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Abstract. An analytical theory is developed that obtains from the values obtained from three field studies, which sug-
Horton laws for six hydraulic—-geometric (H-G) variables gests that H-G in networks does not obey SS-1. It fails be-
(stream discharg®, width W, depth D, velocity U, slope  cause slope, a dimensionless river-basin number, goes to 0 as
S, and frictionn’) in self-similar Tokunaga networks in the network order increases, but, it cannot be eliminated from
limit of a large network order. The theory uses several dis-the asymptotic limit. Therefore, a generalization of SS-1,
joint theoretical concepts like Horton laws of stream num-based on SS-2, is considered. It introduces two anomalous
bers and areas as asymptotic relations in Tokunaga networksgcaling exponents as free parameters, which enables us to
dimensional analysis, the Buckingham Pi theorem, asympshow the existence of Horton laws for channel depth, ve-
totic self-similarity of the first kind, or SS-1, and asymptotic locity, slope and Manning friction. These two exponents are
self-similarity of the second kind, or SS-2. A self-contained not predicted here. Instead, we used the observed exponents
review of these concepts, with examples, is given as “meth-of depth and slope to predict the Manning friction exponent
ods”. The H-G data sets in channel networks from three puband to test it against field exponents from three studies. The
lished studies and one unpublished study are summarized teame basin mentioned above shows some deviation from the
test theoretical predictions. The theory builds on six inde-theoretical prediction. A physical reason for this deviation is
pendendimensionless river-basin numbefsmass conser-  given, which identifies an important topic for research. Fi-
vation equation in terms of Horton bifurcation and dischargenally, we briefly sketch how the two anomalous scaling ex-
ratios in Tokunaga networks is derived. Assuming that theponents could be estimated from the transport of suspended
H-G variables are homogeneous and self-similar functionsediment load and the bed load. Statistical variability in the
of stream discharge, it is shown that the functions are of aHorton laws for the H—G variables is also discussed. Both are
power law form. SS-1 is applied to predict the Horton laws important open problems for future research.

for width, depth and velocity as asymptotic relationships. Ex-
ponents of width and the Reynolds number are predicted and

tested against three field data sets. One basin shows devia-

tions from theoretical predictions. Tentatively assuming thatl Introduction

SS-1 is valid for slope, depth and velocity, corresponding

Horton laws and the H-G exponents are derived. Our preseveral key papers have been pUbIlShed on self-similar river
dictions of the exponents are the same as those previousljetworks in the last twenty years. As a sample, eleu-
predicted for the optimal channel network (OCN) model. In N2ga(1978, Peckhan(1995h), Peckham and Gup{d 999,
direct contrast to our work, the OCN model does not con-Dodds and Rothmar{1999, Veitzer and Gupta(2000,
sider Horton laws for the H—G variables, and uses optimality Troutman(2003, Veitzer et al(2003, McConnell and Gupta

assumptions. The predicted exponents deviate substantiali?008. Tokunaga model among them is very important
ecause it is mathematically simple and it predicts many
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topological and geometrical features that are observed in readds used in the theory. Secti@nl contains a review of the
channel networksTokunaga 1978 Peckham19953. The  Horton laws for network topology and geometry as asymp-
predictions are made in terms of the Horton laws that aretotic relations in self-similar Tokunaga networks that are
explained in Sect2 on the background. Our paper devel- taken fromMcConnell and Gupt#20098. Section2.2 gives
ops an analytical theory to predict Horton relationships fora review of similarity or similitude that is based on dimen-
six hydraulic—geometric (H-G) variables (stream dischargesional analysis and that explains the Buckingham Pi theo-
0w, wWidth W,,, depthD,,, velocity U,,, slopesS,, and Man-  rem. Itis followed by a review of “asymptotic self-similarity
ning friction n),)) in self-similar Tokunaga river networks. It of the first kind”, or SS-1 for short. In many cases includ-
is the first study that generalizes the theory from topologying the present case, SS-1 requires a generalization involving
and geometry to H-G in channel networks. The H-G ex-“asymptotic self-similarity of the second kind”, or SS-2 for
ponents forW,,, Reynolds numbels(w), andn,, are pre-  short. Physical examples are given to explain these method-
dicted and tested against observed exponents from three fielological concepts.
studies. Developing an analytical theory of H-G in channel Section3 explains the H—G data sets in channel networks
networks is a long-standing, fundamental open problem infrom three published studies and one unpublished study used
Hydro-geomorphology that is addressed here. Next we exin this paper to test theoretical predictions. In Seéctan
plain the significance of this work. application of the Buckingham Pi theorem gives a total of
Prediction of floods in river basins with sparse or no six independentlimensionless river-basin numbeiighe six
streamflow data is a hydrologic engineering problem of greanumbers are specified using physical arguments rather than
practical significance. Known as regional flood frequencyformal dimensional analysis. In Sebt.we formulate a mass
analysis, it has over 100 years of histoDe{vdy et al, 2012). conservation equation for a river network indexed by Strahler
An acronym for this problem that is widely used is prediction order. We apply the results from Se2t1to obtain a solution
in ungauged basins (PUBDP&awdy, 2007 Sivapalan et al.  of this equation in terms of Horton bifurcation, area and dis-
2003. PUB is common to both developing as well as in- charge ratios in the limit of large network order It applies
dustrialized countries. A nonlinear geophysical theory is be-to small order streamg; = 1,2, 3, ....
ing developed for almost 30years to solve the PUB prob- In Sect.6, we consider three H-G variable§,,, D, and
lem for floods. Two review articles have been published onU,,, and show that they are power-law functions of discharge.
this theory Gupta and Waymirel998 Gupta et al.2007). By definition, 9, = U,W,D,. Horton laws are obtained
Given space-time rainfall intensity field for any rainfall- as asymptotic relations for these three H-G variables. We
runoff event, the theory attempts to predict stream flow hy-show that self-similar solutions involving SS-1 hold asymp-
drographs at all the “junctions” (where two or three channelstotically for the width and the Reynolds number. Values of
meet) in a channel network. The theory requires a modetheir H-G exponents are predicted and tested against field
to transform rainfall to runoff in space and time in a basin data from Sect3.
(Furey et al. 2013, and space-time river flow dynamics in In Sect.7, it is tentatively assumed that the SS-1 frame-
a network Mantilla, 2007). Modeling of flow dynamics re- work from Sect.6 is valid for S,, D, and U,. Horton
quires a theory of H-G in a channel network, because practitaws for these three H-G variables are derived asymptoti-
cally no such data sets exist. Our paper begins to fill a long-cally, and their exponents are predicted. Our predictions of
standing need in this context. the exponents are the same as those previously predicted by
By extending the Horton laws to H-G variables, our pa- Rodriguez-lturbe et a(1992 for the optimal channel net-
per shows how geomorphology, hydrology and channel hy-work (OCN) model. In direct contrast to our work, the OCN
draulics are linked in river networks. Consequently, it opensmodel does not consider Horton laws for these H-G vari-
a new door to understanding how the geometry, statistics andbles, and uses optimality assumptions. In this sense, the
dynamics in river networks are mutually coupled on many foundations of our theory based on self-similarity and di-
spatial scales, which has far-reaching implications for undermensional analysis are very different from those of the OCN
standing and modeling river flows, as explained above, andnodel. The deviations between the observed and predicted
transport of sediments and pollutants in river networks in theexponents are substantial, suggesting that H-G in networks
future. A few discrete research efforts have been made to undoes not obey SS-1.
derstand the nature of the flood scaling from physical pro- In Sect.8, we explain that the reason for the failure of
cesses on an annual timescdeyeda et al2007 Limaand  SS-1 is that the slope, one of the dimensionless numbers,
Lall, 2010, as well as on the event timescalegden and goes to 0 as the network order increases, but slope cannot
Dawdy, 2003, but connecting the body of work on the an- be eliminated from the asymptotic limit. Therefore, a gen-
nual scale to flood scaling for events remains an importaneralization of SS-1 requiring SS-2 is needed. This section is
open problemGupta et al.2010. divided into four subsections. The first one introduces two
Our paper is organized as follows. Sectgives a brief ~ anomalous scaling exponentsand 8, in the theory. It en-
review of the literature. It also includes two “method” sec- ables us to show the existence of Horton laws for channel
tions that give a self-contained review of analytical meth- depth, velocity, and slope, and derive expressions for their
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exponents as functions afand 8. These two scaling expo- two streams of identical ordes meet, they form a stream
nents are free parameters, which cannot be predicted frorof orderw + 1. Where two streams of different orders meet,
dimensional considerations. To make progress with developthe downstream channel is assigned the higher of the two or-
ing and testing the theory, we consider the Manning frictionders. This continues throughout the network, labeling each
coefficient as the fifth H-G variable in the second subsectionstream, and ending with the stream of orteBy definition,
which can be estimated from values of slope and velocity.any network contains only one stream of or@ecalled the
We predict a Horton law for the Manning friction coefficient network order. Strahler ordering defines a one-to-one map
and derive an expression for its exponent. The third subsecander pruning; i.e., if the streams of order 1 are pruned and
tion tests the prediction of the exponent against three fieldhe entire tree is renumbered, the order 2 streams identically
studies. One of these basins shows some deviation from thbecome the new order 1 streams, the order 3 streams become
theoretical prediction. A physical reason for this deviation is order 2, and so on throughout the network. The order of the
investigated in the fourth subsection. entire network decreases by one. It is a necessary condition
Two fundamental physical processes that shape the H-Gor defining self-similarity for a hierarchical branched net-
of channels are transport of the suspended sediment load amdork that is reviewed in Sec2.1
transport of the bed load, which are not considered here. Strahler ordering led to the discovery of the “Horton laws
In Sect.9, we sketch in a preliminary manner how these of drainage composition”. They are often referred to simply
two physical processes could be used to determine the twas the Horton laws. The most famous of the Horton laws is
anomalous scaling exponents. Inclusion of statistical vari-the law of stream numbers fav,,, denoting the number of
ability in the Horton laws for the H-G variables is also streams of ordes in a network of ordefz. It is traditionally
discussed. Both are important open problems for future rewritten as

search. The paper is concluded in S&é. N
@ =R, 1<w<Q. (1)
Nw+1
2 Background and methods The numberRp is called the bifurcation ratio. Observations

from real river networks show a limited range Bf values

Leopold and Maddock1953 first introduced the hydraulic between three and five. These are not formal laws because
geometry (H-G) of rivers “at-a-station” and in the “down- they have not been proved from first principles, however, they
stream direction”. “At-a-station” H-G relations refer to tem- are widely observed in real river networks. Similar relation-
poral variability of width, depth, velocity, slope, channel ships are observed for lengths, slopes, and areas.
roughness, and sediment transport as functions of discharge, Shreve(1967) developed the “random model” of channel
and “downstream” H—G relations refer to their spatial vari- networks and thereby offered the first theoretical understand-
ability as functions of discharge. An extensive literature hasing of Eq. (1). He introduced the basic topological concepts
developed on these topics; semgh (2003 for a recent re-  of channel links (defined as the segment of channel between
view of the literature. This body of literature, though impor- two adjacent junctions where two or three channels meet)
tant, is not directly relevant to the objectives of our paper. In-and magnitude (defined as the total number of non-branching
deed Singh(2003 concluded his review paper with the state- or source channel linksphreve(1967) showed that in the
ment, “the work on hydraulic geometry of channels serves adimit as magnitude goes to infinity 5 converges to 4. This
an excellent starting point to move on to the developmentdemonstration showed for the first time that the empirical
of a theory of drainage basin geometry and channel networkEq. (1) can be derived as an asymptotic result from a suit-
evolution. This will permit integration of channel hydraulics able mathematical model of channel networks. We review
and drainage basin hydrology and geomorphology”. this foundational issue in greater detail in the next subsec-

In a classic papet eopold and Miller(1956 extended tion using the mathematical model of self-similar Tokunaga
the H-G relations to drainage networks. A brief review of river networks.
pertinent concepts required to understand this work follows. Leopold and Miller(1956 extended the Horton laws to
Horton (1949 first discovered “Horton laws” in quantita- H-G variables. Their reasoning was that channel discharge
tive geomorphology with the aid of maps. The original mo- varies as a function of drainage area as a power @w
tivation was to define stream size based on a hierarchy okA°. At the time, the Horton law for drainage area was
tributaries. The most common method for defining a spa-known @arvis and Woldenberd 984. They tested the Hor-
tial scale in a hierarchical branched network is the methodion law for discharge, and asserted that the Horton laws hold
of Horton—Strahler ordering, or Strahler ordering for short, for the entire suite of H—-G variables as functions of dis-
becausestrahler(1952 1957 modified the ordering system charge, e.g., width, depth, velocity, slope, channel roughness,
that Horton had introduced. Strahler ordering assigns,1 and sediment transport. Until this paper was published, the
to all the unbranched streams. They contain the highest levaHorton laws had been observed for only the topologic and
of spatial resolution for a network and thereby define a spatiabeometric variablesJarvis and Woldenberd. 984). By ex-
scale. Continuing downstream through the network, wheretending the Horton laws to H-G variables, theopold and
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Miller (1956 paper showed how river basin geomorphol- the empirical observations like the Horton laws that sug-
ogy, hydrology and channel hydraulics are linked. Conse-gest regularities related to similarity across scales, or self-
quently, it opened a new door to understanding how the gesimilarity. We briefly review key results for the self-similar
ometry, statistics and dynamics in river networks are mutu-Tokunaga model in the next Subsection regarding Horton
ally coupled on many spatial scales, which has far-reachindaws of stream numbers and magnitudes.

implications for understanding and modeling river flows and

sediment transport in river networks. This major objective 2.1 Method: a brief review of self-similar Tokunaga

has not been realized because the theoretical underpinning  fiver networks

of the Horton laws and the H-G exponents in channel net-_ .
works has remained elusive. It remains a fundamental, Iong-EIJI Toku_naga introduced the Tokgnaga m_odiébl(unaga
standing open problem in Hydro-geomorphology that is ad-1978. Itis ba;e_d on Strahler_or_dermg and |r_1volves Fhe con-
dressed here. cept of self-similar topology in its construction. Unlike the

The Strahler ordering and the Horton law concepts had@hdom model ofShreve (1967, this model is determin--
a big impact on several areas, for example, (i) in modeling'St'C and does not include any statistical variability that is

growth of plants and other hierarchical biological structuresOPserved in real networks. Therefore, the link lengths are
such as animal respiratory and circulatory systems, (i) inaSSumed to be equal to | throughout the pageckham
the order of register allocation for compilation of high level (19953 gave empirical evidence that supports the idea that
programming languages, and (iii) in the analysis of socialthe average topologic feqtures of medium to large river net-
networks Qarvis and Woldenbeyd.984 Pries and Secomb works can be well described by the Tokunaga model. For
2011 Viennot and Vauchaussade de Chauma@s5 Park example, in real network_s,_ generally<3Rp < 5 that the _
1985 Horsfield 198Q Borchert and Sladel981 Berry and Tokunaga mode_l can exhibit but the random model pre_dlcj[s
Bradley, 1976. The widespread appearance of Horton laws X5 = 4 @s mentioned above. Moreover, the mathematics in
suggests that perhaps a “fundamental principle” underliesthe Tokupaga model is simplified that is necessary to make
them. Indeed, recent research has shown that Horton lawRr09ress in the H-G problem addressed here. _
are asymptotic relations that have been proved in theoretical . The I.<ey building bIO,Ck of the quel is a generator for side
self-similar river network models. Self-similarity is a form tributaries, T, ok, Which may be_ |_nt_erpreted as the mean
of scale invariance. Specifically, we have selected the selffUmber of streams of ordes —k joining streams of order
similar Tokunaga network model to develop the theory in this® since real networks exhibit stat|st|ca! vgrlgbll!ty in their
paper. This model is briefly reviewed in the next Sct. branching structures (topo_logy). Self—S|m.|Iar|ty in the net-
An attempt to predict the H-G exponents in river networks WOrk topology is reflected in the assumption that.,— =
without the Horton laws is the theory of optimal channel net- T k =2,3,.... Tokunaga further restricted his model by re-
works (OCN) Rodriguez-lturbe et al1999. OCNs have auifing that?y/ Ty =c, k=2,3,..., andTy = a wherec
been analytically shown to produce three universality classe&nda are constant parameters associated with network topol-
in terms of scaling exponents, but none of these prediction9Y- It 1eads to the generator expression
agrees with the dataMaritan et al, 1996. Two comprehen- . _ acl k=12 ..., @)
sive field programs were carried out in New Zealand (NZ2)
to test the OCN predictionshpitt et al, 1998 McKerchar  representing mean self-similar Tokunaga treé@edds and
etal, 1998. However, the observed values of the H-G expo- Rothman 1999. These parameters are observable quantities
nents substantially deviated from the OCN predictions that isin natural basins.
explained in greater detail in Sectsand8.3. Other attempts Predictions are based on a fundamental recursion equation
building on optimality ideas have used data from these twogoverningN, the number of streams of ordeer
New Zealand basind{olnar and Ramire2002), but a foun-

dational understanding of the geophysical origins of Horton Ty
laws for the H—G variables and their exponents has remained * — 2Ni+1+ ; T Nict - (3)

elusive.
West et al.(1997 recently tackled a somewhat similar McConnell and Gupt§2009 proved that the ratidvy / Ni+1
problem in the allometric theory of biological networks. Our converges taRp in the limit as — k — oco. The limit ap-
treatment of the H-G problem has some similarities but ma-plies to small-order streamk~=1, 2, ..., as the network or-
jor differences with their approach. For exampldgst et al.  der Q@ — oco. McConnell and Gupt§2008 gave a physical
(1997 appeal to an “optimality assumption” by maximizing interpretation of the limit as follows: “note that if the over-
or minimizing a function. By contrast the present theory usesall order2 could be increased, we would expect to see more
no optimality assumption, but uses “self-similarity” as its ba- streams of higher and lower orders. However, when all the
sic building block. streams of smaller ordeksandk + 1 in a basin of very large
The complexity resulting from space-time variability in orderQ2 are counted, we expect that we have captured a sig-
climate, hydrology and lithology can be contrasted with nificant and representative portion of the side tributaries, and
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the observed bifurcation ratio more closely matches the prethis is expressed as a generalized homogeneity that mani-
dicted ratio. This physical argument clarifies the use of thefests as power laws. The famous Buckingham Pi theorem,
limit, 2 — k — oo”. The solution to Eq.J) is given by or simply IT theorem, is a conceptualization of this pow-
erful idea. It enables one to reduce the number of argu-
+a+c)+vV@2+a+c)?—8¢ ments in the functions expressing physical laws, thereby
- 2 ) (4) making it simpler to study nature’s regularities either ex-
perimentally or theoretically. Th&l theorem saysBaren-
) blatt, 2003 p. 25): “A physical relationship between a di-
for stream magnitudes{,,, » = 1,2,... from the above re- ., angjonal quantity and several dimensional governing pa-
sult. Magnitude is defined in Sed, and is the topological  ameters can be rewritten as a relationship between a dimen-
equivalent of drainage area. The Horton law for magnitudesgjoness parameter and several dimensionless products of the
is expressed as governing parameters. The number of dimensionless prod-
ucts is equal to the total number of governing parameters

Rp

McConnell and Gupt42008 also proved a Horton law

. M, . A
o lim MLH =Ry = o lim A‘“—H = Ry, (5) minus the number of governing parameters with indepen-
e Mo e Ao dent dimensions”. Let; be the dependent dimensional quan-
where the Horton magnitude rati®y, equalsRz and R4,  lity, and letas, ... ak, b1, ..., by represent thek+m =n

andR, is the Horton area ratio. We remark that the randomgoverning parameters, of them with independent dimen-
model obeys self-similarity in a mean sense, and ithasl ~ sions. With this notation: = f (a1, ..., a, b1, ..., by) can
andc = 2. Equation 4) predictsR; = 4, which agrees with ~ be rewritten agl = ®(Iy, ..., I,,), with T =aa; ”...a; ",
the random modelShreve 1967). and the dimensionless products for the governing parame-
Finally, we review two results, which were previously re- ters with independent dimensions &k = bia; " .. .a;"
ported by others, and which have been shown to hold forfor i =1,....,m. Because of the definitions, the exponents
Tokunaga networks. The topological fractal dimension ~ pi--.,r: can be obtained by solving elementary linear equa-
for Tokunaga networks is given bt =logRp/logRc, tions. A classical example to illustrate thetheorem is the
where R is the Horton bifurcation ratio anft¢ is the link ~ formula for the period of the small oscillations of a pen-
ratio (Peckham 19953. Since Rz = R4, and link lengths ~ dulum of massn and length¥ and the gravitational acceler-
are constant, and as explained at the beginnihg= R;,  ationg. The three governing parameters, ¢, g) have three
it follows that R; = Ri/DT, where R, is the length ratio. independent dimensions (M, L, tF). Therefore, the num-
For OCNs,Dt = 2 (Maritan et al, 1996. For natural river ber of dimensionless products of the governing parameters
networks, data sets show that typically7 & Dt < 1.8. The ~ 1S7 —k =m =3—3=0, which implies that the dimension-
class of Tokunaga networks predicts valuesafless than €SS prOdUCtl'/’;V‘)'l‘;'Z”g the periodl, is a constant. It can be
or equal to 2. The Hack exponent for Tokunaga networks is/1tten asfg™<¢~>/< = constant Barenblait 2003 p. 132).
pr=1/Dt > 1/2, and the area exponest < 1/2, as ob- The constant cannot be obtained from dimensional analysis.
served emﬁrically Reckham 19950). Moreover. for Toku- 't must be determined either from a theory or from observa-
naga networkser + 1 = 1 (Peckham and Guptal999.  tons. Itis 2 for the pendulum example. _
A new theory of random self-similar networks (RSN) in- _ 1he majority of the successful examples of the applica-
cludes statistical variability, and the Tokunaga is shown agions of dimensional analysis can be found in many text-
a special case for a subclass of RSN that obey mean selR00oks, which share another important property that is not al-
similarity (Veitzer and Gupta2000. The RSN theory pro- Ways emphasized, but which is necessary in our context. For
vides the topologic and geometric foundations on which a H-SUch problems, there is a clear way of separating the impor-
G theory incorporating statistical fluctuations can be devel-fant variables from the ones that do not play a significant role

oped in the future. RSN theory is not used here. in the limit because they are either too small or too large. For
instance, the textbook exampl@ipbings 2011 p. 119) of
2.2 Method: asymptotic self-similarity of type-1 and the derivation of Kepler’s third law from dimensional analy-
type-2 sis needs three non-dimensional numbers, and expresses the

ratio of the period of rotationT, in terms of the other two,

The scope of the material covered in this subsection is enornamely, the ratio of the mass of the planeto the mass of
mous with a long history. We have limited our review to some the SunM and the ratio of axes of the ellipsis;b, which can
key concepts that are used in our paper. The reader may cotbe expressed in terms of the eccentricify= 1—(b/a)?. Let
sult the well-written booksRarenblatt 1996 2003 as re- G denote the constant of gravitation. Then,
quired for further explanations. 2

Dimensional analysis is based on the simple idea tha’r% = f(m/M,e). (6)
the laws of nature are independent of the arbitrarily cho- as
sen basic unit of measurements. As a consequence theSde crucial observation is that two of the dimensionless num-
laws are invariant under a change of scale. Mathematicalljbers are small and therefore do not play a significant role
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in the limit when they go to zero. The consequence is thatavailability of either complete H—G data for the entire river
the limit of the function that expresses the non-dimensionalnetwork in them or the possibility of carrying out Hortonian
number involving the period of the rotation in terms of the analysis for the H-G variables in one or more basins. These
other two goes to a constant. It is well known from the the- variables are indexed by the Horton orderWe are partic-
ory that the limit is 42. This is self-similarity characterized ularly interested in the power-law representation of the H—
by the existence of a non-trivial (different from zero or in- G variables as functions of discharge that is widely used in
finity) limit of the function when some of the other non- the literature for analyzing data (see Séct for a theoreti-
dimensional products become very small or large. This iscal derivation). The power-law representation and the corre-
called “asymptotic self-similarity of the first kind”, or SS- sponding scaling exponents are defined below. Our notation
1 for short Barenblatt 2003 p. 84). SS-1 is applied to our is the same as iheopold et al(1964 p. 244).
problem in Sects and7.
In many other cases, a dimensionless number, despite bdl, x Oy, W, 0, D, x QF,
ing too small (or large, if one considers its reciprocal), can- 5, Q% and n), o Q7. (7
not be ignored in the limit. Mathematically, this corresponds
to the case where the limit of a function does not exist, or The first basin is the classic Brandywine creek, PA in the
is zero or infinity. The simplicity of SS-1 that consists in US as given inLeopold et al.(1964 Table 7.5, p. 244),
discarding small dimensionless variables and obtaining thevhere the H-G exponents are also given. It has humid sub-
scaling exponents from dimensional analysis is lost in thistropical climate with cool to cold winters, hot, humid sum-
case. In such cases small variables continue to play a roleners, and generous precipitation throughout the year, ap-
in the problem, and require a generalization of the dimen-prox. 1100 mmyear'. Képpen climate classification lists
sional analysis. The concept of “asymptotic self-similarity of it as type Cfa Koppen 1884. It has a drainage area of
the second kind”, or SS-2 for short, discussedarenblatt 777 kn? at the mouth. Average discharge is 12snl. The
(1996 chap. 5) is needed. It is known as the “renormaliza-observed values of the H—-G exponents for the Brandywine
tion group theory” in statistical physics. For our purposes, thecreek {eopold et al. 1964 Table 7.5, p. 244) are = 0.42,
fluid—mechanical approach is more natural than the statisti-f = 0.45,m = 0.05,z = —1.07 andy = —0.28.
cal physical approach, because it is based on a generalization Two comprehensive field measurement programs were
of the dimensional analysis framework. We follow the fluid- conducted in NZ. The largest part of NZ has a pleasant sea
mechanical approach in this papBarenblat{1996 p. 172)  climate with mild winters and warm summers. Kdppen cli-
has explained that these two approaches are equivalent.  mate classification lists it as type Cf. The second field study
A simple example of SS-2 is the determination of the was conducted in the Taieri River baslblgitt et al, 1998.
length of a fractal curve, which can be contrasted with aFigurelillustrates the measurement sites in the channel net-
smooth curveBarenblatt2003 p. 132). LetZ,, be the length  work of the Taieri River basin. It has an estimated mean an-
of a broken line of segment lengththat approximates the nual precipitation of 1400 mm. The basin area is 158 km
continuous curve between two points that are separated biylean discharge, as measured over the discontinuous 14-year
a distancey. L, depends on the two dimensional parame- period 1983-1996, is 4.90%s 1, representing an average
tersn andé. Dimensional analysis gives, = nf (n/&). For runoff rate of 980 mm year from the basin. The field values
a smooth curve, say a semicircle, &s> 0 the argument  of the H-G exponents for the Taieri River badinktt et al,
n/& — oo and the functionf goes to a limit, namelyr/2. 1998 areb = 0.517,z = —0.315,m = 0.238 andf = 0.247.
Whereas for a fractal curve, the limit of whenn/& — The third field study was conducted in the 121%Ash-
oo is infinity. In fact from fractal geometry we know that ley River basin cKerchar et al. 1998. Annual precipita-
f(n/&) ~ (n/&)P~1. The anomalous exponeft > 1 is the  tion increases in a northwesterly direction across the basin
fractal dimension that cannot be estimated from dimensionafrom 1200 to about 2000 mmyedr. Mean discharge, as
analysisBarenblat{1996 gives a recipe for the applications measured by the stream gauge over the 20-year period 1977—
of similarity analysis and SS-2 to obtain the exponents alongl996, is 3.99 rAs ™1, representing an average runoff rate of
with many physical examples that include turbulent shearl040 mmyear! from the basin. The observed H-G scal-
flows, fractals, biological allometry, and groundwater hydrol- ing exponents for the Ashley River basik¢Kerchar et al.
ogy. We apply SS-2 in Sed. 1998 areb =0.44,z = —0.317,m = 0.318 andf = 0.242.
The Horton analysis for this basin is briefly described in
Sect.8.4. Both the data sets from NZ are unique, and offer
3 Data sets the potential to conduct Horton analysis for the H—G vari-
ables thatMantilla (2014 is conducting. Some of his results
We use data sets from four drainage basins to test our theare presented in Se@&4.
ory. Three of them are taken from the literature. The fourth The last data set comes from the 110FKkwihitewater,
one is the experimental Whitewater basin, Kansas, USA thaKansas in the US. According to the Képpen climate classifi-
is unpublished. These basins are selected with the criteria ofation, the climate of this part of Kansas can be characterized
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Figure 1. Reproduction of the original figure dbbitt et al. (1998

Fig. 1), showing the river network of the Taieri basin in New

Zealand along with the measurement sites in the network.
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ponents. For exampldbbitt et al. (1998 and McKerchar

et al. (1998 have given standard errors for each of the H—
G exponents that are listed in TallleWe use these field-
estimated values in testing theoretical predictions against
their observed values from three basins in Seg&nd 8.3
Theoretical relations between the Horton laws for the H-G
variables and the corresponding scaling exponents are briefly
considered in Sec8.4.

4 Dimensionless river-basin numbers

The fundamental physical parameters governing the H-G in
drainage networks are defined at the bottom of a complete
Strahler stream of orden > 1 as follows.Q,, is the river
discharge rate $T~1), A, is the cumulative drainage area,
andD,,, U,, andW,, are channel depth, velocity, and width,
respectivelyH,, is the elevation drop that is defined as the el-
evation difference between the beginning and end junctions
of a complete Strahler streath,, denotes the corresponding
stream length. Slope is defined &= H,/L,,. Kinematic
viscosity isv, water density iso, and the gravitational ac-
celeration isg. R is the mean runoff rate per unit area from
the hillslopes along a channel network, and has dimension
LT-L. The spatial uniformity ofR implies that the river
basin is assumed to be homogeneous with respect to mean
runoff generation. This assumption can be relaxed, but we
want to keep this presentation simple.

From the set of twelve variables listed above, only nine are
independent, because three variables are depen@gnt:
U,WyDy, S =H,/L,, andL, = AYPT These nine in-
dependent variables include three basic dimensions, length
(L), time (T') and mass¥). The Buckingham Pi theorem
explained in Sect2.2 gives that the number of independent
dimensionless numbers is 6, but it does not give what they
are. They can be specified either using formal dimensional

analysis or physical arguments. We adopt the later approach
because it is physically insightful. Some of these dimension-
less numbers were consideredackhan{1995h.

The first dimensionless number is given by

as a humid continental climate, with cool to cold winters and
hot, often humid summers. Most of the precipitation falls in
summer and spring. Average precipitation is of the order of
840 mmyear®. Snowmelt runoff is negligible, soil is com-
posed of fine-grained sediment, and the land use is primar-nl(w) _ Ow ®)
ily agricultural and cattle ranching. Whitewater basin was in- RA,’

strumented to conduct an interdisciplinary field and theoret-p,o discharge rat®,, is taken to be a linear function of
ical hydrology program, called Hydro-Kansas (2002_2012)-drainage area given b@,, = RA,, which is observed in
Kean and Smitt§2005 tested a theoretical fluid—mechanical many humid climates for low and mean floiopold et al.
model to estimate stream flows. The model was used to esti(1964) used mean flow in their H—G investigations. Low flow

mate streamflows at multiple spatial locations in streams of,55 peen used in recent field H—G observations from NZ that
different Strahler order in the Whitewater bas@idytonand 5, explained in Secd and analyzed in Sed.

Kean 2010. Mantilla (2014 participated in the H—K pro- The second dimensionless number is

gram and took field measurements of some of the H-G vari-

ables, especially width and depth. He has kindly shared thgy,(w) = R‘/A_‘”. (9)
necessary data for our study.

D,U,

An important issue in estimating field values of the H- It is suggested by mass conservation involving the ratio of
G exponents is the measurement errors that are inherent twnoff per unit width of drainage basin in the numerator, and
measuring the H—G variables, which affect their scaling ex-discharge per unit channel width in the denominator.
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1014 V. K. Gupta and O. J. Mesa: Horton laws for hydraulic—geometric variables

Table 1. Summary of observed and predicted H-G scaling exponents. The sources of the dbkittaeé al. (1998 for the Taieri River
basin in New ZealandyicKerchar et al(1998 for the Ashley River basin in New Zealand, abeopold et al(1964 Table 7.5, p. 244) for
the Brandywine creek, PA in the United States.

Basin
Variable Exponent Taieri Asheley Brandywine
Observed
Ux Q™ m 0.23840.023 03184-0.018 0.050
W Q’f b 0.5174+0.016 Q440+£0.016 0.420
D x 0/ f 0.247+0.016  0242+0.014 0.450
S o Q¢ z —0.3154+0.026 —0.31740.020 -1.070
n' oc QY y —0.2314+0.028 -0.3154-0.023 —0.280
UD/vx Q"tS m+ f 0.485+0.028 0560+ 0.023 0.500
Estimated usindT = 7/4, f andz.
o 0.208 0.175 0.441
B -0.822 —0.864 0.327
Predicted using Eqs28), (45) and 63).
UD/vx Q"tf  m+f 0.500 0.500 0.500
W o QP b 0.500 0.500 0.500
n' oc QY y —0.2464+0.030 —-0.25540.025 —0.285

The relation between gravitational and inertia forces in The dimensionless ratio of these two forces gives

river networks suggests the third dimensionless number )

M3(w). Specifically, we define the “basin Froude number” ry,(,,) — Us ' (13)

as gD,S,

- U, Uy 10 The term./gD,S, is known as the shear velocitylg is
3(@) = /¢Hy 8SoLo (10) proportional to the Darcy—Weisbach resistance coefficient.

Leopold et al(1964 Fig. 6.5) illustrated that for the Brandy-
wine Creek, PA, 1./Tlg is linearly related to the logarithm
of relative roughness defined by the ratio of flow depth to the
height of roughness elements.

where the channel slope
Ma(w) = Sp = Hy /Ly (11)

is the fourth dimensionless number. The dégp defines the
length scale governing the gravitational force. It should be5 Mass conservation in self-similar Tokunaga networks
differentiated from a channel Froude number in open channel
hydraulics where flow depth defines the length scale. The dischargeQ,, is computed using a mass conserva-
The fifth dimensionless number is given by the Reynoldstion equation for a network indexed by the Strahler or-
number.Leopold et al (1964 p. 158) have discussed its sig- derw > 1. We show that a mass conservation equation for
nificance in the context of laminar and turbulent flows. In a channel network indexed by link magnitud€supta and
natural streams, the flow is largely turbulent. Waymirg 1998 is a special case of it. We further assume
that our channel network is self-similar Tokunaga with uni-
(12) form link lengths/. No statistical fluctuations in the topology
of channel network are considered in developing the H-G
éheory_as mentioned in Se&.1
Let S, (¢) denote the storage in a Strahler stream of order
w > 1 defined by

U,D
[5(w) = —=.

The sixth dimensionless number incorporates the factor
controlling flow velocity. The total frictional force along the
channel boundary is, (2D, + W,)L,, ~ t,W,L,, Where
7, IS the shear stress per unit area. It is propqrtlonal to thegw(t) = W, (1)Dy(t)Ly. (14)
square of the mean velocity for turbulent flows if the bound-
ary does not change with variations in flobkeppold et al. The dependence of storage on timeomes from tempo-
1964 p. 157). The gravitational force due to the mass of wa-ral variations of streamflows in the network, which result in
ter along the channel length, is given bypgW,, Dy, LS. width and depth varying with time.

Nonlin. Processes Geophys., 21, 1001325 2014 www.nonlin-processes-geophys.net/21/1007/2014/



V. K. Gupta and O. J. Mesa: Horton laws for hydraulic—geometric variables 1015

The total number of junctions denoted @y is the same as The key problem is to compute a solution f@,. In view
the total number of links in a complete Strahler stream of or-of the definition of self-similarity given in Sec.1, Eq. (L6)

derw. Lety;,i =1,2,3,...,C, be asequence of travel times reduces to

for water to reach the bottom of a complete Strahler stream ol

from successive junctions enumerat_ed from the bqttom. Thi =201+ Z Ty Qur (17)
means that; represents the travel time from the first junc- =

tion from the bottom¢, from the second junction and so on.
For example, if water flows with a uniform velocity then =~ WhereTy =T, ok, k=1,2,...,0 — 1 denotes the number

t; = il /u, because all the links are assumed to have the sam@f Side tributaries of ordep —  joining a stream of ordep.
length. Equation (7) has been solved rigorously under the assump-

LetR;(t),i =1,2,3,...,C, denote the volumetric runoff  tion that7;'s obey Tokunaga self-similarity. The solution is

rate from theith hill along a complete Strahler stream of or- given by Eq. §). Because the recursion equation (E@) for
derw. Let Qi., i =1,2,...,C, denote the discharge from Qu iS the same as the one far,, we assert from the argu-

the side tributary at théth junction from the bottom. Here Ments given in Secg.1that
the subscript#1, ko, ... denote the Strahler orders of the side

tributaries coming into the junctions counted from the bottomRp = _ lim % =Rp=_lim <
1 2 . Q—w—00 Qa) Q—w—00 Nw+1
of astream. LeQ; (1) andQs ,(t) denote the discharges A
in the two tributaries at the top of the stream. Each of them =Rs= lim o+l (18)
is of orderw — 1 by definition of the Strahler ordering given R
in Sect.2. and
Considering a Strahler stream as a finite control volume,
the mass conservation equation can be written as R+a+o)+v(2+a+c)?—8c
Rp=Rp=Rs= > .
dS,, (1) 1 2 : —— L :
o T Qut) =0, 1 —1y-1)+ Qf_1 (1 —1p-1) Equation (8) implies thatQ,, equalsR A,,, which is used in
c c defining the first dimensionless number in Sdcit follows
- = from the definitions of Horton ratios, and from the equality
+> 0k —1)+2) Ri(0). (15) '
i=1 i—1 Rp = Rp, that
For w =1, Eq. @5 reduces to the link magnitude-based Qut+1Nwt1= QwNo, 88 Q2—w — oco. (19)

mass conservation equation @upta and Waymirg¢1998 . _ ) )
This is a foundational result governing mass conservation

that is easy to check. . o
As a first step, we have chosen to focus solely on the spa'-n self-similar Tokunaga networks. Even though, Ep)(s

tial analysis in the context of H-G. In particular, we seek valid in the limit of large network order, the result holds for

a spatial solution of Eq16) by ignoring the time dependence SMall values oi as explained in Sec2.1 It should be noted

of 0, (1), and denoting it ag,, (1) = Q.. This is tantamount that lf one substltutgﬂw for Q,, in Eq. @9, th'en it loses its

to assuming that §,(s)/ds = 0, R; (1) =0, Vi, ¢ > 0, and phy3|cal mterpr_etatl(_)n. The reason is t@g, is a dynamic

the travel times; = 0, Vi. Physically, these sets of assump- variable butA,, is a fixed geometrical varla_ble. Moreover, a
tions can be interpreted to mean tiiatis applied uniformly ~ POWer law relation between these two variables plays a fun-
throughout the network at time= 0. Moreover, water is as- damental role in the H—G investigations as explained above

sumed to travel in a very short time throughout the network!" S€ct-2 and later in Sec8.3, _ _
so that travel times are ignored. West et al(1997) used the mass conservation equation for

In a recent paper on a space—time theory of low ﬂowsperfect branching biological networks in which no side trib-

for river networks, travel times were ignored throughout the utarie; are present, and in which each .paltren.t branch bifur-
basin compared to the subsurface response time for hillSat€s into two branches. In that case, it is simple to write
slopes, andR was computed from hillslope processes un- 90Wn Ed. 9) as a special case of mass conservation with-
der idealized conditions. The theoretical results thus obtaine@Ut iNvolving any limit.West et al (1997 used it to obtain
compared well with observation&frey and Gupta2000 some remarkable results governing allometry in biological
Similarly, in the present context, the idealized assumptionéqetworks'

made above are necessary for making progress on this com- W& apply Eq. 19) to extend the geometric and topologi-
plex problem. cal Horton laws in self-similar Tokunaga networks to include

In view of the above assumptions, E45[ simplifies to th'e H—G variaples. Figur2 shows a Horton Igw for channel'
widths in a drainage network that was mentioned along with
Co other H-G variables in Sec. As mentioned there, the key
Qp = Qi_l + Qf)_l + Z Ok, - (16) equation providing this link is a power-law relation between
i=1 discharge and drainage area, and a Horton law for drainage
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areas Leopold and Miller 1956 pp. 19-20). In our context,
Eqg. (18) showing thatRy = R4 represents both these fea-
tures for Tokunaga networks.

6 Derivation of Horton laws and prediction of the
width and Reynolds number exponents using SS-1
6.1 Horton laws for channel width, depth and velocity

It follows from the definition off11 in Eq. @), and from the
identity in Eq. (L8) thatRp = Ra,

lim

e —12,..«9.
Q-ws0o (@) @ <

(20)

This important result comes from the self-similarity of Toku-

naga networks and the assumption of spatial homogeneity of

runoff R. It probably is a valid assumption for widely vary-

ing climatic regions and a broad range of spatial scales. It is

tested in Sec8.4for the Ashley River basin from NZ that is
described in Sec8.

The five H-G variablesl/, W, D, S andn’ considered
in this paper vary as discharge varies, which is the sixth

H-G variable. Therefore, we assume that all the H-G vari-

ables are homogeneous functions@f This is the simplest

mathematical assumption because it means that the func-

tions do not depend on any other parameter ex¢gptt

is widely used in the H-G literature reviewed in Sezt.
We can write it asy = f1(Q), W = f2(Q), etc. To deter-
mine the form of these functions, we need a functional equa
tion that applies to our physical contel®eckham(1995h

p. 53) has reviewed four functional equations with solu-
tions known as Cauchy equations that repeatedly come u
in similarity type investigations. Of these four, the most per-
tinent in our context is the equation based on self-similarity.
ConsiderU = f1(Q). Self-similarity can be represented by
f1(Q1- Q2) = f1(Q1) f2(Q2) (Gupta and Waymire1998

pp. 102-103), whose solution is a power law. Therefore,

U= f1(Q) x Q™.
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Figure 2. Reproduction of the original figure &opold and Miller
{1956 Fig. 19, p. 23), showing the relation of stream width to
stream order in arroyos.

Ft)he Horton ratios for velocity, width and depth can be written

as

Rm

RU = Q9

Rw=RY., Rp=R), m+b+f=1 (22
The derivation of Eq.42) required that (i) Horton laws
for channel widths, depths and velocities hold in Tokunaga

self-similar networks, (ii) runoff generatiaR is spatially ho-

The above argument applies to all the functions. Theredmogeneous, and that (i) channel width, depth and velocity

fore, the H-G variables can be written as power law func-
tions of discharge, . This functional form has been widely
used in H-G investigationd €opold and Miller 1956, and
was introduced in Eq.7).

Equation (8) shows that the ratioQ,,+1/Q., converges
to Rp, and thereby obeys a Horton law. To extend the Horton
laws to other H-G variables, let us consider velocity

m
w+1
oy
which follows from the fact that the ratios are positive and
monotonic inw (Rudin 1976 p. 44). Similarly, Ry = R’é
and Rp = Ré. By definition, 9, = U,W,,D,. Therefore,

. U
lim —tt_ = Rj
Q-w—o0 U,

— Ry, (21)

Nonlin. Processes Geophys., 21, 1001325 2014

depend monotonically on Strahler order

6.2 Prediction of the width exponent and Reynolds
number exponent

We will now use the above results to show that the Horton
laws for the topologic and geometric variables explained in
Sect.2.1extend to channel widths. Our arguments are based
on dimensional analysis, as explained in S2@. Consider

the dimensionless numbé&r,(w) defined by Eqg.9), and the
ratio given by

Aw+l . D,U,
v A, Ua)+1Da)+1 .

RHz (6()) = (23)

www.nonlin-processes-geophys.net/21/1007/2014/
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SubstitutingD,,U,, = Q.,/ W,, in the above expression gives = Comparing the field-measured values of the H-G expo-
nents in the Taieri basin and the Ashley basin, which have

Ri, (@) = VAw+1 QwWw+1. (24) similar scales and climateg, andz are comparable as one
: VAow  Qut+1We expects, but nak andm. A physical reason for this discrep-

We have already shown that the right-hand side convergeg1 ney is diagnosed in Se@.4.

to a constant in Sec8. 1 It follows that the left-hand side of
Eq. 24) also converges to a constant. Stated mathematicallyy  predictions of Horton laws and the H-G exponents
assuming SS-1, and comparison with OCN model

1/2
lim RV Aw+1 QwWerl _ RA/ RW exponents
Q-w—>00 /A, Qu+1We Ro
= lim Rm,(w) = Rn,. (25) In the foII(_)Wing developmgnts, we tentatively assume that
—w—>00 SS-1 applies to slopses,,. Similar to the physical assump-

tions made before for channel width, depth and velocity, we
assume that slope depends monotonically on Strahler order.
Therefore, the Horton ratio for slope convergesrg fol-
lowing a similar reasoning as given in EQL. From that
assumption we predict the Horton laws for width, depth,
52 — Rlé. (26) velocity and slope and test our predictions of their expo-
nents against the optimal channel network (OCN) model of
Therefore,Rp, = 1, and the channel width H-G exponent is Rodriguez-Iturbe et a[1992. We show that the four pre-
12 dicted scaling exponents based on this tentative assumption
o> b=1/2 (27)  agree with the OCN model. However, our theory differs from
] it in a fundamental manner because we predict Horton laws
It follows directly from Egs. 12), (22) and @7) thata Hor- ¢4 these variables, but the OCN model does not address this
ton law for the Reynolds number can be written as issue. Moreover, our analysis uses self-similarity, but OCN
uses “optimality”. SS-1 in the H-G context is not the correct
assumption as explained in the next section. It is being made

We now test these predictions against data from three field!e"® ©nly to compare the predictions of the H-G exponents
studies described in Se@and Tablel. The first test of the ~ Tom our theory with the OCN model.
theory is for the Brandywine creekgopold et al, 1964 Ta- Define the quton ratio for the basin Frogde qumber from
ble 7.5, p. 244). The empirical values of width, depth and ve-Ed- A0). Following similar arguments as given in EQ1,
locity do not satisfyb + £ +m = 1, instead they add to 0.92. and given about the Ietlgth ratio in Se2tl, we assert the
Assuming that depth and velocity exponents are correct a§Onvergence of the basin Froude number because the Horton
per our discussion in Se®.3 b=1— f —m = 1/2 agrees  'atio of each term in it converges.
with our theoretical p_re_diction. Likewise, +m = 1/2 also _ Ma(w + 1) Ry
agrees with our predictions. o lim a@) =R, = TR

The second test of the theory is in Taieri River bagin ( ~ °~ > 13\ LS
bitt et al, 1998. The empirical width exponent interval is ysing the notation in Eq.7], and applying Eq. 1) to
(0.501, 9.533). Thg predicted valie= 1/2 is very close 0 slopes, it follows that Rs = R%,. In view of Eq. (L8) show-
the empirically estimated lower bound. For the computationing that Ry = Ry, it follows from the results in Secg.1
of the error inm + f we assume independence and use the, 1/Dr _

Ik ¢ 2 that th : ¢ < th fthatRL =R} RlQ/DT. Assuming that the OCN model is
well-known formuia that the variance of a sum 1S the sum o fspace filling as discussed in Sezt], it follows that Dt = 2.

variances. It is used whenever there is a linear function o T _ om . .
the exponents. Using the formula, the empirical depth p|USSubst|tut|ngRU =Ro from Eq. €1) into Eq. @9) gives
velocity exponent interval is (0.457, 0.513). The predicted
valuem + f =1/2 lies in this range. Both these predictions
support our theory in the Taieri basin.

The third test is in the Ashley River basiM¢Kerchar
etal, 1998. The empirical width exponent interval is (0.424,
0.456). The predicted value= 1/2 lies outside this range. m = >(z+1/2). (31)
Similarly, the empirical depth plus velocity exponent inter-
val is (0.537, 0.583). The predicted valuet+ f =1/2 lies Similarly, consider the Horton ratio for the dimension-
outside the range. Clearly there is a discrepancy between thiess number proportional to the Darcy—Weisbach resistance
observed and the predicted values. coefficient given by Eq.13), and take the limit. We have

The asymptotic constancy of the rafig, (o) of the dimen-
sionless numberl, across different Strahler orders holds in
Tokunaga networks. Sindey = R4, Egs. €5) and @2) can
be combined to obtain

Rw = Rm,R

Rw =R

Rns=RuRp =Ry = Ry?. (28)

(29)

1/4 z/2
Ry =R} = RnsRQ/ RZQ/ . (30)

Equation 80) predicts thatrp, = 1, and
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demonstrated the convergence of each termin it. Therefore8.1 Horton laws and theoretical expressions for
the H-G exponents
Me(w+1) _ R
Q-w—oo Tg@) 18~ RpRs

(32) We define two “renormalized dimensionless numbers” in

which slope appears. Equatiod®) and (L3) modify to
We get an expression for the depth exponent by rewriting

Eqg. 32 as X Uy
I1 =— 35
3(&)) \/m ( )

Ro— RS = —FU__ Ry (33) U2
D="R/g= RogRs RHGRZQ' ME(w) = —2— (36)

¢D,Sh

It predictsRp, =1, an .
tpredictsRr »and Here,a and 8 are “anomalous scaling exponents” that can-

f=2m—z. (34) not be predicted from dimensional analysis. In principle they
can be predicted from physical arguments involving sedi-
Solving Egs. 81) and B4) gives f =1/2, m =0, and  menttransport. This is a task for future research as explained

z=—1/2, which also satisfy the constraint+ f =1/2.  in Sect9.
Our predictions may be summarized as follows: (1) Horton ~Following similar arguments as given in Se6tf.and as-
laws hold for the H—-G variables in self-similar Tokunaga Suming that slope is monotonic in order as in Séckq. 1)
networks, and (2) the H-G exponents are-1/2, m =0, applies to slope. Therefore, we assert the convergence of the
f =1/2, andz = —1/2. Our second prediction agrees with ratios of the renormalized dimensionless numbers,
the OCN model oRodriguez-lturbe et a{1992. We have o 1
already mentioned that the OCN model does not consider |im & = Rpx = Ry ) (37)
Horton laws for the H—G variables. That the exponents match?—®—o° M3(w) °  JRLRS
is not a surprise because our theory is built on dimensional
analysis. In conclusion, we state that our theory is fundamen@n®
tally different from the OCN model. T (w+ 1) R2

To test the OCN predictions, we used the data sets reported lim  —% ——— = Ry = — Y. (38)
in Sect.3 and Tablel. Except for the Brandywine and Taieri ¢~ I5(w) ° RDRg
basins that suppott=1/2, other measured H-G exponents
do not agree with theoretical predictions. The deviations are We have explained in Sect.that R, = R}{DT = RlQ/DT
substantial, suggesting that H-G in networks does not obeynd Ry = R, = RZQ_ From Sect.6, Ry = Rg_ Therefore,
SS-1forD, U andS. We address this foundational issue in Eq. (37) gives
the next section.

1/2 2
Ry = R}y = Ry, Ry TRy, (39)
8 Application of SS-2 to predict Horton laws for Equation 89) predicts thaR*,_ = 1, and
the H-G variables and the exponent of the Manning 3
friction 1
m= E(Za +1/Dr). (40)

Slope appears in dimensionless numbers given by BEqs. (
(11) and @3). The stream drop in Eq1() is bounded but  Sincem+ f = 1/2, an expression for the depth exponent fol-
stream length increases with order. Therefore, sipe> 0 lows directly from Eq. 40),

as Q —w — oo, but slope cannot be eliminated from the

asymptotic limit. Therefore, SS-1 is not applicable to our , _ }(1_@[ —1/D7). (41)
problem. A generalization of the dimensional analysis is re- 2

quired to develop the H-G theory as explained in S2&.

It is the focus of this section. We get a second expression for the depth exponent by rewrit-

ing Eqg. B8) as
R? RZ"
Rp=R)=—"tr=—L_ (42)
RuzRg  Rj R,

It predicts,Rp; = 1, and, in view of Eq.40),

f=2m—z8=z(a - B)+1/D7. (43)
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Equating the expressions fgrfrom Egs. ¢3) and @1), we
obtain an expression for the slope scaling exponent as

23w —28) =1-3/Dr. (44)

Equations 40) and @4) together generalize the H-G theory
for a channel network based on an application of SS-2.

To summarize, given the topological fractal dimensian
and the prediction of the width exponént= 1/2 by Eq. 8),
we have two equations4Q) and @4), which give theoretical
expressions for H-G exponemisandz in terms of two un-
known parameters; and 8. Our theoretical expressions for
the H—G exponents can be written as

b=1/2

2= (1-3/D1)/(Bx —2p)
m=(za+1/D71)/2
f=1/2—m.

(45)

8.2 Horton law for the Manning friction and
a theoretical expression for its exponent

The scaling exponentg and 8 are free parameters, which
are not predicted by our theory. As aresuilt,f =1/2—m

1019
Therefore,
n! =1.49DY8/Cx. (49)
It can be expressed as a ratio:
Cost _ [DMT/G e (50)
c5 Dy, L)

Substituting Egs.48) and taking the limit a2 —w — oo
gives

1/6 ,—(—1+8)/2
Ry = R°Ry;THP/2, (51)
Using the definition ofs’ from Eq. (7) and applying the re-
sultfrom Eq. 1) givesR,, = RyQ. UsingRs = RZQ as before
gives an expression for the H-G scaling exponent related to
the Manning equation,

_ pY _ pl/6p—2(=1+p)/2
R}’l/ —R _RQ RQ ’

) (52)

which gives a theoretical prediction for the Manning friction
exponent as

y=/f/6—z2(=14+p)/2. (53)

andz are not predicted and tested against data in this paper Nere are no free parameters in this expression grises-

This poses a big challenge for testing our results based ofmated as explained in the next subsection, where this pre-
an application of SS-2. To make progress with this necessarffiction is tested. The constraints on estimafee: 1, and
component of the theory, we consider the Manning friction # < 3«/2 from Eq. @4) are also tested there.

coefficient that can be estimated from the observed values of Mantilla et al.(200§ have described the H-G form of the
depth and slope. We derive a theoretical expression for théhezy friction coefficient that they deduced from empirical
Manning friction exponent here, and test it against the datePbservations. They showed that the expression for the Chezy

in the next subsection.
RewriteITg(w) given by Eq. 86) as
U2 U?
gDu)Sw ngSwa

(46)

so that it may be expressed in the form of the well-known

Chezy equation:

Uy = Ci/DiySi = (gD Su) 2SS (w0)1Y2. (47)

friction coefficient played a key role in testing the presence of
statistical self-similarity involving Horton laws in peak flows
in the Walnut Gulch basin, Arizona.

8.3 Test of the Manning scaling exponent for three field
studies

We predict the Manning exponent by using the empiri-

cal values off andz for the three field studies described in
Sect.3, and test our prediction against the empirical values
of y as a second test of our theory. Despite the appearance

Therefore, an expression for the Chezy friction parameter isy¢ Dr in Eq. @5) and thereby in Eq.53), and the regularity

given as
Cl = [ME(w)]Y2(g) Y28 1H+P/2, (48)

Since the slope ratio converges to the Horton nuniyeiand

of its observed values between 1.7 and 1.8 Barbera and
Rossg 1989, given f andz, the exponenp does not de-
pend onDq; i.e., our test becomes independent of the fractal
dimension of the channel network. To see this feature, notice

ratio Rp; converges to 1 so does Chezy friction parameter.from Egs. ¢5) that one gets after straightforward algebra,
Moreover,8 < 1 is a physical constraint, because the slopeB = (1 —3f)/z. Therefore,y can be rewritten strictly as a
exponent must be negative to be consistent with the data. Thinction of f andz,

Manning friction coefficient:, is related to Chezy’s as fol-
lows (Leopold et al. 1964 p. 158):

1.49
Uy =Ctv/DySy =

1.49
2/3¢1/2 1/6
n—/Dw/ sy :n—/Dw/ V' DoSe

w w

www.nonlin-processes-geophys.net/21/1007/2014/

y=f/6—2(-14+8)/2=5f/3+z/2-1/2 (54)

The above argument does not imply that the set of H-G expo-
nents is independent @fr. As Eq. @5) shows, the depth and
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slope exponentg andz depend oy, 8 and Dt. Therefore, in turn affects the depth exponent and the Manning friction
the influence ofbt on y comes throughyf andz. exponent. This important topic is the focus of the next sec-
The first test of the theory is for the Brandywine creek tion.
(Leopold et al.1964 Table 7.5, p. 244). The observed val-  Tablel presents a summary of the observed and predicted
ues of the H-G exponents were given in S&and in Ta-  H-G scaling exponents for the three basins considered above.
ble 1. Equation b4) correctly predicts the empirical value Predicted values for the exponentfrom Eq. 63), for the
of the Manning exponent; = —0.285. This prediction also exponenb = 1/2 from Eq.27, and for the exponemt + f =
supports our assumption made in Séc2that the observed 1/2 from Eq.28 are given in Tabld.
depth and velocity exponents are correct, because they lead
to a correct prediction of the Manning exponent. 8.4 Test of Horton laws and theR g = R4 relationship
The second test is conducted in the Taieri River babin. for the Ashley basin
bitt et al.(1998 do not give an empirical value of Manning’s ) . ,
friction exponent, but it can be computed from the empirical Mantilla (2014 is testing the presence of Horton laws for
Manning equation using the exponerftandz. We first use the H-G variables in the_ two NZ b_asms considered h_ere
the values of the exponents given S&tand then incorpo- and a few other basins _Ilke the Whitewater one_for which
rate the errors in these exponents to compute an interval fof€ has data. He has kindly shared some of his analyses

y. The exponents along with the errors are listed in Table With us for the Ashley basin, which has= 6. He extracted
Using the Manning equation, the Ashley basin geomorphology from the digital elevation

model (DEM) data using the CUENCAS softwablddntilla
U, = 1.49D%35Y2 /! | and Gupta2009. His first set of results pertains to the Hor-
ton laws for drainage area and stream numbers as shown in
Figs.3 and4. The Horton laws hold quite well, and the ob-
y =(2/3)(0.247 + (1/2)(-0.319 - 0.238= —-0.231 servedR, = 4.47 agrees well witiR p = 4.5 as predicted for

(55)  the Tokunaga network in Se@.1
Next, the Horton law for the width is shown in Fig. In

The measurement errors in the exponents listed in Table making this plot, the theoretical conditiéh— w — oo is in-
give the range-0.259,—0.203) fory. corporated by omitting order 6 and 5 streams from the anal-

To make a theoretical prediction of using the empiri-  ysjs. Mantilla (2014 found that the basin has a large number
cally computed values of the scaling exponefitandz, the  of the 1st order streams that are mostly missed in the map
predicted value of the Manning exponent from E&d)(is  thatMcKerchar et al(1998 presented. Therefore, the Hor-
—0.246. The measurement errors in the expongntdz  ton plot is made for streams of order= 2, 3,4, shown in
listed in Tablel lead to the prediction of the rangeQ.276,  Fig. 5. Horton width ratio,Ry = 1.61 is observed. Other H—
—0.216). This predicted interval overlaps with the empirical G variables not shown here support the finding that the Hor-
interval of y computed above. It supports our prediction in ton laws for the H—G variables hold for the Ashley basin, as
the Taieri basin. predicted in our work.

The third field test is for the Ashley River basin. The ex- Next, mean stream flow is considered. Similar to the
ponents are given in Se@and in Tablel. McKerchar etal.  width, a Horton plot is made for streams of ordes= 2, 3, 4
(1998 do not give an empirical value of the Manning expo- as shown in Fig6. Rp = 3.05 is observed. As a test of
nent, but it can be computed from observed exponeatsd  Eq. (22), we note using the observed width exponent that
/ and the empirical Manning equation. The value is 3.05%44 =163 is consistent with the observed value of

_ _ Rw = 1.61 thatMantilla (2014 obtained. Other H-G vari-
y=(2/3(0242 -0318-(1/2)(0319 =—-03158  (56) 1o 116t shown here support that the Horton laws hold as
Using the observed values gfandz, the predicted value predicted in our work, an®o = Rw Rp Ry = 2.96 is close

the observed exponentis given by

of the Manning exponent using EG4) is to the value ofRp = 3.05. We do not include errors given in
Tablel to simplify our argument. These results demonstrate
y=3(0.242/3+(-0317)/2-1/2=-0.255 (57) the observed consistency between the scaling exponents and

The measurement errors in the exponents give the rangg‘e Horton ratios for the H-G variables that are derived in

for the empirical exponent as (-0.338, 0.292). Using the >€Ct6. _ _ ,

observed values with errors jiandz, the range of the pre-  1he nexttask is to test if th&o = R4 given by Eq.18
dicted scaling exponent is (—0.281,—0.230). Clearly, the ~nolds in the Ashley basin. Data show that og/log R =
predicted interval does not overlap with the empirical inter- 0-74- It can be written as

val. There is some discrepancy between the observed ang = _ po (58)
predicted values. It seems to come from the observed expo- A

nents of width and velocity. The discrepancy in the width ex-where 6 = 0.74. Clearly, our theory’s prediction thakgp
ponent noted in Sedb.2affects the velocity exponent, which equals R4 given in Eq. (8) is not supported by this
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Log(Stream Area)
Log(Stream Width)

0 1 2 3 4 5 6 7 : ; ; s ; 6 i
Horton Order Horton Order
Figure 3. Horton analysis of upstream areas (including orders 2, 3,Figure 5. Horton plot for stream width (including orders 2, 3, and

and 4) for the Ashley River basiMcKerchar et al.1998; results ) for the Ashley river basirMcKerchar et al.1998); results kindly
kindly provided byMantilla (2014). provided byMantilla (2014.

Log(Number of Streams)
Log(Stream Discharge)

Horton Order Horton Order

Figure 4. Horton analysis of stream numbers (including orders 2, 3, Figure 6. Horton plot for discharge (including orders 2, 3, and 4)
and 4) for the Ashley River basicKerchar et al.1998; results ~ for the Ashley River basinMcKerchar et al. 1998 results kindly
kindly provided byMantilla (2014). provided byMantilla (2014.

and (2) those where s significantly less than 1, like 0.8 or

observation. The physical reason is that all the streams irb 5. The reader may note that our exponeris equivalent
a network do not contribute to stream flows in the Ashley tc;c. Moreover, the derivation in EG18) is that Ry = Rx

pasir::kMany phygical prchls,seg F}Iaﬁl ahrole in ru?gff genera?’;1pp|ies to category (1) basins @®alster(2007), but not to
tion, like space—tl_me variable rainial, the _state otdryness orcategory (2) basins like Ashley. Therefore, our theory needs
wetness of the soil in a basin at the time rainfall begins, which

o . ) _ to be generalized to incorporate such basins for whidh
governs infiltration into soil and evaporation from it, and so less than 1

on. The physical parametet, represents the aggregate be-
havior of the physical processes governing runoff generation,
and can take a value less than or equal to 1. 9 Future research problems: two examples

Galster(2007) analyzed several basins to test the relation-
ship Q = kA€. His results show that the studied watershedsThe above theory can be generalized along several lines.
could be grouped into two broad categories based on theive illustrate two important problems. The first is that the
respectiver values: (1) those where ¢ equals 1 or nearly 1,anomalous scaling exponentsand 8 need to be predicted
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using physical arguments. Two fundamental physical pro- &
cesses that shape the H-G of channels are transport of sus
pended sediment load and the bed load that we have no
considered so far. There is a vast literature on this subject
(Leopold et al. 1964 Singh 2003. Our ideas on how these 53
two physical processes can be used to determiards are
rudimentary and are only meant for illustration.

The suspended load increases in proportion to discharge£ * 1
Therefore, suspended sediment concentration, defined as thZ > 1
ratio of the two, does not changkeopold et al.(1964 2
p. 269) gave an expression for sediment concentra@ion,
(UD)%5815/1%, The constancy ot implies that 05m + o7
0.5f+1.5z—4y=00r025+1.5;—4y =0, sincem+ f = a1
1/2. It gives the first equation in terms efandg. , : | | | | |

The second equation can be developed from considering ¢ 1 2 3 4 5 6 7
stream power per unit of bed area, = pgQS/W, which Horton Order

plays a basic role in the bed load transpdfb{nar, 2001). rigyre 7. Reproduction of the original figure Mantilla and Gupta
Essentially all the theories of bed load transport assume thabos Fig. 2) showing the scaling of mean drainage area with order

there is a threshold shear stress, stream power, or mean flogorton law) of the river network of the Whitewater basin, Kansas,
speed, and no erosion occurs below it. During floods, theseJs.

variables exceed the threshold, and bed load is transported
that creates erosion. We expect that a second equation can k 1.0
obtained from these considerations in terma@ndg. The [
two equations can be solved to compautandp.

Traditionally, Horton laws have been known in terms of
statistical meansPeckham and Guptl 999 reformulated
the Horton laws in terms of probability distributions and I
called them “generalized Horton laws”. Specifically, they © o.s}
gave observational and some theoretical arguments to shovi- [
that probability distributions of all drainage areas rescaled by & I
their meansA,,/A,, collapse into a common probability dis- & oal

7 1

6 +

4 1

Stream Area])

1 1

tribution. Let us consider drainage areas,/A,, to illustrate ® I Order 1
generalized Horton laws. There are two components to this § [ Order 2

argument. W ook F 0 e Order 3 |
_ L - Order 4
i. A Horton law for the mean drainage areds, of order L £  _____ Order 5

w, holds that can be written as I
0.0 alls s s s 2 s La s sas s Lasssasi s Lasassssas
Ay=Ry 1AL w=12..., (59) ° ‘ : ’ '

whereR 4 is the Horton area ratio. It is illustrated in the

Whitewater basin, Kansas, USA in Fig. Figure 8. Reproduction of the original figure dantilla and Gupta
(2005 Fig. 2) showing the statistical scaling of the probability dis-
tribution of drainage area with order (generalized Horton law) of
the river network in the Whitewater basin, Kansas, US.

ii. A generalized Horton law is defined as

J— d J—
Awt1/Awvt1 = Au/Aw, (60)
or Mantilla and Gupt42005 have shown the existence of

d —~ — eneralized Horton law for the rescaled drainage areas,
Avr1= (Aws1/Au) A, ©=1,2,..., (61) g 9

Aw,/A,, because it is independent af This feature
is illustrated for the Whitewater basin, Kansas, USA in

where< means that the probability distributions of the Fig. 8

rescaled areas on both sides of Egp)(are the same.
Since the Horton law holds for the mean areas given in Let us consider the dependence of channel widths on dis-
Eq. (69), it follows from Eg. 61) that charge. Both are treated as random variables. Therefore, the
results obtained in Sedb.2 can be interpreted as those for

d — _
Avt1=RaAw, ©0=12,... (62) the means and written a8(Q,,) = cQZ. We conjecture that
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the generalized Horton law holds for the rescaled channel 4. We used the Buckingham Pi theorem and identified six

widths, and write it as

0 b
W(Qur1) = (Qg“) W(0u). w=1.2.... (63)

[0

This is an equality between random variables, as shown for

drainage areas in Eg6Y). It means that the probability dis-
tribution of W(Q,+1) can be computed from the probabil-
ity distribution of W(Q,,) provided a Horton law of mean

widths and the value df are known. Both these features are

predicted in Sec for self-similar Tokunaga networks. Our

conjecture is made in the light of the result that the Tokunaga

networks are a special case of a subclass of R&Mzer and
Guptag 2000. In view of these arguments, we can write

Wo=RyW1, 0=12,..., (64)

whereRy = R’é is the Horton ratio for the mean widths. We

conjecture based on these arguments that Horton laws hold
for all the H—G variables measured in the two New Zealand

basins that were analyzed in S&&:8. We supported our con-

jecture for the validity of Horton laws for widths and stream

flows in the Ashley basin in Sec8.3 Both the NZ basins

have the necessary data sets to test our conjecture regarding
the applicability of the Horton laws and the generalized Hor-
ton laws for all the H-G variables considered in this paper.

Mantilla (2014 is conducting this research.

10 Conclusions

There has been important progress in topological and geo-
metric theories to explain the related Horton law for stream
bifurcation, drainage areas and stream lengths as asymptotic
relations, but progress on Horton laws for the H-G variables
has been long overdue. We made a contribution to this impor-
tant problem, and laid the theoretical foundations of a H-G
theory in the self similar Tokunaga networks. Our main find- 8-

ings are summarized below:

1. The theory used several disjoint theoretical concepts

like Horton laws of stream numbers and areas as asymp-

totic relations in Tokunaga networks, dimensional anal-
ysis, the Buckingham Pi theorem, SS-1 and SS-2. A
self-contained review of these concepts with examples
was given as “methods” in Se&.

2. The H-G data sets in channel networks from three pub- 9.
lished studies and one unpublished study were summa-

rized for testing theoretical predictions in Sext.

3. An important issue in estimating field values of the H—

G exponents is the measurement errors, which affect the
scaling exponents. Standard errors for each of the H-G

exponents from the two NZ basins are listed in Table

www.nonlin-processes-geophys.net/21/1007/2014/

dimensionless basin numbers in Sektwhich served
as a basis for developing the theory in the subsequent
sections.

. A mass conservation equation was specified in Strahler

ordered networks. A link-based equation as a special
case of our equation has been knowBupta et al.
2007. We solved it in Tokunaga networks using the re-
sults fromMcConnell and Guptg§2008, and derived

a mass conservation equation in terms of Horton bifur-
cation and the discharge ratios in the limitas » goes

to infinity in Sect.5. We also derived that the Horton
discharge ratio is equal to the area ratio.

. We gave an analytical derivation of the H-G relations

as power-law functions of discharge. The derivation is
based on the assumptions that the H-G variables are ho-
mogeneous and self-similar functions of discharge. The
Horton laws are extended to width, depth and velocity
in Tokunaga networks using the results from Séct.
Within the dimensional analysis framework, the SS-1
given inBarenblatt(1996 is used to predict the width
exponentp = 1/2, and the Reynolds number exponent
m+ f =1/2. These predictions are tested against data
sets given in SecB including the standard errors listed
in Tablel. These results are given in Se@t.

. Tentatively assuming that SS-1 holds for slope, we pre-

dicted the Horton laws fo§, U and D, and their expo-
nents. Our predictions agree with the exponents given in
the optimal channel network (OCN) mod&ddriguez-
Iturbe et al, 1992, but OCN does not consider Hor-
ton laws. Our theoretical framework is based on self-
similarity, and does not use any optimality assumptions.
The published data in Se@®.showed that most of the
OCN predictions do not agree with observations. These
results are given in Sect.

SS-2 is required to deal with the case when one or more
dimensionless numbers go to zero in the limit, but they
cannot be ignored in the limit. In the present context,
slope goes to zero in the limit of large basin order, but
it cannot be ignored. Therefore, SS-2 is needed, which
gives rise to two anomalous scaling exponesatand 8

that come from two dimensionless humbers in Séct.
We derived Horton's law fof, D, andU in Sect.8, but

the H-G exponents become functionsxadnd .

We do not give a physical prediction af and 8. To
make progress with testing our theory, the Manning fric-
tion exponenty is considered because it could be esti-
mated from data on slope, velocity, width and depth, as
well as predicted from our theory using the observed ex-
ponents forD and S. Standard errors in the exponents
are considered in carrying out these tests of the theory.
The predictions are excellent for two of the three basins,
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but show some discrepancy in the Ashley basin, given inClayton, J. and Kean, J.: Establishing a Multi-scale Stream Gaging

Sect.8.3

10. The validity of the Horton laws in the Ashley basin was

tested using results from the study Mantilla (2014

Network in the Whitewater River Basin, Kansas, USA, Water
Resour. Manag., 24, 3641-3664, d§:1007/s11269-010-9624-
X, 2010.

Dawdy, D. R.: Prediction versus understanding (The 2006 Ven Te

that is in progress, but we showed some results for the Chow Lecture), J. Hydrol. Eng., 12, 1-3, 2007.

existence of Horton laws for widths and stream flows.

11. The test ofRp = R4 showed that this prediction does

Dawdy, D. R., Griffis, V. W., and Gupta, V. K.: Regional flood-
frequency analysis: How we got here and where we are going,
J. Hydrol. Eng., 17, 953959, 2012.

not hold in the Ashley basin, because some of the asDodds, P. S. and Rothman, D. H.: Unified view of scal-

sumptions leading to Eq1{) do not hold. To incor-
porate this hydrologic feature into Tokunaga networks,
the generator expression given in Eg) (eeds to be
modified so that all the streams that do not contribute to
stream flows are removed in the derivation of Ey)(

12.
ical principles using considerations of sediment trans-
port are briefly discussed. Further development is
needed on this front for a definite test of the theory.

13. Two NZ basins analyzed here show statistical variabil-
ity in the H—G variables that is different from the mea-
surement errors. Generalized Horton laws are explaine
and illustrated for the Whitewater basin, Kansas, USA.
It needs to be tested for the H-G variables for a further
development of this theory. This important research is

in progress Kantilla, 2014).
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