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Abstract. The predictability of the Cane–Zebiak coupled
ocean–atmosphere model is investigated using nonlinear dy-
namics analysis. Newer theoretical concepts are applied to
the coupled model in order to help quantify maximal predic-
tion horizons for finite amplitude perturbations on different
scales. Predictability analysis based on the maximum Lya-
punov exponent considers infinitesimal perturbations, which
are associated with errors in the smallest fastest-evolving
scales of motion. However, these errors become irrelevant
for the predictability of larger scale motions. In this study
we employed finite-size Lyapunov exponent analysis to as-
sess the predictability of the Cane–Zebiak coupled ocean–
atmosphere model as a function of scale. We demonstrate the
existence of fast and slow timescales, as noted in earlier stud-
ies, and the expected enhanced predictability of the anoma-
lies on large scales. The final results and conclusions clarify
the applicability of these new methods to seasonal forecast-
ing problems.

1 Introduction

The fundamental question regarding the predictability lim-
its of the coupled ocean–atmosphere system has not been
well established yet, although recent coupled models are
able to forecast phenomena like El Niño–Southern Oscilla-
tion (ENSO) up to about one year in advance (Kirtman and
Min, 2009). The atmospheric predictability has been exten-
sively investigated in the past, and classical predictability
studies (Lorenz, 1965, 1969; Charney et al., 1966; Smagorin-
sky, 1969; Shukla, 1985) have established that the instanta-
neous state of the atmosphere cannot be predicted beyond a
few weeks. However, only a few studies have examined the
predictability of the coupled ocean–atmosphere system. Un-

certainties in the atmospheric state are passed to the ocean
through coupling processes. The predictability of the coupled
system depends critically on how uncertainties in the atmo-
spheric state reach nonlinear equilibrium, and how this rela-
tively high-frequency noise interacts with the low-frequency
evolution of the ocean model (Goswami et al., 1997). Within
the atmosphere, a similar reasoning for the predictability de-
pendence on 2-D turbulence interacting with 3-D turbulence
also applies. The tropical Pacific coupled ocean–atmosphere
system with its primary oscillatory instability, i.e., ENSO, is
an interesting example of a coupled fast–slow system of cru-
cial importance for seasonal forecasting, and is the focus of
this study.

In the early 90s,Goswami and Shukla(1991) and
Blumenthal(1991), following different procedures but us-
ing the same model, showed that the growth of errors in
the Cane–Zebiak coupled model (Zebiak and Cane, 1987) is
governed by two different timescales. However, none of these
studies involving the predictability of the coupled ocean–
atmosphere system made use of methods from nonlinear dy-
namics analysis available today. Newer theoretical concepts
are available to reveal the detailed structure of the observed
or modeled variability in a condensed way, providing ad-
ditional conceptual insight as well as quantifying maximal
prediction horizons that have useful applicability to seasonal
forecasting problems like ENSO.

Classical predictability analysis based on the maximum
Lyapunov exponent (MLE) considers infinitesimal perturba-
tions (Rosenstein et al., 1993; Kantz, 1994), which are as-
sociated with errors in the smallest fastest-evolving scales
of motion as in Eq. (1). However, the Lyapunov exponent
and its association with prediction horizons (Boffetta et al.,
1998a) are of very limited use in multiple timescale systems
like geophysical flows, and predictions can actually be made
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far beyond the characteristic Lyapunov timescale. The MLE
can be defined as

λ = lim
t→∞

lim
δ0
x→0

1

t
ln

|δx(t)|

|δ0
x |

, (1)

whereδ0
x = δx(0) represents an infinitesimal initial uncer-

tainty in the model state. Because the initial conditions can be
measured only with a finite uncertaintyδx(0), we can fore-
cast the future state of the system with a given error tolerance
level1 only to a maximum timeTp (prediction horizon)

Tp =
1

λ
ln

1

δx(0)
. (2)

Equation (2) gives the shortest prediction horizon, which is
associated with the smallest, low energy-containing scales
that, as soon as their error reaches nonlinear saturation, do
not play a role in the error growth. Larger errors, which typi-
cally occur at larger scales, will grow at a different rate. This
is usually due to the small-scale instabilities growing faster
but becoming nonlinearly saturated at a much smaller level
than large-scale instabilities. In general, large errors will
grow with the characteristic timescale of the largest slow-
evolving high-energy containing scales. It is worth noting at
this point that the largest energy-containing scales are associ-
ated with instabilities that obtain energy from the mean flow
and also from each other. Thus these are the energy produc-
tion instabilities that contain most of the energy, but are not
the same as the largest scales in space and time. Therefore,
the effect of the smallest fast-evolving scales (considered by
the MLE analysis) becomes irrelevant for the predictability
of larger scale motions.

In order to overcome this problem associated with the
infinitesimally small amplitude perturbations,Aurell et al.
(1997) have generalized the Lyapunov exponent concept to
non-infinitesimal finite amplitude perturbations. The finite-
size Lyapunov exponent (FSLE) is particularly useful when
there exist characteristic scales; this allows the computation
of the average exponential error growth at a given scale, say,
δ. This generalization has the advantage that both the nonlin-
ear dynamical evolution of these perturbations as well as the
predictability of multiple timescale systems can be treated
appropriately (Boffetta et al., 1998a). The finite-size Lya-
punov exponentλ(δ) is based on the concept of error growing
time τq(δ) (error q-pling time), which is the smallest time it
takes for a perturbation of initial sizeδ to grow by a factorq.

To practically compute the FSLE, we assume that a sys-
tem has been evolved for long enough that the transient dy-
namics has lapsed, e.g., for dissipative systems the motion
has settled onto the attractor. Then we consider att = 0 a
“reference” trajectoryx(0) supposed to be on the attractor,
and generate a “perturbed” trajectoryx′(0) = x(0) + δx(0).
We need the perturbation to be initially very small (es-
sentially infinitesimal) in some chosen normδ(t = 0) =‖

δx(t = 0) ‖= δmin � 1. Typically, in numerical experiments

with “toy models”δmin =O(10−6
−10−8), but for intermedi-

ate complexity models like the Cane–Zebiak coupled model
and in a state-of-the-art coupled general circulation model
(CGCM), δmin is limited by the precision of the finite data
set that leads to a minimum length scale below which the at-
tractor structure cannot be resolved (later shown in Sect. 4).
Then, in order to study the perturbation growth through dif-
ferent scales, we can define a series of thresholds,δn = qnδ0,
and to measure the timeτq(δ) that a perturbation with size
δn takes to grow up toδn+1, wheren = 0, . . . ,Ns represents
an increasing scale andNs is the scale at which the error
saturates. The ratioq should not be taken too large in or-
der to avoid interference due to the growth through differ-
ent scales before reaching the next threshold. On the other
hand, the rateq cannot be too close to one; typically a sen-
sible threshold rate isq = 2 (which we take throughout this
work) orq =

√
2. The choice ofq = 2 leads to the “doubling

time” τ2, while q = e yields the so-called “e-folding time”.
Both doubling time and e-folding time are frequently used in
the literature to characterize error growth; thus, we pick the
doubling time as a convenient number for comparison with
previous work on CZ predictability (Goswami and Shukla,
1991; Blumenthal, 1991; Goswami et al., 1997). The time
τq(δ) is obtained by integrating two trajectories of the sys-
tem that start at an initial distanceδmin and this process is
illustrated in Fig.1.

The algorithm schematized in Fig.1 proceeds as follows.
After time t0, the perturbation has grown fromδmin up to
δn, ensuring that the perturbed trajectory relaxes on the at-
tractor and aligns along the maximally expanding direction.
Then, we measure the timeτ1(δn), the error needed to grow
up toδn+1, i.e., the first time such thatδ(t0) =‖ δx(t0) ‖= δn

andδ(t0 + τ1(δn)) = δn+1. The perturbation is thus rescaled
to δn, along the directionx′

− x (see Fig.1). The procedure
is repeatedNd times for each threshold, obtaining the set of
the “doubling” times (strictly speaking the name applies for
q = 2 only) {τi(δn)} for i = 1, . . . ,Nd error-doubling experi-
ments. Note thatτ(δn) also depends onq. The doubling rate
is defined as

γi(δn) =
1

τi(δn)
lnq. (3)

The error growing time is a fluctuating quantity and one has
to take the average along the trajectory as in Eq. (1), therefore
the FSLEλ(δ) is computed by taking the average over the
natural measure along the trajectory (invariant measure of the
dynamics), which is approximated by the ensemble average
〈·〉ensover many realizations.

λ(δn) = 〈γ (δn)〉t =
1

T

T∫
0

dt γ =

∑
i γiτi∑
i τi

(4)
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Fig. 1. Finite-size Lyapunov exponent algorithm schematized after
Boffetta et al.(1998a).

using Eq. (3) yields

λ(δn) =
1

〈τ(δn)〉d
ln q, (5)

where〈τ(δ)〉d =
∑

i τi/Nd is the average over the doubling
experiments and the total duration of the trajectory isT =∑

i τi . Whenδn is infinitesimal,λ(δn) recovers the MLE, in
Eq. (1), and we have limδ→0 λ(δn) = λ1. We must under-
line two things: (i) unlike the standard LE, whenδ is finite
λ(δ) depends on the chosen norm and this dependence is a
manifestation of the fact that in the nonlinear regime the pre-
dictability time depends on the chosen observable; (ii) since
the FSLE is based on “q-pling” times, it cannot detect nega-
tive LEs.

Boffetta et al. (1998a) illustrated this new concept by
studying two coupled sets of nonlinearLorenz(1963) aligns,
one characterized by a slow and the other one characterized
by a fast timescale. They showed that the FSLE is indeed an
adequate quantity to describe the predictability of systems
with multiple timescales. The FSLE is expected to converge
to the leading Lyapunov exponentλf of the fast decoupled
system for small scales, whereas for large scales it asymp-
totically approaches the Lyapunov exponentλs of the slow
decoupled system (Fig.2).

It is worth noting that Fig.2, schematized afterBoffetta
et al. (1998a), does not illustrate the fact that if the phase
space is bounded, thenλ(δ) goes to zero for sufficiently large
δ, simply because the distance between two trajectories can-
not grow without bound on a bounded phase space. This is
later shown for the CZ model in Figs.7 and8 in Sect. 4 (Re-
sults).

One interesting fact is that the MLE defined in Eq. (1)
does not depend on the initial state, but for the FSLE one
has to take an average over initial states in Eq. (5). Since the
FSLE depends on the initial state, one can consider the ap-
plication of the FSLE for a particular season (ENSO spring

Fig. 2. Finite-size Lyapunov exponent of two coupled (slow–fast)
Lorenz models computed from the slow variables. The two hori-
zontal lines represent the uncoupled Lyapunov exponents. Figure
schematized afterBoffetta et al.(1998a).

predictability barrier) or regime of the system as inMitchell
and Gottwald(2012). In order to consider the FSLE sea-
sonal or regime dependence, the algorithm can be modified to
avoid the rescaling at finiteδn as follows. The thresholds{δn}

and the initial perturbation(δmin � δ0) are chosen as before,
but now the perturbation growth is followed fromδ0 to δNs

without rescaling back the perturbation once the threshold is
reached. In practice, after the system reaches the first thresh-
old δ0, we measure the timeτ1(δ0) to reachδ1, then following
the same perturbed trajectory we measure the timeτ1(δ1) to
reachδ2, and so forth up toδNs: we thus record the timeτ(δn)

for going fromδn to δn+1 for each value ofn. One important
difference in the modified algorithm is that the evolution of
the error from the initial valueδmin to the largest threshold
δNs carries out a single error-doubling experiment. Therefore,
it relies on the realization of an ensemble of simulations in
order to take the average over many realizations with differ-
ent initial conditions for a particular season or regime of the
system.

In order to quantify the typical predictability time for a
trajectory with initial uncertaintyδ, we introduce the average
error growing time for a trajectory with initial uncertaintyδ
and a given tolerance1 as

Tp (1,δ) =

1∫
δ

d lnδ′

λ(δ′)
, (6)

which reduce to Eq. (2) in the case of constantλ. Further-
more, from the considerations mentioned above, one expects
thatλ(δ) is a decreasing function ofδ and thus Eq. (6) gives
longer predictability time than Eq. (2).

In the case studied byBoffetta et al.(1998a) the prediction
horizonTp of the slow component of the coupled fast-slow
Lorenz (1963) system becomes orders of magnitude larger
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Fig. 3. Average error growing timeTp for the slow component of
the two coupled Lorenz models as a function of error tolerance1.
The dashed line represents the classical Lyapunov estimate. Figure
schematized afterBoffetta et al.(1998a).

than the one based on the classical Lyapunov estimate, when
large error tolerances are allowed, which is shown in Fig.3.

The interest in error growth rates and their influence on the
predictability has also promoted the development of breed-
ing vectors, which are optimal finite-size perturbations that
represent the directions of growing analysis errors to pro-
duce optimal perturbations for ensemble forecasting (Toth
and Kalnay, 1993, 1997; Vikhliaev et al., 2007). The average
growth rate of the breeding vectors, which are also scale de-
pendent, is closely related to the FSLE (Boffetta et al., 2002;
Peña and Kalnay, 2004). An interesting property of the FSLE
methodology as presented here is that it also applies to sys-
tems that are forced or partly forced by noise.

2 The model

In this study we used the standard version of the Cane–
Zebiak (CZ) model that has been used in a large num-
ber of studies related to ENSO (Zebiak and Cane, 1987;
Goswami and Shukla, 1991, 1993; Blumenthal, 1991). This
is an anomaly coupled model, i.e., the governing aligns rep-
resent oceanic and atmospheric perturbations about the mean
climatological state, with monthly climatology prescribed
from observation. The nonlinearity enters through the ther-
modynamic energy align for the ocean and the model does
not contain the high-frequency internal variability in the at-
mosphere since it considers a steady-state atmosphere. It
is worth noting that this is in contrast with the real cou-
pled ocean–atmosphere system discussed in the Introduction,
since in the CZ model the nonlinearities and high-frequency
variability do not enter through the atmosphere.

In this paper, we performed a 50 000 yr-long run of the
CZ model to quantify its predictability. The coupled model
run is able to simulate important aspects of interannual vari-
ations in the tropical Pacific reasonably realistically, contain
nonlinearity, and shows a timescale similar to the observed

Fig. 4. Sea surface temperature anomalies in the NINO3 (5◦ S–
5◦ N; 150–90◦ W) region from a 50 000 yr run of the CZ model
(monthly means from the first thousand years).

system. The model is able to simulate the characteristic large-
scale spatial (not shown) and temporal structure of ENSO
(seeZebiak and Cane, 1987). The evolution of mean monthly
sea surface temperature anomalies in the NINO3 region of
the eastern tropical Pacific (5◦ S–5◦ N; 150–90◦ W) is shown
in Fig. 4. The choice of this region to represent the system’s
evolution is based on the fact that this is the region of the
tropical Pacific that has the largest variability in sea surface
temperature on interannual timescales and is highly corre-
lated with the dominant mode of variability, i.e., the first EOF
of the system (not shown). The evolution is clearly irregular,
with decades of little activity and decades of irregular cycles
of warm and cold phases with an average period of 3–4 yr.
The chaotic dynamics of the model is due to the fact that the
SST align and the atmospheric heating are nonlinear.

3 Methodology

Previous predictability experiments involving the CZ model
were conducted introducing small perturbations distributed
randomly in space inGoswami and Shukla(1991), which ac-
tually introduces perturbations in all scales of motion, or by
representing the fields in terms of its EOFs, and then studying
the evolution of uncertainties that have the spatial structure of
one of them (Blumenthal, 1991).

The methodology employed here differs from the previous
studies, since it is based on newer theoretical concepts from
nonlinear dynamics analysis and follows the following steps.
First, we reconstruct the system dynamics in phase space
using the Takens embedding theorem (Takens, 1981; Sauer
et al., 1991) and then apply the finite-size Lyapunov expo-
nent algorithm in order to infer the CZ model predictability.
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A similar procedure could be done using an EOF reduction to
reconstruct the system’s phase space, since the NINO3 index
is highly correlated with the first EOF.

4 Results

The choice of optimal embedding is crucial for reconstruct-
ing the system dynamics in phase space as well as for the
application of the FSLE algorithm in order to infer the
CZ model predictability. Given the NINO3 index, which is
a scalar series, a suitable delay time and an embedding di-
mension were chosen following the methods of mutual infor-
mation and correlation dimension, respectively (Kantz and
Schreiber, 2004).

We determined a suitable delay time based on the auto-
correlation function and mutual information, since one cri-
terion may be superior for one dynamical system and poor
for another. The optimal delay is estimated by the first min-
imum of mutual information (when it has a minimum) or
when the autocorrelation drops below 1/e or has a point of
inflection (Albano et al., 1988; Fraser and Swinney, 1986).
Figure5 shows the autocorrelation and mutual information
as a function of the time lags for the CZ model, suggesting a
delay time of 9–10 months. Note that the autocorrelation for
τ = 50 months is well above the 1/e threshold. This indicates
that the Cane–Zebiak model is predictable at least 50 months
ahead, much longer than the predictability of real ENSO by
current systems.

We also need to estimate the dimensionality of the system
to perform the phase space reconstruction. The curves for the
correlation dimension (Grassberger and Procaccia, 1983) of
the CZ model NINO3 index in Fig.6 show a scaling range
where all curves saturate (plateau) slightly below 4, giving
the estimated dimensionality of the signal. The low value of
saturation of the slopes reveals that the underlying dynamics
of the CZ model correspond to a low-dimensional determin-
istic process. According to the embedding theory, the dynam-
ical degrees of freedom cannot be higher than 2D+1 = 9 and
lower thanDint ≈ 4 whereDint is the first integer value af-
ter the saturation value. The size of the 50 000 yr simulation,
with monthly outputs of the CZ model, implies that the high-
est dimension attractor that can be discerned using this time
series is between 9 and 10 dimensions according toTsonis
(1992).

Our result is in agreement with the dimensionality esti-
mate of 3.5 for the CZ model obtained byTziperman et al.
(1994). It is worth noting that the ocean component of this
model is essentially made up of two prognostic aligns, one
for the mixed layer thermodynamics align for SST, a thermo-
cline depth align for upper ocean dynamics, along with SST-
gradient-wind relation, and the wind-equatorial upwelling re-
lation. This implies roughly 4 degrees of freedom and there-
fore this data set is expected to be low dimensional.

Fig. 5. Autocorrelation function of the NINO3 index (solid line)
and mutual information (dashed line) at different time lags for the
CZ model.

Fig. 6. The correlation dimension (local slopes of the correla-
tion integral) of the NINO3 index of the CZ model. Embedding
is done with a delay of 10 months. The different curves represent
m = 4, . . . ,20 dimensions (from bottom to top).

We reconstruct the CZ model phase space using the Tak-
ens embedding theorem (Takens, 1981; Sauer et al., 1991)
applied to the NINO3 index time series. The dynamics in
phase space appears as a chaotic attractor (fractal) where the
interannual oscillations clearly display low-order determin-
istic chaos (Fig.7). The attractor also shows the ENSO dy-
namics, characterized by El Niño positive loops and normal
La Niña conditions (neutral and negative values).

In the final step, the NINO3 time series of the CZ model
were analyzed by the FSLE algorithm to infer its predictabil-
ity. For the sake of brevity a detailed description of the com-
putation of FSLE is not covered here. Interested readers are
referred to the paper byBoffetta et al.(1998b).
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Fig. 7.Reconstructed phase space (three-dimensional projection) of
SSTA of the NINO3 region from the CZ model.

Figure 8 shows the plot of the FSLEλ(δ) as a function
of the scaleδ. The scalesδ are defined on an embedded
phase space with dimensionm = 9, and a delay timeτcorr =

10 months as suggested by the autocorrelation and mutual
information. The metric used for delta isδ =‖ x − x′

‖, see
Fig. 1, and the choice for the initial size ofδmin is limited
by the precision of a finite data set ofN points that leads to
a minimum length scaleε0 below which the attractor struc-
ture cannot be resolved. The scales at which the correlation
dimension curves, shown in Fig.6, start to fluctuate tremen-
dously due to the lack of neighbors indicate the minimum
length scale. These scales are smaller than the average inter-
point distance in the attractor in embedding space andδmin
can be approximated byε0 ≈ L/N (1/d), whereL is the ex-
tent of the attractor andd is its correlation dimension (Farmer
et al., 1983). In order to compute the FSLE, we performed a
50 000 yr-long run, which roughly gives a minimum length
scaleε0 ≈ 0.05 if we consider the attractor dimension of
d = 4, which is in agreement with the behavior of the cor-
relation dimension curves for scalesε < 0.04 in Fig.6. For
valuesδ > 3 the perturbation size is comparable to the vari-
ance of the NINO3 SSTA, rendering the FSLE meaningless
(saturation valueδNs).

One noticeable feature in Figs.8 and9 is that they show
very gradually changing curves forλ(δ) and Tp, which is
rather different from the abrupt changes in the simple sys-
tems ofBoffetta et al.(1998a) that have only two different
timescales. As pointed out byLorenz (1969), the errors in
different scales in systems possessing many scales of mo-
tion tend to grow at different rates and saturate at different
levels. First, let us consider very small amplitude perturba-
tions δ = 0.05 associated with errors in the smallest fastest-
evolving scales of motion we can discern in this work. It
is seen in Fig.8 that for very smallδ the magnitude of
λ(δ = 0.05) ≈ 0.16 month−1 (doubling time of 4.3 months).

Fig. 8. Scale-dependent Lyapunov exponentsλ(δ) of the CZ model
as a function of scaleδ in the range [0.05, 1.5]. The dashed red line
shows theGoswami and Shukla(1991) estimation for the fast mode
growth rateλf and the dashed blue line the slow mode growth rate
λs.

Fig. 9. Average error growing timeTp (months) of the CZ model
as a function of the error tolerance level1 based on: FSLE (black
line) and the maximum Lyapunov exponentλfast (red line). Note
that predictability inferred by assuming “infinitesimal” perturba-
tions (dashed red line) is much smaller than that inferred by finite-
size perturbations (black line).

Goswami and Shukla(1991), in a predictability study
of the CZ model, found the fast growth rate to be
λf ≈ 0.145 month−1, corresponding to a doubling time of
4.8 months. This matches the growth rate found here and
we must underline that, like us, they do not consider the de-
pendence of predictability on season or regime.Blumenthal
(1991), following a predictability study involving princi-
pal oscillation patterns (POPs) but using the same model,
found that there is a seasonality to error growth in the
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CZ model, with spring starts showing the largest error
growth. Blumenthal (1991) found that the doubling time
for February and May starts is 4.2 months, while integra-
tions starting in August and November show much less er-
ror growth with doubling times of 7 months and 9.5 months,
respectively. Later on,Goswami et al.(1997) used a decom-
position of model fields in terms of the model’s EOFs, al-
lowing them to introduce errors with a given spatial structure
and to study growth of errors in all scales. Using a similar
approach toGoswami and Shukla(1991) to compute error
growth, but examining the seasonal and scale dependence,
they found that growth of small or moderate error in the ini-
tial condition is always slow in winter forecasts and fast in
forecasts started from spring of certain years. Furthermore,
they concluded that the slow growth rate of errors (doubling
time of about 15 months) is intrinsic to the model, whereas
the fast growth rate (doubling time of about 5 months) comes
from the coupling with the atmospheric winds and its inter-
action with the tropical wave dynamics.

The fast growth rate seems therefore to be closely related
to the growth-phase predictability barrier also known as the
“spring predictability barrier” (Moore and Kleeman, 1996;
Chen et al., 2004; Yu et al., 2009). The spring predictability
barrier has been explained in terms of the seasonal depen-
dence of the air-sea coupling process, due to the seasonal
movement of the Intertropical Convergence Zone, which is
closest to the Equator, and SST in the east is warmest. The
spring is also, of course, the period when the El Niño growth
phase tends to occur, since the coupling between model at-
mosphere and ocean is such that small perturbations in the
initial state are easily amplified.Samelson and Tziperman
(2001) suggest that there is a predictability barrier associ-
ated with the growth phase of El Niño conditions instead of a
spring barrier. That is, ENSO’s predictability is smallest dur-
ing the growth phase of El Niño conditions in the equatorial
eastern Pacific, indicating that the growth mechanism of the
disturbance is likely to be similar to that of the mechanism
due to which the mature El Niño develops.

The mechanism that leads to a mature El Niño lies in the
coupling with the atmospheric winds and its interaction with
the tropical wave dynamics leading to the growth of coupled
instabilities. In the CZ model, the model run is initiated with
an imposed westerly wind anomaly that is held fixed for a
given period and then removed. The westerly wind anomaly
produces an initial thermocline depression that leads to an
ocean heating anomaly, atmospheric convergence, latent heat
release, then further downwelling and deepening of the ther-
mocline (positive coupled feedback). The disequilibrium is
carried by the ocean wave dynamics as eastward propagat-
ing equatorial Kelvin waves and westward propagating off-
equatorial Rossby waves. In the central and eastern Pacific
the Kelvin waves grow unstable if they have large wave-
lengths and are slow enough to stay within the coupling re-
gion so that the coupling process feeds back on the pertur-
bation. The CZ model then shows the recurrence of warm

events, deriving solely from self-interactions of the coupled
system since there is no external forcing.

The CZ model was designed specifically to capture inter-
annual variability of the large spatial scales of motion in the
ocean. Therefore, the slow growth rate of errors is intrin-
sic to the ocean dynamics (slow model). On larger scales
the growth rate is much slower and is associated with equa-
torial trapped Rossby wave timescales (ENSO mode). The
perturbations of the thermocline also produce negative off-
equatorial depth anomalies (that is, a shallowing signal of the
thermocline) in the central Pacific that excite westward prop-
agating Rossby waves. These Rossby waves are reflected off
the western boundary as large-scale equatorial Kelvin waves
(long wave approximation) and eventually arrive at the east-
ern Pacific months later, shallow the thermocline there and
cause cooling of the SST. It is worth noting that by making a
long wave approximation, one is assuming that all the energy
associated with reflected Rossby waves goes into the largest
Kelvin modes. Therefore, reflection becomes too efficient as
it happens in the CZ model and is also enhanced by the use
of unrealistic solid boundaries in this model. That means that
the detection of the slow growth rate may be harder when
considering more realistic models like CGCMs or in the ob-
servations.

Although a lot of attention has been given to the fast
growth rate, the existence of slow growth in the coupled sys-
tem as shown byGoswami and Shukla(1991) andGoswami
et al.(1997) has been the basis for optimism for ENSO pre-
diction at longer lead times. The slow growth rate found
by Goswami and Shukla(1991) is λs = 0.045 month−1, cor-
responding to a doubling time of 15.3 months. The slow
timescale proposed byGoswami and Shukla(1991) actu-
ally comes from fitting their error curves, based on 151 ini-
tial conditions and 180 months long runs, with a linear com-
bination of two processes having two timescales of error
growth. Here we cannot point out a specific value for the
slow growth rate, but a spectra of slow growth rates for the
large scales. An equivalent slow growth rate to the one found
by Goswami and Shukla(1991) corresponds to perturbation
scales ofδ ≈ 0.4◦C as shown in Fig.8. To put these growth
rates into perspective, an initial error of 0.4◦C in SST would
take about 7 months to grow to 1.5◦C (approximately the
standard deviation of NINO3 SST anomalies) at the fast rate,
and about 2 yr at the slow rate.

Another fact that can affect the estimation of growth rates
is that, in the presence of regimes like in the CZ model
(Fig. 4), the error growth rate given by the FSLE can be
a highly fluctuating function of initial state. In particular,
troughs in the large scales of FSLE spectra are shown to be
a signature of slow regimes (in the slow system – ocean),
whereas regimes occurring in the fast system (atmosphere)
are shown to cause large peaks in the FSLE spectra where er-
ror growth rates far exceed those estimated from the maximal
Lyapunov exponent (Mitchell and Gottwald, 2012).
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Figure 9 shows the average error growing timeTp (in
months) as a function of the error tolerance level1 for a
small uncertainty of fixed sizeδ = 0.05◦C to grow to a value
1 = 1.5◦C, and is obtained by Eq. (6). If one considers a
constantλ(δ), the integral reduces to Eq. (2). The black line
in Fig. 9 corresponding toTp is based on the FSLE results
shown in Fig.8. The red line in Fig.9 represents the estima-
tion of Tp given by Eq. (2) for a hypothetical system with a
single (fast mode) Lyapunov exponentλfast = 0.16 month−1

in red. Observe that the predictability inferred by assuming
infinitesimal perturbations (red line) and fast growth rate is
much smaller than that inferred by finite-size perturbations
(black line), illustrating the fact that large errors evolve in
general with large-scale characteristic time, which thus rules
large-scale predictability.

In the past,Goswami and Shukla(1991) andBlumenthal
(1991) performed predictability studies of the CZ model us-
ing different methods from the FSLE.Goswami and Shukla
(1991) found that the error growth has two timescales, the
shorter timescale having a doubling time of approximately
4.8 months, whileBlumenthal(1991) found a doubling time
of 4.2 months for the spring season. The slow mode doubling
time found byGoswami and Shukla(1991) is 15 months and
is somewhat closer to the doubling time of 10 months found
by Blumenthal(1991) for the winter season. Here we found,
using the FSLE, a similar doubling time for the fast mode
(∼4.3 months). These earlier estimates of the growth rates
are not very different from the fast growth rates found here.
Although we cannot establish a specific doubling time for the
slow mode (we have a spectra of slow growth rates for large
scales), we believe that the ultimate limit on predictability in
the CZ model is governed by the slow growth rates of errors
intrinsic to the ENSO mode.

Although the FSLE is a relatively simple and very useful
method for estimating the model predictability, it does not
offer ways to infer the source of the fast and slow timescales
in terms of spatial patterns of these finite-size perturbations
that represent the directions of growing errors. However, it
may provide tools to study the predictability of the real cou-
pled ocean–atmosphere in the tropical Pacific, since it does
not rely on the realization of twin experiments in order to
compute the error growth like in the previous studies.

5 Conclusions

In this study we could identify different intrinsic timescales
in the Cane–Zebiak intermediate model of the coupled
ocean–atmosphere system of the tropical Pacific, with the
shorter timescale showing a doubling time of approximately
5 months. The results also confirm that for systems with dif-
ferent intrinsic timescales, the slow varying quantities (i.e.,
large-scale features) have a longer predictability than the
fast-evolving ones. Present-day CGCMs have useful ENSO
prediction skill at lead times of∼6 months, but the skill also

depends strongly on season, ENSO phase, and ENSO inten-
sity as shown inJin et al.(2008). It seems that the skill of
current models is limited by rapid growth of error, at a rate
comparable to the fast rate identified in here and in the previ-
ous work on the predictability of the tropical Pacific coupled
system.

Futhermore, assuming that the ENSO in a state-of-the-art
CGCM is governed by chaotic nonlinear dynamics, we ex-
pect that the high-frequency noise or regime changes from
the atmospheric internal dynamics can strongly influence the
estimation of theλfast using the FSLE approach. However,
we do not expect the predictability of the slow ENSO mode
(λslow) to be significantly affected by the relatively high-
frequency noise from the atmosphere, since the slow growth
rate of errors is intrinsic to the ocean dynamics. Of course,
we recognize that this assumption is the subject of consid-
erable debate (e.g.,Kirtman et al., 2005 for a discussion)
and needs further investigation. The literature offers exter-
nal stochastic forcing and chaos as two distinct possibilities
for the irregularity of ENSO. This debate of stochastic forc-
ing versus chaotic dynamics has important implications for
understanding predictability, since the theoretical upper limit
of predictability depends heavily on the mechanism for ir-
regularity. Nevertheless, the approach may help diagnose the
role of chaos in various CGCMs, and the applicability of this
technique in higher complexity models like state-of-the-art
CGCMs deserves further studies. We also expect that ENSO
in most state-of-the-art CGCMs may also exhibit low-order
dimensionality and that the essence of the method used here
can be applied. The approach presented here in conjunction
with the atmospheric noise reduction technique introduced
by Kirtman and Shukla(2002) can be used to isolate the role
of high-frequency atmospheric noise in the predictability of
ENSO.

The FSLE is a relatively simple concept and very useful
method for estimating the model predictability. However, it
does not allow for the inference of the source of different
timescales in terms of spatial patterns, nor does it provide
answers to questions regarding the cascade of errors from
one scale of motion to another. The main advantages of this
technique relative to the others is that it is relatively simple
to perform and allows the study of the predictability of the
real coupled ocean–atmosphere in the tropical Pacific, since
it does not rely on the realization of twin experiments in or-
der to compute error growth as in the previous studies, only
possible with coupled models.
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