.8 ≈ p/2 as the specified error statistics are fully
consistent with the ones of the innovation vector.

3.3 Validation of the randomized trace estimation

The distribution of the observation and background terms at
the minimum have been obtained from running 104 indepen-
dent realizations of the assimilation scheme. The distribution
of the obtained values is shown in Fig.2. The total cost func-
tion has a mean of' 250.11 which is consistent with the
theoretical expectationp/2 = 250 (within the bounds of a
standard confidence interval with 104 realizations). The es-
timated variances of the observation and background terms
are lower than their mean, which is consistent with the dis-
cussion in Sect. 2.

The trace estimation algorithm relies on randomization,
thus its results depend on the sample size. The algorithm
has been applied to compute Tr(HK ), Tr

[
(HK )2], and also

independently Tr(KH ) and Tr
[
(KH )2] for various ensem-

ble (sampling) sizesM between 1 and 100. The procedure
has been applied 200 times in order to evaluate the sta-
tistical properties of the randomized trace estimator. Re-
sults are presented in Fig.3. Almost identical results are
obtained among ensemble sizes. Averaging over the en-
semble sizes and the 200 realizations gives the estima-
tions Tr(HK )'80.15, Tr(KH ) ' 80.19, Tr

[
(HK )2]

' 56.7,
Tr
[
(KH )2]

' 56.86 which are obviously consistent when-
ever Eq. (26) or Eq. (27) is used. The comparison with

Fig. 1. True signalxt (solid black line), observationsyo (circles)
and the analysisxa (dashed black line) simulated with the pre-
scribed statistics for background and observation errors (see text).
The backgroundxb is zero.

Fig. 2. Histograms obtained with 104 realizations of the assimila-
tion scheme shown in Fig. 1 for the values of(a) the background
cost function and(b) the observation cost function at the minimum.

the independent realizations of the assimilation scheme (the
simulated optimal innovation method, Fig. 2) is shown in
Table 1.
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Fig. 3.Scatterplot of the values of the background cost function and
the observation cost function at the minimum.

Table 1. Comparison of the simulated optimal innovation method
with the randomized trace estimation, following Eqs. (16), (17),
(21), and (22).

E(J̃b) 40.01 1
2Tr(HK ) 40.09

Var(J̃b) 28.14 1
2Tr[(HK )2] 28.41

E(J̃o) 210.11 1
2Tr(I − HK ) 209.91

Var(J̃o) 194.38 1
2Tr[(I − HK )2] 198.24

Differences between theoretical and estimated values arise
from sample size. Moving to cross-correlation between the
values ofJ̃o andJ̃b, the simulated optimal innovation method
gives an estimate

Corr
(
J̃o, J̃b

)
' 0.164 (29)

which is also in rather good agreement with the estimation
from the trace algorithm:

Tr [HK (I − HK )]√
Tr
[
(HK )2]Tr

[
(I − HK )2] ' 0.156 (30)

as also shown in Fig.3; J̃o andJ̃b are positively correlated.
Figure4 shows how the trace estimator becomes more and

more precise as the ensemble size goes larger. More pre-
cisely, the variance of the estimator (26) is (Chapnik et al.,
2006):

Var

(
1

M

M∑
i=1

ηT
i Aηi

)
=

1

M
Tr

[(
A + AT

2

)2
]

.

Thus, it is possible to estimate the precision of the ran-
domized trace computation as a function of ensemble size

(a)

(b)

Fig. 4. Randomized trace estimation of Tr(HK ) (a, squares),
Tr[(HK )2] (a, circles), Tr[(HK )THK ] (a, plus signs) and Tr(KH )

(b, squares), Tr[(KH )2] (b, circles), Tr[(KH )TKH ] (b, plus signs),
as a function of the ensemble size used for the randomization. Solid
line: expectation; dashed lines: expectation plus or minus one stan-
dard deviation, as determined from a Monte-Carlo approach with
200 independent realizations.

M and as a function of traces Tr
[
(HK )2], Tr

[
(HK )T HK

]
,

Tr
[
(KH )2] and Tr

[
(KH )T KH

]
which themselves can be

computed with the randomized approach proposed in
Sect. 3.1. This also implies that while Eqs. (25) and (26) can
be applied to estimate Tr(HK ) = Tr(KH ), both estimators
have different precisions, as apparent in Fig.4.

3.4 Variance tuning

DI01 proposed to adjust multiplicative scaling factorssb and
so for the covariance matricesB andR, assuming that at least
approximately

Bt = sbB (31)

Rt = soR (32)

where Bt and Rt are the true covariance matrices. Then
DI01 proposed to estimate the scaling factors as the ratio of
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the realization of the cost function at the minimum to their
expectations:

sb
=

2J̃b

Tr(HK )
(33)

so
=

2J̃o

Tr(I − HK )
(34)

These equations can be seen as a fixed point relation that is
solved iteratively.

Alternatively, if the conditions (31)–(32) are satisfied,
then it is also possible to derive an alternative formulation
for those coefficients. Indeed, the innovation vectord has
covariance

6 = HBtHT
+ Rt = sbHBHT

+ soR

=

(
sb

− so
)

HBHT
+ soD (35)

= sbD +

(
so

− sb
)

R . (36)

Using Eq. (35) in Eq. (12) with µ = 0 gives:

2E
(
J̃b
)
= Tr

(
KTB−1K6

)
= sbTr

(
KTB−1KD

)
+

(
so

−sb
)

Tr
[
KTHTD−1R

]
= sbTr(HK ) +

(
so

− sb
)

Tr[HK (I − HK )] (37)

Using Eq. (36) in Eq. (13) with µ = 0 gives

2E
(
J̃o
)
= soTr(I − HK ) +

(
sb

− so
)

Tr[HK (I − HK )]

(38)

which was already been obtained byChapnik et al.(2006)
when discussing the first iteration of the algorithm designed
by DI01. In view of Eqs. (21)–(22), the random fluctuations
of J̃b and J̃o are small and the expectation can usually be
replaced by a single realization. This turns Eqs. (37)–(38)
into a linear systemof two unknownsso, sb which can be
written as:

αsb
+ (α − β)

(
so

− sb
)

= 2J̃b

(p − α)so
+ (α − β)

(
sb

− so
)

= 2J̃o

and where the notationsα = Tr(HK ), β = Tr
[
(HK )2] have

been introduced for simplification. If the system is not singu-
lar, then the unique solution is:

sb
= 2

(β − α) J̃o + (p − 2α + β) J̃b

β (p − 2α + β) − (β − α)2
(39)

so
= 2

βJ̃o + (β − α) J̃b

β (p − 2α + β) − (β − α)2
(40)

At the price of computing Tr
[
(HK )2

]
, the final solution

of DI01’s algorithm can be directly obtained, without any
further iteration in the case where specified and true er-
ror covariances differ by a scaling factor as indicated by
Eqs. (31)–(32). This may however not be the case when ob-
servation operators are non-linear or when this condition is
not met.

In our setting, Tr
[
(HK )2

]
is lower but comparable to

Tr(HK ) in magnitude (see Sect. 3.3 for details). Both
traces are smaller by about one order of magnitude with
respect to the number of observations, which is consis-
tent with recent estimates in ARPEGE (Desroziers et al.,
2009, Fig. 1). DI01’s formulation neglects the term(so

−

sb)Tr[HK (I − HK )] (but the correct estimate is recovered
through the iterations). This term is indeed likely to be negli-
gible in Eq. (38) but not so in Eq. (37). Thus, more iterations
of the scheme may be needed to recover the appropriate value
of sb, rather thanso, as already noticed by DI01 (Tables 3
and 4). In contrast, the correct estimate can be obtained by
solving the linear system with the direct solution given by
Eqs. (39)–(40). The iterative tuning of the coefficients fol-
lowing DI01’s approach is shown in Fig.5 for overestimated
or underestimatedσo and σb. They confirm that generally,
a single iteration is necessary for tuningσo (panels a, c, e,
and g). In contrast, around four iterations can be necessary
for recovering a useful value ofσb especially whenso

− sb is
large (panels b and f), as the term(so

− sb)Tr[HK (I − HK )]
cannot be neglected. The formulation (39)–(40) recovers the
correct factor within one iteration (shown only in panels a
and b).

This suggests that it may be useful to use the formulation
(39)–(40) when trying to diagnose a multiplicative factor for
the background term. This happens for instance for the infla-
tion of variances in an ensemble of data assimilations (Ray-
naud et al., 2012). Extension of this formulation to the simul-
taneous tuning of several parameters (corresponding to sub-
parts of the background and the observation cost-functions)
is possible but more complicated, as a linear system of order
S + P (the number of sub-terms) has to be solved. This will
be the topic of further studies.

4 Application in the ARPEGE 4D-Var

This section describes the application of the variance tun-
ing factors to the operational model of Météo-France. The
global model ARPEGE is a spectral model with currently
70 vertical levels and features a stretched geometry that al-
lows higher resolution over Europe (about 10 km in physi-
cal space). The assimilation scheme is based on the multi-
incremental formulation (Courtier et al., 1994) with two
outer-loops.
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Fig. 5. Iterative tuning of multiplicative coefficients for the error covariance matrices.σo (left) andσb (right) are tuned simultaneously with(a,
b) overestimatedσo, underestimatedσb; (c, d)overestimatedσo andσb; (e, f)underestimatedσo and overestimatedσb; (g, h)underestimated
σo andσb =. Solid lines and square marks: iterative tuning following DI01’s approach; dashed lines and circle marks: new approach (shown
only in a, b). Traces are estimated with the randomization method using 100 independent realizations.

4.1 Estimation of tuning factors

Randomized estimates of the traces are performed in the
same way as in the idealized 1-D model using the assimi-
lation with perturbed observations. For the background term,

we estimate a single scaling factor with Eq. (39). Follow-
ing the result of the previous section, it is clear that there
is no need for such a refinement in the observation terms
(e.g. inclusion of(sb

− so) in Eq. 38). Observation scaling
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Fig. 6.Diagnosedσo’s-tuning factors per observation type
(September 2013).

factors are therefore estimated in the very same way as in
Desroziers et al.(2009). Randomized estimates of the traces
have been averaged over a one week period and use a sample
sizeM = 6, giving the following values:

Tr(HK ) ' 70000,

Tr
[
(HK )2

]
' 57000.

An application of the preceding expressions shows that back-
ground error standard deviations are overestimated by a fac-
tor 0.85. Thus, the specifiedB matrix in ARPEGE is closer to
its diagnosed value than in previous studies (Desroziers et al.,
2009), but still B < Bt. The estimated values for the observa-
tion error standard deviations are shown in Fig.6 for dif-
ferent observation types. Albeit previous studies have high-
lighted that observation errors are generally overestimated in
data assimilation schemes (possibly because of approximate
bias correction or neglect of spatial correlations in the er-
rors), this was not the case anymore for some conventional
observations (columns DRIFTBUOYS and RADIOSOUND-
ING haveSo

=
√

so > 1). As explained byDesroziers et al.
(2009), the obtained values for observation types AIR-
CRAFT, BRIGHT. TEMP. (satellite measurements) and GP-
SRO are suspiciously low and this is probably due to the fact
that these observations indeed have correlated errors (thus,
additional parameters describing these correlations should be
included in the maximum-likelihood approach). In our study
the corresponding coefficients will just be discarded for the
tuning as inDesroziers et al.(2009).

4.2 Impact in terms of forecast performance

We have investigated the impact of tuning the background
and observation variances in the global 4D-Var scheme. Fi-
gure7 shows the differences between root-mean-square er-
rors for the geopotential between the reference and the ex-

Fig. 7. Impact of tuning on forecast scores: differences between the
root mean squared errors of the reference and of the experiment
compared to independent ECMWF analyses (geopotential error in
m), as a function of forecast range (in h). NORD20 is the domain
on the globe that is north of 20◦ N, TROPIQ is the domain between
20◦ N and 20◦ S, and SUD20 is south of 20◦ S. Blue (red) indicates
better (worse) performance. The verification period is one month
(September 2013).

periment (with tuned values of variances). The error is com-
puted with respect to independent ECMWF analyses. The
verification period is one month, which is generally suffi-
cient to obtain reliable results. Bootstrap tests (not shown)
indicate that the results are statistically significant during the
first 36 h, with positive impact over the whole atmospheric
column except for the surface. Other scores however point
out to a degradation of the wind analyses in the Tropics with
respect to the observations.
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5 Conclusions

A posteriori diagnostics can help to detect misspecifications
in the statistics of a data assimilation scheme. However, it
is generally not possible to tell where the misspecification
lies unless some further hypotheses are made (Talagrand,
2010).

Among those diagnostics, one is particularly simple. The
value of the cost-function at the minimum should be close to
its expected valuep/2 wherep is the number of observations
(Bennett et al., 1993). It is possible to refine this diagnostic to
sub-parts of the cost function (Talagrand, 1999). Despite care
taken in the estimation of error covariance matrices, imple-
mentation of this diagnostic in early operational data assim-
ilation schemes showed that the amplitude of the innovation
vector was a priori overestimated by a factor 2–3 as reported
by Talagrand(1999), possibly because of the misspecifica-
tion of error correlations for satellite observations.

This paper introduces some additional results using the
fact that the sub-parts of the cost function at the minimum
can be expressed as quadratic forms of the innovation vector.
For some specific distributions of the innovation vector, in-
cluding the multivariate normal, expressions for the expecta-
tion, variances and cross-covariances can be given. In partic-
ular, the observation and background terms at the minimum
are positively (generally weakly) correlated (when the inno-
vation vector follows the expected statistics).

The expressions involve the trace of larges matrices such
as Tr[(HK )2

]. It is shown that these matrices can be esti-
mated from a randomized method (whenK is not explic-
itly available) by applying the assimilation scheme twice.
The randomized method is shown to yield results that are
consistent with the “simulated optimal innovation” method
(Chapnik et al., 2006). Finally, it is advocated that the com-
putation of Tr[(HK )2

] could be useful for variance tuning,
in particular for the inflation factor of the background error
covariance matrix. Further work will attempt to estimate ad-
ditional covariance parameters followingPurser and Parrish
(2003) and also make use of recent advances in randomized
linear algebra (Aune et al., 2012; Stein et al., 2013)
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