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Abstract. Spatial maps of the finite-time Lyapunov expo-
nent (FTLE) have been used extensively to study LCS in
two-dimensional dynamical systems, in particular with ap-
plication to transport in unsteady fluid flows. We use the
time-periodic double-gyre model to compare spatial fields
of FTLE and the path-integrated Eulerian Okubo–Weiss pa-
rameter (OW). Both fields correlate strongly, and by solving
the dynamics of the deformation gradient tensor, a theoreti-
cal relationship between both magnitudes has been obtained.
While for long integration times more and more FTLE ridges
appear that do not seem to coincide with the stable manifold,
ridges in the field of path-integrated OW represent fewer
additional structures.

1 Introduction

The importance of Lagrangian analysis to understanding
complex transport problems in fluids has been established
during the last decade (seeGriffa et al., 2007andNeufeld and
Hernández-García, 2009and references therein for a review).
Lagrangian analysis is directly linked to the dynamical sys-
tems approach to transport that analyzes the phase space of
the dynamical system driving the trajectories in a flow. This
dynamical system can be a fluid flow given by velocity data
from different sources as models or measured data, or it can
be another dynamical system not related to fluids (Tanaka
and Ross, 2009; Kuehl and Chelidze, 2010). Among other
techniques, finite-time Lyapunov exponents (FTLE) are used
extensively to quantify mixing, and especially to extract per-
sisting transport patterns in the flow, so-called Lagrangian
coherent structures (LCS) (Peacock and Dabiri, 2010). The

FTLE at a given locationx measures the maximum stretch-
ing rate over the intervalτ = t − t0 of trajectories starting
near the pointx at time t0 (Shadden et al., 2005). Ridges
in the FTLE field are used to estimate finite-time invari-
ant manifolds in the flow that separate dynamically differ-
ent regions. Repelling (attracting) LCS forτ > 0 (τ < 0) are
time-dependent generalizations of the stable (unstable) man-
ifolds of hyperbolic fixed points of the system. These struc-
tures govern the stretching and folding mechanisms that con-
trol flow mixing. A variety of definitions of LCS in aperi-
odic flows have been developed and discussed during the last
years (Haller, 2000, 2011; Shadden et al., 2005; Branicki
and Wiggins, 2010). However, the identification of hyper-
bolic LCS with the FTLE method exhibits some drawbacks.
Especially for long integration times, the FTLE field is noisy,
with neighbor initial conditions having substantially different
FTLE values, and a variety of structures appear that may be
difficult to interpret. The FTLE method is also known to pro-
duce false positive ridges in high shear regions (Haller, 2002)
that are not generated by hyperbolic structures. This encour-
ages one to study other Lagrangian descriptors and compare
them to the FTLE approach.

In contrast to the Lagrangian approach, a standard Eule-
rian technique is the Okubo–Weiss (OW) parameter (Okubo,
1970) that separates strain-dominated regions from vorticity-
dominated regions in instantaneous velocity fields (see,
e.g., Koh and Legras, 2002). It is defined in terms of
the eigenvalues of the velocity gradient tensorA = ∇v(x).
For an incompressible flow they can be written as 2λ± =

±
(
s2
n + s2

s −ω2
)1/2

, wheresn, ss andω are the normal and
the shear component of the strain, and the relative vorticity
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of the flow. The sign of the Okubo–Weiss parameter

Q= s2
n + s2

s −ω2 (1)

determines whether the eigenvalues are real or imaginary. For
Q> 0 we have real eigenvalues corresponding to exponen-
tial stretching in a hyperbolic region of the flow. ForQ< 0
the eigenvalues are imaginary, corresponding to a rotational
movement in an elliptic region of the flow. The evolving na-
ture of the time-dependent flow is neglected in this approach,
and only instantaneous flow structures can be identified that
are not generally relevant to finite-time transport. Although
only a vague indicator for structures in time-dependent flows,
the Okubo–Weiss (OW) parameter is still widely used, in par-
ticular for the detection of mesoscale vortices in the ocean
(e.g.,Chelton et al., 2007).

Here, we aim to study a Lagrangian version of the scalar
Eulerian OW parameter by averaging OW along trajectories.

QP(τ )=

∫
Q1/2(`)d`. (2)

Several related methods using properties of trajectories have
been reported. The mesohyperbolicity criterion ofMezíc
et al. (2010) is a Lagrangian measure based on the eigen-
values of the gradient of the flow map. It can be used to
divide the flow into mesoelliptic regions (complex eigenval-
ues) and mesohyperbolic regions (real eigenvalues), and con-
verges to the OW criterion for vanishing integration times.
Rypina et al.(2011) propose a Lagrangian measure based
on the complexity of trajectories that is related to the frac-
tal dimension of the trajectories. They obtain a scalar field
in which structures similar to FTLE-based LCS can be ob-
served. In a similar approach,Jiménez and Mancho(2009)
propose that the geometry of transport can be observed in
spatial plots of the arclength of trajectories. Similar to the
FTLE method, the mentioned methods rely on the availabil-
ity of a complete spatio-temporal data set of velocity fields.

In this paper, we perform a simple numerical experiment in
the double-gyre flow and study Eulerian quantities, the OW
parameter and its two components, total strain and vortic-
ity, which are integrated along finite time trajectories. We
compare the spatial fields of these quantities, FTLE fields
and the numerically obtained unstable manifold, and find that
the field of the path-integrated OW parameter exhibits ridges
that mark the unstable manifold. We propose using the path-
integrated OW for an LCS estimation.

2 Model

The periodically varying double-gyre flow was discussed in
Shadden et al.(2005). It is used as a standard test case for
LCS and can be considered a local view of a gulf stream
ocean front. In this case, the flow is described by the stream

function,

ψ(x,y, t)= Asin(πf (x, t))sin(πy), (3)

where

f (x, t) = a(t)x2
+ b(t)x,

a(t) = ε sin ωt,

b(t) = 1− 2ε sin ωt,

over the domainD = [0,2]×[0,1]. Forε = 0 the system can
be thought of as a time-independent 2-D Hamiltonian sys-
tem. For this case there is a heteroclinic connection of the
unstable manifold of the fixed point(1,1) with the stable
manifold of the fixed point(1,0). For ε 6= 0 the gyres con-
versely expand and contract periodically in thex direction
such that the rectangle enclosing the gyres remains invariant.
The periodic perturbation leads to mixing between the two
gyres. The respective advective velocityv(x) is obtained as
v = ez × ∇ψ .

For the numerical experiments, initially a cluster of 600×

300 tracer particles was regularly spaced in the domainD.
Then, the Lagrangian trajectories of these particles are cal-
culated by integrating the equations above using a 4th-order
Runge–Kutta scheme and a fixed time step of1t = 10−3.
In order to characterize the coherent Lagrangian transport
of this flow, the finite-time Lyapunov exponentσ and the
Okubo–Weiss parameterQ were calculated as indicated in
AppendixA. Lagrangian coherent structures (LCS) were ex-
tracted following the algorithms described in AppendixB.

3 Results

We compare the transport structures obtained by different
Lagrangian measures in Fig.1. The FTLE andQP fields for
the double-gyre flow are shown in Fig.1a, b after integration
time τ = 3T . Similar Lagrangian coherent structures appear
in both patterns. As in previous studies, the observed ridge
location ofσ corresponds to the stable manifold, which also
appears for theQP field at the same location. The most no-
ticeable observation by visual inspection is that many more
ridges are present in theσ field than in theQP field. Compar-
ing the maps of total strain and vorticity Fig.1c, d with those
of σ andQP, a strong relationship has been observed. This
correlation is stronger for the strain than for the vorticity. In
general, there are very low values ofσ andQP (similarly
for the strain) inside the areas with larger values of vorticity.
The initial areas of vorticity located around the position of
the gyres are advected by the flow and remain encircled by
the coherent structures in places where mixing is very small.

The observed Lagrangian coherent structures are stretched
and folded as time goes on for bothσ andQP maps. Fig-
ure2a, b compareσ andQP LCS with the directly computed
stable manifoldWS in Fig. 2d for the double-gyre model for
τ = 3T . We use the stable manifold in Fig.2d as a ground
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Fig. 1. Finite-time Lyapunov exponentσ and Okubo–WeissQP
fields (upper left and right images, respectively). The total strain
s2 = s2n + s2s and vorticityω2 fields are shown below (left and right
images, respectively). Except for the FTLE field, the rest of the
magnitudes were integrated along the Lagrangian path followed by
tracer particles during the integration timeτ = 3T . Set of parame-
ters:A= 0.1, ε = 0.2, T = 10 andω = 2π/T .

truth standard for the LCS in this example. Note thatQP
ridges approximate the manifoldWS at least as well as the
σ ridges. Even if the parameters of the ridge extraction are
varied, we observe more disconnected spurious ridges in the
σ field than in theQP field. This is congruent with the obser-
vation of more ridges in theσ field in Fig.1. Figure2c shows
the ridges extracted from the total strain field. This quantity
is objective in the sense of frame invariance. The extracted
ridges are similar to the ridges ofQP and show few spurious
ridges as well. Differences between the total strain ridges and
the manifoldWS can be seen in the center of the left gyre at
∼ (0.7,0.7), where a part of the manifold is not represented
as a ridge. The main observation here is that many spurious
ridges in theσ field do not appear in theQP and total strain
fields.

The statistical relationship betweenσ andQP is quanti-
fied in Fig.3 in terms of the probability distributions of each
magnitude at different values ofτ . Note that as time integra-
tion increases,σ distribution becomes broader, confirming
the wide range ofσ values shown in Fig.1, and its maximum
shifts to higher FTLE values. Forτ = 4T , σ distribution sat-
urates at larger values as spurious ridges develop. However,
QP distributions remain narrower and the peak (and mean)
remains approximately at the same values asτ increases (ex-
cept forτ = T ). QP values different from zero concentrate
mostly in the coherent structures for any value ofτ , which

Fig. 2. Ridge extraction from(a) FTLE σ , (b) Okubo–WeissQP,
and(c) total strain fields. The ridge detection algorithm used values
larger than 50 % of maximum for FTLE and 20 % for OW and total
strain. (d) The stable manifoldWS(x0,y0) of the moving instan-
taneous saddle point around(x0,y0)= (1,0) after the integration
time τ = 3T (see AppendixB). Set of parameters as in Fig.1.

are closer to the stable manifold thanσ ones, as was shown
in Fig. 2. The pdfs of total strains2 behave similarly to the
ones forQP.

Figure 4 shows the Pearson correlation parameterr be-
tweenσ andQP fields calculated for various values of the
integration timeτ andε. For comparison, we show the corre-
lation values betweenσ and the total strains2

= s2
n + s2

s and
vorticity ω2, r(σ,s2) and r(σ,ω2), respectively. Note that
r(σ,s2) > r(σ,ω2) andr(σ,s2)≈ r(σ,QP) for any value of
τ . As the integration timeτ increases,r(σ,QP) diminishes.
Results not shown here demonstrate that correlation values
near zero are obtained when the Okubo–Weiss parameter is
calculated as an Eulerian magnitude at any instant of time.

To shed some light on this different behaviour ofr(σ,s2)

and r(σ,ω2) with τ , we focus on a theoretical relation-
ship between these magnitudes. Following the notation de-
scribed in AppendixA, the dynamics of the deformation gra-
dient tensor is determined by dF(t)/dt = A(t)F(t). Starting
at some initial time fromF(t0)= I, the general form ofF
can be written formally (Chevillard and Meneveau, 2006;
Falkovich et al., 2001) in terms of the time-ordered or path-
ordered exponential function,

F(t)= expP

 t∫
t0

dtA(t)

 . (4)

The indexP means that in a Taylor expansion of the expo-
nential, all matrices are ordered such that later times appear
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Fig. 3. Probability distribution functions ofσ (blue solid line),QP
(red dashed line), ands2 (black dotted line) forτ = T ,2T ,3T and
4T (a–d), respectively. All quantities were normalized to one for
comparison and PDFs were normalized to have the same unitary
area. Set of parameters as in Fig.1.

on the left. Accordingly, for the Cauchy–Green tensor,

C(t) = FT (t)F(t) (5)

= expP

 t∫
t0

dtAT (t)

expP

 t∫
t0

dtA(t)

 .
Then, if the gradient tensorA remains constant during a time
scaleξ ≤ t − t0, it follows that

C(t)= eξAT eξA
= e2ξS, (6)

where S= (AT + A)/2 is the strain-rate tensor. Finally,
using the similarity transformations logC = V(logC’)V−1,
S= W(S’)W−1, logC’ = diag(logλi), S’ = diag(χi) (λi , χi
eigenvalues ofC andS, respectively;V,W matrix of eigen-
vectors of logC’ and S’, respectively) (Horn and Johnson,
1991; Davies and Higham, 2003), we conclude that

eig(S)∝ log(eig(C)). (7)

In other words, FTLE values should be proportional to the
eigenvalues of the strain-rate tensor. We see this in our nu-
merical experiment, since the FTLE shows a clearly larger
correlation with the total strain than with the vorticity.

In the theory above, the crucial step is represented by the
Kolmogorov timescaleξ (Chevillard and Meneveau, 2006),
during which the gradient tensorA remains constant. Note
in Fig. 4 that as the integration timeτ → 0, r(σ,s2)→ 1,
as expected according to Eq. (7). The extreme case occurs
for the stationary double-gyre flow (i.e.ε = 0 in Eq.3). For
this model, both the vorticity and the total strain fields at-
tain similar distribution values; however,r(σ,ω2)→ 0 and
r(σ,s2)≈ 1.

0 1 2 3
0

0.5

1
(a)

τ/T

C
o

rr
el

. C
o

ef
f.

0 1 2 3
0

0.5

1
(b)

τ/T

C
o

rr
el

. C
o

ef
f.

Fig. 4. Correlation coefficients betweenσ and theQP parameter
(circles),σ and the total strains2 = s2n + s2s (squares), andσ and
the flow vorticity −ω2 (rhombs), as a function of the integration
time τ . (a) ε = 0.2 and(b) ε = 0.5. Rest of parameters as in Fig.1.

4 Conclusions

Path-integrated Lagrangian measures have been compared to
FTLE fields. The Okubo–Weiss parameter integrated along
the path followed by particle trajectoriesQP gives rise to
Lagrangian coherent structures similar to those observed in
FTLE fields. FTLE distributions are broader thanQP distri-
butions as time integration increases. Comparing these LCS
with the directly numerically computed stable manifold, we
observe less spurious ridges inQP fields. As a consequence
of that, the correlation between FTLE andQP patterns de-
creases with increasing time. We observed a better correla-
tion with the path-integrated strain than with the vorticity. A
theoretical relationship between FTLE and the strain seems
to agree with that observation, mainly for small values ofτ .

Although integration along the path can lead to clear LCS
patterns, these new variables do not necessarily account for
the same information as their Eulerian counterparts. Scalar
variables are calculated instantaneously and summed up with
time, losing the directional information that was present in
the original tensor (Lapeyre et al., 1999). Thus, for exam-
ple, the integrated strain field does not necessarily account
for real flow stretching. It should be interesting to assess the
effect of this other part on the flow description. Such work is
in progress.

Appendix A

Lagrangian methods

In order to define the Lagrangian measures used in this paper,
the notation is as follows: a initial regular grid of tracers at
initial positionsx0(t0) is advected by the velocity fieldv(x, t)
to a final positionx(t0 + τ) after a finite-timeτ , x(t0 + τ)=

φ
t0+τ
t0

(x0(t0)). The gradient of the flow map (the deformation

gradient tensor) isF(x0)= ∇φ
t0+τ
t0

(x0)= ∇(x(t0 + τ)).
FTLE values are then computed from the trajectories of

Lagrangian tracers in the flow as

σ(x0, t0,τ )=
1

τ
log

√
λmax(C(x0)), (A1)
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whereλmax is the largest eigenvalue of the right Cauchy–
Green deformation tensorC = FT F. By definition C is a
symmetric tensor and has real eigenvalues.

√
λmax denotes

the ratio of stretching between two initially close tracers in
the direction of the largest stretching. For the computation
of FTLE fields, the integration timeτ must be predefined.
Basically, the timeτ has to be long enough to allow trajec-
tories to explore the Lagrangian coherent structures present
in the flow.

Appendix B

LCS and stable manifolds

Following Haller (2002) and Shadden et al.(2005), La-
grangian coherent structures (LCS) can be estimated as local
maximizing surfaces of the FTLE. Here we compute LCS in
terms of second-derivative ridges of the FTLE fieldσ or the
Okubo–WeissQP, at each timet (Sadlo and Peikert, 2007).
In order to filter spurious ridges or weak LCS, a minimum
threshold for both fields was used. This threshold was cho-
sen as the value at which the probability distribution function
of σ andQP has a maximum.

The stable manifoldWS(x0,y0) of the moving saddle
point around(x0,y0)= (1,0) for the double-gyre model is
defined as the set of points that converge to(x0,y0) under
forward iteration of Eq. (3) (Hobson, 1993; Mancho et al.,
2003). Numerically, the stable manifold is grown by adding
one point at each step of the integration near the saddle point
and integrating backwards Eq. (3).
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