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Abstract. Spatial maps of the finite-time Lyapunov expo- FTLE at a given locationr measures the maximum stretch-
nent (FTLE) have been used extensively to study LCS ining rate over the intervat =t — rg of trajectories starting
two-dimensional dynamical systems, in particular with ap- near the pointr at time o (Shadden et al.2005. Ridges
plication to transport in unsteady fluid flows. We use thein the FTLE field are used to estimate finite-time invari-
time-periodic double-gyre model to compare spatial fieldsant manifolds in the flow that separate dynamically differ-
of FTLE and the path-integrated Eulerian Okubo—Weiss pa-ent regions. Repelling (attracting) LCS for- 0 (r < Q) are
rameter (OW). Both fields correlate strongly, and by solving time-dependent generalizations of the stable (unstable) man-
the dynamics of the deformation gradient tensor, a theoretiifolds of hyperbolic fixed points of the system. These struc-
cal relationship between both magnitudes has been obtainedlres govern the stretching and folding mechanisms that con-
While for long integration times more and more FTLE ridges trol flow mixing. A variety of definitions of LCS in aperi-
appear that do not seem to coincide with the stable manifoldpdic flows have been developed and discussed during the last
ridges in the field of path-integrated OW represent feweryears Haller, 200Q 2011, Shadden et gl.2005 Branicki
additional structures. and Wiggins 2010. However, the identification of hyper-
bolic LCS with the FTLE method exhibits some drawbacks.
Especially for long integration times, the FTLE field is noisy,
with neighbor initial conditions having substantially different
1 Introduction FTLE values, and a variety of structures appear that may be
difficult to interpret. The FTLE method is also known to pro-
The importance of Lagrangian analysis to understandingyyce false positive ridges in high shear regiddaller, 2002
complex transport problems in fluids has been establisheghat are not generated by hyperbolic structures. This encour-
during the last decade (s€iffa etal, 2007andNeufeldand  5ges one to study other Lagrangian descriptors and compare
Hernandez-Garcj2009and references therein for areview). them to the FTLE approach.
Lagrangian analysis is directly linked to the dynamical sys- | contrast to the Lagrangian approach, a standard Eule-
tems approach to transport that analyzes the phase space g, technique is the Okubo-Weiss (OW) parameBupq
the dynamical system driving the trajectories in a flow. This 197() that separates strain-dominated regions from vorticity-
dynamical system can be a fluid flow given by velocity data yominated regions in instantaneous velocity fields (see,
from different sources as models or measured data, or it cag g., Koh and Legras2002. It is defined in terms of
be another dynamical system not related to fluiisn@ka the eigenvalues of the velocity gradient tengoe Vo (x).
and Ross2009 Kuehl and Chelidze2019. Among other  For an incompressible flow they can be written as. 2=
technlques, flnlte—tlme Ly'apunov exponeqts (FTLE) are usedjE (Sr% 452 a)z)l/z, wheres,, ss andw are the normal and
extensively to quantify mixing, and especially to extract per- the shear component of the strain, and the relative vorticity
sisting transport patterns in the flow, so-called Lagrangian ’
coherent structures (LCSPéacock and Dabir2010. The
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of the flow. The sign of the Okubo—Weiss parameter function,
0 =s2+s2—o? (1) Y,y 1) =AsinGf(x,0)sin(ry), ®)

determines whether the eigenvalues are real orimaginary. Fokhere

0 > 0 we have real eigenvalues corresponding to exponen- 2

tial stretching in a hypgrbolic region of tFr)we flovs FQr<% Sl = a(t_)x +bOx,
the eigenvalues are imaginary, corresponding to a rotational ¢(t) = €sin wt,

movement in an elliptic region of the flow. The evolving na-  b(r) = 1—2¢sin ot,

ture of the time-dependent flow is neglected in this approach, )

and only instantaneous flow structures can be identified thapVer the domairD = [0, 2] [0, 1]. Fore = 0 the system can

are not generally relevant to finite-time transport. Although P€ thought of as a time-independent 2-D Hamiltonian sys-

only a vague indicator for structures in time-dependent flows,[€M- For this case there is a heteroclinic connection of the
unstable manifold of the fixed poini, 1) with the stable

the Okubo—Weiss (OW) parameter is still widely used, in par-

ticular for the detection of mesoscale vortices in the oceariM@nifold of the fixed point1, 0). For e # 0 the gyres con-
(e.g.,Chelton et al.2007). versely expand and contract periodically in thelirection

Here, we aim to study a Lagrangian version of the scalarsych tha_t th_e rectangle_enclosing the gyres remains invariant.
Eulerian OW parameter by averaging OW along trajectories.] € Periodic perturbation leads to mixing between the two
gyres. The respective advective velooit) is obtained as
v=g,x Vy.

For the numerical experiments, initially a cluster of 600
300 tracer particles was regularly spaced in the donfain
Then, the Lagrangian trajectories of these particles are cal-
Several related methods using properties of trajectories havgy|ated by integrating the equations above using a 4th-order
been reported. The mesohyperbolicity criterion Mézic Runge—Kutta scheme and a fixed time steprof=10-3.
et al. (2010 is a Lagrangian measure based on the eigenyn order to characterize the coherent Lagrangian transport
values of the gradient of the flow map. It can be used toof this flow, the finite-time Lyapunov exponent and the
divide the flow into mesoelliptic regions (complex eigenval- okybho—\Weiss paramete? were calculated as indicated in
ues) and mesohyperbolic regions (real eigenvalues), and conxppendixA. Lagrangian coherent structures (LCS) were ex-
verges to the OW criterion for vanishing integration times. tyacted following the algorithms described in AppenBix
Rypina et al.(201]1) propose a Lagrangian measure based

on the complexity of trajectories that is related to the frac-
tal dimension of the trajectories. They obtain a scalar field3 Results
in which structures similar to FTLE-based LCS can be ob- ] )
served. In a similar approacBiménez and Mancho0og  We compare the transport structures obtained by different
propose that the geometry of transport can be observed ik@drangian measures in Figy. The FTLE andQp fields for
spatial plots of the arclength of trajectories. Similar to the the double-gyre flow are shown in Fitp, b after integration
FTLE method, the mentioned methods rely on the availabil-ime ¢ = 37'. Similar Lagrangian coherent structures appear
ity of a complete spatio-temporal data set of velocity fields. In both patterns. As in previous studies, the observed ridge
In this paper, we perform a simple numerical experiment inlocation ofo corresponds to the stable mfanlfold, which also
the double-gyre flow and study Eulerian quantities, the Owappears for thep field at the same location. The most no-
parameter and its two components, total strain and vorticliceable observation by visual inspection is that many more
ity, which are integrated along finite time trajectories. We fidges are presentin thefield than in theQp field. Compar-
compare the spatial fields of these quantities, FTLE fields"d the maps of total strain and vorticity Fitg, d with those
and the numerically obtained unstable manifold, and find thaf°f o and Qp, a strong relationship has been observed. This
the field of the path-integrated OW parameter exhibits ridgescorrelatlon is stronger for the strain than for the vorticity. In

that mark the unstable manifold. We propose using the pathgeneral, there are very low values @fand Qp (similarly
integrated OW for an LCS estimation. for the strain) inside the areas with larger values of vorticity.

The initial areas of vorticity located around the position of

the gyres are advected by the flow and remain encircled by
2  Model the coherent structures in places where mixing is very small.

The observed Lagrangian coherent structures are stretched

The periodically varying double-gyre flow was discussed inand folded as time goes on for bathand Qp maps. Fig-
Shadden et al2005. It is used as a standard test case for ure2a, b compare andQp LCS with the directly computed
LCS and can be considered a local view of a gulf streamstable manifold¥S in Fig. 2d for the double-gyre model for
ocean front. In this case, the flow is described by the streant = 37. We use the stable manifold in Figd as a ground

Op(7) = f 02 (0)de. 2
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() FTLE x 10* ) Q,

Fig. 2. Ridge extraction fron{a) FTLE o, (b) Okubo—WeissQp,
and(c) total strain fields. The ridge detection algorithm used values
Fig. 1. Finite-time Lyapunov exponent and Okubo-Weis®p larger than 50 % of maximum for FTLE and 20 % for OW and total
fields (upper left and right images, respectively). The total strainstrain. (d) The stable manifold¥S(xo, yo) of the moving instan-

52 = 5% + s2 and vorticityw? fields are shown below (left and right taneous saddle point arourgy, yo) = (1, 0) after the integration
images, respectively). Except for the FTLE field, the rest of thetimet = 37T (see AppendiB). Set of parameters as in Fig.
magnitudes were integrated along the Lagrangian path followed by

tracer particles during the integration timme= 37. Set of parame-

ters:A=01,¢=02,T=10andw =27/T. .
¢ / are closer to the stable manifold tharones, as was shown

in Fig. 2. The pdfs of total strain? behave similarly to the
ones forQp.

truth standard for the LCS in this example. Note tiga Figure 4 shows the Pearson correlation parametére-
ridges approximate the manifold'S at least as well as the tweeno and_ Qp fields calculated f_or various values of the
o ridges. Even if the parameters of the ridge extraction aréntégration timer ande. For comparison, we show the corre-
varied, we observe more disconnected spurious ridges in thition values between and the total strais” = s + s and
o field than in thep field. This is congruent with the obser- Vorticity w?, r(a,s?) andr(o,»?), respectively. Note that
vation of more ridges in the field in Fig. 1. Figure2c shows ~ 7(0.5%) > r(0.@?) andr(o.s%) ~ r(o, Qp) for any value of
the ridges extracted from the total strain field. This quantity - AS the integration time increases (o, Qp) diminishes.
is objective in the sense of frame invariance. The extractedresults not shown here demonstrate that correlation values
ridges are similar to the ridges &fp and show few spurious N€ar zero are obtaine(_j when th_e Okubo—W_eiss parameter is
ridges as well. Differences between the total strain ridges ang@/culated as an Eulerian magnitude at any instant of time.
the manifoldw'S can be seen in the center of the left gyre at 10 Shed some light on this different behaviour-ef, SZ)
~ (0.7,0.7), where a part of the manifold is not represented @nd (0, @?) with 7, we focus on a theoretical relation-
as a ridge. The main observation here is that many spuriou8Nip between these magnitudes. Following the notation de-
ridges in theo field do not appear in th@p and total strain scribed in Appendi¥A, the dynamics of the deformation gra-
fields. dient tensor is determined byr@)/dr = A(¢)F(¢). Starting

The statistical relationship betweenand Qp is quanti-  at Some initial time fronF (1) = I, the general form of
fied in Fig.3in terms of the probability distributions of each €an be written formally Chevillard and Menevea2006
magnitude at different values of Note that as time integra- Falkovich et al. 2003 in terms of the time-ordered or path-
tion increasesy distribution becomes broader, confirming ©rdered exponential function,

the wide range of values shown in Figl, and its maximum .

shifts to higher FTLE values. Far= 4T, o distribution sat-
urates at larger values as spurious ridges develop. HoweveF, () = €Xfp fdlA(f) (4)
Qp distributions remain narrower and the peak (and mean) 0

remains approximately at the same values axreases (ex-

cept fort =T). Qp values different from zero concentrate The index? means that in a T%ylor expansion of the expo-
mostly in the coherent structures for any valuerpfvhich nential, all matrices are ordered such that later times appear
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Fig. 4. Correlation coefficients between and theQp parameter

(circles),o and the total strain? = s2 4 s2 (squares), and and
the flow vorticity —w? (rhombs), as a function of the integration
time . (a) e = 0.2 and(b) ¢ = 0.5. Rest of parameters as in Fig.
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4 Conclusions

Path-integrated Lagrangian measures have been compared to

Fig. 3. Probability distribution functions of (blue solid line),0p ~ FTLE fields. The Okubo-Weiss parameter integrated along
(red dashed line), and? (black dotted line) for = 7,27,3T and  the path followed by particle trajectorig@p gives rise to
4T (a—d), respectively. All quantities were normalized to one for Lagrangian coherent structures similar to those observed in
comparison and PDFs were normalized to have the same unitarg TLE fields. FTLE distributions are broader thép distri-
area. Set of parameters as in Fig. butions as time integration increases. Comparing these LCS
with the directly numerically computed stable manifold, we
observe less spurious ridges@p fields. As a consequence
of that, the correlation between FTLE ap patterns de-
creases with increasing time. We observed a better correla-
tion with the path-integrated strain than with the vorticity. A
theoretical relationship between FTLE and the strain seems
to agree with that observation, mainly for small values of

Although integration along the path can lead to clear LCS
patterns, these new variables do not necessarily account for
the same information as their Eulerian counterparts. Scalar
variables are calculated instantaneously and summed up with
time, losing the directional information that was present in
where S= (AT +A)/2 is the strain-rate tensor. Finally, the original tensorl(@apeyre et al.1999. Thus, for exam-
using the similarity transformations I@=V(logC' )V, ple, the integrated strain field does not necessarily account
S=W(SH)W 1, logC’ = diagllog), S’ = diag(x;) (Ai» xi  for real flow stretching. It should be interesting to assess the
eigenvalues o€ andS, respectivelyV, W matrix of eigen-  effect of this other part on the flow description. Such work is

on the left. Accordingly, for the Cauchy—Green tensor,
Ct) = F (0)F (@) (5)

t t
= expp /thT(t) exps /th(t)
10 10

Then, if the gradient tensdt remains constant during a time
scalet <t — 1y, it follows that

C@) = AT GEA %S, (6)

vectors of logC’ and S', respectively) florn and Johnsan  in progress.
1991, Davies and Highan2003, we conclude that
eig(S) o< log(eig(C)). (") Appendix A

In other words, FTLE values should be proportional to the )
eigenvalues of the strain-rate tensor. We see this in our nul-agrangian methods

merical experiment, since the FTLE shows a clearly larger . . S
P ylarg In order to define the Lagrangian measures used in this paper,

correlation with the total strain than with the vorticity. h tation i foll - 2 initial | id of t i
In the theory above, the crucial step is represented by thé € notation Is as Toflows. a Initial reguiar grid of tracers a

Kolmogorov timescalé (Chevillard and Menevea2008, initial positionsxo (o) is advected by the velocity fieM(x, )

- - . . to a final positionx(zg + ) after a finite-timer, x(ro+ 1) =
during which the gradient tensér remains constant. Note . .
in Figg 4 that as t?le integration time — 0, (0, s2) — 1 qs;g“(xo(to)). The gradient of the flow map (the deformation

. ) ) ’ . . o+
as expected according to Eq)(The extreme case occurs dradienttensor) i§(xo) = Vo™ (xo) = V (X(t0 + ).
for the stationary double-gyre flow (i.e= 0 in Eq.3). For FTLE values are then computed from the trajectories of

this model, both the vorticity and the total strain fields at- Lagrangian tracers in the flow as

tain similar distribution values; however(s, ©?) — 0 and 1
r(o,s%) ~ 1. o (Xp, 10, T) = - 109/ Amax(C(X0)), (A1)
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