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Abstract. We employ the detrended fluctuation analysis
(DFA) technique to investigate spatial properties of an oil
reservoir. This reservoir is situated at Bacia de Namorados,
RJ, Brazil. The data correspond to well logs of the follow-
ing geophysical quantities: sonic, gamma ray, density, poros-
ity and electrical resistivity, measured in 56 wells. We tested
the hypothesis of constructing spatial models using data from
fluctuation analysis over well logs. To verify this hypothesis,
we compare the matrix of distances of well logs with the dif-
ferences in DFA exponents of geophysical quantities using
a spatial correlation function and the Mantel test. Our data
analysis suggests that the sonic profile is a good candidate for
representing spatial structures. Then, we apply the clustering
analysis technique to the sonic profile to identify these spatial
patterns. In addition, we use the Mantel test to search for cor-
relations between DFA exponents of geophysical quantities.

1 Introduction

To a great extent, information about petroleum reservoirs is
obtained from well logs that measure geophysical quantities
along drilled wells (seeAsquith and Krygowski, 2004). As a
rule, data are spatially sparse and present strong fluctuation;
therefore, we have to rely on statistical methods for evaluat-
ing indices that describe the characteristics of the reservoirs

(see, for instance,Hardy and Beir, 1994; Hewitt, 1998). The
question of which methods are more appropriate for fulfill-
ing this task is still open. In this work, we investigate the use
of fluctuation analysis to tackle this problem.

The well log data comprise the most valuable information
that can be obtained from geological volumes and from oil
reservoirs. However, the cost of drilling imposes severe limi-
tations on the number of wells. In this situation, we are faced
with the problem of uncovering geophysical properties over
long field extensions from data collected along a few drilled
wells. To perform this task, we have to rely on data statis-
tics that guarantee similarities between geological structures.
One goal is to draw contour lines expressing the variation
of proprieties in the subsurface by evaluating interpolation
from the well log data. This will be justified if correlations
show consistent spatial patterns. The question of this article
is the following: can we use a detrended fluctuation analysis
(DFA) exponent to discover spatial patterns? In other words,
is a DFA exponent spatially correlated in such a way that we
can employ it as a spatial parameter?

In the last decade, new techniques from the physics
of complex systems were introduced in geophysics (see
Lovejoy and Schertzer, 2007; Dashtian et al., 2011b). DFA is
a powerful fluctuation analysis technique introduced byPeng
et al. (1995) that was developed to deal with non-stationary
time series. This tool is similar to the Hurst method (see,
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for instance,Mandelbrot, 1977) that is used to compare an
aleatory time series with a similar Brownian series, as well
as to evaluate correlation and anti-correlation in a series. The
DFA technique has been used in many areas of the geophys-
ical literature. InPadhy(2004), it is used to obtain infor-
mation from seismic signals. In referencesAndrade et al.
(2009), Chun-Feng and Liner(2005), Gholamy et al.(2008)
andTavares et al.(2005), DFA is employed to interpret and
filter images of seismograms. In referencesRibeiro et al.
(2011), Lozada-Zumeta et al.(2012), Marinho et al.(2013)
andDashtian et al.(2011a), this technique is used, as in this
manuscript, in the analysis of well logs.

When we treat complex systems that have a huge number
of data, the DFA method is attractive because it allows us to
summarize data in a suitable parameter. The DFA parame-
ter summarizes fluctuation information of a time series. This
parameter is related to the autocorrelation properties and the
spectrum of frequency of the data. The DFA exponent in this
sense is an overall measure of its complexity. This simple
procedure allows a fast comparison between large samples.
Furthermore, the first step in oil research is a geographical
analysis of the surface. To have characteristics of the geolog-
ical structure of the subsurface projected into a single mea-
surement on the ground level is useful information. In addi-
tion, the spatial correlation between these quantities allows
us to have a better understanding of the lithology, which is
crucial in oil prospecting.

The case study employed in this work is an oil reservoir,
and we apply the DFA technique to data logs of drilled wells.
The oil reservoir is situated at Bacia de Namorados, an off-
shore field in Rio de Janeiro State, Brazil. The five geo-
physical measurements available in the well logs are sonic
(DT, sonic transient time), gamma ray (GR, gamma emis-
sion), density (RHOB, bulk density), porosity (NPHI, neu-
tron porosity) and electrical resistivity (ILD, deep induction
resistivity). The manuscript can be summarized as follows.
In Sect. 2 we perform three tasks: show the geological data
in some detail, briefly introduce the mathematics of the DFA,
and present the statistical methods we use in this work: spa-
tial correlation, the Mantel test and thek means clustering
analysis technique. In Sect. 3 we show the results of the spa-
tial correlation function and the Mantel test; we estimate that
the sonic profile is the best candidate for modeling spatial
patterns. In addition, we apply clustering analysis to this geo-
physical quantity to create a spatial model. Finally, in Sect. 4,
we conclude the work and give our final remarks.

2 Model background

2.1 The geological data

The geological data used in this work are from well logs
located in the oilfield of Bacia de Namorados, Rio de
Janeiro State, Brazil. The wells are situated in an area of

approximately 100 km2 and at a distance of 150 km from the
coast. The spatial arrangement of the well logs is illustrated
in Fig. 4, and the matrix of distance among pairs of wellsi

andj is done bydi,j . The number of records for each well
is not constant. The sonic register was recorded inN = 17
well logs, gamma rayN = 53), density (N = 51), porosity
(N = 48), and, finally, resistivity (N = 54). The time series
of the geophysical quantities of each well log has around
NS≈ 1000; the exact value depends on the measurement.
This data series length guarantees a good statistic for the use
of the DFA method (Kantelhardt et al., 2001). An example of
a segment of the time series corresponding to each of the five
geophysical variables is visualized in Fig.1.

2.2 The detrended fluctuation analysis – DFA

DFA is a fluctuation analysis technique (see for instance
Peng et al., 1994andKantelhardt et al., 2001). We present a
concise description of the DFA algorithm; a comprehensive
introduction to the method is inPeng et al.(1995) andIhlen
(2012). Consider a time seriesxt = (x1, x2, . . . ,xNS) with NS
elements. To calculate the DFA algorithm, we initially inte-
grate the seriesx(t), producing a new variabley(t):

y(t) =

t∑
i=1

|xi |. (1)

In the second step of the algorithm, we perform an equal par-
titioning of the time series into boxes of lengthn. A data fit-
ting is performed inside each box by using the least squares
method. The generated auxiliary curve is called the local
trendyn(t) of the data. In the third step, we detrend the in-
tegrated series,y(t). To execute this procedure, we subtract
y(t) from the local trendyn(t). The root mean square fluctu-
ation is found with the help of the relation

F(n) =

√√√√ 1

NS

NS∑
i=1

(y(t) − yn(t))
2. (2)

The fourth step consists in estimating Eq. (2) over all boxes
of sizen. Usually F(n) increases withn; a linear increase
in F(n) with n on a log–log scale is a typical signature of
fractal behavior. The exponentα of the relation

F(n) = nα (3)

is known as the DFA exponent. The most important equation
of this theoretical development is Eq. (3), which provides a
relationship between the average root mean square fluctua-
tion, F(n), as a function of the box sizen. In this work, we
have computedα with the help of the algorithm available in
Matlab. A similar algorithm is also available in the C lan-
guage (Peng et al., 1995). In Fig. 2, we show, as an illustra-
tion, the curve ofF(n) versusn for two distinct wells for
gamma-ray and sonic data.
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et al. (2011); Lozada-Zumeta et al. (2012); Marinho et al.
(2013); Dashtian et al. (2011) this technique is used, as in60

this manuscript, in the analysis of well logs.
When we treat with complex systems that have a huge

amount of data theDFA method is attractive because it al-
lows to summarize data into a suitable parameter. TheDFA
parameter summarizes fluctuation information of a time se-65

ries, this parameter is related to the autocorrelation proper-
ties and the spectrum of frequency of the data. TheDFA ex-
ponent in this sense is an overall measure of its complex-
ity. This simple procedure allows a fast comparison between
large samples. Furthermore, the first step in oil research isa70

geographical analysis of the surface. To have characteristics
of the geological structure of the subsurface projected into a
single measurement on the ground level is an useful informa-
tion. In addition, the spatial correlation between these quan-
tities allow us to have a better understanding of the lithology75

which is crucial in oil prospection.
The case study employed in this work is an oil reservoir

and we apply theDFA technique over data logs of drilled
wells. The oil reservoir is situated at Bacia de Namorados,
an offshore field in the Rio de Janeiro State, Brazil. The80

five geophysical measurements available in the well logs are:
sonic (DT, sonic transient time), gamma ray (GR, gamma
emission), density (RHOB, bulk density), porosity (NPHI,
neutron porosity) and electrical resistivity (ILD, deep induc-
tion resistivity). The manuscript can be summarized as fol-85

lows. In section2 we perform three tasks: show the geologic
data in some detail, introduce briefly the mathematics of the
DFA and present the statistical methods we use in this work:
spatial correlation, Mantel test and k-means clustering anal-
ysis technique. In section3 we show the results of the spatial90

correlation function and the Mantel test; we estimate that the
sonic profile is the best candidate to model spatial patterns.
In addition, we apply clustering analysis to this geophysical
quantity to create a spatial model. Finally, in section4 we
conclude the work and give our final remarks.95

2 Model background

2.1 The geologic data

The geologic data used in this work are from well logs lo-
cated in the oil field of Bacia de Namorados, Rio de Janeiro
State, Brazil. The wells are situated in an area of approxi-100

mately100km2 and distant150km from the coast. The spa-
tial arrangement of the well logs is illustrated in figure 3.3
and the matrix of distance among pairs of welli and j is
done bydi,j . The number of records for each well is not con-
stant, the sonic register was recorded in (N = 17) well logs,105

gamma ray (N = 53), density (N = 51), porosity (N = 48),
and, finally, resistivity (N = 54). The time series of the geo-
physical quantities of each well log has aroundNS ≈ 1000,
the exact value depends on the measurement, this data se-

0   200 400 600 800 1000
50

100

150

S
O

0   200 400 600 800 1000
0

100

200
G

R

0   200 400 600 800 1000
0

10

20

R
E

0   200 400 600 800 1000
0

20

40

P
O

0   200 400 600 800 1000
1

2

3

D
E

Depth

Fig. 1. A segment of a typical measurement, for an arbitrary well,
of the geophysical properties versus depth (in meters): sonic (SO),
gamma ray (GR), density (DE), porosity (PO), and resistivity (RE).

ries length guarantees a good statistic for the use ofDFA110

method Kantelhardt et al. (2001). An example of a segment
of the time series corresponding to each of the five geophys-
ical variables is visualized in figure 2.1.

2.2 The Detrended Fluctuation Analysis DFA

TheDFA is a fluctuation analysis technique, see for instance115

Peng et al. (1994) and Kantelhardt et al. (2001). We present
a concise description of theDFA algorithm, comprehensive
introduction of the method is in Peng et al. (1995) and Ihlen
(2012). Consider a time seriesxt = (x1,x2, ...,xNS

) with
NS elements. To calculate theDFA algorithm we initially120

integrate the seriesx(t) producing a new variabley(t):

y(t) =

t
∑

i=1

|xi| (1)

In the second step of the algorithm we perform an equally
partition of the time series into boxes of lengthn. A data
fitting is performed inside each box a using the least square125

method, the generated auxiliary curve is called the local trend
yn(t) of the data. In the third step we detrend the integrated
series,y(t), to execute this procedure we subtracty(t) from
the local trendyn(t). The root mean square fluctuation is
found with help of the relation:130

F (n) =

√

√

√

√

1

NS

NS
∑

i=1

(y(t)− yn(t))
2
. (2)

The fourth step consists in estimating Eq. (2) over all boxes
of sizen. UsuallyF (n) increases withn, a linear increasing
of F (n) with n in a log-log scale is a typical signature of a

Figure 1. A segment of a typical measurement, for an arbitrary well, of the geophysical properties versus depth (in meters): sonic (SO),
gamma ray (GR), density (DE), porosity (PO), and resistivity (RE).

We performed a similar analysis for the available well logs
of all geophysical quantities. For 98 % of cases, the correla-
tion coefficient of the adjusted line in the log–log plot fulfils
the relationR2

≤ 0.95, forR the linear correlation coefficient
(Sokal and Rohlf, 1995). The cases that do not follow this
condition were discarded from the statistics.

2.3 Statistical analysis

In the paragraphs that follow, we show the statistical meth-
ods explored in the paper. All statistical analyses were per-
formed using the R language (see referenceR Development
Core Team, 2008).

2.3.1 Spatial correlation

To test the spatial correlation between variables, the most
simple statistics comprise the correlation function, Corr(τ ),
for τ the correlation length. To test the spatial correlation be-
tween DFA exponent and distance, we start ranking alldi,j of
the distance matrix. We compute the difference of the matrix
of the DFA exponent:1t αi,j = |αt

i − αt
j | for all geophys-

ical variablesgt . The quantity1αt is ordered according to
distancesτ . Corrt (τ ) is estimated as follows:

Corrt (τ ) =

Num∑
l=1

1αt (d)1αt (d + τ)

Num > sd(1αt )
(4)

where the sum in the equation is performed over all possible
pairs Num. To compute Corr(τ ), the quantity1α is trans-
formed to1α → 1α − µ for µ the average of1α. The
correlation function is evaluated over a zero mean series. The
standard deviation, sd(1α), in the denominator normalizes
adequately the function such that Corr(0)= 1.

2.3.2 Mantel test

The Mantel test is a statistical tool to test correlation between
two symmetrical matrices of the same rank. The rationale of
this test is to employ matrix elements in the same way as vec-
tors of objects. In this way, the Mantel test is quite similar to
the Pearson test that searches for a correlation between two
vectors. In the Mantel test, matrices are transformed into vec-
tors to evaluate the linear correlation (seeSokal and Rohlf,
1995).

We compute two distinct sets of tests: in the first, we check
for correlation between the matrix of distances of well logs
di,j and the differences matrix of the DFA exponent1t αi,j

of any geophysical variablegt . In a second moment, we com-
pare the DFA of geophysical quantities by applying the Man-
tel test between matrices of1t αi,j and1s αi,j of geophysi-
cal quantitiesgt andgs . Of course, we evaluate this test only
over pairsi andj of well logs that have available data for
bothgt andgs .
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Fig. 2. A typical plot illustratingDFA scaling property:F (n) versus
n, the curve of Eq. 3. The good fitting of most curves in a log-log
scale reveals the fractal characteristic of geophysical data. In (a) the
well 2 of gamma ray data and in (b) the well17 of sonic data.

inspection of the spatial patterns, as well as a Monte Carlo
test, verify that sonic data forms good spatial models for
k = 3 and4. In opposition, other geophysical quantities do305

not show significant results in Monte Carlo test.
In addition to spatial analysis, we also used Mantel test

to search for correlations among geophysical quantities. In a
previous work Ribeiro et al. (2011), using the same data set,
but applying a different methodology, it was found that the310

only pair of geophysical variables that shows significant cor-
relation was density and sonic(p = 0.01). In this work the
pairs of quantities that show greater significance were poros-
ity and resistivity(p = 0.088) is closely followed by density
and sonic(p = 0.13). The paper Ferreira et al. (2009) has315

also found a major correlation between sonic and density us-
ing a standard correlation matrix. For both methodologies the
pair density and sonic seems to be correlated, this propertyis
probably related to the trivial fact that sound speed increases
with density, see for instance Feynman and Leighton (1964).320

a result that is close to our result. As the methodologies of
these works are not the identical, we do not expect the same
result, indeed, small discrepancies are acceptable in statis-
tical treatments. This last result is in agreement with Dash-
tian et al. (2011) that have used cross-correlation analysis325
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Fig. 3. Contour plots of DFA values over spatial data of oil reservoir
of Campo dos Namorados, RJ, Brazil. We depict five figures one for
each geophysical variables: porosity (PO), resistivity (RE), gamma
ray (GR), density (DE), and sonic (SO). The dots correspond to well
logs, we use arbitrary length unitiesx andy.

Figure 2. A typical plot illustrating a DFA scaling property:F(n)

versusn, the curve of Eq. (3). The good fitting of most curves on a
log–log scale reveals the fractal characteristic of geophysical data.
In (a), well 2 of gamma ray data, and in(b), well 17 of sonic data.

2.3.3 Clustering analysis

For the geophysical quantities that show spatial correlation,
we search for spatial patterns. In this article, we usek means,
a standard tool of clustering analysis, to perform this task.
Thek means methodology works by creating groups using a
metric criterion. The user of the method chooses a fixed num-
ber k of subsets, or clusters, and an optimization algorithm
selects elements according to the distance tok centroids.

In our study, we find that only one geophysical quantity
presents a significant spatial correlation: the sonic variable.
To use thek means methodology, it is necessary to have at
least three input variables. To obtain the two additional pa-
rameters, we employ the following strategy: we use the up-
per and lower values of the error interval of the fitting of the
curve defined by Eq. (3).

We use a Monte Carlo test, or a randomization test, to
check if thek cluster method creates groups that are closer,
in a metric sense, than groups generated in an aleatory way.
We define an index� of neighborhood in the following way.
Consider the map of the field with all wells. Over each well,
we attach a geometric ball (or a disk) of radiusb. The wells
that are spatially closer, share overlapping balls, in oppo-
sition to distant wells. This schema of overlapping balls is
used to measure if two wells that are in the samek group
are close or not. For all pairs of well logs, we perform this

Table 1.The results of spatial correlation: the decaying of the spa-
tial correlation and the Mantel test. The linear fitting of the corre-
lation function is indicated in the table, as well as the output of the
Mantel test. The result indicates that only sonic data are appropri-
ate for constructing spatial analysis. The geophysical quantities are
indicated in the table: sonic (SO), density (DE), gamma ray (GR),
electrical resistivity (RE), and porosity (PO).

Spatial correlation Mantel test

F ρ p r p

PO 0.002 0.00003 0.96 −0.021 0.64
RE 0.11 0.002 0.74 0.016 0.51
GR 1.05 0.015 0.31 −0.028 0.73
SO 9.03 0.12 0.004 0.181 0.06
DE 0.64 0.01 0.43 0.023 0.34

computation: if the balls of two well logs overlap and belong
to the same group, we count� → � + 1; otherwise, we do
nothing. The index� is normalized by the number of groups
and the maximal number of elements in eachk group. After
that, we shuffle the well logs over thek groups and compute
�shuffled over the shuffled data. The idea of this method is
to see if thek groups are more distant from each other than
groups chosen at random. We estimate ap value as the prob-
ability of � being larger than the�shuffleddistribution.

3 Results

To check for spatial correlation, we use three independent
statistical tests: the spatial correlation, the Mantel test and the
clustering analysis. To improve the visualization of our anal-
ysis, we introduce a couple of spatial pictures of the DFA
exponent computed over the well logs (Fig.3). We depict
five figures, one for each geophysical variable: porosity (PO),
resistivity (RE), gamma ray (GR), density (DE), and sonic
(SO), as indicated in the picture. The spatial image uses ar-
bitrary distance unitiesx andy. To help the perception of the
system, we depict contour plots with colors. Regions sharing
the same color assume close DFA values.

3.1 Spatial correlation

We initially compute the function Corr(τ ) for 0≤ τ ≤ 80 for
all geophysical variables; we checked that 80 is a number
large enough for Corr(τ ) decay, and start oscillating around
zero. We expect that in caseα variables of any geophysi-
cal quantitygt show spatial correlation, the function Corr(τ )
should decrease withτ . To analyze the decay of Corr(τ ) of
the geophysical variables, we fit a linear curve and test how
significant its decay is. The result of the fitting of the geo-
physical quantities is shown in Table1. This result indicates
that the only quantity that reveals a significant decay is the

Nonlin. Processes Geophys., 21, 1043–1049, 2014 www.nonlin-processes-geophys.net/21/1043/2014/
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Table 2.This symmetric table shows thep value of the Mantel test
of hypothesis for correlations between the DFA exponents of geo-
physical quantities. The test is performed between each pair of five
geophysical variables: porosity (PO), resistivity (RE), gamma ray
(GR), density (DE), and sonic (SO).

RE GR DE SO

PO p = 0.088 p = 0.74 p = 0.95 p = 0.21
RE – p = 0.73 p = 0.62 p = 0.44
GR – – p = 0.62 p = 0.61
DE – – – p = 0.13

sonic data; all the other quantities showp > 0.05 for the lin-
ear fitting test.

3.2 Mantel test

Table1 also shows the results of the analysis of the Mantel
test for all geophysical variables. Here it computes the cor-
relation between two matrices:di,j , the matrix of distance
between two wells, and1αi,j = αi − αj , the matrix of dif-
ference between DFA exponentα for the same wells. The
correlation parameter of the test is indicated byr, while p is
thep value of the significance test. In agreement with the out-
put of the correlation function analysis, the smallestp value
is attributed to the sonic variable. This result justifies the use
of sonic data for constructing spatial patterns, the subject of
the next section.

We use the Mantel test not only to analyze the correlation
between distances and the DFA exponent, but also to perform
a comparison between distinct geophysical quantities. That
means we compare matrices1αt and1αs of geophysical
quantitiesgt andgs . The result of this analysis is shown in
Table2. We plot only thep value of the test in the table. The
major agreement observed was between variables: resistivity
and porosity, which is followed by density and sonic.

3.3 Clustering analysis

The sonic variable has proven a good candidate for generat-
ing spatial patterns. In Fig.4, we plot the oil reservoir area
with well logs. Axesx and y represent the spatial coordi-
nates; we use arbitrary metric units. The points in the fig-
ure represent the coordinates of the well logs. In Fig.4a, we
use the fixed number of clustersk = 3, while in Fig.4b, we
usek = 4. Elements in the same cluster are indicated by a
common symbol. These two pictures suggest that the sonic
variable is indeed a good geophysical quantity for modeling
spatial formations.

To test how good the spatial formation of the clustering
analysis is, we employ a Monte Carlo test. We estimated the
proper� value and foundp = 0.005 fork = 3 andp = 0.16
for k = 4 using an optimal ball sizeb. We checked the
k means clustering technique for the other quantities: sonic,
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Fig. 2. A typical plot illustratingDFA scaling property:F (n) versus
n, the curve of Eq. 3. The good fitting of most curves in a log-log
scale reveals the fractal characteristic of geophysical data. In (a) the
well 2 of gamma ray data and in (b) the well17 of sonic data.

inspection of the spatial patterns, as well as a Monte Carlo
test, verify that sonic data forms good spatial models for
k = 3 and4. In opposition, other geophysical quantities do305

not show significant results in Monte Carlo test.
In addition to spatial analysis, we also used Mantel test

to search for correlations among geophysical quantities. In a
previous work Ribeiro et al. (2011), using the same data set,
but applying a different methodology, it was found that the310

only pair of geophysical variables that shows significant cor-
relation was density and sonic(p = 0.01). In this work the
pairs of quantities that show greater significance were poros-
ity and resistivity(p = 0.088) is closely followed by density
and sonic(p = 0.13). The paper Ferreira et al. (2009) has315

also found a major correlation between sonic and density us-
ing a standard correlation matrix. For both methodologies the
pair density and sonic seems to be correlated, this propertyis
probably related to the trivial fact that sound speed increases
with density, see for instance Feynman and Leighton (1964).320

a result that is close to our result. As the methodologies of
these works are not the identical, we do not expect the same
result, indeed, small discrepancies are acceptable in statis-
tical treatments. This last result is in agreement with Dash-
tian et al. (2011) that have used cross-correlation analysis325
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Fig. 3. Contour plots of DFA values over spatial data of oil reservoir
of Campo dos Namorados, RJ, Brazil. We depict five figures one for
each geophysical variables: porosity (PO), resistivity (RE), gamma
ray (GR), density (DE), and sonic (SO). The dots correspond to well
logs, we use arbitrary length unitiesx andy.

Figure 3. Contour plots of DFA values over spatial data of the oil
reservoir of Campo dos Namorados, RJ, Brazil. We depict five fig-
ures, one for each geophysical variable: porosity (PO), resistivity
(RE), gamma ray (GR), density (DE), and sonic (SO). The dots cor-
respond to well logs. We use arbitrary length unitiesx andy.
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Fig. 4. Clustering analysis patterns for sonic data (a)k = 3, and (b)
k = 4. Both figures show a satisfactory cluster formation in this data
as confirmed by Monte Carlo test. We use arbitrary length unitiesx

andy.

between well logs and found that sonic, porosity and density
are more correlated among them than with gamma-ray.

To conclude the work we go back to the initial question of
the manuscript: is it possible to create spatial models using
fluctuation analysis? The sonic variable has shown enough330

spatial correlation to perform this task, but the density, which
is the quantity the most correlated to sonic does not share the
same property. However, a visual inspection in the couple of
figures 3.3 suggests that the porosity has a consistent spatial
distribution. In a future work we intend to test the combi-335

nation of distinct geophysical quantities in the formationof
spatial patterns.
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Figure 4. Clustering analysis patterns for sonic data:(a) k = 3 and
(b) k = 4. Both figures show a satisfactory cluster formation in these
data, as confirmed by a Monte Carlo test. We use arbitrary length
unitiesx andy.

resistivity, porosity and gamma ray. We use 3≤ k ≤ 6 for all
these geophysical data sets, and we found nop greater than
0.05, which means no evidence of significant spatial cluster
formation. This result is indirect evidence that only a sonic
variable is a good choice for the formation of spatial patterns.

4 Final remarks

The issue of this manuscript is to test the hypothesis that
we can use DFA exponentsα from log wells as integrated
indices projected over the Earth’s surface to reveal spatial
structures. Eachα is an index that summarizes the structure
of fluctuation of a geophysical quantity over geological lay-
ers of thousands of meters deep. The challenge is to use the
information about the fluctuation from a set of distinct well
logs distributed over several kilometers to construct spatial
patterns.

The results of the Mantel test and the spatial correlation
function indicate that the only geophysical parameter we can
rely on in this global approach to modeling spatial patterns is
sonic. We use partitioning byk means, a standard technique

of cluster analysis appropriate for representing spatial mod-
els. A visual inspection of the spatial patterns, as well as a
Monte Carlo test, verify that sonic data form good spatial
models fork = 3 andk = 4. By contrast, other geophysical
quantities do not show significant results in the Monte Carlo
test.

In addition to spatial analysis, we also used the Mantel test
to search for correlations between geophysical quantities. In
a previous work (Ribeiro et al., 2011), using the same data
set but applying a different methodology, it was found that
the only pair of geophysical variables that shows significant
correlation was density and sonic (p = 0.01). In this work,
the pairs of quantities that show greater significance were
porosity and resistivity (p = 0.088), closely followed by den-
sity and sonic (p = 0.13). The paperFerreira et al.(2009)
also found a major correlation between sonic and density by
using a standard correlation matrix. For both the method-
ologies, the density and sonic pair seems to be correlated.
This property is probably related to the trivial fact that sound
speed increases with density (see, for instance,Feynman and
Leighton, 1964), a result that is close to our result. As the
methodologies of these works are not identical, we do not
expect the same result. Indeed, small discrepancies are ac-
ceptable in statistical treatments. This last result is in agree-
ment withDashtian et al.(2011a), who used cross-correlation
analysis between well logs and found that sonic, porosity and
density are more correlated between them than gamma ray.

To conclude the work, we go back to the initial question of
the manuscript: is it possible to create spatial models using
fluctuation analysis? The sonic variable has shown enough
spatial correlation to perform this task, but the density, which
is the quantity most correlated with the sonic variable, does
not share the same property. However, a visual inspection of
the couple of Fig.3 suggests that the porosity has a consis-
tent spatial distribution. In a future work, we intend to test
the combination of distinct geophysical quantities in the for-
mation of spatial patterns.
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