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Abstract. Auto regressive integrated moving average

(ARIMA) models have been widely used to calculate

monthly time series data formed by interannual variations of

monthly data or inter-monthly variation. However, the influ-

ence brought about by inter-monthly variations within each

year is often ignored. An improved ARIMA model is devel-

oped in this study accounting for both the interannual and

inter-monthly variation. In the present approach, clustering

analysis is performed first to hydrologic variable time series.

The characteristics of each class are then extracted and the

correlation between the hydrologic variable quantity to be

predicted and characteristic quantities constructed by linear

regression analysis. ARIMA models are built for predicting

these characteristics of each class and the hydrologic vari-

able monthly values of year of interest are finally predicted

using the modeled values of corresponding characteristics

from ARIMA model and the linear regression model. A case

study is conducted to predict the monthly precipitation at the

Lanzhou precipitation station in Lanzhou, China, using the

model, and the results show that the accuracy of the improved

model is significantly higher than the seasonal model, with

the mean residual achieving 9.41 mm and the forecast accu-

racy increasing by 21 %.

1 Introduction

Hydrological processes are complicated; they are influenced

by not only deterministic, but also stochastic factors (Wang

et al., 2007). The deterministic change in a hydrological

process is always accompanied by the stochastic change.

Generally speaking, determinism includes periodicity, ten-

dency, and abrupt change. A strict deterministic hydrological

process is rare. Stationary time series has been widely used

in hydrological data assimilation and prediction to tackle the

stochastic factors in hydrological processes. From the point

of view of stochastic processes, hydrological data series usu-

ally comprises trend term and stationary term. The basic idea

of the auto regressive integrated moving average (ARIMA)

model, one of the most commonly used time series model, is

to remove the trend term of series by difference elimination,

so that a nonstationary series can be transformed into a sta-

tionary one. Some researchers have used ARIMA model for

the analysis of hydrological process without considering the

effects of seasonal factors (Jin et al., 1999; Niua et al., 1998;

Toth and Montanari, 1999). However, most studies (Ahmad

et al., 2001; Lehmann and Rode, 2001; Qi an Zhen, 2006) ne-

glected stationary test and the influence from inter-monthly

variation within a year. In this paper, the seasonal ARIMA

model is improved by removing the effect of seasonal fac-

tors, and the improved model is tested through a case study.

The paper is organized as follows: the ARIMA model is in-

troduced first, followed by the introduction of the issues in

the currently existing ARIMA model and our proposed meth-

ods to improve it. A case study is conducted and discussion

is addressed finally.

2 ARIMA model

A hydrological time series {yt , t = 1, 2, . . ., n} could be

either stationary or nonstationary. Given that there are es-

sentially no strictly deterministic hydrological processes in

nature, the analysis of hydrological data by means of nonsta-

tionary time series is of importance, among which ARIMA

model is one of the available choices.
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Figure 1. Procedure of applying ARIMA model.

2.1 ARIMA model

For a stationary time series, an auto regressive moving aver-

age model (ARMA) (p, q) model is defined as follows:

yt = φ1yt−1+φ2yt−2+ . . .+φpyt−p + ut − θ1ut−1

− θ2ut−2− . . .− θqut−q , (1)

where p denotes the autoregressive (AR) parameters, q rep-

resents the moving average (MA) parameters, the real pa-

rameters φ1, φ2, . . . , and φp are called autoregressive coef-

ficients, the real parameters θj (j = 1, 2, . . . , q) are moving

average coefficients, and ut is an independent white noise se-

quence, i.e., ut ∼N(0, σ
2). Usually the mean of {yt } is zero;

if not, y′t = yt −µ is used in the model.

Lag operator (B) is then introduced; thus

ϕ(B)= 1−ϕ1B −ϕ2B
2
− . . .−ϕpB

p, (2)

θ(B)= 1− θ1B − θ2B
2
− . . .− θqB

q , (3)

where ϕ(B) is the autoregressive operator and θ(B) is the

moving-average operator.

Then the model can be simplified as

ϕ(B)yt = φ(B)ut . (4)

If {yt , t = 1, 2, . . ., n} is nonstationary, we can obtain the

stationarized sequence zt by means of difference, i.e.,

zt = (1−B)
dyt =∇

dyt , (5)

where d is the number of regular differencing. Then the cor-

responding ARIMA (p, d, q) model for yt can be built (Box,

1997), where d is the number of differencing passes by which

the nonstationary time series might be described as a station-

ary ARMA process.

2.2 Seasonal ARIMA (p, d, q) model

Most hydrological time series have obviously seasonal

(quasi-periodic) variation (Box, 1967), representing recur-

ring of hydrological processes over a relatively (but not

strictly) fixed time interval. Monthly data series often shows

a seasonal period of 12 months while quarterly data series

always present a period of 4 quarters. Seasonality can be de-

termined by examining whether the autocorrelation function

of the data series with a specified seasonal order is signifi-

cantly different from zero. For instance, if the autocorrela-

tion coefficient of a monthly data series with new data series

formed by a lag of 12 months is not significantly different

from 0, the monthly data series does not have a seasonality of

12 months; if the autocorrelation coefficient is significantly

different from 0, it is very likely this monthly data series has

a seasonality of 12 months. A seasonal ARIMA model can

be built for a data series with seasonality.

For a time series {yt }, its seasonality can be eliminated

after D orders of differencing with a period of S. If a further

d orders of regular differencing is still needed in order to

make the data series stationary, a seasonal ARIMA can be

built for the data series as follows,

φp(B)8P
(
Bs
)
(1−B)d

(
1−Bs

)D
yt = θq(B)2Q

(
Bs
)
ut (6)

where P is the number of seasonal autoregressive parame-

ter, Q is the seasonal moving average order, s is the period

length (in month in this work), and D denotes the number of

differencing passes.

2.3 Implementation of ARIMA model

The procedure of estimating ARIMA model is given by the

flowchart in Fig. 1 which involves the following steps:

1. Stationary identification: the input time series for an

ARIMA model needs to be stationary, i.e., the time se-

ries should have a constant mean, variance, and auto-

correlation through time. Therefore, the stationarity of

the data series needs to be identified first. If not, the

non-stationary time series is then required to be sta-

tionarized. Although the stationary test, such as the unit

root test and the Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) tests are used to identify whether a time series

is stationary, plotting approaches based on scatter di-

agrams, autocorrelation function diagrams, and partial

correlation function diagrams are also often used. The

latter approach can usually not only provide information
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on the testing time series is stationary, but it can also in-

dicate the order of the differencing which is needed to

stationarize the time series. In this paper, we identify

the stationarity of a time series from the autocorrela-

tion function diagram, and partial correlation function

diagram.

If a time series is identified as nonstationary, differenc-

ing is usually made to stationarize the time series. In the

differencing method, the correct amount of differencing

is normally the lowest order of differencing that yields

a time series, which fluctuates around a well-defined

mean value, and whose autocorrelation function (ACF)

plot decays fairly rapidly to zero, either from above or

below. The time series is often transformed for stabi-

lizing its variance through proper transformation, e.g.,

logarithmic transformation. Although logarithmic trans-

formation is commonly used to stabilize the variance of

a time series rather than directly stationarize a time se-

ries, the reduction in the variance of a time series is usu-

ally helpful to reduce the order of difference in order to

make it stationary.

2. Identification of the order of ARIMA model: after a time

series has been stationarized, the next step is to deter-

mine the order terms of its ARIMA model, i.e., the order

of differencing, d for nonstationary time series, the or-

der of auto-regression, p, the order of moving average,

q, and the seasonal terms if the data series show season-

ality. While one could just try some different combina-

tions of terms and see what works best strictly, the more

systematic and common way is to tentatively identify

the orders of the ARIMA model by looking at the au-

tocorrelation function (ACF) and partial autocorrelation

(PACF) plots of the stationarized time series. The ACF

plot is merely a bar chart of the coefficients of corre-

lation between a time series and lags of itself, and the

PACF plot presents a plot of the partial correlation co-

efficients between the series and lags of itself. The de-

tailed guidelines for identifying ARIMA model param-

eters based on ACF and PACF, can be found elsewhere,

e.g., Pankratz (1983) and Shumway and Stoffer (2005).

It should be noted that, to be strict, the ARIMA model

built in this step is actually an ARMA model with if the

time series is stationary, which is in fact a special case

of ARIMA model with d = 0.

3. Estimation of ARIMA model parameters: while least

square methods (linear or nonlinear) are often used for

the parameter estimation, we use the maximum likeli-

hood method (Mcleod and Sales, 1983; Melard, 1984)

in this paper. A t test is also performed to test the statis-

tical significance.

4. White noise test for residual sequence: it is necessary to

evaluate the established ARIMA model with estimated

parameters before using it to make forecasting. We use

white noise test here. If the residual sequence is not a

white noise, some useful information has not been ex-

tracted and the model needs to be further tuned. The

method is illustrated as follows.

Null hypothesis : H0 : corr(et , et−k)= 0 ∀ k, t

Alternative hypothesis : H1 :corr
(
et0 , et0−k0

)
∃ k0, t0

The autocorrelation of the data series is measured by the

autocorrelation coefficient which is defined as

rk =

n∑
t=k+1

etet−k

n∑
t=1

e2
t

(k = 1, 2, . . ., m), (7)

where n is the number of cases in a particular sample

of series for the white noise test, m is the maximum

amount of lag. In practice, m uses the value of
[
n
10

]
when n is very large and

[
n
4

]
when n is small. When

n→∞,
√
nrk ∼N (0, 1).

The test statistics is given by

Q= n(n+ 2)

m∑
k=1

r2
k

n− k
. (8)

Given the degree of confidence of 1−α, if

Q< χ2
α(m−p− q), (9)

then Q fits the χ2 distribution at the significance of

1−α and the null hypothesis is accepted.

5. Hydrological forecasting: the linear least squares

method is usually applied for rainfall-runoff prediction.

In general, based on the n observation values, the values

of future L time steps can be estimated (Kohn, 1986).

3 Improvement of a conventional ARIMA model

Seasonal ARIMA models apply for time series which ar-

ranges in order with a certain time interval or step, e.g., a

month. However, in this case, while the seasonal ARIMA

model is capable of dealing with the interannual variation

of each monthly of a monthly data series, the information of

inter-monthly variation of the time series may be lost. For ex-

ample, after an order of 12 of seasonal differencing (term S in

a general seasonal ARIMA model) of a monthly time series,

the original monthly series has been migrated to a new time

series without seasonality. A nonseasonal ARIMA model is

then fitted to the new time series where the inter-monthly

variation of original monthly time series has also migrated to
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Figure 2. Prediction steps of a ARIMA model based on clustering and regressive analysis.

the inter-monthly variation of the new series after seasonal

differencing. The transformation of inter-monthly variation

of original monthly data to the new inter-monthly variation

of seasonally differenced series may result in loss of accuracy

of model performance. In this study, 12 individual seasonal

ARIMA models for precipitation prediction for each month

are built from each monthly data series, e.g., the January data

series from 1951 to 2000, which are referred to as ARIMA

models of interannual variation ignoring the inter-monthly

variation.

In order to prevent from losing the inter-monthly variation

information, we propose in this study the following improve-

ment to the conventional seasonal ARIMA model, which

simultaneously takes into account both kinds of temporal

variation (interannual variation and inter-monthly variation).

Clustering analysis is first applied to classify the monthly

data series and extract characteristics of each data series class

(Sun et al., 2005). In this study, we use Euclidean distance as

the distance measurement in clustering analysis. The char-

acteristics of each data series refer to the maximum, mini-

mum, and truncated mean of the series of this class. A linear

regression model is then built with hydrological variable to

be predicted, e.g., monthly precipitation, as dependent vari-

ables and with maximum, minimum, and truncated mean of

each class as independent variables in the linear regression

model. For example, a monthly precipitation would be de-

scribed as a linear regression function of the maximum, min-

imum, and truncated mean of the data series of a class where

this month’s precipitation has been clustered in the clustering

analysis. A conventional seasonal ARIMA model is built for

the maximum, minimum, and truncated mean of each class,

respectively, accounting for the inter-monthly variation of

each characteristic variable. With this method, we are trying

to avoid losing the inter-monthly variation information. The

implementation of the improved ARIMA model involves the

following procedure, as illustrated in Fig. 2.

i. Perform clustering analysis on monthly data, and group

the months with similar hydrological variation.

ii. Find the maximum, minimum, and truncated mean of

each cluster.

iii. Build linear regression models and determine the asso-

ciated parameters for each monthly data series. For ex-

ample, for the precipitation in the ith month

yi = aiyj,max+ biyj,min+ ciyj,avg+ di, (10)

where ai , bi , ci , and di are the coefficients in the model

for the ith month hydrologic parameter, e.g., precipi-

tation, which need to be estimated, and yj,max, yj,min,

and yj,avg are respectively the maximum, minimum, and

truncated mean of the j th class where the time series of

the ith month is identified in cluster analysis.

iv. Build ARIMA models for the maximum, minimum, and

truncated mean of each class and predict the character-

istics for the time year of interest using the established

ARIMA models.

v. Substitute the predicted characteristics into the linear re-

gression model built in Eq. (10) and obtain the monthly

hydrologic variable, say precipitation.

Nonlin. Processes Geophys., 21, 1159–1168, 2014 www.nonlin-processes-geophys.net/21/1159/2014/
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Figure 3. Monthly precipitation at the Lanzhou precipitation sta-

tion. Upper panel: observation (1951–2001); middle panel: ob-

servation (1991–2000); lower panel: after power transformation

(1951–2001).

4 Case study

In this section, we are presenting an application of the pro-

posed improved ARIMA model to the precipitation forecast-

ing of the Lanzhou precipitation station in Lanzhou, China.

Lanzhou is located in the upper basin of Yellow River. It

has a continental climate of mid-temperate zone, with an

average precipitation of 360 mm and mean temperature of

10 ◦C. In general, rainfall seasons are May through Septem-

ber, while drought occurs in spring and winter. The Lanzhou

Table 1. Estimated parameters of the conventional seasonal ARMA

model.

Parameter Estimated Standard t test Tail

value deviation probability

θ1 −0.16379 0.03959 −4.14 < .0001

θ2 0.93434 0.02117 44.14 < .0001

precipitation station is located at 103.70◦ E, 35.90◦ N. The

monthly precipitation data from 1951 to 2000 is used for pa-

rameter estimation and the monthly precipitations of 2001

are then predicted using the proposed model and compared

with the observation values. In order to show the improve-

ment of this present approach, we first build a conventional

seasonal ARIMA model and a set of 12 ARIMA models for

each monthly precipitation series which account for the sea-

sonal variation. The improved ARIMA model accounting for

both inter-month and interannual variation of monthly pre-

cipitation time series is then built using the presented ap-

proach and its prediction results are compared with the con-

ventional ARIMA model and seasonal ARIMA model, as

well as auto-regressive models.

4.1 Conventional seasonal ARMA modeling

The precipitation at the Lanzhou precipitation station from

1951 through 2001 and from 1991 through 2001 are plotted

as shown in Fig. 3a and b, respectively. The two figures show

less precipitation in winter and spring and more in summer

and autumn. Fluctuation in the data occurs during high pre-

cipitation seasons. Using power transformation with an or-

der of 1/3, fluctuations at high values are removed and the

data become stationary, as shown in Fig. 3c. According to

autocorrelation and partial correlation functions, as shown in

Fig. 4, seasonal term with a period of 12 exists. With the

difference elimination method, the order of the model can

be determined, and the following seasonal ARIMA model is

obtained.(
1−B12

)
yt = (1− θ1B)

(
1− θ2B

12
)
ut (11)

The maximum-likelihood method is then used for parameter

estimation and the results are listed in Table 1. As shown

in Table 1, parameter estimation is statistically significant.

A white noise test is performed for the residual sequence. If

the test does not pass, the model needs to be improved. As

shown in Table 2, with a significance level of 5 %, the test is

passed, i.e., the useful information is extracted and the model

is acceptable.

4.2 Individual ARIMA model for each month’s data

series

As discussed in Sect. 2.2, the data can be classified

into 12 groups associated with each month, respectively.

www.nonlin-processes-geophys.net/21/1159/2014/ Nonlin. Processes Geophys., 21, 1159–1168, 2014
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Table 2. Autocorrelation of the residuals of the conventional seasonal ARIMA model.

AR χ2 Degree of Tail Autocorrelations of residue∗

order statistic freedom probability

6 0.770 4 0.943 0.000 −0.007 −0.018 0.021 −0.007 0.020

12 6.910 10 0.734 0.013 0.014 0.012 −0.043 0.086 −0.019

18 13.400 16 0.643 0.092 0.014 0.031 −0.004 0.021 0.020

24 16.810 22 0.774 0.042 0.007 −0.022 −0.026 −0.032 0.039

30 20.650 28 0.840 0.050 −0.031 −0.048 0.003 0.018 0.008

36 28.100 34 0.752 0.045 0.018 0.064 −0.044 0.036 0.044

42 30.900 40 0.849 0.057 −0.015 0.019 0.023 0.006 −0.001

48 52.940 46 0.224 −0.012 0.040 −0.022 0.032 −0.079 −0.156

∗ Autocorrelations of residue for lag 1 through lag 48, 6 lags per row from column 5 through 10.

Figure 4. Autocorrelation and partial correlation plots of data se-

ries. Upper panel: autocorrelation; lower panel: partial correlation.

Stationary identification, stationary treatment, model identi-

fication, parameter estimation and residual test are performed

for the 12 groups of data. The ACF and PACF plots af-

ter seasonal differencing are presented in Fig. 5. A total of

12 ARIMA models are built and the estimated parameters

are shown in Table 3.

Figure 5. Autocorrelation and partial correlation plots of data series

after differencing. Upper panel: autocorrelation; lower panel: partial

correlation.

4.3 The improved ARIMA model based on clustering

and regression analysis

The Box–Cox transformation is applied as a pretreatment of

data for clustering analysis in order to stabilize the variance

of the monthly precipitation data series. Given that the pre-

cipitation has values of zero resulting in negative infinity in

the transformation, the Box–Cox transformation (Thyer et

Nonlin. Processes Geophys., 21, 1159–1168, 2014 www.nonlin-processes-geophys.net/21/1159/2014/
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Figure 6. Monthly precipitation series before and after the

Box–Cox transformation.

Figure 7. Clusters of monthly precipitation time series.

al., 2002; Meloun et al., 2005; Ip et al., 2004) is corrected

as follows.

Data after transformation=

{
(original data+1)α−1

α
α 6= 0

log (original data) α = 0

After the Box–Cox transformation, as shown in Fig. 6, the

data are much more symmetric than the original data series,

which is helpful for the later clustering analysis. Moreover,

it can be seen that there are many zero precipitation values

in the raw monthly precipitation data series and so does the

transferred data. This indicates that the samples of data se-

quence may not be from one individual population but from

multiple populations which further implies the necessarily

of clustering analysis for the data series. Clustering analy-

sis with Euclidean distance is then applied which indicates

that the monthly precipitation sequences can be clustered into

three classes, as shown in Fig. 7.

Figure 8. Characteristics of each time series class. Upper panel: first

class; middle panel: second class; lower panel: third class.


Class 1: Jan., Feb., Nov., and Dec.

Class 2: Mar., Apr., and Oct.

Class 3: May, Jun., Jul., Aug., and Sep.

It is interesting that the clustering results are mostly coin-

cides with the precipitation season. For example, Class 1

looks like it corresponds to the drought season while Class 3

corresponds to the rainfall season. After the clustering anal-

ysis to the monthly precipitation time series, the characteris-

tics of each class, i.e., maximum, minimum, and truncated

mean, are identified, as shown in Fig. 8. Although fluctu-

ations in the mean and minimum data series are relatively

www.nonlin-processes-geophys.net/21/1159/2014/ Nonlin. Processes Geophys., 21, 1159–1168, 2014
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Table 3. Seasonal ARIMA models for each month.

Month Model ML parameter estimation

1 (1−αB)yt = (1−βB)ut α=−0.95, β =−0.97

2 (1−αB2)yt = ut α=−0.49

3 yt = (1−βB)ut β = 0.38

4 yt = (1−β1B −β2B
2)ut β1= 0.27, β2=−0.22

5 yt = (1−βB2)ut β =−0.30

6 yt = (1−βB)ut β =−0.32

7 yt = (1−βB2)ut β =−0.3349

8 (1−αB)yt = (1−βB)ut α=−0.182, β =−0.0528

9 (1−αB)yt = (1−βB)ut α= 0.956, β = 0.469

10 yt = (1−βB)ut β =−0.32

11 (1−αB)yt = (1−βB)ut α= 0.681, β = 0.741

12 (1−αB)yt = (1−βB)ut α= 0.650, β = 0.766

small, relatively larger variation are shown in the maximum

data series.

Linear regression models for each monthly precipitation

are fitted using the characteristics of each class where the

monthly precipitation data series is located. The parameters

corresponding to each linear regression model are presented

in Table 4 which pass the t test at the significance of 0.05

indicating that those linear models fit their data series well

respectively. Following the steps described in Sect. 2.3, nine

ARIMA modes are built for each of the characteristic vari-

ables of each class. The estimated parameters are shown in

Table 5. Auto-regressive models with orders of 24 and 36,

or AR(24) and AR(36), are also fitted to the monthly precip-

itation time series for comparative study with the improved

ARIMA model and conventional ARIMA model.

5 Results and discussion

The monthly precipitations of 2001 are predicted using the

improved ARIMA model as well as the conventional sea-

sonal ARIMA model, the 12 seasonal ARIMA models for the

precipitation of each month, and AR(24) and AR(36) mod-

els, the prediction results shown in Table 6 and Fig. 9. The

absolute error of each method is 9.41, 11.49, 11.78, 17.05,

and 17.82 mm for the improved ARIMA model, conventional

ARIMA model, individual ARIMA for each month’s data se-

ries, AR(24), and AR(36), respectively, indicating that the

improved ARIMA presented in this paper performs the best

with the smallest errors. Compared with the conventional

ARIMA model, the improved ARIMA model increases the

prediction accuracy by 24 %.

The conventional ARIMA model predicts accurately for

March, June, August, and November but mismatches the

other months’ precipitation. It predicts more accurately for

October precipitation than the improved ARIMA model.

The 12 individual ARIMA models for each month data se-

ries performs similarly to the conventional ARIMA model.

The overall performance of AR(24) model does not show

Table 4. Estimated parameters for linear regression models.

Class Month d∗
i

a∗
i

c∗
i

b∗
i

1

1 0.16 0.09 0.39 0.23

2 0.21 −0.12 1.21 −0.14

11 −0.54 0.30 1.51 −0.62

12 0.16 −0.27 0.89 0.53

2

3 1.92 −0.50 0.46 0.53

4 −0.39 −0.57 2.33 −0.62

10 −1.53 1.07 0.21 0.09

3

5 2.17 −0.41 0.22 0.98

6 −0.19 −0.22 1.49 −0.35

7 −0.22 0.27 1.05 −0.35

8 −2.11 1.07 0.24 0.05

9 0.35 −0.72 2.01 −0.33

∗ See Eq. (10) for definition.

Figure 9. Comparison between predictions and observation.

difference from that of AR(36) model; neither models per-

form as good as the improved ARIMA model or the conven-

tional ARIMA model. However, the AR models give a better

prediction for September precipitation of 2001 than the other

two models.

While the improved ARIMA model catches the correct

trend overall and predicts the monthly precipitation in most

months with high accuracy, it predicts highly accurately for

the dry seasons, such as January, February, March, Novem-

ber, and December. However, it overestimates the precipi-

tation of July and October and underestimates the Septem-

ber precipitation significantly. After a closer look at the data,

we find that the mean precipitations of July and October are

63.8 and 23.48 mm over the period of 1951 through 2000,

respectively, whereas the observation precipitations of both

Nonlin. Processes Geophys., 21, 1159–1168, 2014 www.nonlin-processes-geophys.net/21/1159/2014/
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Table 5. Parameters of ARIMA models for characteristic variables of each class.

Class Characteristic ARIMA model ML parameter Standard deviation Value of P

variable estimating estimating

1

maximum (1−B)(1−αB)yt = ut −0.56 0.13 < 0.0001

mean (1−B)yt = (1−βB)ut 0.92 0.07 < 0.0001

minimum (1−B)2 yt = (1−βB)2 ut 0.84 0.09 < 0.0001

2

maximum (1−B)yt = (1−βB)2 ut −0.30 0.14 0.00311

mean (1−αB2)(1−B)2 yt = ut −0.52 0.12 < 0.0001

minimum (1−αB2)(1−B)2 yt = ut −0.64 0.11 < 0.001

3

maximum (1−αB2)(1−B)2 yt = ut −0.45 0.13 0.0006

mean (1−αB)2(1−B)2 yt = (1−βB4)ut −0.82 0.81 0.20 0.16 < 0.0001

minimum (1−αB)2(1−B)2 yt = (1−βB4)ut −0.81 0.80 0.12 0.17 < 0.0001

Table 6. Predicted monthly precipitation data for 2001.

Month Observation Prediction by Prediction by Prediction by 12 Prediction by AR(24) Prediction by AR(36)

(2001) (mm) improved ARIMA conventional ARMA seasonal ARIMA model (mm) model (mm)

model (mm) model (mm) models (mm)

prediction residual prediction residual prediction residual prediction residual prediction residual

1 2.8 2.54 −0.25 0 −2.8 1.14 −1.66 0.27 −2.53 0.57 −2.23

2 1.9 1.897 −0.003 0 −1.9 3.58 1.68 6.4 4.5 6.4 4.5

3 0 0.099 0.099 5.38 5.38 12.10 12.10 4.89 4.89 5.24 5.24

4 22.2 12.32 −9.871 11.99 −10.21 12.32 −9.88 5.81 −16.3 7.25 −14.9

5 11.1 12.61 1.515 31.26 20.16 33.17 22.07 6.49 −4.61 12.05 0.95

6 33 33.58 0.582 41.28 8.28 38.16 5.16 77.86 44.86 79.75 46.75

7 39.5 60.26 20.76 64.88 25.38 47.19 7.69 22.55 −16.9 20.09 −19.4

8 69.8 72.92 3.12 71.82 2.02 84.12 14.32 110.5 40.72 114.5 44.73

9 82 32.5 −49.5 37.98 −44.02 35.17 −46.83 65.89 −16.11 63.2 −18.8

10 5.2 32.03 26.83 20.15 14.95 24.37 19.17 55.45 50.25 58.78 53.58

11 1.9 1.532 −0.368 0 −1.9 2.68 0.78 3.9 2 3.79 1.89

12 0.9 0.898 −0.002 0 −0.9 0.94 0.04 0 −0.9 0 −0.9

Mean absolute error (mm) 9.41 11.49 11.78 17.05 17.82

months in 2001 are 39.5 and 5.2 mm, respectively, much

lower than the average precipitation of those 2 months. Over

the 51-year period of 1951–2001, precipitation levels in July

and October, 2001 are the 8th and 14th smallest, respectively.

However, precipitation levels in July and October, 2001 are

the 2nd and 3rd smallest from 1991 to 2001, respectively, and

significantly smaller than the precipitation of other months.

This may be the reason that the improved and conventional

model produces underestimates for these 2 months. How-

ever, it is interesting that the AR models underestimate the

July precipitation but overestimates the October precipita-

tion. This may be because of the much lower precipitation in

July, 2000 and much higher precipitation in October, 2000,

relative to the July and October in 2001, which, we be-

lieve, dominate the prediction of AR models. Similarly, the

September precipitation of 2000 is close to the precipitation

of September in 2001, which results a better AR prediction

in that month. According to the performance of AR models,

we expect an improvement if we apply AR model to station-

arized data series rather than the raw data series.

While the mean precipitation of September is 44.99 mm

over the period of 1951 through 2000, the observation of

September in 2001 is 82 mm, the 4th largest one from

1951–2001, and the largest on in past 45 years. Furthermore,

September 2001 is the only month in which precipitation is

greater than precipitation in August throughout the previous

10 years. These facts clearly show that the precipitation level

of September 2001 is an extreme value, or outlier, from a

statistical point of view. Therefore, it is fair to conclude that

the built ARIMA model needs to be further improved for ex-

treme situations.

Given that both the interannual variation and inter-

monthly variation of the hydrological data effect the predic-

tion of hydrological time series, it is better to account for both

in order to ensure better prediction. Inter-monthly data may

result from different populations as well as nonstationary

factors, so the conventional seasonal ARIMA models which

usually neglect the inter-monthly variations is not effective

enough. An improved ARIMA model has been built in this

paper taking account for both interannual and inter-monthly

variation of hydrological data. Based on clustering analysis
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and regression, much more information is extracted from the

data series. A case study is conducted for the precipitation at

the Lanzhou precipitation station with the improved ARIMA

model and the comparison with the conventional ARIMA

model indicates that the accuracy of the improved ARIMA

model is significantly higher than that of the conventional

ARIMA model. This improved approach can be applicable

to other hydrological processes prediction with time series

data, such as runoff, water level, and water temperature.

Apparently, the present model could be further improved,

especially for the prediction of extreme phenomena. Given

that the selection of clustering method does affect model per-

formance, different clustering methods, e.g., the definition of

distance in the hierarchical clustering can be applied (Wang

et al., 2005) to obtain better fittings. Characteristics value

should be constructed by the features of hydrological time

series, not limited to the extreme or mean values. A higher or-

der of regression model rather than the linear regression may

be used for the hydrologic forecasting. Last but not the least,

artificial intelligence approaches, such as neural network or

support vector machine, can be used to further improve the

proposed ARIMA model.
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