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Abstract. Dual-frequency echo-envelope data acquired us-
ing the normal-incidence single-beam echosounder system
(SBES) have been examined to study its scale invariant prop-
erties. The scaling and multifractality of the SBES echo en-
velopes (at 33 and 210 kHz) were validated by applying a
stochastic-based multifractal analysis technique. The anal-
yses carried out substantiate the hierarchy of multiplicative
cascade dynamics in the echo envelopes, demonstrating a
first-order multifractal phase transition. The resulting scale
invariant parameters (α, C1, andH ) establish gainful infor-
mation that can facilitate distinctive delineation of the sedi-
ment provinces in the central part of the western continental
shelf of India. The universal multifractal parameters among
the coarse and fine sediments exhibit subtle difference inα

andH , whereas the codimension parameterC1 representing
the sparseness of the data varies. TheC1 values are well clus-
tered at both the acoustic frequencies, demarcating the coarse
and fine sediment provinces. Statistically significant corre-
lations are noticeable between the computedC1 values and
the ground truth sediment information. The variations in the
multifractal parameters and their behavior with respect to the
ground truth sediment information are in good corroboration
with the previously estimated sediment geoacoustic inversion
results obtained at the same locations.

1 Introduction

Acoustic remote sensing methods using the normal-
incidence single-beam (SBES) and multi-beam echosounder
system (MBES) are mainly concerned with identifying, clas-
sifying and mapping surficial geological features of the
seafloor. These methods are well recognized as a useful tool
in oceanography to characterize the seafloor over a wide area

and facilitate preliminary geological analyses (Anderson et
al., 2008). The seafloor characterization and classification
methodologies available in the literature using SBES can
be traditionally grouped into two categories, namely model-
based techniques and empirical methods. The model-based
techniques often utilize physics-based acoustic backscatter
models to characterize the seafloor sediments by optimiz-
ing the match between the measured and the modeled sig-
nals (Sternlicht and de Moustier, 2003a, b; van Walree et
al., 2006; De and Chakraborty, 2011; Snellen et al., 2011).
The empirical methods however rely on the statistical and
artificial neural network-based approaches to correlate the
features of echo signals with the sediment type (van Walree
et al., 2005; Chakraborty et al., 2004; De and Chakraborty,
2009; Amiri-Simkooei et al., 2011; Madricardo et al., 2012).

The success of the model-based inversion procedure de-
pends on the scattering theory employed in the forward
backscatter model and requires detailed understanding of the
scattering mechanism. The study of sound interaction with
the seafloor and the corresponding inversion modeling pose
a challenging task, particularly with the existence of diversity
in the benthic habitat of the area (Holliday, 2007). The scat-
tering process of an acoustic wave is influenced by the pres-
ence of benthic fauna responsible for modifying the small-
scale morphological features and the density fluctuations
within the sediment volume (in addition to the hydrodynamic
processes). Incorporation of the number density of biolog-
ical organisms and their collective activities (i.e., burrow-
ing and home building) into the forward backscatter model
complicate the inverse modeling even further. The continu-
ous form of seafloor heterogeneity (due to bioturbation, sedi-
ment deposition, or hydrodynamic processes) therefore ne-
cessitates the development of versatile and robust statisti-
cal techniques to determine the seafloor roughness statistics
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(Jackson and Richardson, 2007). Accordingly, to further im-
prove the seafloor feature discrimination we introduce an em-
pirical method that uses the scaling and multifractality of the
dual-frequency SBES echo envelopes at 33 and 210 kHz.

The “stochastic” multifractal formalism followed herein
discriminates the SBES echo envelopes with three fun-
damental parameters, namely, degree of multifractalityα,
sparsenessC1, and degree of smoothnessH . In the spe-
cific framework of stochastic-based “universal multifrac-
tals” (Schertzer and Lovejoy, 1987, 1991, 1997; Lovejoy
and Schertzer, 1990), the statistics of the underlying cas-
cade process are completely characterized by the aforemen-
tioned scale invariant fundamental parameters (Gagnon et al.,
2006). The reason for using a multifractal framework is to
build on the fact that the layers of the seafloor imprint a frac-
tal signature on the echo signal along with the self-similarity
of sediment ripples of various sizes. Moreover, acoustically
soft sediments are penetrated more deeply by acoustic sig-
nals and produce longer and corrugated echoes than hard
sediments, evidencing fractal structures. Therefore, the es-
timated multifractal parameters of echo envelopes as a mea-
sure of complexity and roughness proffer useful information
to improve seafloor feature discrimination.

The remaining part of the work is organized as follows.
Section 2 describes the study area, data set descriptions and
single-beam data processing methodology. A brief theoreti-
cal overview of a universal multifractal framework is also re-
capped in this section. Section 3 describes the interrelation-
ships among the estimated multifractal parameters in terms
of ground truth sediment information, followed by conclud-
ing remarks described in Sect. 4.

2 Data and methodology

2.1 Acoustic and sediment data acquisition

The dual-frequency (33 and 210 kHz) echo data were ac-
quired over substrates ranging from clayey silt to sand in the
central part of the western continental shelf of India, using
a hull-mounted normal-incidence RESON-NS 420 SBES.
The beam width of the echosounder transducer for 33 and
210 kHz is 20◦ and 9◦, respectively, with respective pulse
lengths of 0.97 and 0.61 ms. The raw analog output on the
receiver circuit board was tapped and connected to a PCL
1712L 12-bit A/D converter with a sampling frequency of
1 MHz. The echoes were stored together with the informa-
tion of the echosounder adjustments and ship position ob-
tained from the GPS system. Figure 1 shows the 20 locations
where the single-beam echoes and sediment data were col-
lected. The seafloor depth of the study area varied between
29 and 109 m (Haris et al., 2011).

The sediment data were collected using a Van Veen grab,
covering an area of 0.04 m2 and penetration of 10 cm, fol-
lowing a standard protocol (at all 20 locations where the

echo data were acquired). About 20 g of sediment were taken
from each grab sample to carry out the textural analyses us-
ing a 4.0 cm diameter core tube. The sediment was repeat-
edly washed in distilled water until all the chloride ions de-
tectable with 4 % silver nitrate were removed. These samples
were treated with 10 % sodium hexametaphosphate and kept
overnight for dispersion before being subjected to the grain
size analyses. The acquired sediment samples were subjected
to wet sieving using a 62 µm sieve to separate the sand from
the mud fraction. The size distribution of the mud fraction
(< 62 µm) was measured with a Malvern laser particle size
analyzer (MASTERSIZER, 2000). The size distribution of
the sand fraction was determined using a standard dry siev-
ing method, as it was difficult to maintain uniform suspen-
sion of sandy material within the laser particle analyzer. The
shelf sediments normally contain shelly material, which had
to be sieved prior to measurement by laser diffraction. The
mean grain sizeMϕ = −log2Ug/U0 (whereU0 = 1 mm) was
then calculated for each of the sediment data locations.

2.2 Single-beam data processing

The recorded echo data were converted from binary to ASCII
format within a range of−5 to +5 V. Hilbert transforma-
tion was employed to obtain the echo envelope from the echo
trace at each location. The shape of the echo envelope is gen-
erally influenced by various factors including natural vari-
ability of the seafloor, transducer heave, and noise due to
echosounder instability (Haris et al., 2012). Therefore, sev-
eral post-processing steps such as visual check, echo align-
ment and echo averaging were performed to obtain good av-
eraged echo envelopes to succeed the stochastic multifractal-
based analyses.

The first step taken in the post-processing was to select
good echo envelopes (with minimum distortion) by remov-
ing the saturated and clipped echo envelopes through visual
inspection. This was achieved by careful selection of the echo
envelopes, characterized by a well-defined initial rise and
amplitude followed by a slow decay. In addition, the data
having voltage response saturates at±5 V and those with
prominent multi-peaks were discarded. Precisely, an echo en-
velope displaying only one important peak, with an ampli-
tude between 2.5 and 5 V, was qualified for further processing
steps. Due to the transducer heave motion and small varia-
tions in seafloor depth over consecutive pings (while record-
ing the backscatter data), initial rise times of the echo en-
velopes are not the same. Hence, it was imperative to align
all echo envelopes before carrying out further processing.
The alignment was based on identifying and indexing a tem-
poral feature on an echo envelope. The initial rise time and
the time of peak amplitude were considered as an important
temporal feature of an echo. After identifying the temporal
feature, all echoes within the ensemble were shifted in time
to align with the selected feature (Fig. 2). The aligned echo
envelopes were averaged to obtain stable acoustic signals to
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Fig. 1. (a)GIS-based sediment distribution map of the study area showing the acoustic and sediment data acquisition locations. The acoustic
data were sampled with RESON-NS 420 dual-frequency SBES along the three tracks. The ground truth sediment information was collected
using a Van Veen grab. Panel(b) represents the graphical abstract of the methodology implemented in the study. The dual-frequency echo
envelopes (red curve) from 20 locations are subject to stochastic-based universal multifractal analyses to verify the existence of multiscaling.
The shaded region represents the variability of the data.

compute the values of universal multifractal parameters asso-
ciated with different sediment provinces. The echo envelopes
were first averaged using 20 successive envelopes with 95 %
overlap (in a moving average sense with sequences 1–20,
2–21, and so on, utilizing all the consistent echo envelopes
available in the data set). The voltage form of the aligned
data was converted to a pressure signal using the hydrophone
sensitivity values provided by the transducer manufacturer.
The resulting aligned pressure curves were finally ensemble
averaged to obtain a representative stable acoustic signal at
each location (Fig. 1b).

Depth-dependent correction

Apart from the processing steps described in the preceding
subsection, the echo-envelope data require an additional cor-
rection for the sonar footprint dimension prior to stochas-
tic multifractal analyses. The footprint diameter enlarges in
proportion to the water depth, correspondingly the backscat-
ter area and echo duration increases. As a result, an echo
recorded at a greater depth is expanded in time and an echo
recorded at a lesser depth is compressed along the time axis
(when compared with a reference depth). Consequently, the
acoustic returns from the same seafloor sediment type ly-

ing at different depths do not have the same shape (De and
Chakraborty, 2009). Accordingly, a first-order correction was
applied to remove the influence of the depth on the time
spread. The time spread of the echo envelope was multiplied
by a factorhref/h, wherehref is a reference depth of 50 m (ap-
proximate average of all the spot depths) andh is the depth at
the position of the individual echo data (De and Chakraborty,
2010). The procedure followed is equivalent to the depth-
dependent correction described by van Walree et al. (2005).

2.3 Multiscaling and the multifractal formalism

2.3.1 Moment scaling function and universal
multifractals

Self-similar fractals are scale invariant, i.e., possessing a
structure with a basic characteristic of nonscaling. They can
be divided into two categories. The first one is the monofrac-
tal, having strict geometric self-similarity that can be de-
scribed with a single fractal dimension. The other is the mul-
tifractal that requires a series of fractal spectra rather than
a unique fractal dimension. Highly intermittent multifractal
fields common in nature are the generic outcome of multi-
plicative cascade processes dominated by scaling nonlinear
interactions. Many geophysical fields have been shown to
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Fig. 2.Mesh plot illustrating the effect of echo alignment technique.
The initial rise time and the time of peak amplitude of the raw
backscatter envelope records are selected as the aligning features.
The resulting aligned echo envelopes converted to the pressure val-
ues were ensemble averaged to obtain a representative stable acous-
tic signal (at each location) prior to multifractal analyses.

be multifractal over various ranges (Lovejoy and Schertzer,
2007a). However, in the specific case of echo envelopes, the
power-law behavior of the data calls for multifractal analyses
to verify the existence of multiscaling. When a multifractal
cascade has proceeded over a scale ratioλ = L/l (L and l

representing the largest and smallest timescales in the data),
the statistical moments of the conserved multifractal flux (the
pressure values of the echo envelope) measured at scaleλ

follow a power law that can be expressed as (Schertzer and
Lovejoy, 1987, 1991):

< ϕ
q
λ >= λK(q), (1)

whereϕλ is the scale-by-scale conserved multifractal flux,
q is the order of the moment, andK(q) is a nonlinear con-
vex function.K(q) characterizes the scaling of the moments
of theϕλ, hence it is called the “moment scaling function”.
With reference to the existence of stable attractive multifrac-

tal processes called “universal multifractals” (Schertzer and
Lovejoy, 1987, 1991, 1997; Lovejoy and Schertzer, 1990),
K(q) can be expressed as:

K(q) =
C1

α − 1
(qα

− q), (2)

whereα andC1 are the basic parameters characterizing the
scaling properties of the multifractal fluxϕλ. The parame-
ter α is the degree of multifractality and varies from 0 to
2, whereα = 0 is the monofractal case andα = 2 is the log
normal case. This parameter describes how rapidly the frac-
tal dimensions of the sets at different thresholds vary as they
leave the mean singularity.C1 is the codimension parameter
of the set. Low value ofC1 (≈ 0) implies that the field values
are close to the mean.C1 (> 0) indicates that the region mak-
ing the dominant contribution to the mean is a sparse fractal
set such that the vast majority of the field does not contribute
(Gagnon et al., 2006).

2.3.2 Fractionally Integrated Flux model

The multiplicative process (the cascade) discussed above
generates a scale-by-scale conserved multifractal fluxϕλ

characterized by a moment scaling functionK(q). The
spectrum of such a conserved flux has an exponent
β = 1− K(2) < 1. In order to discriminate the seafloor echo
envelopes (havingβ ≈ 2), the fractionally integrated flux
(FIF) model (Gagnon et al., 2006) has been utilized. The FIF
model of the multifractal flux provides the following statis-
tics in relation to the intensity fieldIλ (pressure values) at
scale ratioλ as (Schertzer and Lovejoy, 1987, 1991):

Iλ = ϕλλ
−H . (3)

Here the linear scalingλ−H corresponds to a fractional in-
tegral of orderH . The parameterH can be designated as a
degree of smoothness where a higherH signifies smoother
fields. Characterization of seafloor backscattering using the
FIF model is difficult to distinguish the underlying cascade
dynamics as it involves a convolution due to the exponent
H . Therefore resorting to the use of “trace moments” (that
directly characterize the conserved multifractal fluxϕλ) is
necessary so that the differentiation is possible (Gagnon et
al., 2006; Chakraborty et al., 2013).

The first step to obtainϕλ from the intensity field involved
the removal ofλ−H in Eq. (3).

This is equivalent to a filtering as in Fourier space with
“power law”, which is a scale invariant smoothing. On elim-
ination of λ−H , only the underlying conserved multifrac-
tal flux ϕλ is retained. The next step was to examine the
scaling of the statistical moments ofϕλ and compare them
with Eq. (1). To this end, we normalizedϕλ so that the
ensemble average of all the samples is< ϕλ > = 1. There-
after, theqth power of the samples (pressure values) over
the sets (or time interval) of durationl = L/λ was deter-
mined. It gives the moments of the normalized multifractal
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flux for a given value ofq. This procedure was performed
with different values ofq andK(q) was evaluated from the
logarithmic slopes (Fig. 3). The multifractality of the inten-
sity field has been validated with nonlinearK(q). From the
values ofK(q) the parametersC1 andα were estimated as
C1 = K ’(1) andα = K ”(1)/C1 (Stolle et al., 2009; Gires et
al., 2013). The values ofα andC1 combined with spectral
slopeβ were utilized to estimate values ofH , using the re-
lationshipβ = 1 + 2H -K(2). The three universal multifrac-
tal parameters (α, C1, andH) computed here determine the
statistics of the data at all scales and moments.

3 Results and discussion

The following sections describe the analyses of the esti-
mated universal multifractal parameters (at 33 and 210 kHz)
along with ground truth values of the mean grain size of the
seabed sediment. The end results are statistically analyzed
and compared with the ground truth data as well as with
the previously estimated sediment geoacoustic inversion re-
sults (De and Chakraborty, 2011) obtained at the same lo-
cations. For simplicity, in the following text, silty-sand and
sand sediments will be referred to as coarse sediments (with
Mϕ < 4); and clayey-silt and silt sediments will be referred
to as fine sediments (withMϕ > 4).

3.1 Sediment distribution

The percentage distribution of sediment composition indi-
cates the presence of four sediment types: clayey silt, silt,
silty sand and sand with varied levels of mixing of three
textural grades, namely sand, silt, and clay. The important
substrate characteristics of the study area have been inves-
tigated in detail (Haris et al., 2012), and four distinct sedi-
ment provinces were identified from the map generated us-
ing the Geographic Information System (GIS) (Fig. 1). The
sediment texture was relatively coarse in the deeper depths
(60–109 m), whereas fine-grained sediment was found in the
shallow depth region (29–54 m). The high percentage distri-
bution of fine-grained sediment in the shallow depth region
is governed by a set of sedimentological and hydrodynamic
conditions. The study area receives relatively high annual
rainfall, which can bring the sediment load through the rivers
and discharges to the shallow water regions of the study area.
Besides, the shallow region is influenced by an environment
with a feeble current that allows fine particles to settle down
as compared with the regions of higher depth. These pro-
cesses might have resulted in the accretion of fine sediment
in the shallow depth region.

3.2 Multifractal phase transition

Self-organized criticality (SOC) was first introduced by Bak
et al. (1987) as an explanation for the 1/f noise detected in
various dynamical systems. The SOC is generally evident in

multifractal processes along with a multifractal phase tran-
sition (Schertzer and Lovejoy, 1992; Schertzer et al., 1993;
Hooge et al., 1994; Schmitt et al., 1994; Garrido et al., 1996;
Stolle et al., 2009). In our analyses, the universal form (de-
termined from Eq. (2) based on the estimatedα andC1) fits
the empiricalK(q) (determined from the logarithmic slopes
of trace moments) quite well. A multifractal phase transi-
tion is observable in the plot (Fig. 4) of empirical and the-
oreticalK(q) curves, indicating that the measured moments
will only have the theoreticalK(q) for q below a critical
momentqc. Beyondqc there is a multifractal phase transi-
tion whereK(q) becomes asymptotically linear. The linear
behavior of the empirical moment scaling function is either
due to sampling limitations (i.e., second-order multifractal
phase transition; Schertzer and Lovejoy, 1992) or its asso-
ciation with a divergence of statistical moments (i.e., first-
order multifractal phase transition; Schertzer and Lovejoy,
1992). In the first-order multifractal phase transition,qc cor-
responds specifically to maximum singularity measured and
is associated with the occurrence of very rare and violent sin-
gularities, whereas in the case of a second-order multifractal
phase transition,qc corresponds to the maximum singular-
ity effectively measurable from a finite sampling (Seuront
et al., 1999).

In order to differentiate between first- and second-order
multifractal phase transitions, we compare the theoretical
value of the critical momentqs with the empirical critical
momentqc calculated from theK(q) curve. The theoret-
ical value of the critical momentqs can be computed as
(Schertzer and Lovejoy, 1992):

qs =

(
1

C1

)1/α
. (4)

If qc ≈ qs, the phase transition can be termed as a second-
order multifractal phase transition wherein the critical mo-
ments are only related to sampling limitations. Also, if
qc < qs, the critical momentsqc are independent of the sam-
pling and characterize the occurrence of very rare and violent
singularities present in the data set (i.e., first-order multifrac-
tal phase transition) (Seuront et al., 1999). Using the values
of C1 andα, the averageqs values computed for coarse sedi-
ment region are found to be 2.32 and 2.16, respectively, at 33
and 210 kHz, whereas in fine sediment region, the averageqs
values are observed to be 4.22 and 3.97, respectively, at 33
and 210 kHz. The estimatedqs values indicate a first-order
multifractal phase transition (qc < qs) in the dual-frequency
echo envelopes with the occurrence of rare and violent sin-
gularities in the data set. The detection of the presence of
a first-order multifractal phase transition possibly suggests
that the time-dependent dual-frequency seafloor backscatter-
ing could be a self-organized critical (SOC) process.
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Theq values of the each trace moments are varied between 0 and 2, in intervals of 0.1 (from top to bottom,q = 2–1, 0.1, 0.9, 0.2, 0.8, 0.3,
0.7, 0.4, 0.6 and 0.5). The multiscaling of trace moments generally holds quite well up toq < 1.6. The deviation of trace moments (dots)
from the fitted linear curve is indicative of “break” in the multiscaling. The break is less apparent for lowq(< 1.6) values, but becomes
conspicuous for largeq(> 1.6) values. The break associated with the time-dependent seafloor backscattering is possibly due to the collective
effect of inherent heterogeneities present in the seafloor (mainly because of the coarse sand particles, shells, gas bubbles, benthic organisms
and sediment layers). Depending on acoustic wavelength/frequency, the individual features such as shells and other roughness elements at the
sediment-water interface may be more appropriately characterized as discrete scatters than as micro topography (Jackson and Richardson,
2007). An appropriate assessment in this regard is difficult due to lack of supporting data (similar results were also reported earlier by Gagnon
et al. (2006) and Lovejoy and Schertzer (2007b) while analyzing the high-resolution Lower Saxony DEM data over Germany. The break
observed in their analyses was due to the effect of “trees” evident in the high-resolution topography data.).

3.3 The universal multifractal parameters

The dual-frequency universal multifractal parameters were
analyzed along with the ground truth values of the mean
grain size (Mϕ) to understand their relationships. TheC1
values are negatively correlated with the measuredMϕ , hav-
ing correlation coefficients of−0.96 and−0.92, respectively,
at 33 and 210 kHz (Fig. 5). TheC1 values decrease with
increasing weight percentage of both silt and clay fraction
(with Mϕ > 4). Concurrently, theC1 values increase linearly
with increasing percentage content of sand fraction (with
Mϕ < 4). The range ofC1 values associated with coarse
and fine sediments vary between 0.171–0.249 and 0.035–
0.089 and between 0.180–0.294 and 0.051–0.090, respec-
tively, at 33 and 210 kHz. Moreover, in the coarse sedi-
ment region, the averageC1 values are restricted to val-
ues around 0.203± 0.0222 and 0.209± 0.0372, respectively,

at 33 and 210 kHz. In the fine sediment region, the aver-
ageC1 values are found to be within 0.066± 0.0162 and
0.0722±v0.0115, respectively, at 33 and 210 kHz. In brief,
the C1 values are well clustered at both the acoustic fre-
quencies, with fewer fluctuations for the fine sediment as
compared with the coarse sediment region found at deeper
depths (Fig. 5). The relatively lowC1 values attributed to the
fine sediment region indicate that the field values (pressure
values) are close to the mean values.

Theα values of the dual-frequency echo envelopes show
identical trends (≈ 1.93), expressing similar degrees of mul-
tifractality in coarse and fine sediment provinces (Figs. 6 and
7). TheH values signifying the degree of smoothness of the
data associated with coarse and fine sediments vary between
0.857–0.999 and 0.888–0.984 and between 0.887–0.986 and
0.804–0.913, respectively, at 33 and 210 kHz. The scatter
diagram (Fig. 7) ofH values at 33 and 210 kHz reveals

Nonlin. Processes Geophys., 21, 101–113, 2014 www.nonlin-processes-geophys.net/21/101/2014/



K. Haris and B. Chakraborty: Stochastic formalism-based seafloor feature discrimination 107

0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

q

K
(q

)

qc

0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

qc

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

qc

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

qc

33 kHz 210 kHz (b)(a)

Sand - 16 Sand - 16

Clayey Silt - 3 Clayey Silt - 3 

 = 1.932 
C   = 0.051
 H   

1

  = 1.929 
C   
 H   

1

  = 1.798 
C  
 H  = 0.940

1

  = 1.987 
C   
 H  

1

= 0.935
= 0.067
= 0.906

= 0.193 = 0.261
= 0.944

α

α α

α

Fig. 4. Comparison between the empirical (solid curve) and theoretical (dash curve) moment scaling functionK(q) as a function ofq. The
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violent singularities in the dual-frequency data.

that the values computed at 210 kHz are confined within
0.874± 0.0406 in fine sediments and within 0.951± 0.0268
in coarse sediments. However, at 33 kHz the calculatedH

values do not exhibit any apparent trend distinguishing be-
tween the fine and coarse sediment provinces. The obtained
results provide a construal that is similar to the previously es-
timated sediment geoacoustic inversion results (discussed in
the Sect. 3.4). Generally, the dual-frequency universal multi-
fractal parameters among the coarse and fine sediments show
subtle differences inα andH , whereas the codimension pa-
rameterC1 representing the sparseness of the data varies
(Fig. 7 and Table 1). This suggests that the physics of the
scattering mechanism (discussed in Sect. 3.3.1) responsible
for the variation inC1 is different.

3.3.1 Possible influence of the seafloor backscattering
process

The backscattering from the seabed can be generally at-
tributed to two contributing factors, namely interface and
volume scattering (Sternlicht and de Moustier, 2003a). The
strength of the backscattered signal is primarily controlled
by the acoustic frequency, the acoustic impedance contrast
between water and sediment, the contributions from seafloor

interface roughness, as well as the sediment volume het-
erogeneity. The interface scattering is governed by the mi-
croscale roughness of the seafloor facets coupled with the
acoustic impedance. A part of the transmitted acoustic en-
ergy penetrates the sediments and is reflected back by the
volume heterogeneities. Such scattering mechanism is nor-
mally referred to as volume scattering (mainly due to the
coarse sand particles, shells, gas bubbles, benthic organisms
and sediment layers).

The shape of the echo envelope has two distinct parts,
the initial part and the tail part. The initial part of the data
represents the reflection from the water-sediment interface
(interface scattering), and the tail portion corresponds to the
backscatter from the sediment volume (volume scattering). A
significant contribution, due to the volume scattering (in ad-
dition to the interface scattering) from various scatterers, is
expected to be dominant for acoustically soft sediments such
as mixtures of clayey silt and silt. Accordingly, the contri-
bution of sub-bottom scattering becomes prominent near the
tail portion of the echo envelope from the soft sediments (De
and Chakraborty, 2011). Besides, acoustically soft sediments
are penetrated more deeply by the acoustic signal and pro-
duce longer and corrugated echoes than hard sediments. The
scattering process takes place exclusively at the surface for
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Table 1.Summary of universal multifractal parameters.

Sediment β α C1 H

33 kHz 210 kHz 33 kHz 210 kHz 33 kHz 210 kHz 33 kHz 210 kHz

Clayey Silt 2.74± 0.074 2.64± 0.085 1.91± 0.056 1.91± 0.029 0.064± 0.019 0.068± 0.011 0.92± 0.031 0.87± 0.038
Silt 2.68± 0.017 2.51± 0.061 1.93± 0.040 1.95± 0.035 0.067± 0.006 0.079± 0.009 0.91± 0.010 0.86± 0.051
Silty Sand 2.32± 0.096 2.43± 0.032 1.89± 0.037 1.94± 0.046 0.189± 0.013 0.232± 0.048 0.92± 0.044 0.94± 0.037
Sand 2.34± 0.090 2.39± 0.220 1.91± 0.075 1.93± 0.034 0.212± 0.023 0.226± 0.032 0.95± 0.023 0.95± 0.018
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Fig. 5. Frequency-wise scatter plot of the measuredMϕ and com-
puted codimension parameterC1 at 33 and 210 kHz. The shaded
region demarcates the boundaries ofC1 in coarse and fine sediment
provinces.

acoustically hard sediments, i.e., mixtures of silty-sand and
sand sediments. The scattering processes described herein
determine the statistical and geometrical properties of the
data, resulting in the variation in the estimatedC1 parameter.

3.3.2 Relationship with fractal dimensions

Several studies while comparing the fractal dimension of the
echo envelopes with the ground truth sediment have con-
cluded that the fractal dimension (as a measure of complexity
and roughness) is a good descriptor of a bottom type in the in-
vestigated area (Tegowski and Lubniewski, 2000; Tegowski
et al., 2003; Tegowski, 2005; van Walree et al., 2005; De and
Chakraborty, 2009). The fractal dimension describes the sta-
tistical and geometrical properties of the data. Variations in
the fractal dimension of the echo envelope carry information
concerning the fractal structure of the sediment layers sig-
nifying the hardness of the seabed. The fractal dimension
of the echo envelopes reflected from the fine seafloor has
been found to be higher as compared with the coarse sedi-
ment region (Tegowski and Lubniewski, 2000). The low val-
ues of fractal dimension in the coarse region have been con-
trolled by the dominant interface scattering due to limited
bottom penetration of the acoustic signals. Besides, the fine
region reflects the environment with deeper acoustic pene-
tration and the fractal structure of the sediment layers are
more apparent in the recorded echo, indicating higher fractal
dimension values.

The C1 parameter represents the codimension of the set
of points that gives the dominant contribution to the mean
of the conserved multifractal flux. The corresponding fractal
dimension can be expressed asd − C1, whered denotes the
standard dimension of the space (Lovejoy et al., 2001). The
relatively highC1 values correspond to a very sparse process.
The field values contributing to the mean behavior in such an
instance are violent and confined to a very sparse set signi-
fying low fractal dimension. Conversely, a lowC1 implies a
more uniform and less extreme process. Appropriately, the
relatively low values ofC1 attributed to the fine sediment re-
gion (with higher fractal dimension) indicate that the field
values (pressure values) are close to the mean values as com-
pared with the coarse sediment region (Fig. 5).

The stochastic-based multifractal analysis followed herein
has several advantages over standard statistical approaches,
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Fig. 6. A quantitative comparison between the scale invariant multifractal parameters (α, C1, andH) at 33 and 210 kHz. The shaded region
represents the coarse and fine sediment provinces.

as it characterizes the local scale properties of the data in ad-
dition to its global properties. Correspondingly, it is possible
to quantify the statistical distribution of the local singulari-
ties (i.e., local multifractal exponents) present in the data (see
Lovejoy et al., 2009).

3.4 Comparison with inversion results

The acoustic backscatter data obtained from the echosound-
ing systems can be matched with theoretical scattering mod-
els to interpret the information embedded in the data (Jack-
son et al., 1986). The numerical approach employed for ex-
tracting information from the data is commonly referred to as
“inversion modeling”. The inversion modeling primarily in-
volves physics-based inversion of echosounding data to ob-
tain the upper-layer seafloor roughness parameters, namely
the sediment mean grain size (Mϕ); spectral parameters at
the water–seafloor interface (γ2, w2); and sediment volume
parameter (σ2), which can be used to examine the fine scale
seafloor processes (Sternlicht and de Moustier, 2003a, b; De
and Chakraborty, 2011; Haris et al., 2011).

The seafloor “roughness power spectrum” estimated from
the echo data characterizes the size and periodicity of the
seafloor height fluctuations as a function of the spatial fre-

quency. The roughness power spectrum is often parameter-
ized using a power law by slope and intercept of a linear
regression line through the points of the periodogram esti-
mate in log–log space. Indeed, the parametersγ2 andw2 used
in the scattering models are the slope and intercept, respec-
tively, of the 2-D roughness power spectrum, which are esti-
mated from the 1-D power-law values (Haris et al., 2011). A
wide range of 2-D roughness power spectrum parameters of
the study area are available (De and Chakraborty, 2011) and
offer an opportunity to determine their relationship with the
presently estimated universal multifractal parameters.

ParameterH describing the height statistics of the data
has been empirically determined from the spectral slopeβ

andK(2) using the relationβ =1+2H -K(2) (Table 1). The
differences inH principally reflect variations in the spectral
slopes (Lovejoy et al., 2001) (and thereby the corresponding
γ2 values). With reference to the inversion modeling study
carried out by De and Chakraborty (2011), in the coarse sed-
iment region, the averageγ2 values were restricted to values
around 3.23± 0.071 and 3.16± 0.047, respectively, at 33 and
210 kHz. In the fine sediment region, the averageγ2 values
were found to be within 3.22± 0.074 and 3.30± 0.037, re-
spectively, for 33 and 210 kHz. The scatter diagram (Fig. 3b
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of De and Chakraborty, 2011) between the estimated mean
values ofMϕ andγ2 at 210 kHz indicated that the values ofγ2
were confined within 3.21–3.4 in fine sediments and within
3.0–3.21 in coarse sediments. In contrast, the estimated mean
values ofγ2 at 33 kHz inversions did not exhibit any appar-
ent trend to discriminate between the fine and coarse sedi-
ment provinces. The subtle difference in the computedγ2 (or
the spectral slopeβ) between coarse and fine sediments con-

form to the meager variation in the computedH parameter
(Fig. 7), particularly at 33 kHz.

The scatter diagram between the estimated mean values of
Mϕ andw2 (Fig. 3a of De and Chakraborty, 2011) revealed
that, in the coarse sediment region, the averagew2 val-
ues were restricted to values around 0.00356± 0.00047 and
0.00365± 0.00101, respectively, at 33 and 210 kHz, but that
in fine sediments, the averagew2 values were found to vary
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between 0.000461± 0.00013 and 0.000605± 0.000042, re-
spectively, at 33 and 210 kHz. The computedw2 (or inter-
cept) values were well clustered at both the acoustic frequen-
cies, having fewer fluctuations for the fine sediment as com-
pared with the coarse sediment region. Likewise, the param-
etersC1 revealing the noise statistics of the data are well
clustered at both the acoustic frequencies with fewer fluc-
tuations for the fine sediment as compared with the coarse
sediment region. It is observed that the relatively higher val-
ues ofw2 andC1 are associated with coarse sediments, while
the lower values ofw2 andC1 are the characteristics of fine
sediments (Fig. 8).

As pointed out in the introduction, the model-based meth-
ods can help interpret the echo signal of the seafloor sedi-
ment properties (Mϕ) and micro roughness parameters (γ2,
w2). However, the calculation of a correct set of geoacous-
tic parameters gets convoluted by the large number of good

fits existing in the multidimensional search space. Accord-
ingly, it is possible to obtain convincing model-data fits in the
search space that do not necessarily correspond to the correct
set of geoacoustic parameters (Sternlicht and de Moustier,
2003b). Moreover, the physics-based models are valid only
for a certain range of frequencies and sediment types (Amiri-
Simkooei et al., 2011), such that the direct inversion of an
acoustic signal is unlikely without setting the limits of geoa-
coustic parameters for a known seabed sediment. In contrast,
the statistically based empirical methods rely on the analyses
of certain echo signal features that are correlated with sed-
iment properties. These methods are relatively easy to im-
plement in view of the computation time involved. However,
proper ground-truth measurements are imperative to validate
and interpret the results.

4 Concluding remarks

The scaling and multifractality of the SBES echo en-
velopes (at 33 and 210 kHz) have been demonstrated us-
ing a stochastic-based universal multifractal framework. The
variations in the three fundamental scale invariant parame-
ters (α, C1, andH) and their behavior with respect to the
ground truth sediment information can delineate different
bottom types in the investigated area. The evidence for the
first-order multifractal phase transition (with the divergence
of higher order statistical moments) further reveals the hier-
archy of multiplicative cascade dynamics associated with the
echo envelopes.

The universal multifractal parameters among the coarse
and fine sediments show subtle differences inα and H ,
whereas the codimension parameterC1 representing the
sparseness of the data varies. TheC1 values are well clus-
tered at both the acoustic frequencies, demarcating the coarse
and fine sediment provinces. The computedα values show an
identical trend (≈ 1.93), expressing a similar degree of multi-
fractality in the coarse and fine sediment regions. The minute
variation in theH parameter ascribed to the coarse and fine
sediment locations is well corroborated by the previously es-
timated sediment geoacoustic inversion results. In the context
of multifractal analyses the 210 kHz appears to be marginally
better as compared with 33 kHz. This could be due to the fact
that the lower acoustic frequencies penetrate relatively more
into the substrates, whereas higher frequencies have a bet-
ter resolving capability. The final outcome of the multifractal
analyses underpins the hitherto applied model-based seafloor
characterization and helps foster research on the empirical
method-based feature discrimination.
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