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Abstract. The statistical distribution of values in the sig-
nal and the autocorrelations (interpreted as the memory or
persistence) between values are attributes of a time series.
The autocorrelation function values are positive in a time se-
ries with persistence, while they are negative in a time se-
ries with anti-persistence. The persistence of values with re-
spect to each other can be strong, weak, or nonexistent. A
strong correlation implies a “memory” of previous values
in the time series. The long-range persistence in time series
could be studied using semivariograms, rescaled range, de-
trended fluctuation analysis and Fourier spectral analysis, re-
spectively. In this work, persistence analysis is to study inter-
planetary magnetic field (IMF) time series. We use data from
the IMF components with a time resolution of 16 s. Time in-
tervals corresponding to distinct processes around 41 mag-
netic clouds (MCs) in the period between March 1998 and
December 2003 were selected. In this exploratory study, the
purpose of this selection is to deal with the cases present-
ing the three periods: plasma sheath, MC, and post-MC. We
calculated one exponent of persistence (e.g.,α, β, Hu, Ha)
over the previous three time intervals. The persistence expo-
nent values increased inside cloud regions, and it was possi-
ble to select the following threshold values:〈α(j)〉 = 1.392,
〈Ha(j)〉 = 0.327, and〈Hu(j)〉 = 0.875. These values are use-
ful as another test to evaluate the quality of the identifica-
tion. If the cloud is well structured, then the persistence expo-
nent values exceed thresholds. In 80.5 % of the cases studied,

these tools were able to separate the region of the cloud from
neighboring regions. The Hausdorff exponent (Ha) provides
the best results.

1 Introduction

Coronal mass ejections (CMEs) are massive expulsions of
magnetized plasma from the solar atmosphere (see, e.g.,
Dasso et al., 2005, and references therein). As a consequence
of this ejection, CMEs can form confined magnetic structures
with both extremes of the magnetic field lines connected to
the solar surface, extending far away from the Sun into the
solar wind (SW). Solar Ejecta – also known as interplanetary
coronal mass ejections (ICMEs) – are the interplanetary man-
ifestation of CME events (see, e.g.,Dasso et al., 2005, and
references therein). The important subset of ICMEs, known
as interplanetary magnetic clouds (MCs), a term introduced
by Burlaga et al.(1981), is characterized fundamentally by
enhanced magnetic field strengths with respect to solar wind
ambient values (Klein and Burlaga, 1982; Burlaga, 1991). A
comprehensive study about the properties of MCs at 1 as-
tronomical unit (AU) was approached byOjeda et al.(2013,
2014) andKlausner et al.(2014).

The test for independence and search for correlations in
a time series can be carried out using an analytical tool from
nonlinear dynamics: the estimation of the Hurst exponent
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(Hurst et al., 1965). Mandelbrot and Wallis(1969) first used
it to study a series of a monthly sunspot of 200 years. It had
a Hurst exponent (with rescaled range – R/S analysis) signif-
icantly larger than 0.5. On others papers such asRuzmaikin
et al. (1994), they showed that solar activity has long-term
persistence when exploring time series of14C (Carbone-14).
Calzadilla and Lazo(2001) andWei et al.(2004) studied time
series ofDst geomagnetic index, which showed chaotic prop-
erties in association with self-affine fractals. TheDst index
can be viewed as a self-affine fractal dynamic process as a re-
sult of SW–magnetosphere interactions. In fact, the behavior
of theDst index, with a Hurst exponentHu≈ 0.5 (power-law
exponentβ ≈ 2) at high frequency, is similar to that of Brow-
nian motion. Therefore, perhaps the dynamical invariants of
some physical parameters of the solar wind, specifically the
MCs, may have spectral characteristics similar to Brownian
motion.

Price and Newman(2001) analyzed the behavior of a so-
lar wind data set – interplanetary magnetic fields (IMFs) and
solar wind speed – with a 1 min resolution from Septem-
ber 1978 to July 1979, using the ISEE-3 spacecraft. They
showed the time series, the power spectrum and the R/S anal-
ysis for the IMFBz component for the month of March 1979.
TheBz time series was self-similar for all time scales, highly
coherent for time scales less than 1 day, and only slightly co-
herent for time scales greater than 1 day. In addition, they
found self-similarity and coherence properties when calcu-
latingβ-power spectrum values tovBz, geomagnetic auroral
electrojet (AE) index, and the horizontal (H ) component of
the Earth’s magnetic field.Tsurutani et al.(1990) studied the
nonlinear response of AE to the IMFBs driver. For this, the
similarities between the power spectrums of the two mea-
surements are analyzed.Sharma and Veeramani(2011) an-
alyzed long-range correlations, using detrended fluctuation
analysis (DFA) based on autocorrelations functions in au-
roral electrojet index lower (AL) data for the period 1978–
1988.

This paper is a detailed study of persistence in magnetic
clouds. The manuscript is divided in five sections. A review
about persistence analysis is presented in Sect.2. Section3
presents the data set and the analyzed periods. Section4
presents the methodology implemented. In Sect.5, the re-
sults are discussed. In Sect.6, the conclusions are shown.

2 Persistence in time series

In this work, persistence analysis is used to study IMF time
series. The purpose throughout this section is to review the
physical–mathematical concepts of these tools.

The main attributes of a time series include the sta-
tistical distribution of values in the signal and the au-
tocorrelations (interpreted as the memory or persistence)
between values. Positive values of autocorrelation func-
tion, rk = Ck/C0, indicate persistence, while negative values

indicate anti-persistence. For example, in a Gaussian white
noise, if each time series value is independent of other val-
ues, then the correlation and persistence are 0. Time series of
Brownian motion is derived from a running sum of a Gaus-
sian white-noise sequence. If the values in a time series of
a Brownian motion are well correlated, then this time se-
ries exhibits long-range persistence. In summary, the persis-
tence can be grouped in three categories: strong, weak, or
nonexistent.

The word “memory” is the common term used to explain
and understand the persistence concept in a time series. The
values in the time series could be considered “intelligent en-
tities” that have “knowledge” or memory of the existence of
other “individuals” (values). The ideal case of maximum per-
sistence is when each value has memory of all previous val-
ues of the time series. Thus, a strong correlation implies a
memory of previous values in the time series. Persistence
is a mathematical number to measure how good the “mean
memory” is in a time series. The long-range persistence in a
time series could be studied using semivariograms, rescaled
range, detrended fluctuation analysis, Fourier spectral analy-
sis, or wavelet variance analysis, respectively (e.g.,Malamud
and Turcotte, 1999).

A statistically self-similar fractal can be defined with
the functionf (rx, ry) (with the scaling factorr) in two-
dimensionalxy space. This fractal is, by definition, isotropic,
and the previous function is statistically similar tof (x, y). It
is quantified by the fractal relationNi ∼ r−D

i , where the num-
ber of objects,Ni , and the characteristic linear dimension,ri ,
are related by a power law, and the constant exponent,D, is
the fractal dimension (Turcotte, 1997).

A statistically self-affine fractal can be defined with
the functionf (rx, rHay) (generally not isotropic) in two-
dimensionalxy space, whereHa is called the Hausdorff
exponent. The previous function is statistically similar to
f (x, y) (Mandelbrot, 1983; Voss, 1985b) and the relation-
ship betweenHa andD is Ha= 2− D (e.g.,Malamud and
Turcotte, 1999). If Ha= 1, then the self-affine fractal is self-
similar at the same time. Brownian motion is an example of
the self-affine time series.

The power spectrum (Priestley, 1981), a measure of long-
range persistence and anti-persistence, is used frequently in
the analysis of geophysical time series (e.g.,Pelletier and
Turcotte, 1999). The periodogram is a plot of power-spectral
density (PSD) of a signalS(f ) vs. frequencyf , and it is
an estimate of the spectral density of a signal. For a time se-
ries that is self-affine –S(f ) ∼ f −β (e.g.,Voss, 1985a) –, the
slope of the best-fit straight line from log(S(f )) vs. log(f ) is
a constant calledβ-power spectrum exponent. The relation-
ship betweenβ, Ha, andD was obtained byVoss(1986):

β = 2Ha+ 1 = 5− 2D. (1)

In the paper byMalamud and Turcotte(1999), validation
intervals for a self-affine fractal were derived: 0≤ Ha≤ 1,
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1≤ D ≤ 2, and 1≤ β ≤ 3. Then, in a time series of a Brown-
ian motion, the exponent values areHa= 1/2,D = 3/2,β = 2
while a white noise hasβ = 0. Hausdorff exponent is only
applicable for self-affine time series with validation intervals
from 0≤ Ha≤ 1. However,β is a measure of the strength of
persistence valid for allβ, not just 1≤ β ≤ 3 (Malamud and
Turcotte, 1999). An anti-persistent time series hasβ < 0 and
persistent time series hasβ > 0, respectively.

Mandelbrot and Ness(1968) developed a method to study
a self-affine time series, the semivariogram,γk, scale withk,
the lag, such thatγk ∼ k2Ha, that is:

γk = 2−1(N − k)

N−k∑
n=1

(yn+k − yn)
2 . (2)

For the uncorrelated Gaussian white noise (β = 0), the
semivariogram is aboutγk = 1 (the same as the variance:
Va = 1). Forβ = 1, 2, and 3, good correlations are obtained
by Malamud and Turcotte(1999, p. 40) with the expression
γk ∼ k2Ha.

Following Malamud and Turcotte(1999), another alterna-
tive method to measure the persistence in time series was de-
veloped byHurst(1951) andHurst et al.(1965). They studied
the Nile River flow as a time series to introduce the concept
of rescaled range (R/S) method used to calculate the scaling
exponent (Hurst exponent),Hu, to give quantitative measure
of the persistence of a signal.Hurst (1951) andHurst et al.
(1965) found empirically the power-law relation:[

R(τ)

S(τ)

]
av

=

(τ

2

)Hu
, (3)

where the successive subintervalsτ vary over allN values in
the time series,yn. The running sum,ym, is

ym =

m∑
n=1

(
yn − yN

)
. (4)

The range is defined byRN = (ym)max− (ym)min with
SN = σN , whereyN andσN are the mean and standard de-
viation of all N values in the time series,yn. The R/S anal-
ysis is a statistical method to analyze long records of natural
phenomena (Vanouplines, 1995).

Tapiero and Vallois(1996) found that 0.5< Hu≤ 1.0
implies persistence and that 0≤ Hu< 0.5 implies anti-
persistence. This would imply that (Tapiero and Vallois,
1996; Malamud and Turcotte, 1999):

β = 2Hu− 1 = 2Ha+ 1. (5)

Equation (5) only has a small validation region (see
Malamud and Turcotte, 1999, Figs. 17 and 25). This result
should be considered when one exponent is derived from
another.

Other technique (called detrended fluctuation analysis –
DFA) to study persistence in time series was introduced by
Peng et al.(1994). This tool could also be used to study per-
sistence on IMF time series.

The fluctuation functionF(L) is constructed over the
whole signal at a range of different window sizeL, where
F(L) ∼ Lα. The obtained exponent,α, is similar to the Hurst
exponent, but it also may be applied to nonstationary signals,
this is a great advantage. DFA measures scaling exponents
from nonstationary time series for determining the statisti-
cal self-affinity of an underlying dynamical nonlinear pro-
cess (e.g.,Veronese et al., 2011). It is useful to characterize
temporal patterns that appear to be due to long-range mem-
ory stochastic processes (Veronese et al., 2011).

Bryce and Sprague(2012) reported that DFA asymptoti-
cally provides good results for stationary time series, which
is a characteristic of several techniques of time series analy-
sis; nonstationarity remains the biggest problem in a time se-
ries analysis. However, DFA is a commonly used technique,
in the context of persistence analysis, to work with nonsta-
tionarity time series. Furthermore, they found a little problem
when DFA is applied in time series with nonlinear trends,
and other limitation in the partitioning scheme of the DFA
for short data sets is reported. The weak point in the previ-
ous work was that they do not offer a clear solution to the
reported limitations. And it is not included in this study. For
a detailed description of this step-by-step method, seePeng
et al. (1994), Little et al. (2006), Baroni et al.(2010), and
Veronese et al.(2011).

Based on the Wiener–Khinchin theorem (Kay and Marple,
1981), it is possible to show that the two exponentsβ (from
PSD) andα (from DFA) are related by

β = 2α − 1. (6)

For fractional Brownian motion, we have 1≤ β ≤ 3, and then
1≤ α ≤ 2. The exponent of the fluctuations can be classi-
fied according to a dynamic range values (Kantelhardt et al.,
2002; Bashan et al., 2008; Zheng et al., 2008):

– α < 1
2: anti-correlated, anti-persistence signal.

– α ∼=
1
2: uncorrelated, white noise, no memory.

– α > 1
2: long-range persistence.

– α ∼= 1: 1/f noise or pink noise.

– α > 1: nonstationary, random walk-like, unbounded.

– α ∼=
3
2: Brownian noise or red noise.

Polynomial of different order could be used during com-
putational implementation of the DFA method. For example,
DFAn uses polynomial fits of ordern (Buldyrev et al., 1995).
DFA1 (used in this work) only removes constant trends in
the time series, and it is equivalent to Hurst R/S analysis.
The effect of trends on DFA was studied inHu et al.(2001),
and the relation to the power spectrum method is presented
in Heneghan and McDarby(2000). Veronese et al.(2011)
showed that the DFA method is especially useful for short
records of stochastic and nonlinear processes.
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Table 1.Solar wind data studied (fromHuttunen et al., 2005).

No. Year Shock, UT MC start, UT MC stop, UT Post-MC, UT

01 1998 6 Jan, 13:19 7 Jan, 03:00 8 Jan, 09:00 9 Jan, 15:00
02 3 Feb, 13:09 4 Feb, 05:00 5 Feb, 14:00 6 Feb, 23:00
03 4 Mar, 11:03 4 Mar, 15:00 5 Mar, 21:00 7 Mar, 03:00
04 1 May, 21:11 2 May, 12:00 3 May, 17:00 4 May, 22:00
05 13 Jun, 18:25 14 Jun, 02:00 14 Jun, 24:00 15 Jun, 22:00
06 19 Aug, 05:30 20 Aug, 08:00 21 Aug, 18:00 23 Aug, 04:00
07 24 Sep, 23:15 25 Sep, 08:00 26 Sep, 12:00 27 Sep, 16:00
08 18 Oct, 19:00 19 Oct, 04:00 20 Oct, 06:00 21 Oct, 08:00
09 8 Nov, 04:20 8 Nov, 23:00 10 Nov, 01:00 12 Nov, 02:00
10 13 Nov, 00:53 13 Nov, 04:00 14 Nov, 06:00 15 Nov, 08:00

11 1999 18 Feb, 02:08 18 Feb, 14:00 19 Feb, 11:00 20 Feb, 08:00
12 16 Apr, 10:47 16 Apr, 20:00 17 Apr, 18:00 18 Apr, 16:00
13 8 Aug, 17:45 9 Aug, 10:00 10 Aug, 14:00 11 Aug, 18:00

14 2000 11 Feb, 23:23 12 Feb, 12:00 12 Feb, 24:00 13 Feb, 12:00
15 20 Feb, 20:57 21 Feb, 14:00 22 Feb, 12:00 23 Feb, 10:00
16 11 Jul, 11:22 11 Jul, 23:00 13 Jul, 02:00 14 Jul, 05:00
17 13 Jul, 09:11 13 Jul, 15:00 13 Jul, 24:00 14 Jul, 09:00
18 15 Jul, 14:18 15 Jul, 19:00 16 Jul, 12:00 17 Jul, 05:00
19 28 Jul, 05:53 28 Jul, 18:00 29 Jul, 10:00 30 Jul, 02:00
20 10 Aug, 04:07 10 Aug, 20:00 11 Aug, 08:00 11 Aug, 20:00
21 11 Aug, 18:19 12 Aug, 05:00 13 Aug, 02:00 13 Aug, 23:00
22 17 Sep, 17:00 17 Sep, 23:00 18 Sep, 14:00 19 Sep, 05:00
23 2 Oct, 23:58 3 Oct, 15:00 4 Oct, 14:00 5 Oct, 13:00
24 12 Oct, 21:36 13 Oct, 17:00 14 Oct, 13:00 15 Oct, 09:00
25 28 Oct, 09:01 28 Oct, 24:00 29 Oct, 23:00 30 Oct, 22:00
26 6 Nov, 09:08 6 Nov, 22:00 7 Nov, 15:00 8 Nov, 08:00

27 2001 19 Mar, 10:12 19 Mar, 22:00 21 Mar, 23:00 23 Mar, 24:00
28 27 Mar, 17:02 27 Mar, 22:00 28 Mar, 05:00 28 Mar, 12:00
29 11 Apr, 15:18 12 Apr, 10:00 13 Apr, 06:00 14 Apr, 02:00
30 21 Apr, 15:06 21 Apr, 23:00 22 Apr, 24:00 24 Apr, 01:00
31 28 Apr, 04:31 28 Apr, 24:00 29 Apr, 13:00 30 Apr, 02:00
32 27 May, 14:17 28 May, 11:00 29 May, 06:00 30 May, 01:00
33 31 Oct, 12:53 31 Oct, 22:00 2 Nov, 04:00 3 Nov, 10:00

34 2002 23 Mar, 10:53 24 Mar, 10:00 25 Mar, 12:00 26 Mar, 14:00
35 17 Apr, 10:20 17 Apr, 24:00 19 Apr, 01:00 20 Apr, 02:00
36 18 May, 19:44 19 May, 04:00 19 May, 22:00 20 May, 16:00
37 1 Aug, 23:10 2 Aug, 06:00 2 Aug, 22:00 3 Aug, 14:00
38 30 Sep, 07:55 30 Sep, 23:00 1 Oct, 15:00 2 Oct, 07:00

39 2003 20 Mar, 04:20 20 Mar, 13:00 20 Mar, 22:00 21 Mar, 07:00
40 17 Aug, 13:41 18 Aug, 06:00 19 Aug, 11:00 20 Aug, 16:00
41 20 Nov, 07:27 20 Nov, 11:00 21 Nov, 01:00 22 Nov, 15:00

The four techniques explained previously are used in this
work. Some models were tested to successfully reconstruct
the magnetic structure of MCs (Dasso et al., 2005; Ojeda
et al., 2013), which implies that a memory exists in the time
series of IMF. We hypothesize that the magnetic field inside
these structures has greater persistence than ambient solar
wind. If the previous hypothesis is true, then the persistence
exponent could be transformed in an auxiliary tool to study
MCs. We decided to test the four techniques because there is

only a small validation region between them (seeMalamud
and Turcotte, 1999, Figs. 17 and 25). The ideal is to use as
many techniques as possible to measure the persistence and
compare them.
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3 IMF data set

In this work, we use data from the IMF-components (Ad-
vanced Composition Explorer (ACE) spacecraft/Magnetic
Field Experiment (MAG);Lepping et al., 1995) with time
resolution of 16 s and using geocentric solar magnetospheric
coordinate system (GSM). We work with 41 of 80 events
(73 MCs and 7 cloud candidates) identified byHuttunen
et al.(2005). These events in chronological order are shown
in Table 1 ((see more details inOjeda et al., 2013, 2014),
where the same data set was studied with other techniques:
the spatio–temporal entropy and discrete wavelet transform).
The columns from the left to the right give a numeration of
the events, year, shock time (UT), MC start time (UT), MC
end time (UT), and the end time (UT) of the third region,
respectively. In this exploratory study, the purpose of this se-
lection is to deal with the cases presenting the three periods
(clear pre-MC or plasma sheath, MC, and post-MC).

4 Methodology

To calculate the persistence exponents, the following compu-
tational programs are used:

1. If we installed GNU/Octave, then a
hurst(x) function is created; for example, in
/usr/share/octave/3.0.1/m/signal/. The function is
used to calculate the Hurst exponent (Hu).

2. Following the work ofMalamud and Turcotte(1999),
we did a program in GNU/Octave to calculate the Haus-
dorff exponent (see AppendixA).

3. A program using GNU/Octave byMcSharry and
Malamud (2010) is implemented to calculate the
β exponent.

4. A fast Matlab implementation1 of the DFA algorithm by
Little et al. (2006) is performed.

The behavior of the persistence in time series of the IMF
components, measured by the ACE spacecraft with a time
resolution of 16 s, is explored. We study the persistence be-
tween time series corresponding to sheaths, MCs, and a quiet
SW after the MC (post-MC) with equivalent time duration to
it. We calculate one exponent of persistence (e.g.,α, β, Hu,
Ha) over each of three time intervals corresponding to dis-
tinct processes. For example, the persistence in the case num-
bered as 1 in Table1 is studied. The interval from 6 January
13:19 UT to 7 January 02:59 UT was classified as the sheath
region. In the sheath, the persistence exponents toBx com-
ponent are calculated. These values areα = 1.27,β = 1.71,
Hu= 0.86, andHa= 0.31, respectively.

1http://www.maxlittle.net/software/

Table 2.We calculate the persistence in the IMF components using
four different methods:β exponent of power spectrum,α exponent
of DFA, Hurst of R/S analysis, and HausdorffHa exponent of semi-
variogram, respectively. The interval from 6 January 13:19 UT to
7 January 02:59 UT 1998 was classified as sheath. The intervals
7 January 03:00 UT to 8 January 09:00 UT and from 8 January
09:01 UT to 9 January 15:00 UT were classified as MC and solar
wind after the MC, respectively. Dates are shown in Table1, event
no. 1.

Event no. 1 α β Hu Ha

Bx :
Sheath 1.27 1.71 0.86 0.31
MC 1.41 1.60 0.89 0.31
Post-MC 1.31 1.70 0.87 0.31

By :
Sheath 1.34 1.68 0.87 0.27
MC 1.52 1.55 0.91 0.42
Post-MC 1.37 1.65 0.88 0.31

Bz:
Sheath 1.39 1.65 0.85 0.31
M 1.45 1.75 0.90 0.36
Post-MC 1.23 1.64 0.86 0.23

Mean Values: 〈α(j)〉 ± σ 〈β(j)〉 ± σ 〈Hu(j)〉 ± σ 〈Ha(j)〉 ± σ

Sheath 1.33± 0.06 1.68± 0.03 0.86± 0.01 0.30± 0.02
MC 1.46± 0.06 1.64± 0.11 0.90± 0.01 0.37± 0.05
Post-MC 1.30± 0.07 1.66± 0.04 0.87± 0.01 0.28± 0.05

The interval from 7 January 03:00 UT to 8 January
09:00 UT is the MC region. The post-MC region was se-
lected from 8 January 09:01 UT to 9 January 15:00 UT. The
persistence exponents are shown in Table2, rows 4 and 5,
respectively.

The previous methodology is extended for the other two
components; i.e.,By and Bz, respectively. The results are
shown in Table2, rows 6–13 .

MCs exhibit flux-rope characteristics: a large-scale wind-
ing of a closed magnetic structure that is nearly force-free.
It is possible to see anisotropy of magnetic field fluctuations
in an average interplanetary MC at 1 AU (Narock and Lep-
ping, 2007; Ojeda et al., 2013, 2014). We do not expect to
find the same behavior in all three components by the exis-
tence of anisotropy. The anisotropic behavior, in our opinion,
is caused by the geometry of flux-rope and the axis inclina-
tion angle. We are interested in a single value to characterize
the persistence in the IMF. For this reason, a mean persis-
tence value using the three IMF components was calculated
at each time. It is the only form that we found to quantify the
persistence in all structures and to minimize the anisotropy
in the calculation. The mathematical expressions can be gen-
eralized in the following equations:

〈β(j)〉 =
1

3

3∑
i=1

β
(i)
(j); (7)

www.nonlin-processes-geophys.net/21/1059/2014/ Nonlin. Processes Geophys., 21, 1059–1073, 2014
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〈α(j)〉 =
1

3

3∑
i=1

α
(i)
(j); (8)

〈Hu(j)〉 =
1

3

3∑
i=1

Hu(i)
(j); (9)

〈Ha(j)〉 =
1

3

3∑
i=1

Ha(i)
(j). (10)

The angle brackets〈· · · 〉 denote an average of the IMF com-
ponents (i = 1, 2, 3= Bx , By , Bz), and the standard deviation
is also calculated. Each of the three regions are represented in
onej value:j = 1≡ sheath,j = 2≡ MC, j = 3≡ post-MC.

In Table 2, the average and standard deviation values
for all persistence exponents are shown. In Table2, as we
thought, the persistence values increase inside the MC. This
increase, according to the hypothesis raised at the end of
Sect.2, was expected. The previous idea is not always true
when using the spectral-powerβ exponent. However, one of
the main problems in using a discrete Fourier transform is
spectral variance and leakage (Priestley, 1981; Percival and
Walden, 1993). This shows a range of uncertainty in the val-
ues ofβ. The other problem is the nonstationarity of the IMF
components. The previous study was generalized for a group
of 41 events shown in Table1, and will be discussed in next
section.

5 Results and discussion

Initially, the persistence analysis was done to establish a pre-
liminary categorization of the periods in the SW related to
the MC occurrences.

Persistence analysis on the IMF variation

The methodology that uses the persistence exponents (see
Sect.4) is applied to 41 events. Using Eq. (7), the 〈β(j)〉

values are calculated. To make a comparison between all
events, it is necessary to build a histogram. Figure1a is
a histogram built from a frequency table of〈β(j)〉 values
plotted in Fig.2a. The 〈β(j)〉 values for the sheath, MC,
and post-MC regions were plotted as gray, black, and white
bars, respectively. The bars have a uniform distribution from
1.5< 〈β(j)〉 < 1.8. For〈β(j)〉 < 1.5, there are 7 of 41 sheath,
2 of 41 MCs, and 15 of 41 post-MC events, while for
〈β(j)〉 > 1.8 there are 3 of 41 sheath, 9 of 41 MCs, and 3
of 41 post-MC events, respectively. As previously stated, the
〈β(j)〉 exponent is not suitable to measure the persistence in
the data set used in this work. Nevertheless, the largest values
of 〈β(j)〉 were found in the MCs.

Figure 1b has the same format as Fig.1a, but for the
〈α(j)〉 exponent. For〈α(j)〉 > 1.4, we have 6 of 41 sheath,
29 of 41 MCs, and 3/41 post-MC events, respectively.
Thus, we have many MCs with the large alpha values. For
1.0< 〈α(j)〉 < 1.3, the number of events by regions is 21 of

41 in the sheath, 3 of 41 in the MC, and 23 of 41 in the post-
MC. In MC events, the separation of the〈α(j)〉 values to the
right corner is an interesting result. In Fig.1c and d, approx-
imately 30 of 41 MC events have the large values of the per-
sistence exponents. One difficulty in studying the persistence
is the time series extension (Veronese et al., 2011).

The〈β(j)〉 values for the 41 events (Sheath, MCs, and post-
MCs) are shown in Fig.2a. The three intervals of time for
each event are plotted as “�”, “ ⊗”, and “4” symbols, re-
spectively. The error bar represents the standard deviation for
each value. It shows the power spectral density (PSD) scaling
exponent〈β(j)〉 as a self-affine fractal (1< 〈β(j)〉 < 2), but
there is no pattern that allows the separation of MCs from
the other two cases; a total of 18/41 events exist in which
the clouds do not have the larger values. We understand that,
in nonstationary time series, the Fourier transform is not suit-
able, because the core functions of the transform is composed
of sines and cosines.

For short time series, DFA can detect the correlation
length more accurately than the PSD scaling exponent (β)
(Veronese et al., 2011). The alpha exponent value is not af-
fected by spectral variance and leakage, and it is possible to
use in nonstationary time series. Figure2b has the same for-
mat as Fig.2a, but was built for〈α(j)〉 exponent using the
Eq. (8). The results show〈α(j)〉 values from 1.00 to 1.60;
i.e., long-range persistence and some MCs with typical val-
ues of a Brownian noise(〈α(j)〉

∼= 1.50).
In 38 of the 41 events, the alpha (〈α(j)〉) value in the MC

(“⊗”) is larger than the one in the sheath (“�”), respec-
tively. It is noteworthy that there are some exceptions, such
as events 5, 20, and 25 in Table1. However, in the context
of the present analysis, we did not investigate each of these
cases in detail, because they are only a few of the 41 time se-
ries. However, this is a study to be carried out later, because
they are important to redefine the boundaries of the clouds.

The Hurst exponent was presented in Sect.4 as an use-
ful methodology to study MCs. Using Eq. (9), the 〈Hu(j)〉

exponents in the three regions are calculated. Figure2c has
the same format as Fig.2a and b, respectively, except for the
〈Hu(j)〉 exponent. Similar to Fig.2b, the〈Hu(j)〉 exponents
have larger values in the MCs. Nevertheless, 4 of 41 MCs
(events 11, 19, 28, and 30) do not have large〈Hu(j)〉 expo-
nents in the MC region. None of these cases coincide with the
three events (5, 20, and 25) when the alpha exponent is used.
This causes a certain degree of distrust in the identification
of these clouds, but also suggests that all techniques must be
used together to increase the confidence level of the results.
Nevertheless, for 34 of 41 events, both exponents have large
values in the cloud region.

The last tool we use is the Hausdorff exponent (Ha). To
calculate the mean Hausdorff exponents, Eq. (10) is used. In
Fig. 2d, the〈Ha(j)〉 exponents have largest values in the MC
regions; only 2 of 41 MCs (events 10 and 28) do not have the
largest〈Ha(j)〉 exponents. Thus, this tool provides the best
results.
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Figure 1. In (a), a histogram is construct from a frequency table of〈β(j)〉 values, plotted in Fig.2a. We want to have a better view of
the distribution of〈β(j)〉 values between the three regions.(b), (c), and(d) are similar to(a), except for the〈α(j)〉, 〈Hu(j)〉, and〈Ha(j)〉

exponents, respectively.

In conclusion, the PSD scaling exponent is not a suitable
tool to study persistence in IMF components in the SW. The
three exponents report the largest persistence in 33 of 41 MC
regions. In 80.5 % of 41 cases, these tools are able to separate
the region of the cloud from neighboring regions.

In Fig. 3, the histogram shows the number of cases vs.
temporal extension (in hours) of MCs and plasma sheaths,
respectively. Temporal extension is largest in the MCs. How-
ever, in the previous figures, there is a pattern in the persis-
tence values between all MC events. We believe that these
results are valid, because we know that MCs are organized
structures in the plasma (Ojeda et al., 2005, 2013, 2014) that
have an increase of “memory” in the time series.

We considered a better way to view these results. Thus,
the average values for each exponent from 41 events and for
each of the three regions are calculated. The equations for
calculating the average values are

〈β(j)〉T =
1

N

N∑
i=1

〈β(j)〉
(i), (11)

〈α(j)〉T =
1

N

N∑
i=1

〈α(j)〉
(i), (12)

〈Hu(j)〉T =
1

N

N∑
i=1

〈Hu(j)〉
(i), (13)

〈Ha(j)〉T =
1

N

N∑
i=1

〈Ha(j)〉
(i), (14)

with N = 41 and j = 1≡ sheath, j = 2≡ MC, and
j = 3≡ post-MC.

The calculation of the standard deviation shows how much
variation or dispersion exists from the average. If a rectan-
gular area is built using the mean and standard deviation,
then there is a validity region in which all exponents join
up. Following the above idea, the panels of Fig.4 are built.
In Fig. 4a, the black points (〈α(j)〉T , 〈β(j)〉T ) are in each one
of three regions, from 41 events plotted in the Fig.2a and b.
For 2-D graphics, filling is done in thex andy directions be-
tween the standard deviation of the mean, and the shade rect-
angular regions are the set of validations of the persistence
for each region. Thus, the graph allows a conjugate analysis
of persistence. Figure4a shows in the〈β(j)〉T axis that the
MC is the region with the largest average value. However,
shade-rectangular regions overlap. It is not possible to sepa-
rate the MC region. Nevertheless, the result is important, be-
cause we can see that persistence is large in the MCs. On the
other hand, if we see the〈α(j)〉T axis then 75 % of the shade-
rectangular regions do not overlap. The MCs have〈α(j)〉 val-
ues from 1.39 to 1.54. A vertical dashed line is drawn in the
point 1.392. We propose the use of this value as a threshold
when the alpha exponent is calculated in MC regions.

The alpha value characterizes a multiscale phenomenon
that can be observed from the fluctuations of the amplitude
of the IMF. The coherent structures associated with mag-
netic clouds are related to scales of hours. However, there are
several components of fine structures, which we call noise
components (on the order of seconds). These disturbances
may be caused by different processes (e.g., Alfvén waves
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Figure 2. In (a), the PSD scaling exponent〈β(j)〉 values vs. num-
ber of events (see Table1) plotted, where (“�”), (“ ⊗”), and (“4”)
symbols corresponds to the sheath, MCs, and post-MC regions, re-
spectively. The other(b), (c), and (d) are similar to(a) but for
〈α(j)〉, 〈Hu(j)〉, and 〈Ha(j)〉 exponents, respectively. The results
in the four panels show long-range persistence in IMF time se-
ries (1< 〈β(j)〉 < 2, 1< 〈α(j)〉 < 1.6, 0.75< 〈Hu(j)〉 < 0.95, and
0.1< 〈Ha〉 < 0.5). The horizontal dashed line is a threshold derived
from Fig.1.

interacting with the cloud). Another possible nonlinear com-
ponent at small scales is the fact that there are disturbances
outside the coherenceBx and Bz plane (see e.g., Fig. 3,
Bothmer and Schwenn, 1998). Here, the calculation of the
exponent alpha is taken as the average of the alpha values
of each component (Bx , By , andBz). Therefore, the thresh-
old values represent the average complexity signature of the
maximum fluctuation of the system. The fluctuation is not
self-similar; it is a self-affine phenomenon. This means that
there are similar patterns of fluctuation, but only in some
scales, not all. An analysis of multi-resolution (for example,
by using wavelets) may be important for future work to in-
vestigate this process. In the classification of persistence pro-
cesses, the value of alpha, in the range 1.39 to 1.54, only in-
dicates that, in the transition region, the variability pattern is
typically a nonstationary process very close to a Brownian-
like fluctuation (≈ 1.5). However, more important than char-
acterizing the process in this context, the detection of the
transition should be addressed as the most important issue.

Figure4b has the same format as Fig.4a, but, in they axis,
〈Ha(j)〉T was plotted. Along the〈Ha(j)〉T axis, the shaded-
rectangular region corresponding to the MC has less overlap
with other regions than those that are seen in Fig.4a. Only
the MCs have〈Ha(j)〉 values between 0.320 and 0.420. A
horizontal dashed line is drawn in the point 0.327.

Figure4c has the same format as Fig.4a and b, but, in the
y axis,〈Hu(j)〉T was plotted. In addition, the MCs were sep-
arated from the other two regions, and the horizontal dashed
line is drawn in the point 0.875. The regions with least over-
lap correspond to the Hurst and Hausdorff exponents, respec-
tively. In Fig. 4d, (〈Hu(j)〉T ± σ ) vs. (〈Ha(j)〉T ± σ ) is plot-
ted. The Hurst and Hausdorff exponents provide good results,
and the clouds are separated from the other two regions. This
graphic could be used to evaluate the quality when a new MC
is identified using other methods; i.e., they are useful to cat-
egorize the ranges previously identified by another method.

With these results, we conclude that the persistence val-
ues increase in the IMF components inside of MCs. The per-
sistence analysis is not able to distinguish physical differ-
ences between sheath and post-MC regions, but the same av-
erage values suggest that both regions may be influenced by
the noise component (nonlinear processes at finer scales in-
volved in the dynamics of the IMF).

In this study, the investigated period covers the rising
phase of solar activity (1998–1999), solar maximum (2000),
and the early declining phase (2001–2003) when defined
by the yearly sunspot number. We had a variety of MCs
in 5 years (1998–2003), and the rotation of the magnetic
field direction can occur in any direction relative to the
ecliptic. However, there are some MCs for which identifi-
cation is not completely secure. For example, WIND MC ta-
ble2 and Lepping’s list show a quality factor (1≡ excellent,
2≡ good, 3≡ poor) when MC intervals are identified. This

2http://wind.nasa.gov/mfi/mag_cloud_pub1.html
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Figure 3. Histogram of 41 MCs and their respective plasma sheaths that are studied in this paper. The histogram shows the number of cases
vs. temporal extension (in hours) of MCs and plasma sheaths, respectively.

Figure 4. In (a), the black points (〈α(j)〉T , 〈β(j)〉T ) are in each of the three regions of the 41 events plotted in Fig.2a and b. We calculated
the standard deviation of the mean for each persistence exponent that is shown in Eq. (11). For 2-D graphics, filling is done in thex and
y directions between the standard deviation of the mean. The filling rectangular regions are the set of validations of the persistence for each
regions: (〈β(j)〉T ± σ ) vs. (〈α(j)〉T ± σ ). (b), (c), and(d) are similar to(a), except for other exponents combinations; i.e.,(b) (〈Ha(j)〉T ± σ )
vs. (〈α(j)〉T ± σ ); (c) (〈Hu(j)〉T ± σ ) vs. (〈α(j)〉T ± σ ); (d) (〈Hu(j)〉T ± σ ) vs. (〈Ha(j)〉T ± σ ).

methodology can help to evaluate the quality of the identi-
fication. After identifying an MC, if their persistence expo-
nents occupy non-overlapping regions in Fig.4b, c, and d,
then the cloud was identified with good quality. An advan-
tage of the proposed methodology is that plasma data are not
required. The plasma data sometimes have large gaps and
poor time resolution when compared with the magnetic field
data.

In Table3, we check whether the 41 events are all in Lep-
ping’s list. The first two columns are the same as those pub-
lished in Lepping’s list (MC code and quality factor). Seven
events are not published in Lepping’s list. These events are
shown with the symbol “–”. They are the events 5, 10, 16,
17, 20, 27, and 28, as shown in the third column. Lepping’s

quality factor informs us how well their model identifies
each MC. The quality factor is published in a range of 1
to 3. We used the previous idea to create a quality fac-
tor that can help to evaluate the quality of the identifica-
tion; i.e.,Qp = 1≡ excellent (three exponents are larger than
threshold values),Qp = 2≡ good (two exponents are larger
than threshold values),Qp = 3≡ poor (only one exponent
is larger than the threshold value), andQp = 0≡ ill-defined
(three exponents are lower than the threshold values, and
the field shows little evidence of MCs). The numbers that
are greater than the threshold (〈α〉 > 1.392; 〈Ha〉 > 0.327;
〈Hu〉 > 0.875) are shown in bold font. We found 83 %
(34 of 41× 100 %) of MCs with quality factorQp = 1 or
Qp = 2. The previous result is better than the 70.6 % (24 of
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34× 100 %) reported in Lepping’s list. Of 24 cases reported
by Lepping withQ = 1 orQ = 2, only one disagrees with our
results. However, some conflicting results could be expected,
because Lepping used a different data set to identify MCs.
Seven cases were not reported by Lepping, andQp = 0 was
found in two of them. In Table3 in the last four columns,
there is a summary of the results derived from Fig.4b, c,
and d.

6 Conclusions

The physical bases for the use of the techniques are the
plasma features related to the MC processes. Physical–
mathematical techniques have been selected for their ability
to allow the investigation of MC occurrences. Those tech-
niques have been developed in an original approach to char-
acterize MC events in the SW. They consist of techniques
of persistence exponents: Hurst, Hausdorff, the beta expo-
nent from power-spectral density (Fourier), and the alpha
exponent from detrended fluctuation analysis, respectively.
Those numerical tools have a great advantage, because they
are easy to implement with low computational cost and could
be the creation of an automatic operation detection. In addi-
tion, they characterize MC regions using (as input data) only
the three components of the IMF measured by satellites at
convenient space location, e.g., the Lagrangian point L1.

We mainly worked with data ofBx , By , andBz with a tem-
poral resolution of 16 s measured by the ACE. We worked
with a total of 41 MCs between the years 1998 and 2003,
published in the paper ofHuttunen et al.(2005). The cri-
teria used to select these 41 cases were the existence of
a plasma sheath in front of the MC, and, in these cases,
clouds were well identified. We have studied persistence in
the 41 ICMEs divided into three regions: plasma sheath,
MCs, and post-MCs, respectively. The persistence expo-
nent values increased inside cloud regions, and it was pos-
sible to select the following threshold values:〈α(j)〉 = 1.392;
〈Ha(j)〉 = 0.327;〈Hu(j)〉 = 0.875. These values prove useful
as another test to evaluate the quality of the identification.
After identifying a cloud, persistence analysis can be per-
formed in the full extent of temporal series of the three IMF
components. If the cloud is well structured, then the persis-
tence exponent values exceed thresholds.

The PSD scaling exponent is not a suitable tool to study
persistence in IMF components in the SW. Nevertheless, the
other three exponents are suitable for studying persistence,
and the exponent values have an increase in the cloud region.
It means that the three exponents report the largest persis-
tence in 33 of a total of 41 cloud regions. In 80.5 % of the
cases studied, these tools were able to separate the region
of the cloud from neighboring regions. The Hausdorff expo-
nent (Ha) provides the best results.

One difficulty in studying the persistence in time series
is the dimension of it. However, we can see a pattern in

Table 3.The first two columns are the same as those that were pub-
lished in Lepping’s list. MCs that were not identified in Lepping’s
list are shown with “–”. The 41 events in Table1 are shown in
the third column. The last four columns from the left to the right
give the Hurst exponent, the Hausdorff exponent, the alpha expo-
nent, and the quality of the MCs, respectively. In columns 4, 5
and 6, the numbers that are greater than the threshold〈α〉 > 1.392;
〈Ha〉 > 0.327;〈Hu〉 > 0.875) are shown in bold font.

Code Q.a Table 1 〈Hu(j)〉 〈Ha(j)〉 〈α(j)〉 Q.bp

28 1 01 0.901 0.365 1.460 1
30 2 02 0.907 0.463 1.587 1
31 1 03 0.897 0.329 1.457 1
32 3 04 0.891 0.363 1.496 1
– – 05 0.891 0.341 1.330 2
35 1 06 0.912 0.457 1.593 1
36 2 07 0.903 0.404 1.503 1
37 3 08 0.907 0.400 1.493 1
38 1 09 0.894 0.369 1.437 1
– – 10 0.874 0.307 1.388 0
39 3 11 0.866 0.358 1.310 3
40 3 12 0.898 0.439 1.440 1
41 1 13 0.892 0.362 1.470 1
43 3 14 0.886 0.347 1.293 2
44.1 3 15 0.893 0.414 1.413 1
– – 16 0.890 0.316 1.435 2
– – 17 0.860 0.280 1.474 3
46 2 18 0.895 0.398 1.542 1
47 2 19 0.879 0.412 1.521 1
– – 20 0.866 0.326 1.234 0
49 2 21 0.889 0.375 1.349 2
50 3 22 0.860 0.326 1.408 3
51 1 23 0.898 0.432 1.437 1
52 2 24 0.884 0.355 1.337 2
53 3 25 0.888 0.380 1.340 2
54 2 26 0.894 0.332 1.514 1
– – 27 0.909 0.427 1.423 1
– – 28 0.857 0.299 1.502 3
57 2 29 0.882 0.296 1.235 3
58 2 30 0.884 0.380 1.348 2
59 2 31 0.889 0.402 1.516 1
60 1 32 0.895 0.381 1.360 2
62 3 33 0.883 0.382 1.477 1
65 2 34 0.892 0.321 1.419 2
66 1 35 0.893 0.384 1.366 2
68 1 36 0.885 0.368 1.542 1
71 2 37 0.878 0.350 1.498 1
72.2 3 38 0.887 0.299 1.428 2
73 1 39 0.867 0.341 1.545 2
76 2 40 0.895 0.411 1.517 1
77 2 41 0.887 0.407 1.483 1

a From Lepping’s list – quality: 1≡ excellent, 2≡ good, 3≡ poor.b Our results –
quality: 1≡ excellent (three exponents are larger than threshold values), 2≡ good (two
exponents are larger than threshold values), 3≡ poor (only one exponent is larger than
the threshold value), 0≡ ill-defined, the field shows little evidence of MCs (three
exponents are lower than the threshold values).
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the persistence values between all MC events. An addi-
tional analysis by other techniques that consider processes
with non-Gaussian features and multifractality is underway
and will be presented later (Campos-Velho et al., 2001;
Bolzan, M. J. A. et al., 2002).

Fluctuations in time series can also be studied from tech-
niques based on bilateral asymmetries that can be found in
the gradient domain of the data. The technique known as
gradient pattern analysis (GPA), originally formulated to an-
alyze spatiotemporal data (Rosa et al., 1999), was adapted
to analyze patterns of asymmetries that appear exclusively in
the time domain (Assireu et al., 2002). The GPA for time se-
ries (known as “GPA-1D”) compares amplitude values con-
sidering different scales of time fluctuation mapped in its gra-
dient field (Rosa et al., 2008). Within the scope of the GPA-
1D, the value of the gradient asymmetry coefficient can also
present relations with the values obtained from DFA, power
spectra and fractal measures. Therefore, the use of gradient
pattern analysis (GPA-1D) (Assireu et al., 2002; Rosa et al.,
2008) will be explored further in an complementary work.
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Appendix A: Autocorrelations and semivariograms

A summary taken fromMalamud and Turcotte(1999) is
presented here. The correlation of a time series with itself,
i.e., y(t + s) compared withy(t) at lags, is called autocor-
relation function (r(s)). The autocorrelation function can be
used to quantify the persistence or anti-persistence of a time
series. This is given by

r(s) =
c(s)

c(0)
, (A1)

with the autocovariance function,c(s), given by

c(s) =
1

(T ′ − s)

T ′
−s∫

0

[
y(t + s) − y

][
y(t) − y

]
dt,

and the autocovariance function at 0 lag,c(0), given by

c(0) =
1

T ′

T ′∫
0

[
y(t) − y

]2dt = Va .

The time series,y(t), is prescribed over the interval
0≤ t ≤ T ′. The average and variance ofy(t) over the inter-
val T ′ arey andVa . The autocorrelation function,r(s), is
dimensionless and does not depend on the units ofy(t) or t .
The plot ofr(s) vs.s is known as correlogram (Malamud and
Turcotte, 1999).

For a discrete time series, the autocorrelation function,rk,
is given by

rk =
ck

c0
, (A2)

with the autocovariance,ck, given by

ck =
1

(N − k)

N−k∑
n=1

(yn+k − y)(yn − y), (A3)

and the autocovariance at 0 lag (the variance) given by

c0 =
1

N

N∑
n=1

(yn − y)2
= Va . (A4)

If the mean or variance vary with the length of the interval
considered, then the time series is nonstationary. The correl-
ograms is inappropriate to study nonstationary time series,
becauser(s) hasy in its definition. However, the method to
measure long-range correlation, which is valid for both sta-
tionary and nonstationary time series, is the semivariogram
γ . Like the autocorrelation function, the semivariogram mea-
sures the dependence of values in time series that are sepa-
rated by lag,s.

For a discrete time series, the semivariogram,γ (s), is
given by

γk =
1

2
(N − k)

N−k∑
n=1

(yn+k − yn)
2 . (A5)

For a stationary time series, the semivariogram,γk, and the
autocorrelation function,rk, are related. The mean of the time
series,y, can be added and subtracted within the summation
in Eq. (A5) to give

γk =
1

2(N − k)

N−k∑
n=1

[
(yn+k − y) − (yn − y)

]2
.

When expanded, this gives

γk =
1

2(N − k)

[
N−k∑
n=1

(yn+k − y)2
+

N−k∑
n=1

(yn − y)2

−

N−k∑
n=1

2(yn+k − y)(yn − y)

]
. (A6)

Provided the time series is stationary, two of the terms in
Eq. (A6) are equivalent to the variance in Eq. (A4), giving

γk = Va −
1

(N − k)

N−k∑
n=1

(yn+k − y)(yn − y) . (A7)

Substituting the definition forck from Eq. (A3) into Eq. (A7)
and using the definitions ofc0 from Eq. (A4) and rk from
Eq. (A2), the new equation is

γk = (Va − ck) =

(
V − V

ck

c0

)
V (1− rk) . (A8)

For an uncorrelated time series, we haverk = 0 and
γk = Va . Several authors have applied both the autocorrela-
tion function and semivariograms to both real and synthetic
time series that exhibit long-range persistence (e.g.,Ramos
et al., 2004; Rosa et al., 2008).

Using the definition for the semivariogram,γk, given in
Eq. (A5), a computational code was implemented.

function[Ha,R1] = Semivariogram(y)

N1 = size(y,1);

potencia2= floor(log2(N1));

gammaT _k = 1 : potencia2;
xi = 1 : potencia2;
for i = 1 : potencia2
k = 2∧i;

contador= 0;

forn = 1 : (N1− k)

contador= contador+ (y(n + k) − y(n))∧2;

end
gam_k = (1/(N1− k))∗contador;
gammaT _k(i) = gam_k;
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xi(i) = k;

end
yi = gammaT _k;

[a,R] = RegresionLinear(log10(xi), log10(yi));

Ha = a/2;

R1 = R;

end

function[a,R] = RegresionLinear(xi,yi)

n1 = size(xi,2);

a = (n1∗sum(xi.∗yi)−sum(xi)∗sum(yi))/(n1∗sum(xi.∧2)−

sum(xi)∧2);

b = (sum(yi) − a∗sum(xi))/n1;

R = ((sum(xi.∗yi)−(sum(xi)∗sum(yi))/n1)∧2)/((sum(xi.∧2)−

(sum(xi)∧2)/n1)∗(sum(yi.∧2) − (sum(yi)∧2)/n1));

end
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