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Abstract. An analytical theory is developed that obtains
Horton laws for six hydraulic–geometric (H–G) variables
(stream dischargeQ, width W , depthD, velocity U , slope
S, and frictionn′) in self-similar Tokunaga networks in the
limit of a large network order. The theory uses several dis-
joint theoretical concepts like Horton laws of stream num-
bers and areas as asymptotic relations in Tokunaga networks,
dimensional analysis, the Buckingham Pi theorem, asymp-
totic self-similarity of the first kind, or SS-1, and asymptotic
self-similarity of the second kind, or SS-2. A self-contained
review of these concepts, with examples, is given as “meth-
ods”. The H–G data sets in channel networks from three pub-
lished studies and one unpublished study are summarized to
test theoretical predictions. The theory builds on six inde-
pendentdimensionless river-basin numbers. A mass conser-
vation equation in terms of Horton bifurcation and discharge
ratios in Tokunaga networks is derived. Assuming that the
H–G variables are homogeneous and self-similar functions
of stream discharge, it is shown that the functions are of a
power law form. SS-1 is applied to predict the Horton laws
for width, depth and velocity as asymptotic relationships. Ex-
ponents of width and the Reynolds number are predicted and
tested against three field data sets. One basin shows devia-
tions from theoretical predictions. Tentatively assuming that
SS-1 is valid for slope, depth and velocity, corresponding
Horton laws and the H–G exponents are derived. Our pre-
dictions of the exponents are the same as those previously
predicted for the optimal channel network (OCN) model. In
direct contrast to our work, the OCN model does not con-
sider Horton laws for the H–G variables, and uses optimality
assumptions. The predicted exponents deviate substantially

from the values obtained from three field studies, which sug-
gests that H–G in networks does not obey SS-1. It fails be-
cause slope, a dimensionless river-basin number, goes to 0 as
network order increases, but, it cannot be eliminated from
the asymptotic limit. Therefore, a generalization of SS-1,
based on SS-2, is considered. It introduces two anomalous
scaling exponents as free parameters, which enables us to
show the existence of Horton laws for channel depth, ve-
locity, slope and Manning friction. These two exponents are
not predicted here. Instead, we used the observed exponents
of depth and slope to predict the Manning friction exponent
and to test it against field exponents from three studies. The
same basin mentioned above shows some deviation from the
theoretical prediction. A physical reason for this deviation is
given, which identifies an important topic for research. Fi-
nally, we briefly sketch how the two anomalous scaling ex-
ponents could be estimated from the transport of suspended
sediment load and the bed load. Statistical variability in the
Horton laws for the H–G variables is also discussed. Both are
important open problems for future research.

1 Introduction

Several key papers have been published on self-similar river
networks in the last twenty years. As a sample, seeToku-
naga(1978), Peckham(1995b), Peckham and Gupta(1999),
Dodds and Rothman(1999), Veitzer and Gupta(2000),
Troutman(2005), Veitzer et al.(2003), McConnell and Gupta
(2008). Tokunaga model among them is very important
because it is mathematically simple and it predicts many
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topological and geometrical features that are observed in real
channel networks (Tokunaga, 1978; Peckham, 1995a). The
predictions are made in terms of the Horton laws that are
explained in Sect.2 on the background. Our paper devel-
ops an analytical theory to predict Horton relationships for
six hydraulic–geometric (H–G) variables (stream discharge
Qω, width Wω, depthDω, velocity Uω, slopeSω, and Man-
ning friction n′

ω) in self-similar Tokunaga river networks. It
is the first study that generalizes the theory from topology
and geometry to H–G in channel networks. The H–G ex-
ponents forWω, Reynolds number,55(ω), andn′

ω are pre-
dicted and tested against observed exponents from three field
studies. Developing an analytical theory of H–G in channel
networks is a long-standing, fundamental open problem in
Hydro-geomorphology that is addressed here. Next we ex-
plain the significance of this work.

Prediction of floods in river basins with sparse or no
streamflow data is a hydrologic engineering problem of great
practical significance. Known as regional flood frequency
analysis, it has over 100 years of history (Dawdy et al., 2012).
An acronym for this problem that is widely used is prediction
in ungauged basins (PUB) (Dawdy, 2007; Sivapalan et al.,
2003). PUB is common to both developing as well as in-
dustrialized countries. A nonlinear geophysical theory is be-
ing developed for almost 30 years to solve the PUB prob-
lem for floods. Two review articles have been published on
this theory (Gupta and Waymire, 1998; Gupta et al., 2007).
Given space-time rainfall intensity field for any rainfall-
runoff event, the theory attempts to predict stream flow hy-
drographs at all the “junctions” (where two or three channels
meet) in a channel network. The theory requires a model
to transform rainfall to runoff in space and time in a basin
(Furey et al., 2013), and space-time river flow dynamics in
a network (Mantilla, 2007). Modeling of flow dynamics re-
quires a theory of H–G in a channel network, because practi-
cally no such data sets exist. Our paper begins to fill a long-
standing need in this context.

By extending the Horton laws to H–G variables, our pa-
per shows how geomorphology, hydrology and channel hy-
draulics are linked in river networks. Consequently, it opens
a new door to understanding how the geometry, statistics and
dynamics in river networks are mutually coupled on many
spatial scales, which has far-reaching implications for under-
standing and modeling river flows, as explained above, and
transport of sediments and pollutants in river networks in the
future. A few discrete research efforts have been made to un-
derstand the nature of the flood scaling from physical pro-
cesses on an annual timescale (Poveda et al., 2007; Lima and
Lall, 2010), as well as on the event timescale (Ogden and
Dawdy, 2003), but connecting the body of work on the an-
nual scale to flood scaling for events remains an important
open problem (Gupta et al., 2010).

Our paper is organized as follows. Section2 gives a brief
review of the literature. It also includes two “method” sec-
tions that give a self-contained review of analytical meth-

ods used in the theory. Section2.1 contains a review of the
Horton laws for network topology and geometry as asymp-
totic relations in self-similar Tokunaga networks that are
taken fromMcConnell and Gupta(2008). Section2.2 gives
a review of similarity or similitude that is based on dimen-
sional analysis and that explains the Buckingham Pi theo-
rem. It is followed by a review of “asymptotic self-similarity
of the first kind”, or SS-1 for short. In many cases includ-
ing the present case, SS-1 requires a generalization involving
“asymptotic self-similarity of the second kind”, or SS-2 for
short. Physical examples are given to explain these method-
ological concepts.

Section3 explains the H–G data sets in channel networks
from three published studies and one unpublished study used
in this paper to test theoretical predictions. In Sect.4, an
application of the Buckingham Pi theorem gives a total of
six independentdimensionless river-basin numbers. The six
numbers are specified using physical arguments rather than
formal dimensional analysis. In Sect.5, we formulate a mass
conservation equation for a river network indexed by Strahler
order. We apply the results from Sect.2.1to obtain a solution
of this equation in terms of Horton bifurcation, area and dis-
charge ratios in the limit of large network order�. It applies
to small order streams,ω = 1,2,3, . . ..

In Sect.6, we consider three H–G variables,Wω, Dω and
Uω, and show that they are power-law functions of discharge.
By definition, Qω = UωWωDω. Horton laws are obtained
as asymptotic relations for these three H–G variables. We
show that self-similar solutions involving SS-1 hold asymp-
totically for the width and the Reynolds number. Values of
their H–G exponents are predicted and tested against field
data from Sect.3.

In Sect.7, it is tentatively assumed that the SS-1 frame-
work from Sect.6 is valid for Sω, Dω and Uω. Horton
laws for these three H–G variables are derived asymptoti-
cally, and their exponents are predicted. Our predictions of
the exponents are the same as those previously predicted by
Rodríguez-Iturbe et al.(1992) for the optimal channel net-
work (OCN) model. In direct contrast to our work, the OCN
model does not consider Horton laws for these H–G vari-
ables, and uses optimality assumptions. In this sense, the
foundations of our theory based on self-similarity and di-
mensional analysis are very different from those of the OCN
model. The deviations between the observed and predicted
exponents are substantial, suggesting that H–G in networks
does not obey SS-1.

In Sect.8, we explain that the reason for the failure of
SS-1 is that the slope, one of the dimensionless numbers,
goes to 0 as the network order increases, but slope cannot
be eliminated from the asymptotic limit. Therefore, a gen-
eralization of SS-1 requiring SS-2 is needed. This section is
divided into four subsections. The first one introduces two
anomalous scaling exponents,α andβ, in the theory. It en-
ables us to show the existence of Horton laws for channel
depth, velocity, and slope, and derive expressions for their
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exponents as functions ofα andβ. These two scaling expo-
nents are free parameters, which cannot be predicted from
dimensional considerations. To make progress with develop-
ing and testing the theory, we consider the Manning friction
coefficient as the fifth H–G variable in the second subsection,
which can be estimated from values of slope and velocity.
We predict a Horton law for the Manning friction coefficient
and derive an expression for its exponent. The third subsec-
tion tests the prediction of the exponent against three field
studies. One of these basins shows some deviation from the
theoretical prediction. A physical reason for this deviation is
investigated in the fourth subsection.

Two fundamental physical processes that shape the H–G
of channels are transport of the suspended sediment load and
transport of the bed load, which are not considered here.
In Sect.9, we sketch in a preliminary manner how these
two physical processes could be used to determine the two
anomalous scaling exponents. Inclusion of statistical vari-
ability in the Horton laws for the H–G variables is also
discussed. Both are important open problems for future re-
search. The paper is concluded in Sect.10.

2 Background and methods

Leopold and Maddock(1953) first introduced the hydraulic
geometry (H–G) of rivers “at-a-station” and in the “down-
stream direction”. “At-a-station” H–G relations refer to tem-
poral variability of width, depth, velocity, slope, channel
roughness, and sediment transport as functions of discharge,
and “downstream” H–G relations refer to their spatial vari-
ability as functions of discharge. An extensive literature has
developed on these topics; seeSingh(2003) for a recent re-
view of the literature. This body of literature, though impor-
tant, is not directly relevant to the objectives of our paper. In-
deed,Singh(2003) concluded his review paper with the state-
ment, “the work on hydraulic geometry of channels serves as
an excellent starting point to move on to the development
of a theory of drainage basin geometry and channel network
evolution. This will permit integration of channel hydraulics
and drainage basin hydrology and geomorphology”.

In a classic paper,Leopold and Miller(1956) extended
the H–G relations to drainage networks. A brief review of
pertinent concepts required to understand this work follows.
Horton (1945) first discovered “Horton laws” in quantita-
tive geomorphology with the aid of maps. The original mo-
tivation was to define stream size based on a hierarchy of
tributaries. The most common method for defining a spa-
tial scale in a hierarchical branched network is the method
of Horton–Strahler ordering, or Strahler ordering for short,
becauseStrahler(1952, 1957) modified the ordering system
that Horton had introduced. Strahler ordering assigns,ω = 1
to all the unbranched streams. They contain the highest level
of spatial resolution for a network and thereby define a spatial
scale. Continuing downstream through the network, where

two streams of identical orderω meet, they form a stream
of orderω + 1. Where two streams of different orders meet,
the downstream channel is assigned the higher of the two or-
ders. This continues throughout the network, labeling each
stream, and ending with the stream of order�. By definition,
any network contains only one stream of order� called the
network order. Strahler ordering defines a one-to-one map
under pruning; i.e., if the streams of order 1 are pruned and
the entire tree is renumbered, the order 2 streams identically
become the new order 1 streams, the order 3 streams become
order 2, and so on throughout the network. The order of the
entire network decreases by one. It is a necessary condition
for defining self-similarity for a hierarchical branched net-
work that is reviewed in Sect.2.1.

Strahler ordering led to the discovery of the “Horton laws
of drainage composition”. They are often referred to simply
as the Horton laws. The most famous of the Horton laws is
the law of stream numbers forNω, denoting the number of
streams of orderω in a network of order�. It is traditionally
written as

Nω

Nω+1
= RB , 1 ≤ ω ≤ �. (1)

The numberRB is called the bifurcation ratio. Observations
from real river networks show a limited range ofRB values
between three and five. These are not formal laws because
they have not been proved from first principles, however, they
are widely observed in real river networks. Similar relation-
ships are observed for lengths, slopes, and areas.

Shreve(1967) developed the “random model” of channel
networks and thereby offered the first theoretical understand-
ing of Eq. (1). He introduced the basic topological concepts
of channel links (defined as the segment of channel between
two adjacent junctions where two or three channels meet)
and magnitude (defined as the total number of non-branching
or source channel links).Shreve(1967) showed that in the
limit as magnitude goes to infinity,RB converges to 4. This
demonstration showed for the first time that the empirical
Eq. (1) can be derived as an asymptotic result from a suit-
able mathematical model of channel networks. We review
this foundational issue in greater detail in the next subsec-
tion using the mathematical model of self-similar Tokunaga
river networks.

Leopold and Miller(1956) extended the Horton laws to
H–G variables. Their reasoning was that channel discharge
varies as a function of drainage area as a power law,Q =

kAc. At the time, the Horton law for drainage area was
known (Jarvis and Woldenberg, 1984). They tested the Hor-
ton law for discharge, and asserted that the Horton laws hold
for the entire suite of H–G variables as functions of dis-
charge, e.g., width, depth, velocity, slope, channel roughness,
and sediment transport. Until this paper was published, the
Horton laws had been observed for only the topologic and
geometric variables (Jarvis and Woldenberg, 1984). By ex-
tending the Horton laws to H–G variables, theLeopold and
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Miller (1956) paper showed how river basin geomorphol-
ogy, hydrology and channel hydraulics are linked. Conse-
quently, it opened a new door to understanding how the ge-
ometry, statistics and dynamics in river networks are mutu-
ally coupled on many spatial scales, which has far-reaching
implications for understanding and modeling river flows and
sediment transport in river networks. This major objective
has not been realized because the theoretical underpinning
of the Horton laws and the H–G exponents in channel net-
works has remained elusive. It remains a fundamental, long-
standing open problem in Hydro-geomorphology that is ad-
dressed here.

The Strahler ordering and the Horton law concepts had
a big impact on several areas, for example, (i) in modeling
growth of plants and other hierarchical biological structures
such as animal respiratory and circulatory systems, (ii) in
the order of register allocation for compilation of high level
programming languages, and (iii) in the analysis of social
networks (Jarvis and Woldenberg, 1984; Pries and Secomb,
2011; Viennot and Vauchaussade de Chaumont, 1985; Park,
1985; Horsfield, 1980; Borchert and Slade, 1981; Berry and
Bradley, 1976). The widespread appearance of Horton laws
suggests that perhaps a “fundamental principle” underlies
them. Indeed, recent research has shown that Horton laws
are asymptotic relations that have been proved in theoretical
self-similar river network models. Self-similarity is a form
of scale invariance. Specifically, we have selected the self-
similar Tokunaga network model to develop the theory in this
paper. This model is briefly reviewed in the next Sect.2.1.

An attempt to predict the H–G exponents in river networks
without the Horton laws is the theory of optimal channel net-
works (OCN) (Rodríguez-Iturbe et al., 1992). OCNs have
been analytically shown to produce three universality classes
in terms of scaling exponents, but none of these predictions
agrees with the data (Maritan et al., 1996). Two comprehen-
sive field programs were carried out in New Zealand (NZ)
to test the OCN predictions (Ibbitt et al., 1998; McKerchar
et al., 1998). However, the observed values of the H–G expo-
nents substantially deviated from the OCN predictions that is
explained in greater detail in Sects.7 and8.3. Other attempts
building on optimality ideas have used data from these two
New Zealand basins (Molnar and Ramirez, 2002), but a foun-
dational understanding of the geophysical origins of Horton
laws for the H–G variables and their exponents has remained
elusive.

West et al.(1997) recently tackled a somewhat similar
problem in the allometric theory of biological networks. Our
treatment of the H–G problem has some similarities but ma-
jor differences with their approach. For example,West et al.
(1997) appeal to an “optimality assumption” by maximizing
or minimizing a function. By contrast the present theory uses
no optimality assumption, but uses “self-similarity” as its ba-
sic building block.

The complexity resulting from space-time variability in
climate, hydrology and lithology can be contrasted with

the empirical observations like the Horton laws that sug-
gest regularities related to similarity across scales, or self-
similarity. We briefly review key results for the self-similar
Tokunaga model in the next Subsection regarding Horton
laws of stream numbers and magnitudes.

2.1 Method: a brief review of self-similar Tokunaga
river networks

Eiji Tokunaga introduced the Tokunaga model (Tokunaga,
1978). It is based on Strahler ordering and involves the con-
cept of self-similar topology in its construction. Unlike the
random model ofShreve(1967), this model is determin-
istic and does not include any statistical variability that is
observed in real networks. Therefore, the link lengths are
assumed to be equal to l throughout the paper.Peckham
(1995a) gave empirical evidence that supports the idea that
the average topologic features of medium to large river net-
works can be well described by the Tokunaga model. For
example, in real networks, generally 3< RB < 5 that the
Tokunaga model can exhibit but the random model predicts
RB = 4 as mentioned above. Moreover, the mathematics in
the Tokunaga model is simplified that is necessary to make
progress in the H–G problem addressed here.

The key building block of the model is a generator for side
tributaries,Tω,ω−k, which may be interpreted as the mean
number of streams of orderω − k joining streams of order
ω since real networks exhibit statistical variability in their
branching structures (topology). Self-similarity in the net-
work topology is reflected in the assumption thatTω,ω−k =

Tk, k = 2,3, . . .. Tokunaga further restricted his model by re-
quiring thatTk/Tk−1 = c, k = 2,3, . . ., andT1 = a wherec

anda are constant parameters associated with network topol-
ogy. It leads to the generator expression

Tk = ack−1, k = 1,2, . . . , (2)

representing mean self-similar Tokunaga trees (Dodds and
Rothman, 1999). These parameters are observable quantities
in natural basins.

Predictions are based on a fundamental recursion equation
governingNk, the number of streams of orderk,

Nk = 2Nk+1 +

�−k∑
j=1

TjNk+j . (3)

McConnell and Gupta(2008) proved that the ratioNk/Nk+1
converges toRB in the limit as� − k → ∞. The limit ap-
plies to small-order streams,k = 1,2, . . ., as the network or-
der � → ∞. McConnell and Gupta(2008) gave a physical
interpretation of the limit as follows: “note that if the over-
all order� could be increased, we would expect to see more
streams of higher and lower orders. However, when all the
streams of smaller ordersk andk +1 in a basin of very large
order� are counted, we expect that we have captured a sig-
nificant and representative portion of the side tributaries, and
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the observed bifurcation ratio more closely matches the pre-
dicted ratio. This physical argument clarifies the use of the
limit, � − k → ∞”. The solution to Eq. (3) is given by

RB =
(2+ a + c) +

√
(2+ a + c)2 − 8c

2
. (4)

McConnell and Gupta(2008) also proved a Horton law
for stream magnitudes,Mω, ω = 1,2, . . . from the above re-
sult. Magnitude is defined in Sect.2, and is the topological
equivalent of drainage area. The Horton law for magnitudes
is expressed as

lim
�−ω→∞

Mω+1

Mω

= RM = lim
�−ω→∞

Aω+1

Aω

= RA, (5)

where the Horton magnitude ratioRM equalsRB andRA,
andRA is the Horton area ratio. We remark that the random
model obeys self-similarity in a mean sense, and it hasa = 1
andc = 2. Equation (4) predictsRB = 4, which agrees with
the random model (Shreve, 1967).

Finally, we review two results, which were previously re-
ported by others, and which have been shown to hold for
Tokunaga networks. The topological fractal dimensionDT
for Tokunaga networks is given byDT = logRB/ logRC ,
whereRB is the Horton bifurcation ratio andRC is the link
ratio (Peckham, 1995a). SinceRB = RA, and link lengths
are constant, and as explained at the beginning,RC = RL,
it follows that RL = R

1/DT
A , whereRL is the length ratio.

For OCNs,DT = 2 (Maritan et al., 1996). For natural river
networks, data sets show that typically, 1.7 < DT < 1.8. The
class of Tokunaga networks predicts values ofDT less than
or equal to 2. The Hack exponent for Tokunaga networks is
βT = 1/DT ≥ 1/2, and the area exponentαT ≤ 1/2, as ob-
served empirically (Peckham, 1995b). Moreover, for Toku-
naga networks,αT + βT = 1 (Peckham and Gupta, 1999).
A new theory of random self-similar networks (RSN) in-
cludes statistical variability, and the Tokunaga is shown as
a special case for a subclass of RSN that obey mean self-
similarity (Veitzer and Gupta, 2000). The RSN theory pro-
vides the topologic and geometric foundations on which a H–
G theory incorporating statistical fluctuations can be devel-
oped in the future. RSN theory is not used here.

2.2 Method: asymptotic self-similarity of type-1 and
type-2

The scope of the material covered in this subsection is enor-
mous with a long history. We have limited our review to some
key concepts that are used in our paper. The reader may con-
sult the well-written books (Barenblatt, 1996, 2003) as re-
quired for further explanations.

Dimensional analysis is based on the simple idea that
the laws of nature are independent of the arbitrarily cho-
sen basic unit of measurements. As a consequence these
laws are invariant under a change of scale. Mathematically

this is expressed as a generalized homogeneity that mani-
fests as power laws. The famous Buckingham Pi theorem,
or simply 5 theorem, is a conceptualization of this pow-
erful idea. It enables one to reduce the number of argu-
ments in the functions expressing physical laws, thereby
making it simpler to study nature’s regularities either ex-
perimentally or theoretically. The5 theorem says (Baren-
blatt, 2003, p. 25): “A physical relationship between a di-
mensional quantity and several dimensional governing pa-
rameters can be rewritten as a relationship between a dimen-
sionless parameter and several dimensionless products of the
governing parameters. The number of dimensionless prod-
ucts is equal to the total number of governing parameters
minus the number of governing parameters with indepen-
dent dimensions”. Let,a be the dependent dimensional quan-
tity, and let a1, . . . ,ak,b1, . . . ,bm represent thek + m = n

governing parameters,k of them with independent dimen-
sions. With this notationa = f (a1, . . . ,ak,b1, . . . ,bm) can
be rewritten as5 = 8(51, . . . ,5m), with 5 = aa

−p

1 . . .a−r
k ,

and the dimensionless products for the governing parame-
ters with independent dimensions are5i = bia

−pi

1 . . .a
−ri
k

for i = 1, . . . ,m. Because of the definitions, the exponents
pi, . . . , ri can be obtained by solving elementary linear equa-
tions. A classical example to illustrate the5 theorem is the
formula for the periodθ of the small oscillations of a pen-
dulum of massm and length̀ and the gravitational acceler-
ationg. The three governing parameters (m,`,g) have three
independent dimensions (M, L, LT−2). Therefore, the num-
ber of dimensionless products of the governing parameters
is n− k = m = 3− 3 = 0, which implies that the dimension-
less product involving the period,5, is a constant. It can be
written asθg1/2`−1/2

= constant (Barenblatt, 2003, p. 132).
The constant cannot be obtained from dimensional analysis.
It must be determined either from a theory or from observa-
tions. It is 2π for the pendulum example.

The majority of the successful examples of the applica-
tions of dimensional analysis can be found in many text-
books, which share another important property that is not al-
ways emphasized, but which is necessary in our context. For
such problems, there is a clear way of separating the impor-
tant variables from the ones that do not play a significant role
in the limit because they are either too small or too large. For
instance, the textbook example (Gibbings, 2011, p. 119) of
the derivation of Kepler’s third law from dimensional analy-
sis needs three non-dimensional numbers, and expresses the
ratio of the period of rotation,T , in terms of the other two,
namely, the ratio of the mass of the planetm to the mass of
the SunM and the ratio of axes of the ellipsis,a/b, which can
be expressed in terms of the eccentricity,e2

= 1−(b/a)2. Let
G denote the constant of gravitation. Then,

GMT 2

a3
= f (m/M,e). (6)

The crucial observation is that two of the dimensionless num-
bers are small and therefore do not play a significant role
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in the limit when they go to zero. The consequence is that
the limit of the function that expresses the non-dimensional
number involving the period of the rotation in terms of the
other two goes to a constant. It is well known from the the-
ory that the limit is 4π2. This is self-similarity characterized
by the existence of a non-trivial (different from zero or in-
finity) limit of the function when some of the other non-
dimensional products become very small or large. This is
called “asymptotic self-similarity of the first kind”, or SS-
1 for short (Barenblatt, 2003, p. 84). SS-1 is applied to our
problem in Sects.6 and7.

In many other cases, a dimensionless number, despite be-
ing too small (or large, if one considers its reciprocal), can-
not be ignored in the limit. Mathematically, this corresponds
to the case where the limit of a function does not exist, or
is zero or infinity. The simplicity of SS-1 that consists in
discarding small dimensionless variables and obtaining the
scaling exponents from dimensional analysis is lost in this
case. In such cases small variables continue to play a role
in the problem, and require a generalization of the dimen-
sional analysis. The concept of “asymptotic self-similarity of
the second kind”, or SS-2 for short, discussed inBarenblatt
(1996, chap. 5) is needed. It is known as the “renormaliza-
tion group theory” in statistical physics. For our purposes, the
fluid–mechanical approach is more natural than the statisti-
cal physical approach, because it is based on a generalization
of the dimensional analysis framework. We follow the fluid-
mechanical approach in this paper.Barenblatt(1996, p. 172)
has explained that these two approaches are equivalent.

A simple example of SS-2 is the determination of the
length of a fractal curve, which can be contrasted with a
smooth curve (Barenblatt, 2003, p. 132). LetLη be the length
of a broken line of segment lengthξ that approximates the
continuous curve between two points that are separated by
a distanceη. Lη depends on the two dimensional parame-
tersη andξ . Dimensional analysis givesLη = ηf (η/ξ). For
a smooth curve, say a semicircle, asξ → 0 the argument
η/ξ → ∞ and the functionf goes to a limit, namelyπ/2.
Whereas for a fractal curve, the limit off when η/ξ →

∞ is infinity. In fact from fractal geometry we know that
f (η/ξ) ' (η/ξ)D−1. The anomalous exponentD > 1 is the
fractal dimension that cannot be estimated from dimensional
analysis.Barenblatt(1996) gives a recipe for the applications
of similarity analysis and SS-2 to obtain the exponents along
with many physical examples that include turbulent shear
flows, fractals, biological allometry, and groundwater hydrol-
ogy. We apply SS-2 in Sect.8.

3 Data sets

We use data sets from four drainage basins to test our the-
ory. Three of them are taken from the literature. The fourth
one is the experimental Whitewater basin, Kansas, USA that
is unpublished. These basins are selected with the criteria of

availability of either complete H–G data for the entire river
network in them or the possibility of carrying out Hortonian
analysis for the H–G variables in one or more basins. These
variables are indexed by the Horton order,ω. We are partic-
ularly interested in the power-law representation of the H–
G variables as functions of discharge that is widely used in
the literature for analyzing data (see Sect.6.1 for a theoreti-
cal derivation). The power-law representation and the corre-
sponding scaling exponents are defined below. Our notation
is the same as inLeopold et al.(1964, p. 244).

Uω ∝ Qm
ω , Wω ∝ Qb

ω, Dω ∝ Qf
ω,

Sω ∝ Qz
ω and n′

ω ∝ Qy
ω. (7)

The first basin is the classic Brandywine creek, PA in the
US as given inLeopold et al.(1964, Table 7.5, p. 244),
where the H–G exponents are also given. It has humid sub-
tropical climate with cool to cold winters, hot, humid sum-
mers, and generous precipitation throughout the year, ap-
prox. 1100 mm year−1. Köppen climate classification lists
it as type Cfa (Köppen, 1884). It has a drainage area of
777 km2 at the mouth. Average discharge is 12 m3 s−1. The
observed values of the H–G exponents for the Brandywine
creek (Leopold et al., 1964, Table 7.5, p. 244) areb = 0.42,
f = 0.45,m = 0.05,z = −1.07 andy = −0.28.

Two comprehensive field measurement programs were
conducted in NZ. The largest part of NZ has a pleasant sea
climate with mild winters and warm summers. Köppen cli-
mate classification lists it as type Cf. The second field study
was conducted in the Taieri River basin (Ibbitt et al., 1998).
Figure1 illustrates the measurement sites in the channel net-
work of the Taieri River basin. It has an estimated mean an-
nual precipitation of 1400 mm. The basin area is 158 km2.
Mean discharge, as measured over the discontinuous 14-year
period 1983–1996, is 4.90 m3 s−1, representing an average
runoff rate of 980 mm year−1 from the basin. The field values
of the H–G exponents for the Taieri River basin (Ibbitt et al.,
1998) areb = 0.517,z = −0.315,m = 0.238 andf = 0.247.

The third field study was conducted in the 121 km2 Ash-
ley River basin (McKerchar et al., 1998). Annual precipita-
tion increases in a northwesterly direction across the basin
from 1200 to about 2000 mm year−1. Mean discharge, as
measured by the stream gauge over the 20-year period 1977–
1996, is 3.99 m3 s−1, representing an average runoff rate of
1040 mm year−1 from the basin. The observed H–G scal-
ing exponents for the Ashley River basin (McKerchar et al.,
1998) areb = 0.44, z = −0.317,m = 0.318 andf = 0.242.
The Horton analysis for this basin is briefly described in
Sect.8.4. Both the data sets from NZ are unique, and offer
the potential to conduct Horton analysis for the H–G vari-
ables thatMantilla (2014) is conducting. Some of his results
are presented in Sect.8.4.

The last data set comes from the 1100 km2 Whitewater,
Kansas in the US. According to the Köppen climate classifi-
cation, the climate of this part of Kansas can be characterized
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Figure 1. Reproduction of the original figure ofIbbitt et al.(1998,
Fig. 1), showing the river network of the Taieri basin in New
Zealand along with the measurement sites in the network.

as a humid continental climate, with cool to cold winters and
hot, often humid summers. Most of the precipitation falls in
summer and spring. Average precipitation is of the order of
840 mm year−1. Snowmelt runoff is negligible, soil is com-
posed of fine-grained sediment, and the land use is primar-
ily agricultural and cattle ranching. Whitewater basin was in-
strumented to conduct an interdisciplinary field and theoret-
ical hydrology program, called Hydro-Kansas (2002–2012).
Kean and Smith(2005) tested a theoretical fluid–mechanical
model to estimate stream flows. The model was used to esti-
mate streamflows at multiple spatial locations in streams of
different Strahler order in the Whitewater basin (Clayton and
Kean, 2010). Mantilla (2014) participated in the H–K pro-
gram and took field measurements of some of the H–G vari-
ables, especially width and depth. He has kindly shared the
necessary data for our study.

An important issue in estimating field values of the H–
G exponents is the measurement errors that are inherent to
measuring the H–G variables, which affect their scaling ex-

ponents. For example,Ibbitt et al. (1998) and McKerchar
et al. (1998) have given standard errors for each of the H–
G exponents that are listed in Table1. We use these field-
estimated values in testing theoretical predictions against
their observed values from three basins in Sects.6 and8.3.
Theoretical relations between the Horton laws for the H–G
variables and the corresponding scaling exponents are briefly
considered in Sect.8.4.

4 Dimensionless river-basin numbers

The fundamental physical parameters governing the H–G in
drainage networks are defined at the bottom of a complete
Strahler stream of orderω ≥ 1 as follows.Qω is the river
discharge rate (L3 T−1), Aω is the cumulative drainage area,
andDω, Uω, andWω are channel depth, velocity, and width,
respectively.Hω is the elevation drop that is defined as the el-
evation difference between the beginning and end junctions
of a complete Strahler stream.Lω denotes the corresponding
stream length. Slope is defined asSω = Hω/Lω. Kinematic
viscosity isν, water density isρ, and the gravitational ac-
celeration isg. R is the mean runoff rate per unit area from
the hillslopes along a channel network, and has dimension
L T−1. The spatial uniformity ofR implies that the river
basin is assumed to be homogeneous with respect to mean
runoff generation. This assumption can be relaxed, but we
want to keep this presentation simple.

From the set of twelve variables listed above, only nine are
independent, because three variables are dependent:Qω =

UωWωDω, Sω = Hω/Lω, andLω = A
1/DT
ω . These nine in-

dependent variables include three basic dimensions, length
(L), time (T ) and mass (M). The Buckingham Pi theorem
explained in Sect.2.2 gives that the number of independent
dimensionless numbers is 6, but it does not give what they
are. They can be specified either using formal dimensional
analysis or physical arguments. We adopt the later approach
because it is physically insightful. Some of these dimension-
less numbers were considered inPeckham(1995b).

The first dimensionless number is given by

51(ω) =
Qω

RAω

. (8)

The discharge rateQω is taken to be a linear function of
drainage area given byQω = RAω, which is observed in
many humid climates for low and mean flows.Leopold et al.
(1964) used mean flow in their H–G investigations. Low flow
has been used in recent field H–G observations from NZ that
are explained in Sect.3 and analyzed in Sect.8.

The second dimensionless number is

52(ω) =
R

√
Aω

DωUω

. (9)

It is suggested by mass conservation involving the ratio of
runoff per unit width of drainage basin in the numerator, and
discharge per unit channel width in the denominator.
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Table 1. Summary of observed and predicted H–G scaling exponents. The sources of the data areIbbitt et al. (1998) for the Taieri River
basin in New Zealand,McKerchar et al.(1998) for the Ashley River basin in New Zealand, andLeopold et al.(1964, Table 7.5, p. 244) for
the Brandywine creek, PA in the United States.

Basin

Variable Exponent Taieri Asheley Brandywine

Observed

U ∝ Qm m 0.238± 0.023 0.318± 0.018 0.050
W ∝ Qb b 0.517± 0.016 0.440± 0.016 0.420
D ∝ Qf f 0.247± 0.016 0.242± 0.014 0.450
S ∝ Qz z −0.315± 0.026 −0.317± 0.020 −1.070
n′

∝ Qy y −0.231± 0.028 −0.315± 0.023 −0.280
UD/ν ∝ Qm+f m + f 0.485± 0.028 0.560± 0.023 0.500

Estimated usingDT = 7/4,f andz.

α 0.208 0.175 0.441
β −0.822 −0.864 0.327

Predicted using Eqs. (28), (45) and (53).

UD/ν ∝ Qm+f m + f 0.500 0.500 0.500
W ∝ Qb b 0.500 0.500 0.500
n′

∝ Qy y −0.246± 0.030 −0.255± 0.025 −0.285

The relation between gravitational and inertia forces in
river networks suggests the third dimensionless number
53(ω). Specifically, we define the “basin Froude number”
as

53(ω) =
Uω

√
gHω

=
Uω

√
gSωLω

, (10)

where the channel slope

54(ω) = Sω = Hω/Lω (11)

is the fourth dimensionless number. The dropHω defines the
length scale governing the gravitational force. It should be
differentiated from a channel Froude number in open channel
hydraulics where flow depth defines the length scale.

The fifth dimensionless number is given by the Reynolds
number.Leopold et al.(1964, p. 158) have discussed its sig-
nificance in the context of laminar and turbulent flows. In
natural streams, the flow is largely turbulent.

55(ω) =
UωDω

ν
. (12)

The sixth dimensionless number incorporates the factors
controlling flow velocity. The total frictional force along the
channel boundary isτω(2Dω + Wω)Lω ≈ τωWωLω, where
τω is the shear stress per unit area. It is proportional to the
square of the mean velocity for turbulent flows if the bound-
ary does not change with variations in flow (Leopold et al.,
1964, p. 157). The gravitational force due to the mass of wa-
ter along the channel lengthLω is given byρgWωDωLωSω.

The dimensionless ratio of these two forces gives

56(ω) =
U2

ω

gDωSω

. (13)

The term
√

gDωSω is known as the shear velocity.56 is
proportional to the Darcy–Weisbach resistance coefficient.
Leopold et al.(1964, Fig. 6.5) illustrated that for the Brandy-
wine Creek, PA, 1/

√
56 is linearly related to the logarithm

of relative roughness defined by the ratio of flow depth to the
height of roughness elements.

5 Mass conservation in self-similar Tokunaga networks

The dischargeQω is computed using a mass conserva-
tion equation for a network indexed by the Strahler or-
der ω ≥ 1. We show that a mass conservation equation for
a channel network indexed by link magnitudes (Gupta and
Waymire, 1998) is a special case of it. We further assume
that our channel network is self-similar Tokunaga with uni-
form link lengthsl. No statistical fluctuations in the topology
of channel network are considered in developing the H–G
theory as mentioned in Sect.2.1.

Let Sω(t) denote the storage in a Strahler stream of order
ω ≥ 1 defined by

Sω(t) = Wω(t)Dω(t)Lω. (14)

The dependence of storage on timet comes from tempo-
ral variations of streamflows in the network, which result in
width and depth varying with time.
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The total number of junctions denoted byCω is the same as
the total number of links in a complete Strahler stream of or-
derω. Let ti , i = 1,2,3, . . . ,Cω be a sequence of travel times
for water to reach the bottom of a complete Strahler stream
from successive junctions enumerated from the bottom. This
means thatt1 represents the travel time from the first junc-
tion from the bottom,t2 from the second junction and so on.
For example, if water flows with a uniform velocityu, then
ti = il/u, because all the links are assumed to have the same
lengthl.

Let Ri(t), i = 1,2,3, . . . ,Cω denote the volumetric runoff
rate from theith hill along a complete Strahler stream of or-
der ω. Let Qki

, i = 1,2, . . . ,Cω denote the discharge from
the side tributary at theith junction from the bottom. Here
the subscriptsk1,k2, . . . denote the Strahler orders of the side
tributaries coming into the junctions counted from the bottom
of a stream. LetQ1

ω−1(t) andQ2
ω−1(t) denote the discharges

in the two tributaries at the top of the stream. Each of them
is of orderω − 1 by definition of the Strahler ordering given
in Sect.2.

Considering a Strahler stream as a finite control volume,
the mass conservation equation can be written as

dSω(t)

dt
+ Qω(t) = Q1

ω−1 (t − tω−1) + Q2
ω−1 (t − tω−1)

+

Cω∑
i=1

Qki
(t − ti) + 2

Cω∑
i=1

Ri(t). (15)

For ω = 1, Eq. (15) reduces to the link magnitude-based
mass conservation equation inGupta and Waymire(1998)
that is easy to check.

As a first step, we have chosen to focus solely on the spa-
tial analysis in the context of H–G. In particular, we seek
a spatial solution of Eq. (15) by ignoring the time dependence
of Qω(t), and denoting it asQω(t) = Qω. This is tantamount
to assuming that dSω(t)/dt = 0, Ri(t) = 0, ∀i, t > 0, and
the travel timesti = 0, ∀i. Physically, these sets of assump-
tions can be interpreted to mean thatR, is applied uniformly
throughout the network at timet = 0. Moreover, water is as-
sumed to travel in a very short time throughout the network
so that travel times are ignored.

In a recent paper on a space–time theory of low flows
for river networks, travel times were ignored throughout the
basin compared to the subsurface response time for hill-
slopes, andR was computed from hillslope processes un-
der idealized conditions. The theoretical results thus obtained
compared well with observations (Furey and Gupta, 2000).
Similarly, in the present context, the idealized assumptions
made above are necessary for making progress on this com-
plex problem.

In view of the above assumptions, Eq. (15) simplifies to

Qω = Q1
ω−1 + Q2

ω−1 +

Cω∑
i=1

Qki
. (16)

The key problem is to compute a solution forQω. In view
of the definition of self-similarity given in Sect.2.1, Eq. (16)
reduces to

Qω = 2Qω−1 +

ω−1∑
k=1

TkQω−k, (17)

whereTk = Tω,ω−k, k = 1,2, . . . ,ω − 1 denotes the number
of side tributaries of orderω − k joining a stream of orderω.
Equation (17) has been solved rigorously under the assump-
tion thatTk ’s obey Tokunaga self-similarity. The solution is
given by Eq. (4). Because the recursion equation (Eq.17) for
Qω is the same as the one forAω, we assert from the argu-
ments given in Sect.2.1that

RQ = lim
�−ω→∞

Qω+1

Qω

= RB = lim
�−ω→∞

Nω

Nω+1

= RA = lim
�−ω→∞

Aω+1

Aω

(18)

and

RQ = RB = RA =
(2+ a + c) +

√
(2+ a + c)2 − 8c

2
.

Equation (18) implies thatQω equalsRAω, which is used in
defining the first dimensionless number in Sect.4. It follows
from the definitions of Horton ratios, and from the equality
RQ = RB , that

Qω+1Nω+1 = QωNω, as � − ω → ∞. (19)

This is a foundational result governing mass conservation
in self-similar Tokunaga networks. Even though, Eq. (19) is
valid in the limit of large network order, the result holds for
small values ofω as explained in Sect.2.1. It should be noted
that if one substitutesAω for Qω in Eq. (19), then it loses its
physical interpretation. The reason is thatQω is a dynamic
variable butAω is a fixed geometrical variable. Moreover, a
power law relation between these two variables plays a fun-
damental role in the H–G investigations as explained above
in Sect.2 and later in Sect.8.3.

West et al.(1997) used the mass conservation equation for
perfect branching biological networks in which no side trib-
utaries are present, and in which each parent branch bifur-
cates into two branches. In that case, it is simple to write
down Eq. (19) as a special case of mass conservation with-
out involving any limit.West et al.(1997) used it to obtain
some remarkable results governing allometry in biological
networks.

We apply Eq. (19) to extend the geometric and topologi-
cal Horton laws in self-similar Tokunaga networks to include
the H–G variables. Figure2 shows a Horton law for channel
widths in a drainage network that was mentioned along with
other H–G variables in Sect.2. As mentioned there, the key
equation providing this link is a power-law relation between
discharge and drainage area, and a Horton law for drainage
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areas (Leopold and Miller, 1956, pp. 19–20). In our context,
Eq. (18) showing thatRQ = RA represents both these fea-
tures for Tokunaga networks.

6 Derivation of Horton laws and prediction of the
width and Reynolds number exponents using SS-1

6.1 Horton laws for channel width, depth and velocity

It follows from the definition of51 in Eq. (8), and from the
identity in Eq. (18) thatRQ = RA,

lim
�−ω→∞

51(ω + 1)

51(ω)
= R51 = 1, ω = 1,2, . . . � �. (20)

This important result comes from the self-similarity of Toku-
naga networks and the assumption of spatial homogeneity of
runoff R. It probably is a valid assumption for widely vary-
ing climatic regions and a broad range of spatial scales. It is
tested in Sect.8.4for the Ashley River basin from NZ that is
described in Sect.3.

The five H–G variables,U , W , D, S and n′ considered
in this paper vary as dischargeQ varies, which is the sixth
H–G variable. Therefore, we assume that all the H–G vari-
ables are homogeneous functions ofQ. This is the simplest
mathematical assumption because it means that the func-
tions do not depend on any other parameter exceptQ. It
is widely used in the H–G literature reviewed in Sect.2.
We can write it asU = f1(Q), W = f2(Q), etc. To deter-
mine the form of these functions, we need a functional equa-
tion that applies to our physical context.Peckham(1995b,
p. 53) has reviewed four functional equations with solu-
tions known as Cauchy equations that repeatedly come up
in similarity type investigations. Of these four, the most per-
tinent in our context is the equation based on self-similarity.
ConsiderU = f1(Q). Self-similarity can be represented by
f1(Q1 · Q2) = f1(Q1)f2(Q2) (Gupta and Waymire, 1998,
pp. 102–103), whose solution is a power law. Therefore,

U = f1(Q) ∝ Qm.

The above argument applies to all the functions. There-
fore, the H–G variables can be written as power law func-
tions of discharge, . This functional form has been widely
used in H–G investigations (Leopold and Miller, 1956), and
was introduced in Eq. (7).

Equation (18) shows that the ratio,Qω+1/Qω, converges
to RQ, and thereby obeys a Horton law. To extend the Horton
laws to other H–G variables, let us consider velocity

lim
�−ω→∞

Uω+1

Uω

=
Qm

ω+1

Qm
ω

= Rm
Q = RU , (21)

which follows from the fact that the ratios are positive and
monotonic inω (Rudin, 1976, p. 44). Similarly,RW = Rb

Q

and RD = R
f
Q. By definition, Qω = UωWωDω. Therefore,

Figure 2. Reproduction of the original figure ofLeopold and Miller
(1956, Fig. 19, p. 23), showing the relation of stream width to
stream order in arroyos.

the Horton ratios for velocity, width and depth can be written
as

RU = Rm
Q, RW = Rb

Q, RD = R
f
Q, m + b + f = 1. (22)

The derivation of Eq. (22) required that (i) Horton laws
for channel widths, depths and velocities hold in Tokunaga
self-similar networks, (ii) runoff generationR is spatially ho-
mogeneous, and that (iii) channel width, depth and velocity
depend monotonically on Strahler orderω.

6.2 Prediction of the width exponent and Reynolds
number exponent

We will now use the above results to show that the Horton
laws for the topologic and geometric variables explained in
Sect.2.1extend to channel widths. Our arguments are based
on dimensional analysis, as explained in Sect.2.2. Consider
the dimensionless number52(ω) defined by Eq. (9), and the
ratio given by

R52(ω) =

√
Aω+1

√
Aω

·
DωUω

Uω+1Dω+1
. (23)
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SubstitutingDωUω = Qω/Wω in the above expression gives

R52(ω) =

√
Aω+1

√
Aω

·
QωWω+1

Qω+1Wω

. (24)

We have already shown that the right-hand side converges
to a constant in Sect.6.1. It follows that the left-hand side of
Eq. (24) also converges to a constant. Stated mathematically,

lim
�−ω→∞

√
Aω+1

√
Aω

QωWω+1

Qω+1Wω

=
R

1/2
A RW

RQ

= lim
�−ω→∞

R52(ω) = R52. (25)

The asymptotic constancy of the ratioR52(ω) of the dimen-
sionless number52 across different Strahler orders holds in
Tokunaga networks. SinceRQ = RA, Eqs. (25) and (22) can
be combined to obtain

RW = R52R
1/2
Q = Rb

Q. (26)

Therefore,R52 = 1, and the channel width H–G exponent is

RW = R
1/2
Q , b = 1/2. (27)

It follows directly from Eqs. (12), (22) and (27) that a Hor-
ton law for the Reynolds number can be written as

R55 = RURD = R
m+f
Q = R

1/2
Q . (28)

We now test these predictions against data from three field
studies described in Sect.3 and Table1. The first test of the
theory is for the Brandywine creek (Leopold et al., 1964, Ta-
ble 7.5, p. 244). The empirical values of width, depth and ve-
locity do not satisfyb+f +m = 1, instead they add to 0.92.
Assuming that depth and velocity exponents are correct as
per our discussion in Sect.8.3, b = 1− f − m = 1/2 agrees
with our theoretical prediction. Likewise,f + m = 1/2 also
agrees with our predictions.

The second test of the theory is in Taieri River basin (Ib-
bitt et al., 1998). The empirical width exponent interval is
(0.501, 0.533). The predicted valueb = 1/2 is very close to
the empirically estimated lower bound. For the computation
of the error inm + f we assume independence and use the
well-known formula that the variance of a sum is the sum of
variances. It is used whenever there is a linear function of
the exponents. Using the formula, the empirical depth plus
velocity exponent interval is (0.457, 0.513). The predicted
valuem + f = 1/2 lies in this range. Both these predictions
support our theory in the Taieri basin.

The third test is in the Ashley River basin (McKerchar
et al., 1998). The empirical width exponent interval is (0.424,
0.456). The predicted valueb = 1/2 lies outside this range.
Similarly, the empirical depth plus velocity exponent inter-
val is (0.537, 0.583). The predicted valuem + f = 1/2 lies
outside the range. Clearly there is a discrepancy between the
observed and the predicted values.

Comparing the field-measured values of the H–G expo-
nents in the Taieri basin and the Ashley basin, which have
similar scales and climates,f andz are comparable as one
expects, but notb andm. A physical reason for this discrep-
ancy is diagnosed in Sect.8.4.

7 Predictions of Horton laws and the H–G exponents
assuming SS-1, and comparison with OCN model
exponents

In the following developments, we tentatively assume that
SS-1 applies to slope,Sω. Similar to the physical assump-
tions made before for channel width, depth and velocity, we
assume that slope depends monotonically on Strahler order.
Therefore, the Horton ratio for slope converges toRS fol-
lowing a similar reasoning as given in Eq. (21). From that
assumption we predict the Horton laws for width, depth,
velocity and slope and test our predictions of their expo-
nents against the optimal channel network (OCN) model of
Rodríguez-Iturbe et al.(1992). We show that the four pre-
dicted scaling exponents based on this tentative assumption
agree with the OCN model. However, our theory differs from
it in a fundamental manner because we predict Horton laws
for these variables, but the OCN model does not address this
issue. Moreover, our analysis uses self-similarity, but OCN
uses “optimality”. SS-1 in the H–G context is not the correct
assumption as explained in the next section. It is being made
here only to compare the predictions of the H–G exponents
from our theory with the OCN model.

Define the Horton ratio for the basin Froude number from
Eq. (10). Following similar arguments as given in Eq. (21),
and given about the length ratio in Sect.2.1, we assert the
convergence of the basin Froude number because the Horton
ratio of each term in it converges.

lim
�−ω→∞

53(ω + 1)

53(ω)
= R53 =

RU
√

RLRS

. (29)

Using the notation in Eq. (7), and applying Eq. (21) to
slopeS, it follows thatRS = Rz

Q. In view of Eq. (18) show-
ing that RQ = RA, it follows from the results in Sect.2.1

thatRL = R
1/DT
A = R

1/DT
Q . Assuming that the OCN model is

space filling as discussed in Sect.2.1, it follows thatDT = 2.
SubstitutingRU = Rm

Q from Eq. (21) into Eq. (29) gives

RU = Rm
Q = R53R

1/4
Q R

z/2
Q . (30)

Equation (30) predicts thatR53 = 1, and

m =
1

2
(z + 1/2). (31)

Similarly, consider the Horton ratio for the dimension-
less number proportional to the Darcy–Weisbach resistance
coefficient given by Eq. (13), and take the limit. We have
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demonstrated the convergence of each term in it. Therefore,

lim
�−ω→∞

56(ω + 1)

56(ω)
= R56 =

R2
U

RDRS

. (32)

We get an expression for the depth exponent by rewriting
Eq. (32) as

RD = R
f
Q =

R2
U

R56RS

=
R2m

Q

R56R
z
Q

. (33)

It predictsR56 = 1, and

f = 2m − z. (34)

Solving Eqs. (31) and (34) gives f = 1/2, m = 0, and
z = −1/2, which also satisfy the constraintm + f = 1/2.
Our predictions may be summarized as follows: (1) Horton
laws hold for the H–G variables in self-similar Tokunaga
networks, and (2) the H–G exponents areb = 1/2, m = 0,
f = 1/2, andz = −1/2. Our second prediction agrees with
the OCN model ofRodríguez-Iturbe et al.(1992). We have
already mentioned that the OCN model does not consider
Horton laws for the H–G variables. That the exponents match
is not a surprise because our theory is built on dimensional
analysis. In conclusion, we state that our theory is fundamen-
tally different from the OCN model.

To test the OCN predictions, we used the data sets reported
in Sect.3 and Table1. Except for the Brandywine and Taieri
basins that supportb = 1/2, other measured H–G exponents
do not agree with theoretical predictions. The deviations are
substantial, suggesting that H–G in networks does not obey
SS-1 forD, U andS. We address this foundational issue in
the next section.

8 Application of SS-2 to predict Horton laws for
the H–G variables and the exponent of the Manning
friction

Slope appears in dimensionless numbers given by Eqs. (10),
(11) and (13). The stream drop in Eq. (11) is bounded but
stream length increases with order. Therefore, slopeSω → 0
as � − ω → ∞, but slope cannot be eliminated from the
asymptotic limit. Therefore, SS-1 is not applicable to our
problem. A generalization of the dimensional analysis is re-
quired to develop the H–G theory as explained in Sect.2.2.
It is the focus of this section.

8.1 Horton laws and theoretical expressions for
the H–G exponents

We define two “renormalized dimensionless numbers” in
which slope appears. Equations (10) and (13) modify to

5∗

3(ω) =
Uω√

gLωSα
ω

, (35)

5∗

6(ω) =
U2

ω

gDωS
β
ω

. (36)

Here,α andβ are “anomalous scaling exponents” that can-
not be predicted from dimensional analysis. In principle they
can be predicted from physical arguments involving sedi-
ment transport. This is a task for future research as explained
in Sect.9.

Following similar arguments as given in Sect.6, and as-
suming that slope is monotonic in order as in Sect.7, Eq. (21)
applies to slope. Therefore, we assert the convergence of the
ratios of the renormalized dimensionless numbers,

lim
�−ω→∞

5∗

3(ω + 1)

5∗

3(ω)
= R5∗

3
=

RU√
RLRα

S

. (37)

and,

lim
�−ω→∞

5∗

6(ω + 1)

5∗

6(ω)
= R5∗

6
=

R2
U

RDR
β
S

. (38)

We have explained in Sect.7 that RL = R
1/DT
A = R

1/DT
Q

and RS = Rz
A = Rz

Q. From Sect.6, RU = Rm
Q. Therefore,

Eq. (37) gives

RU = Rm
Q = R∗

53
R

1/2DT
Q R

zα/2
Q . (39)

Equation (39) predicts thatR∗
53

= 1, and

m =
1

2
(zα + 1/DT). (40)

Sincem+f = 1/2, an expression for the depth exponent fol-
lows directly from Eq. (40),

f =
1

2
(1− zα − 1/DT). (41)

We get a second expression for the depth exponent by rewrit-
ing Eq. (38) as

RD = R
f
Q =

R2
U

R5∗

6
R

β
S

=
R2m

Q

R∗
56

R
zβ
Q

. (42)

It predicts,R5∗

6
= 1, and, in view of Eq. (40),

f = 2m − zβ = z(α − β) + 1/DT. (43)

Nonlin. Processes Geophys., 21, 1007–1025, 2014 www.nonlin-processes-geophys.net/21/1007/2014/



V. K. Gupta and O. J. Mesa: Horton laws for hydraulic–geometric variables 1019

Equating the expressions forf from Eqs. (43) and (41), we
obtain an expression for the slope scaling exponent as

z(3α − 2β) = 1− 3/DT. (44)

Equations (40) and (44) together generalize the H–G theory
for a channel network based on an application of SS-2.

To summarize, given the topological fractal dimensionDT
and the prediction of the width exponentb = 1/2 by Eq. (28),
we have two equations, (40) and (44), which give theoretical
expressions for H–G exponentsm andz in terms of two un-
known parameters,α andβ. Our theoretical expressions for
the H–G exponents can be written as

b = 1/2

z = (1− 3/DT)/(3α − 2β)

m = (zα + 1/DT)/2 (45)

f = 1/2− m.

8.2 Horton law for the Manning friction and
a theoretical expression for its exponent

The scaling exponentsα andβ are free parameters, which
are not predicted by our theory. As a result,m, f = 1/2− m

andz are not predicted and tested against data in this paper.
This poses a big challenge for testing our results based on
an application of SS-2. To make progress with this necessary
component of the theory, we consider the Manning friction
coefficient that can be estimated from the observed values of
depth and slope. We derive a theoretical expression for the
Manning friction exponent here, and test it against the data
in the next subsection.

Rewrite5∗

6(ω) given by Eq. (36) as

5∗

6(ω) =
U2

ω

gDωS
β
ω

=
U2

ω

gDωSωS
−1+β
ω

, (46)

so that it may be expressed in the form of the well-known
Chezy equation:

Uω = C∗
ω

√
DωSω = (gDωSω)1/2S(−1+β)/2

ω [5∗

6(ω)]1/2. (47)

Therefore, an expression for the Chezy friction parameter is
given as

C∗
ω = [5∗

6(ω)]1/2(g)1/2S(−1+β)/2
ω . (48)

Since the slope ratio converges to the Horton numberRS , and
ratio R5∗

6
converges to 1 so does Chezy friction parameter.

Moreover,β < 1 is a physical constraint, because the slope
exponent must be negative to be consistent with the data. The
Manning friction coefficientn′

ω is related to Chezy’s as fol-
lows (Leopold et al., 1964, p. 158):

Uω = C∗
ω

√
DωSω =

1.49

n′
ω

D2/3
ω S1/2

ω =
1.49

n′
ω

D1/6
ω

√
DωSω.

Therefore,

n′
ω = 1.49D1/6

ω /C∗
ω. (49)

It can be expressed as a ratio:

C∗

ω+1

C∗
ω

=

[
Dω+1

Dω

]1/6
[

n′
ω

n′

ω+1

]
. (50)

Substituting Eqs. (48) and taking the limit as� − ω → ∞

gives

Rn′ = R
1/6
D R

−(−1+β)/2
S . (51)

Using the definition ofn′ from Eq. (7) and applying the re-
sult from Eq. (21) givesRn′ = R

y
Q. UsingRS = Rz

Q as before
gives an expression for the H–G scaling exponent related to
the Manning equation,

Rn′ = R
y
Q = R

f/6
Q R

−z(−1+β)/2
Q , (52)

which gives a theoretical prediction for the Manning friction
exponent as

y = f/6− z(−1+ β)/2. (53)

There are no free parameters in this expression onceβ is es-
timated as explained in the next subsection, where this pre-
diction is tested. The constraints on estimatedβ < 1, and
β < 3α/2 from Eq. (44) are also tested there.

Mantilla et al.(2006) have described the H–G form of the
Chezy friction coefficient that they deduced from empirical
observations. They showed that the expression for the Chezy
friction coefficient played a key role in testing the presence of
statistical self-similarity involving Horton laws in peak flows
in the Walnut Gulch basin, Arizona.

8.3 Test of the Manning scaling exponent for three field
studies

We predict the Manning exponenty by using the empiri-
cal values off andz for the three field studies described in
Sect.3, and test our prediction against the empirical values
of y as a second test of our theory. Despite the appearance
of DT in Eq. (45) and thereby in Eq. (53), and the regularity
of its observed values between 1.7 and 1.8 (La Barbera and
Rosso, 1989), given f and z, the exponentβ does not de-
pend onDT; i.e., our test becomes independent of the fractal
dimension of the channel network. To see this feature, notice
from Eqs. (45) that one gets after straightforward algebra,
β = (1− 3f )/z. Therefore,y can be rewritten strictly as a
function off andz,

y = f/6− z(−1+ β)/2 = 5f/3+ z/2− 1/2. (54)

The above argument does not imply that the set of H–G expo-
nents is independent ofDT. As Eq. (45) shows, the depth and
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slope exponentsf andz depend onα, β andDT. Therefore,
the influence ofDT ony comes throughf andz.

The first test of the theory is for the Brandywine creek
(Leopold et al., 1964, Table 7.5, p. 244). The observed val-
ues of the H–G exponents were given in Sect.3 and in Ta-
ble 1. Equation (54) correctly predicts the empirical value
of the Manning exponent,y = −0.285. This prediction also
supports our assumption made in Sect.6.2 that the observed
depth and velocity exponents are correct, because they lead
to a correct prediction of the Manning exponent.

The second test is conducted in the Taieri River basin.Ib-
bitt et al.(1998) do not give an empirical value of Manning’s
friction exponent, but it can be computed from the empirical
Manning equation using the exponentsf andz. We first use
the values of the exponents given Sect.3, and then incorpo-
rate the errors in these exponents to compute an interval for
y. The exponents along with the errors are listed in Table1.
Using the Manning equation,

Uω = 1.49D2/3
ω S1/2

ω /n′
ω,

the observed exponenty is given by

y = (2/3)(0.247) + (1/2)(−0.315) − 0.238= −0.231.
(55)

The measurement errors in the exponents listed in Table1
give the range (−0.259,−0.203) fory.

To make a theoretical prediction ofy, using the empiri-
cally computed values of the scaling exponentsf andz, the
predicted value of the Manning exponent from Eq. (54) is
−0.246. The measurement errors in the exponentsf andz

listed in Table1 lead to the prediction of the range (−0.276,
−0.216). This predicted interval overlaps with the empirical
interval of y computed above. It supports our prediction in
the Taieri basin.

The third field test is for the Ashley River basin. The ex-
ponents are given in Sect.3 and in Table1. McKerchar et al.
(1998) do not give an empirical value of the Manning expo-
nent, but it can be computed from observed exponentsz and
f and the empirical Manning equation. The value is

y = (2/3)(0.242) − 0.318− (1/2)(0.317) = −0.315. (56)

Using the observed values off andz, the predicted value
of the Manning exponent using Eq. (54) is

y = 5(0.242)/3+ (−0.317)/2− 1/2 = −0.255. (57)

The measurement errors in the exponents give the range
for the empirical exponenty as (−0.338, 0.292). Using the
observed values with errors inf andz, the range of the pre-
dicted scaling exponenty is (−0.281,−0.230). Clearly, the
predicted interval does not overlap with the empirical inter-
val. There is some discrepancy between the observed and
predicted values. It seems to come from the observed expo-
nents of width and velocity. The discrepancy in the width ex-
ponent noted in Sect.6.2affects the velocity exponent, which

in turn affects the depth exponent and the Manning friction
exponent. This important topic is the focus of the next sec-
tion.

Table1 presents a summary of the observed and predicted
H–G scaling exponents for the three basins considered above.
Predicted values for the exponenty from Eq. (53), for the
exponentb = 1/2 from Eq.27, and for the exponentm+f =

1/2 from Eq.28are given in Table1.

8.4 Test of Horton laws and theRQ = RA relationship
for the Ashley basin

Mantilla (2014) is testing the presence of Horton laws for
the H–G variables in the two NZ basins considered here
and a few other basins like the Whitewater one for which
he has data. He has kindly shared some of his analyses
with us for the Ashley basin, which has� = 6. He extracted
the Ashley basin geomorphology from the digital elevation
model (DEM) data using the CUENCAS software (Mantilla
and Gupta, 2005). His first set of results pertains to the Hor-
ton laws for drainage area and stream numbers as shown in
Figs.3 and4. The Horton laws hold quite well, and the ob-
servedRA = 4.47 agrees well withRB = 4.5 as predicted for
the Tokunaga network in Sect.2.1.

Next, the Horton law for the width is shown in Fig.5. In
making this plot, the theoretical condition�−ω → ∞ is in-
corporated by omitting order 6 and 5 streams from the anal-
ysis.Mantilla (2014) found that the basin has a large number
of the 1st order streams that are mostly missed in the map
thatMcKerchar et al.(1998) presented. Therefore, the Hor-
ton plot is made for streams of orderω = 2,3,4, shown in
Fig. 5. Horton width ratio,RW = 1.61 is observed. Other H–
G variables not shown here support the finding that the Hor-
ton laws for the H–G variables hold for the Ashley basin, as
predicted in our work.

Next, mean stream flow is considered. Similar to the
width, a Horton plot is made for streams of orderω = 2,3,4
as shown in Fig.6. RQ = 3.05 is observed. As a test of
Eq. (22), we note using the observed width exponent that
3.050.44

= 1.63 is consistent with the observed value of
RW = 1.61 thatMantilla (2014) obtained. Other H–G vari-
ables not shown here support that the Horton laws hold as
predicted in our work, andRQ = RWRDRU = 2.96 is close
to the value ofRQ = 3.05. We do not include errors given in
Table1 to simplify our argument. These results demonstrate
the observed consistency between the scaling exponents and
the Horton ratios for the H–G variables that are derived in
Sect.6.

The next task is to test if theRQ = RA given by Eq.18
holds in the Ashley basin. Data show that logRQ/ logRA =

0.74. It can be written as

RQ = Rθ
A, (58)

where θ = 0.74. Clearly, our theory’s prediction thatRQ

equals RA given in Eq. (18) is not supported by this
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Figure 3. Horton analysis of upstream areas (including orders 2, 3,
and 4) for the Ashley River basin (McKerchar et al., 1998); results
kindly provided byMantilla (2014).

Figure 4.Horton analysis of stream numbers (including orders 2, 3,
and 4) for the Ashley River basin (McKerchar et al., 1998); results
kindly provided byMantilla (2014).

observation. The physical reason is that all the streams in
a network do not contribute to stream flows in the Ashley
basin. Many physical processes play a role in runoff genera-
tion, like space–time variable rainfall, the state of dryness or
wetness of the soil in a basin at the time rainfall begins, which
governs infiltration into soil and evaporation from it, and so
on. The physical parameter,θ , represents the aggregate be-
havior of the physical processes governing runoff generation,
and can take a value less than or equal to 1.

Galster(2007) analyzed several basins to test the relation-
shipQ = kAc. His results show that the studied watersheds
could be grouped into two broad categories based on their
respectivec values: (1) those where c equals 1 or nearly 1,

Figure 5. Horton plot for stream width (including orders 2, 3, and
4) for the Ashley river basin (McKerchar et al., 1998); results kindly
provided byMantilla (2014).

Figure 6. Horton plot for discharge (including orders 2, 3, and 4)
for the Ashley River basin (McKerchar et al., 1998); results kindly
provided byMantilla (2014).

and (2) those wherec is significantly less than 1, like 0.8 or
0.5. The reader may note that our exponentθ is equivalent
to c. Moreover, the derivation in Eq. (18) is thatRQ = RA

applies to category (1) basins inGalster(2007), but not to
category (2) basins like Ashley. Therefore, our theory needs
to be generalized to incorporate such basins for whichθ is
less than 1.

9 Future research problems: two examples

The above theory can be generalized along several lines.
We illustrate two important problems. The first is that the
anomalous scaling exponentsα andβ need to be predicted
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using physical arguments. Two fundamental physical pro-
cesses that shape the H–G of channels are transport of sus-
pended sediment load and the bed load that we have not
considered so far. There is a vast literature on this subject
(Leopold et al., 1964; Singh, 2003). Our ideas on how these
two physical processes can be used to determineα andβ are
rudimentary and are only meant for illustration.

The suspended load increases in proportion to discharge.
Therefore, suspended sediment concentration, defined as the
ratio of the two, does not change.Leopold et al.(1964,
p. 269) gave an expression for sediment concentration,C ∝

(UD)0.5S1.5/n4. The constancy ofC implies that 0.5m +

0.5f +1.5z−4y = 0 or 0.25+1.5z−4y = 0, sincem+f =

1/2. It gives the first equation in terms ofα andβ.
The second equation can be developed from considering

stream power per unit of bed area,$ = ρgQS/W , which
plays a basic role in the bed load transport (Molnar, 2001).
Essentially all the theories of bed load transport assume that
there is a threshold shear stress, stream power, or mean flow
speed, and no erosion occurs below it. During floods, these
variables exceed the threshold, and bed load is transported
that creates erosion. We expect that a second equation can be
obtained from these considerations in terms ofα andβ. The
two equations can be solved to computeα andβ.

Traditionally, Horton laws have been known in terms of
statistical means.Peckham and Gupta(1999) reformulated
the Horton laws in terms of probability distributions and
called them “generalized Horton laws”. Specifically, they
gave observational and some theoretical arguments to show
that probability distributions of all drainage areas rescaled by
their means,Aω/Aω collapse into a common probability dis-
tribution. Let us consider drainage areas,Aω/Aω to illustrate
generalized Horton laws. There are two components to this
argument.

i. A Horton law for the mean drainage areas,Aω of order
ω, holds that can be written as

Aω = Rω−1
A A1, ω = 1,2, . . . , (59)

whereRA is the Horton area ratio. It is illustrated in the
Whitewater basin, Kansas, USA in Fig.7.

ii. A generalized Horton law is defined as

Aω+1/Aω+1
d

= Aω/Aω, (60)

or

Aω+1
d
=

(
Aω+1/Aω

)
Aω, ω = 1,2, . . . , (61)

where
d
= means that the probability distributions of the

rescaled areas on both sides of Eq. (60) are the same.
Since the Horton law holds for the mean areas given in
Eq. (59), it follows from Eq. (61) that

Aω+1
d
= RAAω, ω = 1,2, . . . (62)

Figure 7. Reproduction of the original figure ofMantilla and Gupta
(2005, Fig. 2) showing the scaling of mean drainage area with order
(Horton law) of the river network of the Whitewater basin, Kansas,
US.

Figure 8. Reproduction of the original figure ofMantilla and Gupta
(2005, Fig. 2) showing the statistical scaling of the probability dis-
tribution of drainage area with order (generalized Horton law) of
the river network in the Whitewater basin, Kansas, US.

Mantilla and Gupta(2005) have shown the existence of
generalized Horton law for the rescaled drainage areas,
Aω/Aω, because it is independent ofω. This feature
is illustrated for the Whitewater basin, Kansas, USA in
Fig. 8.

Let us consider the dependence of channel widths on dis-
charge. Both are treated as random variables. Therefore, the
results obtained in Sect.6.2 can be interpreted as those for

the means and written asW(Qω) = cQ
b

ω. We conjecture that
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the generalized Horton law holds for the rescaled channel
widths, and write it as

W(Qω+1) =

(Qω+1

Qω

)b

W(Qω), ω = 1,2, . . . (63)

This is an equality between random variables, as shown for
drainage areas in Eq. (61). It means that the probability dis-
tribution of W(Qω+1) can be computed from the probabil-
ity distribution of W(Qω) provided a Horton law of mean
widths and the value ofb are known. Both these features are
predicted in Sect.6 for self-similar Tokunaga networks. Our
conjecture is made in the light of the result that the Tokunaga
networks are a special case of a subclass of RSN (Veitzer and
Gupta, 2000). In view of these arguments, we can write

Wω = Rω−1
W W1, ω = 1,2, . . . , (64)

whereRW = Rb
Q is the Horton ratio for the mean widths. We

conjecture based on these arguments that Horton laws hold
for all the H–G variables measured in the two New Zealand
basins that were analyzed in Sect.8.3. We supported our con-
jecture for the validity of Horton laws for widths and stream
flows in the Ashley basin in Sect.8.3. Both the NZ basins
have the necessary data sets to test our conjecture regarding
the applicability of the Horton laws and the generalized Hor-
ton laws for all the H–G variables considered in this paper.
Mantilla (2014) is conducting this research.

10 Conclusions

There has been important progress in topological and geo-
metric theories to explain the related Horton law for stream
bifurcation, drainage areas and stream lengths as asymptotic
relations, but progress on Horton laws for the H–G variables
has been long overdue. We made a contribution to this impor-
tant problem, and laid the theoretical foundations of a H–G
theory in the self similar Tokunaga networks. Our main find-
ings are summarized below:

1. The theory used several disjoint theoretical concepts
like Horton laws of stream numbers and areas as asymp-
totic relations in Tokunaga networks, dimensional anal-
ysis, the Buckingham Pi theorem, SS-1 and SS-2. A
self-contained review of these concepts with examples
was given as “methods” in Sect.2.

2. The H–G data sets in channel networks from three pub-
lished studies and one unpublished study were summa-
rized for testing theoretical predictions in Sect.3.

3. An important issue in estimating field values of the H–
G exponents is the measurement errors, which affect the
scaling exponents. Standard errors for each of the H–G
exponents from the two NZ basins are listed in Table1.

4. We used the Buckingham Pi theorem and identified six
dimensionless basin numbers in Sect.4, which served
as a basis for developing the theory in the subsequent
sections.

5. A mass conservation equation was specified in Strahler
ordered networks. A link-based equation as a special
case of our equation has been known (Gupta et al.,
2007). We solved it in Tokunaga networks using the re-
sults fromMcConnell and Gupta(2008), and derived
a mass conservation equation in terms of Horton bifur-
cation and the discharge ratios in the limit as�−ω goes
to infinity in Sect.5. We also derived that the Horton
discharge ratio is equal to the area ratio.

6. We gave an analytical derivation of the H–G relations
as power-law functions of discharge. The derivation is
based on the assumptions that the H–G variables are ho-
mogeneous and self-similar functions of discharge. The
Horton laws are extended to width, depth and velocity
in Tokunaga networks using the results from Sect.5.
Within the dimensional analysis framework, the SS-1
given in Barenblatt(1996) is used to predict the width
exponent,b = 1/2, and the Reynolds number exponent
m + f = 1/2. These predictions are tested against data
sets given in Sect.3 including the standard errors listed
in Table1. These results are given in Sect.6.

7. Tentatively assuming that SS-1 holds for slope, we pre-
dicted the Horton laws forS, U andD, and their expo-
nents. Our predictions agree with the exponents given in
the optimal channel network (OCN) model (Rodríguez-
Iturbe et al., 1992), but OCN does not consider Hor-
ton laws. Our theoretical framework is based on self-
similarity, and does not use any optimality assumptions.
The published data in Sect.3 showed that most of the
OCN predictions do not agree with observations. These
results are given in Sect.7.

8. SS-2 is required to deal with the case when one or more
dimensionless numbers go to zero in the limit, but they
cannot be ignored in the limit. In the present context,
slope goes to zero in the limit of large basin order, but
it cannot be ignored. Therefore, SS-2 is needed, which
gives rise to two anomalous scaling exponents,α andβ

that come from two dimensionless numbers in Sect.4.
We derived Horton’s law forS, D, andU in Sect.8, but
the H–G exponents become functions ofα andβ.

9. We do not give a physical prediction ofα and β. To
make progress with testing our theory, the Manning fric-
tion exponenty is considered because it could be esti-
mated from data on slope, velocity, width and depth, as
well as predicted from our theory using the observed ex-
ponents forD andS. Standard errors in the exponents
are considered in carrying out these tests of the theory.
The predictions are excellent for two of the three basins,
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but show some discrepancy in the Ashley basin, given in
Sect.8.3.

10. The validity of the Horton laws in the Ashley basin was
tested using results from the study byMantilla (2014)
that is in progress, but we showed some results for the
existence of Horton laws for widths and stream flows.

11. The test ofRQ = RA showed that this prediction does
not hold in the Ashley basin, because some of the as-
sumptions leading to Eq. (17) do not hold. To incor-
porate this hydrologic feature into Tokunaga networks,
the generator expression given in Eq. (2) needs to be
modified so that all the streams that do not contribute to
stream flows are removed in the derivation of Eq. (17).

12. The estimation of the anomalous exponents from phys-
ical principles using considerations of sediment trans-
port are briefly discussed. Further development is
needed on this front for a definite test of the theory.

13. Two NZ basins analyzed here show statistical variabil-
ity in the H–G variables that is different from the mea-
surement errors. Generalized Horton laws are explained
and illustrated for the Whitewater basin, Kansas, USA.
It needs to be tested for the H–G variables for a further
development of this theory. This important research is
in progress (Mantilla, 2014).
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