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Abstract. This paper presents the results of modeling the in-
teraction between internal waves (IWs) and turbulence us-
ing direct numerical simulation (DNS). Turbulence is ex-
cited and supported by a random forcing localized in a verti-
cal layer separated from the pycnocline. The main attention
is paid to the internal wave damping due to turbulence and
comparison of the results with those obtained theoretically
by using the semi-empirical approach. It is shown that the
IW damping rate predicted by the theory agrees well with
the DNS results when turbulence is sufficiently strong to be
only weakly perturbed by the internal wave; however, the
theory overestimates the damping rate of IWs for a weaker
turbulence. The DNS parameters are matched to the parame-
ters of the laboratory experiment, and an extrapolation to the
oceanic scales is also provided.

1 Introduction

The interaction between internal gravity waves (IWs) and
small-scale turbulence is a significant factor governing the
dynamics of the upper ocean. One of the important aspects
of this interaction is the phenomenon of IW damping by tur-
bulence (Phillips, 1977).

Early theoretical studies of this phenomenon used sa
emi-empirical approach (LeBlond, 1966; Ostrovsky and
Soustova, 1979; Ivanov et al., 1983). An explicit expres-
sion for the IW damping rate by turbulence based on
the semi-empirical closure was derived by Ostrovsky and

Zaborskikh (1996) in application to the typical oceanic con-
ditions (vertical profiles of the mean density, turbulent kinetic
energy and mean current velocity).

The phenomena of damping of IWs by turbulence was
observed in laboratory experiments by Phillips (1977),
Kantha (1980), and Barenblatt (1978). A similar phenom-
ena of the damping of surface waves by turbulence gener-
ated by a submerged oscillating grid was also experimentally
observed by Olmez and Milgram (1992). Quantitative mea-
surements of the IW damping by turbulence were first per-
formed in a laboratory experiment by Ostrovsky et al. (1996).
In this experiment, IWs were generated in the pycnocline by
a wavemaker, and small-scale turbulence was induced by an
oscillating grid at some level above the pycnocline. Measure-
ments and comparison of the IW amplitudes with and with-
out turbulence showed an effective enhancement of the decay
rate of IW under the effect of turbulence which was found
to be in good agreement with the theoretical prediction by
Ostrovsky and Zaborskikh (1996).

However, the known theoretical results have significant
limitations. In the theory developed by Ostrovsky and
Zaborskikh (1996) it was assumed that the IW is sufficiently
weak to allow linearization of the semi-empirical equations,
and the experiment by Ostrovsky et al. (1996) was de-
signed correspondingly. A stronger IW can affect the aver-
age turbulent energy; moreover, as experimentally observed
by Ostrovsky et al. (1989), a strong internal wave can in-
crease the average turbulent energy, which can be a source of
the ubiquitous presence of turbulent spots in the ocean. Also,
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the applicability of semi-empirical, Reynolds-type equations
with a simple closure hypothesis can be limited as well.

In this paper we present the results of direct numerical
simulation (DNS) to study of the effect of small-scale tur-
bulence on internal gravity waves propagation in a density-
stratified fluid with a pycnocline. As far as we are aware this
is the first such study. The DNS results are compared with
the semi-empirical model prediction, and explore the appli-
cability limits of the semi-empirical approach concerning
the IW damping by turbulence. Thus, for comparison with
the theoretical results of Ostrovsky and Zaborskikh (1996),
the parameters of the laboratory experiment by Ostrovsky et
al. (1996) are employed. Further the geophysical estimates
for oceanic scales are also provided.

2 Basic equations and numerical method

We consider a stably stratified fluid with a pycnocline
(Fig. 1). Stationary turbulence is maintained by a forcing
located at some distance above the pycnocline. The first
mode of the internal wave propagating in the pycnocline
from left to right is prescribed as an initial condition. Peri-
odic boundary conditions in thex andy directions and Neu-
mann (zero normal gradient) boundary condition in thez di-
rection are considered. The thickness of the pycnocline,L0,
and the buoyancy frequency in the middle of the pycnocline,

N0 =

(
−

g
ρ0

dρ0
dz

)1/2
(whereg is the gravity acceleration and

ρ0(z) is the fluid density), are chosen to define the charac-
teristic length and timescales,L0 andT0 = 1/N0, which are
used further to write the governing equations in the dimen-
sionless form.

The Navier–Stokes equations for the fluid velocity are
written under the Boussinesq approximation in the dimen-
sionless form as (Phillips, 1977)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −
∂P

∂xi

+
1

Re

∂2Ui

∂x2
j

−
δiz

Fr2
ρ + fi (1)

∂Uj

∂xj

= 0. (2)

The equation for the fluid density is written as

∂ρ

∂t
+ Uj

∂ρ

∂xj

− UzN
2
ref(z) =

1

RePr

∂2ρ

∂x2
j

. (3)

In Eqs. (1)–(3), Ui(i = x,y,z) is the instantaneous fluid
velocity, andρ and P are the instantaneous deviations of
the fluid density and pressure from the respective hydrostatic
profiles,xi = x,y,z are the Cartesian coordinates;Re and
Fr as the Reynolds and Froude numbers are defined as

Re =
U0L0

ν
, F r =

U0

L0N0
(4)
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Fig. 1. Schematic of the numerical experiment: x,y,z are the Cartesian coordinates; 0ρ  is the density 

above the pycnocline; 0ρΔ  the density jump across the pycnocline; g the gravity acceleration, Nm 

the buoyancy frequency in the pycnocline center; L0 the pycnocline thickness; zp and zf  the 

locations of the pycnocline center and the forced turbulence layer center, respectively. 

 
 
 
 
 
 
 
 

  
 

Fig. 1.Schematic of the numerical experiment:x,y,z are the Carte-
sian coordinates;ρ0 is the density above the pycnocline;1ρ0 the
density jump across the pycnocline;g the gravity acceleration,Nm

the buoyancy frequency in the pycnocline center;L0 the pycnocline
thickness;zp andzf the locations of the pycnocline center and the
forced turbulence layer center, respectively.

and δij is the Kronecker’s symbol. The Prandtl number
Pr= ν/κ, whereν is the fluid kinematic viscosity andκ the
molecular diffusivity. The coordinates, time and velocity in
Eqs. (1)–(3) are normalized by the length, time and velocity
scales,L0, T0 andU0 = L0/T0. Note that since the timescale
is defined asT0 = 1/N0 and the velocity scaleU0 = L0/T0 =

L0N0, the Froude number in DNS equals (is identical to)
unity, Fr = 1. The density deviationρ is normalized by the
density jump across the pycnocline,1ρ0 (Fig. 1).

The dimensionless reference profile of the buoyancy fre-
quency,Nref(z), in the left-hand side of Eq. (3) is prescribed
in the form:

Nref(z) =
1

cosh2(z − zp)
, (5)

wherezp defines the pycnocline location. The corresponding
dimensionless reference density profile,ρref(z), is then ob-
tained from Eq. (5) as

ρref(z) = ρref(−∞) −

z∫
−∞

N2
ref(z)dz

= ρref(−∞) − 0.5tanh2(z − zp), (6)

where constantρref(−∞) can be arbitrary since its value
does not influence the integration of Eqs. (1)–(3). Thus, for
convenience,ρref(−∞) is set equal to 1.5, and that the refer-
ence density profile is rewritten in the following form:

ρref(z) = 1+ 0.5
[
1− tanh2(z − zp)

]
. (7)
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The dimensionless instantaneous density is obtained as
a sum ofρref(z) and the instantaneous density deviation,
ρ. Note that a corresponding dimensional density can be
obtained as a sum

[
ρ0 + 1ρ0

(
0.5[1− tanh2(z − zp)] + ρ

)]
whereρ0 is the dimensional reference (undisturbed) density
above the pycnocline.

In DNS we prescribe the Reynolds number to beRe =

2000. This is sufficiently large to allow one to consider the
viscous damping of IWs as sufficiently weak as compared
to the damping caused by turbulence. We also neglect the
diffusion effect onNref(z) andρref(z) profiles, i.e. the pro-
file Nref(z) in Eq. (3) does not evolve with time. The Prandtl
number Pr is set equal to unity.

Equations (1)–(3) are discretized in a cubic domain with
sizes 0≤ x ≤ 40,−10≤ y ≤ 10 and 0≤ z ≤ 20 by employ-
ing a finite difference method of the second-order accu-
racy on a uniform rectangular staggered grid consisting of
400× 200× 200 nodes in thex, y andz directions, respec-
tively. The integration is advanced in time using the Adams–
Bashforth method with time step1t = 0.01. The Poisson
equation for the pressure is solved by FFT transform over
x andy coordinates, and Gauss elimination method overz

coordinate (Fletcher, 1991; Druzhinin, 2003). The Neumann
(zero normal gradient) boundary condition is prescribed for
all fields in the vertical (z) direction in the horizontal (x,y)

planes atz = 0 andz = 20, and periodic boundary conditions
are prescribed in the horizontal (x) and spanwise (y) direc-
tions.

In order to induce turbulence in DNS there should be a
mechanism to compensate for its decay by the viscous dis-
sipation. In the presence of a mean shear, the nature of the
evolving flow may depend critically on the representation
and location of turbulence (cf. e.g., Pham et al., 2009). In
the present study, there is no mean shear flow, and a ran-
dom, divergence-free forcing,fi , is employed in the r.h.s. of
Eq. (1) to support turbulence. This forcing is considered with
the following form:

fi(x,y,z, t) = F0U
f
i (x,y,z)exp

[
−0.5(z − zf)

2)
]

sin(ωf t), (8)

wherei = x, y, z, andzf defines the location of the turbu-
lence layer.Uf

i (x,y,z) is a homogeneous isotropic field with
a given power spectrum as follows:

E(k) = E0kexp

(
−

k

kf

)
, (9)

where wavenumberkf defines the spectral location of the en-
ergy peak. FactorE0 is chosen so that the amplitude (i.e.
an absolute maximum value) of the fieldU

f
i (x,y,z) in each

direction equals unity. Then parameterF0 defines the turbu-
lence intensity and hereafter is called the forcing amplitude,
andωf is the forcing frequency.
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Fig.2a. Distribution of the vertical velocity W(z) for wavelengths 4,5,8 and 10 (left) and the 

dispersion relation )(kω  (right) for the first IW mode. The wavenumbers corresponding to the 

selected wavelengths λ  = 4, 5, 8 and 10 are shown by symbols. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Fig. 2a.Distribution of the vertical velocityW(z) for wavelengths
4, 5, 8 and 10 (left) and the dispersion relationω(k) (right) for
the first IW mode. The wavenumbers corresponding to the selected
wavelengthsλ = 4, 5, 8 and 10 are shown by symbols.

3 Internal waves

The initial condition for the velocity and density fields is pre-
scribed as a first mode of internal wave field with wavelength,
λ (and wavenumberk = 2π/λ), and frequency,ω. The solu-
tion of the linearized Eqs. (1)–(3) for the progressive internal
wave propagating from left to right in thex direction can be
defined as (Phillips, 1977)

U IW
x (x,z, t) = −

1

k

dW(z)

dz
sin(kx − ωt) (10)

U IW
z (x,z, t) = W(z)cos(kx − ωt) (11)

ρIW
z (x,z, t) =

W(z)

ω

dρref

dz
sin(kx − ωt). (12)

The initial conditions for IWs field are taken from
Eqs. (10)–(12) at t = 0. FunctionW(z) in Eqs. (10)–(12)
is obtained as an eigenfunction of the well-known boundary
problem (Phillips, 1977):

d2W

dz2
+

(
N2

ω2
− 1

)
k2W = 0 (13)

with conditionsW(z) → W0exp
[
k(z − zp)

]
for z � zp and

W(z) → W0exp
[
−k(z − zp)

]
for z � zp, whereW0 is the

IW velocity amplitude. The problem in Eq. (13) was solved
by the shooting method with matching at the pycnocline cen-
ter (Hazel, 1972). The distribution of the first mode IW verti-
cal velocity and the dispersion relation,ω(k), for wavenum-
bers in the range 0.3< k < 6 obtained numerically for four
cases of wavelengthλ = 4, 5, 8, and 10 are presented in
Fig. 2a. The figure shows that, as expected, the energy of
the first mode is concentrated around the pycnocline.

DNS was performed with initial conditions in Eqs. (10)–
(12) at t = 0 corresponding to the IW fields with wavelengths
λ = 4 (frequencyω = 0.663, periodT ≈ 9.5), λ = 5 (fre-
quencyω = 0.621, periodT ≈ 10), λ = 8 (frequencyω =
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Fig. 2b. The instantaneous contours of the density deviation obtained in the central (x,z)-plane at 

different time moments in DNS with initial condition (3.2) prescribed for IW, propagating from left 

to right with wavelength λ = 10 (frequency ω = 0.489, phase velocity c ≈ 0.78). The turbulence 

forcing is off. Density contours are 1.3, 1.5, 1.7. Contour 1.5 marks the position of the pycnocline 

center. 

 
 
 
 
 
 
 
 
 
 

  
 
 

Fig. 2b. The instantaneous contours of the density deviation ob-
tained in the central (x,z) plane at different time moments in DNS
with initial condition (3.2) prescribed for IW, propagating from left
to right with wavelengthλ = 10 (frequencyω = 0.489, phase ve-
locity c = 0.78). The turbulence forcing is off. Density contours are
1.3, 1.5, 1.7. Contour 1.5 marks the position of the pycnocline cen-
ter.

0.531, periodT ≈ 12), andλ = 10 (frequencyω = 0.489, pe-
riod T ≈ 13). The IW amplitude was prescribed asW0 =

0.05. Figure 2c shows isopycnal displacements obtained in
DNS at different times with initial conditions prescribed for
IW with wavelengthλ = 10. In this case, the amplitude of the
isopycnal displacement is abouta ≈ 0.1, and the wave slope
is aboutka = 2πa/λ ≈ 0.06 which may be regarded small
enough to ensure that non-linear effects during the IW prop-
agation in the pycnocline remain negligible. Similar results
were obtained for IW with wavelengthsλ = 4, 5 and 8.

4 Forced turbulence and its effect on the pycnocline

In order to investigate how turbulence affects the internal
wave DNS was performed with only the forcing on and no
IW fields imposed initially. The mid-pycnocline level was
prescribed atzp = 8 and the forcing level was set atzf = 10.
The values ofzp andzf were chosen to ensure that the effect
of turbulent mixing on the pycnocline remained sufficiently
small for the considered forcing amplitudes in the range of
1 < F0 < 4. On the other hand, the effect of turbulence on
the IW propagation should be sufficiently large to be de-
tected in DNS. The frequency of the forcing was prescribed
asωf = 10, which is about 20 times larger than the typical IW
frequency, andkf was set equal to unity. This choice is made
to ensure that the forced turbulence does not generate effec-
tively internal waves in the pycnocline. At that frequency, the
maximum amplitude of density fluctuations induced by tur-
bulence in the pycnocline at forcing amplitudeF0 = 3 is less
than 0.01 and negligible as compared to the amplitude of the
density oscillations in IWs. On the other hand, the forcing
frequency must be much smaller than the inverse time step
1/1t = 100 to ensure sufficient resolution.
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Fig.3a. Turbulence power spectrum obtained in DNS with the forcing on and no initially excited 

IWs at t = 300 at different z-levels. Dashed line shows the Kolmogorov’s  spectrum 

asymptotics. Here and in Figs.4-7 below, the forcing amplitude is

3/5−k
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Fig. 3a.Turbulence power spectrum obtained in DNS with the forc-
ing on and no initially excited IWs att = 300 at different z-levels.
Dashed line shows the Kolmogorov’sk3/5 spectrum asymptotics.
Here and in Figs. 4–7 below, the forcing amplitude isF0 = 3.

Figure 3a shows the power spectrum,E(k), of the veloc-
ity field obtained in DNS for forcing amplitudeF0 = 3 at
different z levels att = 300. Each spectrum is obtained by
FFT transform over thex coordinate and averaged over the
y coordinate. The figure shows that the spectra of the veloc-
ity fluctuation obtained at differentz levels are of the same
shape and are reduced in amplitude as the distance (zf − z)

increases. The spectra are characterized by local maximum
at aboutk = 1 (in accordance with the forcing spectrum9),
a short inertial interval atk = 7/15 and viscous dissipation
region at largerk’s.

Using the spectra, the characteristic (integral) turbulence
spatial scale was evaluated as

lt =

∫
E(k)k−1dk∫

E(k)dk
(14)

and found to be almost independent ofz, lt ≈ 0.4 in the re-
gion 8< z < 12.

The mean vertical profiles of the velocity and density
fields,< Ui > (z) and< ρ > (z), were obtained by averaging
over the horizontal (x,y) plane performed for eachz. Fluc-
tuations (dispersions) of the velocity and density were then
obtained as

U ′

i =

(
< U2

i − < Ui >2>
)1/2

,ρ′
=

(
< ρ2

− < ρ >2>
)1/2

. (15)
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Fig. 3b. Vertical profiles of the velocity fluctuation and mean density obtained in DNS with 

turbulence forcing on and IW with wavelength λ = 4. Blue, green, magenta and black lines are for 

velocity fluctuation at times at t = 1, 6, 9 and 300.  Red line is for density at t = 300. The reference 

(initial) density profile, )(zrefρ , is shown in dashed line for comparison.   

 
 
 
 
 
 
 
 
 
 

  

Fig. 3b. Vertical profiles of the velocity fluctuation and mean den-
sity obtained in DNS with turbulence forcing on and IW with wave-
lengthλ = 4. Blue, green, magenta and black lines are for velocity
fluctuation at timest = 1, 6, 9 and 300. Red line is for density at
t = 300. The reference (initial) density profile,ρref(z), is shown in
dashed line for comparison.

Figure 3b shows the vertical mean profiles of the fluctua-
tion velocity,

u′
=

(
1

3

∑
i=x,y,z

U ′

i2

)1/2

(16)

and the mean density obtained in DNS at different times. Af-
ter a short (as compared to the IW period) transient time in-
terval, the flow becomes statistically stationary. This transi-
tion is of no importance for the further process. Once tur-
bulence becomes stationary, the transient effects can be ne-
glected. The figure shows also that the turbulence fluctuation
profile is asymmetric about the levelzf = 10. This asymme-
try of the fluctuation velocity profile is related to the effect of
the pycnocline on turbulence diffusion. Downward turbulent
diffusion is not effective since turbulent velocity fluctuations
can not penetrate the pycnocline at the considered, relatively
low, Froude number (Fr = 1), whereas turbulence is free to
diffuse upwards.

Figure 3b also compares the mean density profile obtained
in DNS at timet = 300 to the initial (reference) density pro-
file ρref(z) in Eq. (7). The figure shows that the effect of tur-
bulent mixing on the pycnocline remains negligible. On the
other hand, as it will be shown below in Sect. 5, the turbu-
lence (with maximumu′

≈ 0.06 atz = zf = 10 andu′
≈ 0.06

in the vicinity of the pycnocline atz = zp = 8) is sufficiently
intensive to affect the IWs propagation.
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Fig. 4a.  Instantaneous distribution of the vorticity y-component Ω (in grey scale) and density 

contours obtained in DNS at t =100 (top) and t = 300 (bottom) with turbulence forcing on and 

initially excited IW with wavelength λ = 4. Density contours are 1.3, 1.5, 1.7. 

 
 
 
 
 
 
 
 

  

Fig. 4a. Instantaneous distribution of the vorticityy component�
(in grey scale) and density contours obtained in DNS att = 100
(top) andt = 300 (bottom) with turbulence forcing on and initially
excited IW with wavelengthλ = 4. Density contours are 1.3, 1.5,
1.7.

5 Damping of internal waves by turbulence

Consider now the effect of the turbulent layer on the inter-
nal waves propagating in the pycnocline. In this case, DNS
was performed with both the turbulent forcing and the initial
conditions (10)–(12) at t = 0 with IW amplitudeW0 = 0.05
and different wavelengths. Figures 4 and 5 present the results
obtained in DNS forλ = 4. The results obtained for wave-
lengthsλ = 5, 8 and 10 are qualitatively similar to those in
Figs. 4 and 5.

Figure 4a shows instantaneous distributions of they com-
ponent of vorticity, � = ∂zUx − ∂xUz, and density (ρ +

ρref(z)) obtained in DNS for IW wavelengthλ = 4 at times
t = 100 andt = 300. The figure shows that the amplitude of
the isopycnal displacement in IW is reduced under the ef-
fect of turbulence and becomes quite substantial at late times.
Figure 4b shows vertical profiles of the velocity fluctuation
and mean density obtained in the same run. The figure also
shows the profile of the velocity fluctuation induced by IW in
the absence of turbulence (in blue color). As compared to the
case with no initially excited IW (cf. Fig. 3b), we observe the
effect of the IW on theu′ profiles, especially in the vicinity
of the pycnocline level. Figure 4b shows that forz < 7 the
velocity fluctuation is entirely due to IW.

As it was stated above, we neglect the diffusion effect
on Nref(z) and ρref(z) profiles (i.e. the profileNref(z) in
Eq. (3) does not evolve with time). The mean density profile,

www.nonlin-processes-geophys.net/20/977/2013/ Nonlin. Processes Geophys., 20, 977–986, 2013
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Fig. 4b. Vertical profiles of the velocity fluctuation and mean density (in red line) obtained in DNS 

with turbulence forcing on and off (in black and blue line, respectively) and IW with wavelength λ 

= 4 at t = 300. The reference (initial) density profile, )(zrefρ , is shown in dashed line for 

comparison.   

 
 
 
 
 
 
 

  

Fig. 4b. Vertical profiles of the velocity fluctuation and mean den-
sity (in red line) obtained in DNS with turbulence forcing on and
off (in black and blue line, respectively) and IW with wavelength
λ = 4 at t = 300. The reference (initial) density profile,ρref(z), is
shown as a dashed line for comparison.

< ρ > +ρref(z), is allowed to vary due to both viscous and
turbulent diffusion effects. However, this change is found to
be negligible in the present study (cf. Fig. 4b), obviously due
to comparatively low Froude number (unity) (i.e. the tur-
bulence is considered to be sufficiently weak). Of course,
the turbulent mixing effect would be of greater importance
if a stronger turbulence is considered. However, we chose
the flow parameters so as to minimize the effect of turbulent
mixing and molecular diffusion on the pycnocline and, at the
same time, retain the effect of turbulence on IW propagation.

Figure 5 compares temporal development of the dimen-
sionless densityρ in the central pointx = 20, y = 0, z = 8
(i.e. in the center of the pycnocline) obtained in DNS with the
turbulent forcing on, and the results of DNS with the same
initial conditions for IW but without turbulence forcing. The
figure also shows the instantaneous density difference1ρ in
the same point obtained in DNS with and without turbulence
forcing. The figure shows that turbulence causes a consider-
able damping of IWs. Note that since in the pycnocline cen-
ter dρref(z)/dz = −1 (cf. Eq.7), and the density disturbance
is small as compared to the reference density,ρ � ρref(z),
the displacement of the isopycnal surface at the pycnocline
center (with densityρref(z) + ρ = 1.5) from the undisturbed
position is equal to (−ρ).

Figure 5 also shows that the damping effect due to turbu-
lence is much stronger than the damping caused by viscosity.
By the time t = 300, the amplitude of IW affected by tur-
bulence becomes almost four times less as compared to the
initial amplitude (decreasing from 0.8 att = 0 to about 0.2
at t = 300). On the other hand, the IW amplitude decreases
by about 30 % due to viscous damping, when no turbulence
forcing is applied (decreasing to about 0.5 att = 300).
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Fig. 5. Temporal development of the density deviation in center of the pycnocline, at a point with 

coordinates x = 20, y = 0, z = 8, obtained in DNS for IW wavelength λ = 4, with and without 

turbulence forcing, fρ  and ρ  (in black and grey line, left) and the difference fρρ − (right) .  

 

 

 

 

 

 

 

 

  

Fig. 5. Temporal development of the density deviation in center of
the pycnocline, at a point with coordinatesx = 20, y = 0, z = 8,
obtained in DNS for IW wavelengthλ = 4, with and without turbu-
lence forcing,ρf andρ (in black and grey line, left) and the differ-
enceρ − ρf (right).

The results shown in Fig. 5 can be used to estimate the IW
damping rate caused by turbulence. Since the perturbations
of the reference state are small, it can be assumed that the
decrease of the IW amplitude under the effect of turbulence
in terms of the density deviation is described by

ρt(t) = ρnt(t)exp(−γ t), (17)

whereρt(t) is the amplitude of the instantaneous density de-
viation in the IW affected by turbulence andρnt(t) is the am-
plitude of the instantaneous density deviation in the IW in
the absence of turbulence, andγ is the damping rate due to
turbulence. Then, the variation of the IW amplitude is

1ρ(t) = ρnt (t)[1− exp(−γ t)]. (18)

Forγ t < 1 Eq. (18) can be approximately rewritten as

1ρ(t) ≈ γρnt(t)t. (19)

Thus, the density difference grows linearly at earlier times,
whereγ t < 1, and saturates at sufficiently large times, for
γ t � 1. The damping rate can be evaluated from the data for
the density difference1ρ in Fig. 5 by deducing the depen-
dence of the IW amplitude on time, both without and with
the forcing, and using function (19) as the best fit.

Figure 6 shows the value ofγ obtained from DNS data in
Fig. 5 within the time interval 100< t < 300, and compares
it with the theoretical estimate (Ostrovsky et al., 1996):

γth =

[
2
∫

N2W2dz

]−1{
κρk2

∫
νtN

2W2dz + κbc
2

∫
W

[
d2

dz2
νt

d2W

dz2
+ νtk

4W − 2k2 d

dz
νt

dW

dz

]
dz

}
, (20)

where N = Nref(z) is the buoyancy frequency given by
Eq. (5),

νt = b1/2lt (21)
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Fig.6. Damping rate of IW γ caused by turbulence obtained from the data in Fig. 5 vs. IW 

wavelength λ and the analytical estimate (20).  

 

 

 

 

 

 

  

Fig. 6. Damping rate of IWγ caused by turbulence obtained from
the data in Fig. 5 vs. IW wavelengthλ and the analytical esti-
mate (20).

is the turbulent viscosity whereb = 3u′2/2 the turbulence ki-
netic energy. Hereνt is evaluated for the turbulent fluctua-
tion profile u′ shown in Fig. 3b and the turbulence length
scalelt = 0.4; W(z) is the IW vertical velocity distribution
in Fig. 2a, andc = ω/k is the IW phase velocity evaluated
for given wavenumber,k, and frequency,ω. The empirical
factors in the turbulent exchange coefficients defined by Os-
trovsky et al. (1996) are

κρ = 0.1,κb = 0.7. (22)

Figure 6 shows a good qualitative and quantitative agree-
ment with the DNS results. The error bars at DNS points in
Fig. 6 are caused by variation of the amplitude of1ρ(t) from
the linear increase (cf. Fig. 5 for IW wavelengthλ = 4; sim-
ilar variations are observed forλ = 5, 8 and 10). These vari-
ations are due to distortion of the IW by turbulent eddies and
increase as the forcing amplitudeF0 increases (as discussed
later in Sect. 6).

As already mentioned in the introduction, in the theory de-
veloped by Ostrovsky and Zaborskikh (1996) it was assumed
that the IW is sufficiently weak as compared to the turbu-
lence fluctuation amplitude to allow linearization of the semi-
empirical equations. This assumption can be considered as
applicable in the case of forcing amplitudeF0 = 3 discussed
above. Indeed, the average IW velocity amplitude (which can
be evaluated as r.m.s. (or dispersion) of Eqs. (10)–(12) by
averaging overx with W0 = 0.05) is about 0.03, and can be
regarded sufficiently small as compared to the turbulent ve-
locity amplitude (u′

≈ 0.06, cf. Fig. 4b). As shown below, a
stronger IW (or weaker turbulence) can violate the applica-
bility of the estimate, as in Eq. (20).
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Fig. 7. Vertical profiles of the fluctuation velocity  and mean density'u >< ρ (red line) obtained in 
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shown in dashed line for comparison.   
 

 

  

Fig. 7.Vertical profiles of the fluctuation velocityu′ and mean den-
sity 〈/rho〉 (red line) obtained in DNS att = 300 with turbulence
forcing on and off (in black and blue line, respectively) and ini-
tially excited IW with wavelengthsλ = 4 (left coloumn) andλ = 8
(right coloumn) for the forcing amplitudesF0 = 2 (top) andF0 = 4
(bottom). The reference (initial) density profile,ρref(z), is shown in
dashed line for comparison.

6 Dependence of the damping rate on turbulence
forcing amplitude

In order to evaluate the applicability limits of the theoreti-
cal formula in Eq. (20), we performed DNS with different
forcing amplitudes (F0 = 1, 2, 2.5, 3.5 and 4) and IW wave-
lengthsλ = 4 andλ = 8. The results are presented in Figs. 7–
9.

Figure 7 shows vertical mean profiles of the fluctuation
velocity u′ and mean density,< ρ + ρref(z) >, obtained in
DNS with forcing amplitudesF0 = 2 and 4 and initially ex-
cited IWs. The figure also shows the profiles of the veloc-
ity fluctuations induced by IW in the absence of turbulence
(in blue line). The figure shows that the turbulence is af-
fected by the IW propagating in the pycnocline, especially
when the forcing in Eq. (8) is relatively small,F0 = 2. It
is interesting to note that the vertical turbulence profile is
split due to the IW action. The absolute maxima ofu′ lo-
cated atz = 10 are due to the choice of parameterzf in the
forcing function of Eq. (7), and qualitatively analogous to
that in Fig. 4b obtained forF0 = 3. However, they differ
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Fig. 8a. Temporal development of the density deviation in center of the pycnocline, at a point with 

coordinates x = 20, y = 0, z = 8, obtained in DNS for IW wavelength λ = 4, with and without 

turbulence forcing fρ  and ρ  (in black and grey line, left column) and the difference fρρ − (right 

column) for forcing amplitudes F0 = 2 (top) and F0 = 4 (bottom).  

 

 

 

  

Fig. 8a. Temporal development of the density deviation in center
of the pycnocline, at a point with coordinatesx = 20,y = 0, z = 8,
obtained in DNS for IW wavelengthλ = 4, with and without tur-
bulence forcingρf andρ (in black and grey line, left column) and
the differenceρ − ρf (right column) for forcing amplitudesF0 = 2
(top) andF0 = 4 (bottom).

quantitatively (u′
≈ 0.04 forF0 = 2 andu′

≈ 0.08 forF0 =

4), so that the increase inF0 leads to a larger turbulence in-
tensity, as expected. The maxima ofu′

≈ 0.02 at the pycno-
cline horizon (atz = 8) in both casesF0 = 2 and 4 are due
to IWs action. The figure shows also that atz < 7 velocity
fluctuations are entirely due to IW, and in the caseF0 = 4u′

is reduced as compared to the case with no turbulent forcing.
This reduction is due to the damping of IW by turbulence.

Note that under the conditions shown in Fig. 7 in the
caseF0 = 2 (a weak forcing), the perturbations in the inter-
nal wave and the turbulence have comparable intensities and
therefore they affect each other. Indeed, the average velocity
amplitude in this case is of about 0.03 which is rather close
to the turbulence velocity amplitude (about 0.04). Therefore,
in this case the theoretical estimate in Eq. (19) is not appli-
cable since it was derived from the hydrodynamic Reynolds
equations linearized with respect to the IW.

Note also that the presence of the second maximum ofu′

is in qualitative agreement with the results of Ostrovsky et
al. (1989) where amplification of turbulence under the action
of a stronger internal wave was observed. This provides an
incentive for a future study of the phenomena of the amplifi-
cation of small-scale turbulence by IWs.

Figure 8a and b show temporal development of the den-
sity ρ in the center of the pycnocline for the IW wavelengths
λ = 4 andλ = 8, with and without turbulence forcing, and
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                                  Fig. 8b. The same as in Fig.8a but for IW wavelength λ = 8. 

 

 

 

 

 

 

 

  

Fig. 8b.The same as in Fig. 8a but for IW wavelengthλ = 8.

the instantaneous difference1ρ of the densities obtained in
the same point in runs with and without turbulence forc-
ing. These data are qualitatively analogous to those shown
in Fig. 5. Using these data we evaluated the IW damping
rate and compared it with the results of calculation accord-
ing to the theoretical solution (20). Figure 9 compares the
IW damping rate obtained from DNS with the theoretical es-
timate for different forcing amplitudes.

Figure 9 shows that in the case of a sufficiently weak tur-
bulence (low forcing amplitude,F0 < 3) and the IW velocity
amplitude on the order of the turbulent velocity amplitude,
the semi-empirical theory overpredicts the damping rate. As
F0 increases from 1 to 3, and the turbulent velocity amplitude
becomes sufficiently large as compared to the IW velocity
amplitude, the agreement between the DNS results and the
theoretical estimate in Eq. (20) improves.

It should be pointed out, however, that as the amplitudeF0
further increases from 3 to 4, the accuracy of the theoretical
estimate is again reduced. This reduction can be attributed
to the influence of strong turbulent eddies on the pycnocline,
when the turbulent mixing changes the pycnocline and, con-
sequently, the IW mode structure. On the other hand, the er-
ror of the evaluation of the damping rate from DNS data (e.g.,
from data in Fig. 8a and b for IW wavelengthsλ = 4 and
λ = 8) becomes much larger forF0 = 4. This error increases
due to considerable distortion of the IW by turbulent eddies
which become strong enough to cause the pycnocline ero-
sion asF0 increases. Figure 10 compares the instantaneous
density contours in the center of the pycnolcine obtained in
DNS at t = 300 for forcing amplitudeF0 = 3 andF0 = 4.
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Fig. 9. The IW damping rate obtained in DNS and analytical prediction (20) (open symbols) for IW 

wavelengths λ = 4 (left) and λ = 8 (right) for different forcing amplitudes. 

 

 

 

 

 

 

 

  

Fig. 9. The IW damping rate obtained in DNS and analytical pre-
diction in Eq. (20) (open symbols) for IW wavelengthsλ = 4 (left)
andλ = 8 (right) for different forcing amplitudes.

The figure shows that IWs become much less regular under
the action of turbulence in the caseF0 = 4. This irregular-
ity is also reflected in the behavior of the density in Fig. 8.
This indicates a direct effect of small-scale turbulent fluctu-
ations as wave “scatterers”. The figure also shows that the
instantaneous density contours sometimes overturn, leading
to convective turbulent mixing. These overturnings are visi-
ble in the more turbulent region, for levelρ = 1.1 at forcing
amplitudeF0 = 4 (where the isopycnal is locally almost ver-
tical).

7 Discussion

Here we studied the damping of internal gravity waves
by small-scale turbulence. IW damping rate was calculated
from DNS data and compared with the results of the semi-
empirical theory. We also investigated applicability limits of
the semi-empirical approach in terms of the ratio between
the amplitudes of the IW and of the turbulent pulsations. Our
results show that in the case where IW amplitude is of the
order of turbulent pulsation velocity, the semi-empirical for-
mula obtained for weak IWs overestimates the damping rate
by the order of magnitude. However, the theoretical estimate
becomes quite accurate in the case where the IW amplitude
is sufficiently small as compared to the turbulent fluctuations
amplitude.

The parameters of the present DNS study can, in particu-
lar, be matched to the flow parameters in the experiment by
Ostrovsky et al. (1996). In this experiment, internal waves
were generated in the pycnocline by a wavemaker, and small-
scale turbulence was induced by an oscillating grid located
0.2 m above the pycnocline. The IW period in the exper-
iment ranged form about 23 s to 45 s and IW wavelength
varied from 35 cm to 170 cm. The thermocline (or pycno-
cline) thickness (half-width) was aboutL0 ≈ 0.1 m and max-
imum buoyancy frequency was aboutNmax ≈ 0.4 rad s−1.
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Fig. 10. Instantaneous density contours obtained in DNS at t = 300 with turbulence forcing on  

(F0 = 3, top and  F0 = 4, bottom) and initially excited IW with wavelength λ = 4. Density contours in 

each panel are (from bottom to top) 1.1, 1.3, 1.5, 1.7, 1.9. 

 

  

Fig. 10.Instantaneous density contours obtained in DNS att = 300
with turbulence forcing on (F0 = 3, top andF0 = 4, bottom) and
initially excited IW with wavelengthλ = 4. Density contours in
each panel are (from bottom to top) 1.1, 1.3, 1.5, 1.7, 1.9.

Thus, for the internal wave with a wavelengthλIW = 1m
and buoyancy periodTIW ≈ 35 s, the dimensional quantities
matching those in the experiment can be obtained by choos-
ing the length and timescales ofL0 = 0.1 m andT0 = 2.5 s.
Then, IW with dimensionless wavelengthλ = 10 and pe-
riod T = 13 in DNS corresponds to the IW with dimen-
sional wavelengthλIW = 1 m and periodTIW ≈ 33 s which
are quite close to the experimental parameters. In DNS, the
dimensionless buoyancy frequency at the pycnocline center
is N0 = 1 which in this case corresponds to the dimensional
valueNmax = 0.4 rad s−1 in the experiment. Then, the damp-
ing rate in Fig. 6, obtained in DNS, which is ranging from
γ ≈ 0.008 forλ = 4 toγ ≈ 0.002 forλ = 10, can be recast in
the dimensional variables asγ ≈ 3×10−3 s−1 for λ = 0.4 m
and toγ ≈ 8× 10−4 s−1 for λ = 1 m which is also close to
the experimentally observed values ofγ .

As mentioned, the present DNS study considers the evolu-
tion of internal waves in time for a spatially periodic initial
condition. This is a more convenient setting for DNS since
it assumesx periodic boundary conditions which are eas-
ily implemented numerically. Note that the theoretical esti-
mate (20) for the damping rate Im(ω) was obtained by Ostro-
vsky and Zaborskikh (1996) and Ostrovsky et al. (1996) for
the geometry similar to that used in DNS. At the same time,
in the laboratory experiment by Ostrovsky et al. (1996) the
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spatial wave damping was observed. These data were linked
in Ostrovsky et al. (1996) to the theory developed in the same
paper by letting Im(k) = Im(ω)/vg, wherevg is group veloc-
ity of the internal wave. This substitution gives a reasonably
good prediction for the measured amplitude attenuation (ra-
tio A1/A0 of IW amplitudes after vs. before the turbulent
region). In the present paper we make the comparison which,
as mentioned, refers to the same spatially homogeneous con-
figuration, whereas the range of parameters (turbulence in-
tensity) in DNS goes beyond those used in the experiment.

In order to link the IW damping observed in DNS to that
observed in the experiment by Ostrovsky et al. (1996), let
us first evaluate the time interval in which it would take for
the IW to travel the distance of 2 in the dimensionless length
units in DNS which corresponds to 20 cm in the experiment.
This gives (e.g., for IW with wavelengthλ = 4 with the group
velocity of about 0.1) the dimensionless time interval1t =

20, so that for the damping rateγ ≈ 0.008 observed in DNS
we obtain the ratio of IW amplitudesA(t = 20)/A(t = 0) =

1/exp(γ1t) = 1/exp(0.16) = 0.85. This value is in a good
agreement with the IW damping observed in the experiment
for the considered dimensional IW wavelength 0.4 m (wave
number 0.16 rad cm−1).

Note that in the present study the distance between the
forcing level,zf , and the pycnocline level,zp, is fixed and
chosen to ensure that the effect of turbulent mixing on the py-
cnocline remained sufficiently small for the considered forc-
ing amplitudes in the range of 1< F0 < 4. On the other hand,
the effect of turbulence on the IW propagation is sufficiently
large to be detected in DNS. It would be of interest to reduce
the distance between the turbulence forcing level and the py-
cnocline. We expect that this would result in an enhancement
of turbulence intensity at the pycnocline level and, as a con-
sequence, a larger damping rate of IWs for the same ampli-
tude of forcingF0, provided the mixing effects remain negli-
gible. An interesting relevant problem is a possibility of tur-
bulence modification in case the energies of the internal wave
and turbulence are comparable as implied in the paper by Os-
trovsky et al. (1989). We plan to continue the DNS work in
this direction.

Note also that since DNS is performed in dimensionless
variables, the dimensional quantities can be obtained using
similarity with the corresponding use of velocity, length, and
timescales. Thus, the above results can be extrapolated to
oceanic pycnoclines by an appropriate scaling. If, for exam-
ple, density stratification can be approximated by the expres-
sion in Eq. (6) with the vertical scale of 100 m correspond-
ing toNmax ≈ 0.01 rad s−1 (Phillips, 1977), then one can use
the scalesU0 = 0.1 m s−1, L0 = 10 m, andT0 = 100 s. Then,
the scaled turbulence velocity (of the order ofO(1 cm s−1)
is close to that in the typical near-surface turbulence. For
the IW with wavelengthλIW ≈ 100 m (periodTIW ≈ 1300 s),
the damping rate is estimated to be on the order ofγ =

O(10−5 s−1) which is in good agreement with the estimates
made by Ostrovsky and Zaborskikh (1996).

In the present study, we prescribed the IW amplitude to
be sufficiently small (and the wave slopeka < 0.1) when the
IW nonlinearity can be neglected. This allows us to compare
the DNS results with the corresponding theoretical and ex-
perimental results of Ostrovsky et al. (1996). If the IW mode
is nonlinear it still does not significantly perturb turbulence,
since it is expected that the higher wave harmonics will at-
tenuate faster than the main harmonic. The case when the
amplitudes of motion in IW and turbulence are comparable
is planned to be considered in the future.
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