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Abstract. An interaction of internal solitary waves with the
shelf edge in the time periods related to the presence of a
pronounced seasonal pycnocline in the Red Sea and in the
Alboran Sea is analysed via satellite photos and SAR im-
ages. Laboratory data on transformation of a solitary wave
of depression while passing along the transverse bottom step
were obtained in a tank with a two-layer stratified fluid. The
certain difference between two characteristic types of hy-
drophysical phenomena was revealed both in the field obser-
vations and in experiments. The hydrological conditions for
these two processes were named the “deep” and the “shal-
low” shelf respectively. The first one provides the generation
of the secondary periodic short internal waves – “runaway”
edge waves – due to change in the polarity of a part of a
soliton approaching the shelf normally. Another one causes
a periodic shear flow in the upper quasi-homogeneous water
layer with the period of incident solitary wave. The strength
of the revealed mechanisms depends on the thickness of the
water layer between the pycnocline and the shelf bottom as
well as on the amplitude of the incident solitary wave.

1 Introduction

Internal solitary waves generated by nonlinear transforma-
tion of internal tide are a common feature of density strati-
fied oceans. Observations of these waves show that they are
generated, in particular, in the regions of variable bathymetry
such as the shelf edge or bottom irregularities where the tidal
flow over the bathymetry forces the pycnocline to oscillate
with a tidal frequency.

The phenomenon known as the internal tide is well inves-
tigated. There is a wide database of field measurements in
different regions of the World Ocean (LeBlond and Mysak,

1978; Lacombe and Richez, 1982; Huthnance, 1989; Mo-
rozov, 1995; Miropol’sky, 2001). Reviews on the internal
solitary waves generation in both shallow and deep areas
of the World Ocean are presented in Ostrovsky and Stepa-
nyants (1989), Grimshaw et al. (2004), Sabinin et al. (2004),
Vlasenko et al. (2005), and Helfrich and Mellville (2006).
Examples of areas with strong internal tides are the Strait
of Gibraltar (Ziegenbein, 1970; Armi and Farmer, 1988; La
Violette and Arnone, 1988; Kinder, 1984; Morozov et al.,
2002), the Mascarene Ridge (Konyaev et al., 1995; Moro-
zov et al., 2009), Russian Polar Seas (Morozov, 1995; Sere-
bryanyi, 2000), the continental shelf of the UK (Small et al.,
1999, 2001, 2003), the Andaman Sea (Osborne and Burch,
1980; Vlasenko and Alpers, 2005), the Alboran Sea (Speich
et al., 1996; Lafuente and Delgado, 2004).

Generation and propagation of solitary waves in the shelf
zone have been studied theoretically for a long period. Lee
and Beardsley (1974) applied the Korteweg–de Vries equa-
tion (KdV) for the first time to model the evolution of a shore-
ward propagating internal tide over the slope and shelf region
in the Massachusetts Bay. Then, weakly nonlinear models
were used for soliton modeling in the Alboran Sea (Pierini,
1989) and the Strait of Gibraltar (Longo et al., 1992), the
shelf of Australia (Holloway et al., 1997, 1999; Grimshaw et
al., 1999).

Ostrovsky and Grue (2003) suggested a simple evolution
equation as a generalisation of the Korteveg–de Vries and
Benjamin–Ono equations, compared the results with the ex-
act numerical calculations and made comparisons with ob-
servational data of very strong solitons in the sharp pyc-
nocline. Strongly nonlinear asymptotic models were com-
pared and validated with laboratory experimental observa-
tions and results of the numerical integration of Euler equa-
tions for solitary internal waves generated at the interface
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of the two-fluid system with shallow and deep fluids by Ca-
massa et al. (2006). Maderich et al. (2010) described the dis-
persion of an internal solitary wave at a bottom step in a two-
layer fluid for three different ratios of the step height to the
lower layer thickness after the step. Numerical simulations
of the soliton’s transformation with the estimation of the en-
ergy balance using non-hydrostatic version of the Princeton
Ocean Model and a theoretical and numerical study of the
Gardner equation were performed.

Packets of high-frequency waves and solitons are distin-
guished during analysis of remote sensing (SAR) and pho-
tography (Baines, 1981; Brandt et al., 1996; Hajji et al.,
1998; Rodenas and Garello, 1998; Velegrakis et al., 1999;
Klemas et al., 2001; Zheng et al., 2001, 2002; New and Da
Silva, 2002; Da Silva et al., 1998, 2007; Zhao et al., 2003;
Szekielda et al., 2012; Guo et al., 2012).

Transformation of the finite-amplitude internal solitary
waves at a ridge in a two-fluid system has been studied exper-
imentally by Koop and Butler (1981), Segur and Hammack
(1982), and Michallet and Ivey (1999). The correlation of
the solitary wave’s amplitude and its length under deep and
shallow water conditions was examined. The effect of the
ridge’s slope on wave’s propagation was studied by Kao et al.
(1985), Sveen et al. (2002) and Boegman et al. (2005). Cases
of internal wave’s blocking and breaking as well as energy
loss along the slope, the mixing efficiency versus the breaker
type were observed and analysed. Additionally an inversion
of the soliton train while its passage under the critical depth
of the lower layer of the two-layered fluid has been studied
by Cheng et al. (2011).

There is a number of theoretical works (Evans and McIver,
1984; Constantin, 2001; Johnson, 2007, 2008) dealing with
generation of surface edge waves by periodic waves of con-
stant frequency. Nonlinear effects in edge waves have been
revealed by Whitham (1976) and Yeh (1986). Kurkin and
Pelinovsky (2002) studied frequency modulation of the in-
coming periodic waves resulted in their focusing at the shelf.

Greenspan (1970) found an edge-wave solution in the case
of stratified fluid with an exponentially varying density over a
sloping beach. Small (2001) studied refraction and shoaling
of internal solitary waves due to variations in water depth
and nonlinearity with the development of the model to handle
realistic ocean stratification and bathymetry (Small, 2003).

A variety of experimental results on edge waves gener-
ated at the free water surface could be found in Yeh (1986),
Buchan and Pritchard (1995), Liu and Yeh (1996), and Sou
and Yeh (2011). There are also first laboratory studies on the
internal edge wave formation from regular internal waves
over the plain and inclined bottom of the shelf model by
Shishkina (2010a, b).

In this paper, mechanisms of transformation of internal
solitary waves during their propagation normally to the shelf
edge in the stratified fluid with the pronounced near-surface
pycnocline are studied. The hydrological conditions were
classified as the “deep” shelf when the water layer between

the shelf bottom and the pycnocline is comparable with the
incident internal wave length, and the case of position of the
pycnocline close to the shelf bottom with induced periodic
currents in between is named the “shallow” shelf.

The Red Sea and the Alboran Sea were considered as ex-
amples of particular regions corresponding to each of the
named shelf types. The phenomena observed with satellite
photography and remote sensing are described in Sect. 2.
The experimental part of the work performed in the labora-
tory tank filled with a two-layer stratified fluid having a shelf
model along the side wall is discussed in Sect. 3.

2 Field observations

There is a wide database on satellite observations of propa-
gation of internal solitary waves in different regions of the
World Ocean. Here we pay special attention to some particu-
lar cases of formation and propagation of a solitary wave (or
groups of solitons) in the basins where they could propagate
at the angles close to normal to the shoreline.

2.1 “Deep” shelf

An example of such internal wave’s propagation takes place
in the Red Sea. As can be seen in Fig. 1, it is a basin of about
2000 km long and 300 km wide, with rugged bottom topog-
raphy and steep marginal scarps partially isolated from the
open ocean. The central bottom depression exceeds 2200 m
in depth and has two crosswise shallow sills, about 125 m
deep in the southern part and the mid-length of the sea. The
latter region is known to be almost tideless, the highest tidal
level fixed in the North reaches 0.6 m and in the South 0.9 m
of daily oscillations (Behairy, 1992).

We assume that the water circulation here is affected
mainly by the meteorological events (wind, surface pressure,
heat flux) in the background of the density gradients in the
water column. With the exception of the northern part of the
Red Sea, which is dominated by persistent north-west along-
shore winds, the rest of the Red Sea is influenced by regular
and seasonally reversible winds.

The wind regime is characterised by both seasonal and re-
gional variations in speed and direction with average speed
generally increasing northward. In autumn and winter the in-
flow of less saline water comes from the Gulf of Aden into
the Red Sea resulting in an overall drift to the northern end of
the Red Sea. This lead to a strong upwelling of more dense
bottom waters replacing wind-driven upper water layer near
the Eastern sea coast in July–October (see Fig. 2).

According to the bathymetric map of the Red Sea there is a
very narrow and steep shelf zone. In some regions the pycno-
cline approaches the coast very closely. And in the upwelling
period has the typical depth of about 50 m, providing a depth
of more than 100 m of the lower water layer along the shelf
bottom having 200 m depth. Such hydrological conditions
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Fig. 1.The bathymetric map of the Red Sea.

correspond to the “deep” shelf according to our classifica-
tion.

Two regions of the shelf zone of the Red Sea where sur-
face manifestation of internal waves has been fixed in Octo-
ber 1984 (Fig. 3) and April 1984 (Fig. 4) (marked with the
black squares in Fig. 1) are of particular interest. Both of
these regions appeared to take place at the Eastern shore just
in front of two sills crossing the deep part of the Red Sea.

In the centre part of the satellite photo Fig. 3 a train of soli-
tons propagating northeast along the Saudi Arabia shoreline
is presented. Each of the waves in the solitons packet is ac-
companied by a short wave (marked area in the figure) start-
ing in parallel to the shoreline normally to the initial wave-
crest.

Much more pronounced configuration of similar internal
wave transformation observed in the middle of the Red Sea
is illustrated in Fig. 4. An interaction of a solitary wave with
the shelf edge results in the generation of secondary rela-
tively short internal waves propagating off the shelf break
normally to the incident wave. A consistent appearance of
the secondary system of three short internal waves could be
followed from panel to panel in Fig. 4. The wavelength esti-
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Fig. 2.Monthly potential density for the Red Sea (Levitus, 1994).

mated from the satellite views is about 15 km, which equals
to the shelf width here. The period of these waves could not
be defined because the timing of the photos is not known.

Maillard and Soliman (1986, Figs. 4–6) as well as Quad-
fasel and Baudner (1993, Fig. 2) performed measurements of
the vertical potential temperature, salinity and potential den-
sity distribution at the background of the bathymetric cross-
section along the Red Sea during different seasons in 1983,
1985 and 1987. According to this data at the latitude 23.5◦ N
in October the pycnocline lays at the depth of abouth1 =

40 m and internal waves with amplitudea = 100 m have been
observed above the bottom ridge in the middle of the sea.

Unfortunately the exact date of the unique photos made
during STS41C NASA mission in April 1984 was not avail-
able in the database of the NASA Johnson Space Center. The
way of its restoration by means of a comparative analysis
of the parameters corresponding to the region of observation
estimated with the Giovanni online data system (NASA GES
DISC) is described in Appendix A.

To reveal the natural sources of the observed hydrologic
phenomena the time series of main meteorological parame-
ters (Fig. A1) as well as the latitude-longitude time-averaged
maps of the sea level pressure were reconstructed for the
dates of the space flight (Fig. A2). Based on the results of
this study, all of the further considerations will be related to
9 April 1984.
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Fig. 3. Satellite image of group of internal solitons in the Red Sea.
NASA photo STS41G-36-34 (rotated left) (26.5◦ N, 36.0◦ E; 6 Oc-
tober 1984; 12:00:47 UTC). Contrast balance was changed.

Fig. 4. Satellite images of transformation of internal waves at the
shelf edge in the Red Sea. NASA images (23◦ N, 38.5◦ E; April
1984) from left to right and from upper to lower: STS41C-51-2338
(24◦ N, 38◦ E); STS41C-51-2339 (24◦ N, 38◦ E); STS41C-51-2340
(23.5◦ N, 38.5◦ E); STS41C-51-2341 (23◦ N, 38.5◦ E).

2.2 “Shallow” shelf

Another particular condition of transformation of the soli-
tary waves may be observed in the shelf zone as a result of
their generation by tidal internal motions at the bottom ir-
regularities. With further propagation towards the shelf with
the bottom slope oriented almost normally to the direction of
propagation of the incoming wave.

Internal waves in the Strait of Gibraltar propagating east-
ward were measured for a long time (Ziegenbein, 1970; La-
combe and Richez, 1982). Further measurements of internal
waves in the strait, together with simultaneous visual ob-
servations from aircraft and the space shuttle by bathyther-
mograph, radar, infrared scanner collected in October 1982,
1984, and 1985, were presented by La Violette and Arnone
(1988).

In the Strait of Gibraltar the strong forcing of the high
tide over Camarinal Sill at the western end of the Strait of
Gibraltar produces once a day a long solitary wave. While
the tidal flow over the sill is westward, an internal lee wave
or a hydraulic jump is formed on the westward side of the sill
and propagates then to the Alboran Sea. All of the previous
works studied mainly internal waves generated by the tidal
flow. Our interest relates to the observations of the Ceuta Bay
in the northwestern part of the Alboran Sea (see the marked
area in Fig. 5).

The Ceuta Bay is the shallowest part of this region where
the shelf’s width is about 5 km and is 20 km long. As it could
be estimated from Fig. 6, the depth of the seasonal thermo-
cline in the second decade of October is about 50 m which is
close to the shelf’s depth. Thus, the soliton’s interaction with
the shelf occurs far from the shoreline. And internal waves
cannot propagate onto the shelf because of the narrow lower
layer of the stratification above its bottom. Such hydrologi-
cal conditions relate to the case of the “shallow” shelf in our
terms.

In Fig. 7 the result of the interaction of groups of solitons,
produced during three tidal periods, with the shelf zone is
shown. Several structures of internal waves could be distin-
guished here – just formed semi-circular waves (region I in
Fig. 7) as well as groups of plain solitons propagating across
the Alboran Sea (region II in Fig. 7).

According to satellite observations, followed by SAR
measurements, the fine structure of sea currents caused by
the presence of waters with different densities is manifested
in radar images as quasiperiodic slick strips of a horizontal
scale from tens of metres to several kilometres. The strips
are typically oriented along the currents indicating their jet
character and intermittence. This surface picture differs from,
for example, near-surface flow caused by atmospheric front
(Lavrova et al., 2012; Figs. 5 and 6).

The existence of such flows in the case of the “shallow”
shelf is in agreement with the experimental results described
in Sect. 3.2, where an explanation of the observed phe-
nomenon will be done.

The comparison of the transformed solitons with the struc-
ture of the mixed layer field has shown that the soliton pack-
ages here followed the horizontal density gradient according
to the deepening mixed layer depicted in Fig. 8.

Though there was no opportunity to estimate the corre-
sponding hydrology for the Alboran Sea on 12 October 1984,
there is another photo of the similar internal wave field re-
lated to April–May 2002 (Fig. 9). At this time the seasonal
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Fig. 5. The bathymetry of the Strait of Gibraltar (Lacombe and
Richez, 1982).
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Fig. 6. Monthly potential density for the Alboran Sea (35.5◦ N,
4.5◦ W) (Levitus, 1994).

pycnocline has less depth and is not so suppressed just above
the shelf bottom as in the first part of October (see Fig. 6).
So the induced shear flow at the shelf is not so strong, but
it may be seen near the shore of the Ceuta Bay as well (the
region of interaction is shown with the white rectangle). Vi-
sualization and analysis of the mixed layer thickness based
on ocean colour radiometry were performed with the NASA
Ocean Biogeochemical Model (NOBM). The date of the shot
was defined with the method presented in Appendix A.

It is necessary to mention that in another case of propa-
gation of the tidally generated solitary wave over Camarinal
Sill described by La Violette and Arnone (1988), the soliton
propagates strictly eastward from the strait and does not turn
to the north in the Alboran sea. The shear flow induced at the
shelf in the Ceuta Bay and the Gibraltar Bay is much less pro-
nounced, but may be still distinguished by means of remote
sensing (see Fig. 9). The observed solitons again follow the
horizontal density gradient for the period of observation on
20 June 2001.

I

II

III

Fig. 7. Surface manifestation of hydrodynamic phenomena: initial
internal waves (I), periodic shear flows (II) and internal waves of
the previous tidal period (III) in the Alboran Sea (36◦ N, 5.5◦ W;
12 October 1984): NASA photos STS41G-34-98 (12:04:06 UTC)
(rotated left) and STS41G-40-51(12:04:09 UTC). Colour balance
and brightness were modified to achieve appropriate view of details.

3 Comparison with experimental measurements

The hydrological phenomena revealed in Sect. 2 with the
satellite photos and SAR images were modelled in the la-
boratory conditions.
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Figure 8. Free surface manifestation of internal solitons in the Alboran Sea: (NASA photo 2 

ISS002-351-23 (adapted to the land relief), mission dates 20 April to 4 May 2001 (no date for 3 

the photo). At the panel below the day-averaged mixed layer depth is shown for 24 April 4 

2001 (corresponding date was defined with the method described in Appendix). 5 

Fig. 8. Free surface manifestation of internal solitons in the Albo-
ran Sea: (NASA photo ISS002-351-23 (adapted to the land relief),
mission dates from 20 April to 4 May 2001 (no date for the photo).
At the panel below the day-averaged mixed layer depth is shown
for 24 April 2001 (corresponding date was defined with the method
described in Appendix A).

3.1 Laboratory facility

The construction of the tank, the procedure of formation
of the stratification profile and the method of flow visu-
alization are described in Grue et al. (1999). The tank
with its overall dimensionsL×B ×H = 12.0×0.5×1.0 m3

(Fig. 10) was filled with a two-layer stratified fluid (fresh wa-

 32 

   

  

 1 

Figure 9. Free surface manifestation of internal solitons in the Alboran Sea NASA photo 2 

ISS002-724-12 (20 June 2001). Color brightness was modified to achieve appropriate view of 3 

details. The mixed layer depth averaged over 20 June 2001 is displayed below.  4 

 5 

 6 

Fig. 9. Free surface manifestation of internal solitons in the Albo-
ran Sea NASA photo ISS002-724-12 (20 June 2001). Colour bright-
ness was modified to achieve appropriate view of details. The mixed
layer depth averaged over 20 June 2001 is displayed below.

ter over salt water made by sodium chloride) with the layer’s
thicknessh1 = 0.1 m,h2 = 0.615 m and respective densities
ρ1 = 0.999 kgdm−3, ρ2 = 1.022± 0.001 kgdm−3. Visualiz-
ing seeds had neutral buoyancy at the level of the interface
between two homogeneous fluids.

Visualization of the flow was performed both in verti-
cal and horizontal directions. Vertical light sheets performed
with the laser were positioned at two points along the tank

Nonlin. Processes Geophys., 20, 743–757, 2013 www.nonlin-processes-geophys.net/20/743/2013/
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Fig. 10.Sketch of the experimental facility (numbers at the left figure denote positions of video-cameras).

(x = 4.1 m and 8 m). The first lighting was organised close
to the wall opposite to the shelf to fix the parameters of the
incoming wave. The horizontal light sheet for camera 2 at
the tank’s length of 6.8 m. Two other light sheets (cameras 2
and 4) have been used for investigation of particles transport
at the shelf by the wave passing along the deep part of the
tank.

3.2 Results of laboratory observations

The incoming wave was in fact a solitary wave of the length
λ = 0.6 m and the periodτ = 15 s. It is a typical feature of
strongly nonlinear solitons, contrary to KdV solitons, to keep
their length almost non-variable versus considerably increas-
ing wave amplitude (Fig. 4 in Choi and Camassa, 1999, as
well as Fig. 7 in Grue et al., 1999).

While the KdV model displays a decrease of the soli-
ton’s length twice the strongly nonlinear solitons change their
length of about 20 % in a wide range of the same values of
amplitude. So the solitary wave length remains almost con-
stant in different experiments (see e.g. Figs. 3 and 6 in Ca-
massa et al., 2006).

The effective length of a strongly nonlinear travelling soli-
tary wave was defined by its volume divided by the amplitude
(Koop and Butler, 1981)

λ =

∣∣∣∣∣∣1

a

∞∫
0

y(x)dx

∣∣∣∣∣∣ , (1)

Maderich et al. (2009) suggested the criterion to distinguish
moderate and strongly nonlinear solitary wave. A compari-
son of the limiting soliton amplitudes defined by the weakly
nonlinear Gardner and the full Euler equations showed the
values of relation between layers thickness 0.6 < h1/h2 < 1,
which corresponds to wave amplitudes greater than 0.2h1 or
h2/3.

The applicability of the Gardner equation can be analysed
by comparison to the limiting solitary waves in the full Eu-
ler and the Gardner equations. According to Euler equations
solitary waves also exist for amplitudes less than the maxi-
mal valuealim = (h1−h2)/2 (Choi and Camassa, 1999; Grue
et al., 1999).

For a/h2 < 0.05 the experimental data lie a little below
both theoretical curves and show good agreement with the
theoretical predictions for 0.05< a/h2 < 0.2 (comments for
Fig. 5 in Choi and Camassa, 1999). This conclusion concerns
the comparison of shallow-water experiments by Koop and
Butler (1981) with the KdV and the fully nonlinear theories.

Parameters varying during the experiments were the soli-
ton’s amplitudea = 0.025÷0.107 m and the thickness of the
lower layerh2 = 1.025hs or 1.083hs, wherehs = 0.6 m. Val-
ues of experimental parameters are within the range 0.04<

a/h2 < 0.17, so both approximations are applicable in this
case.

In Camassa et al. (2006), a thorough study of validity
of Choi–Camassa strongly nonlinear model relatively to the
solution of the full Euler equations was considered. Both
asymptotic theory and numerical solutions have displayed
a very good mutual agreement and correlation with ex-
perimental measurements of parameters of internal solitary
waves obtained for the present tank configuration by Grue et
al. (1999).

The profile of the solitary waves generated in the tank was
calculated with the full Euler numerical model (Grue et al.,
1999).

For an inviscid and incompressible fluid of densityρi the
velocity components in Cartesian coordinates (ui , wi) and
the pressurepi , satisfy the continuity equation and the Eu-
ler equations:

uix + wiz = 0, (2)

uit + uiuix + wiuiz = −pix/ρi, (3)

wit + uiwix + wiwiz = −piz/ρi − g, (4)

whereg is the acceleration due to gravity and subscripts with
respect to space and time represent partial differentiation. In
a two-fluid system,i = 1 (i = 2) stands for the upper (lower)
fluid (see Fig. 10) andρ1 < ρ2 is assumed for a stable strati-
fication.

The boundary conditions at the interface are the continuity
of normal velocity and pressure:

ςt + u1ςx = w1, ςt + u2ςx = w2,

p1 = p2 at z = (x, t), (5)

www.nonlin-processes-geophys.net/20/743/2013/ Nonlin. Processes Geophys., 20, 743–757, 2013
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whereζ is a displacement of the interface. At the upper and
lower rigid surfaces, the kinematic boundary conditions are
given by

w1 (x,h1, t) = 0, w2 (x,−h2, t) = 0, (6)

wherehi is the undisturbed thickness of the upper (lower)
fluid layer.

The results of numerical study of profiles of solitary waves
of depression relating to the experimental conditions are pre-
sented in Fig. 11. Respective values of velocityC of wave
propagation, the effective wavelengthλ as well as the char-
acteristic of the fluid flow at the shelf for the whole range of
amplitudes of the incident solitary wave are presented in Ta-
ble 1. The graphs for normalized effective lengthλ and wave
speedC versus amplitude of the solitary wave a are shown in
Figs. 12 and 13 respectively.

3.2.1 Fluid motion induced at the shelf model

Trajectories of visualizing particles were recorded by four
cameras installed in front of each of the light sheets. Then
the records were processed with the PIV method and the re-
sulting field of the on-shelf velocities induced by the passing
solitary wave was reconstructed. The behaviour of the vol-
ume of the fluid layer above the shelf was different depend-
ing on the pycnocline’s depth.

The top view of the horizontal velocity field in the inter-
face layer measured with PIV method corresponding to the
“shallow” shelf is presented in Fig. 14.

When the pycnocline was positioned just above the shelf
(h2 = 1.025hs) the wave could not propagate onto the shelf
and the wave’s motion was observed within the deep part of
the tank only. In this case the shelf flow had a pronounced
horizontal character with the period of the solitary wave, i.e.
an outflow was observed during the first half of the period
τ/2 and an on-flow later.

Additionally the fluid flow at the shelf appeared to be sep-
arated into two volumes. One of them, close to the side wall,
has the longitudinal velocity componentV only. Another part
of the fluid at the shelf had both longitudinalV and trans-
verseU velocity components forming oblique shear flow at
the shelf bottom. This flow picture is typical for relatively
low wave amplitudesa/h1 < 0.5.

This result is in line with the satellite observations pre-
sented in Fig. 7. The values of across-shelf velocity obtained
in experimental conditions were estimatedU/c0 = ±0.2 rel-
atively to its along-shelf componentV/c0 = 0.25−0.5. And
different parts of the flow pattern in the satellite photo
demonstrate relatively different angles of propagation. The
observed free surface pattern forms two couples of chang-
ing shear flows oriented obliquely to the shoreline at two
different approximate angles – 45 and 60◦. The same effect
was observed in experiments when the transverse velocity of
the horizontal flow in on-shelf direction was greater than off-
shelf (see Fig. 15a). So it may be concluded that two periods
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Fig. 11. Profiles of solitary waves of depression cal-
culated via full Euler equations for ρ2/ρ1 = 1.022,
h2/h1 = 6.15. Curves correspond to the values ofa/h1 =

0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.96,1.05,1.15 (from upper
to lower curve respectively). Panels inside illustrate comparison of
shapes of induced solitons with the fully nonlinear theory.

Table 1. “Deep” and “shallow” shelf effect versus parameters of
solitary waves generated in the tank.

a/h1 C C/c0 λ “deep-shelf” “shallow-shelf”
(ms−1) (m) effect effect

h2/hs = 1.083 h2/hs = 1.025

0.25 0.150 1.09 0.700 – –
0.35 0.154 1.12 0.633 – –
0.45 0.159 1.15 0.596 no no
0.55 0.162 1.18 0.575 no no
0.65 0.166 1.21 0.564 no yes
0.75 0.169 1.23 0.559 no yes
0.85 0.172 1.26 0.559 yes yes
0.95 0.175 1.28 0.563 yes yes
1.05 0.178 1.2964 0.57 – –
1.15 0.181 1.3148 0.58 – –

of wave-induced shear flows at the shallow shelf are fixed at
the photo. And width is almost constant for each of four parts
of the flow observed above the shelf (area II in Fig. 7).

Based on the experimental data, the amplitude of internal
waves propagated in the Alboran Sea is rather high and could
be estimated asa > 0.5h1 = 25 m.

In case the pycnocline was above the shelf at the distance
h2 = 1.083hs so that the lower layerh2−hs was thick enough
for the solitary wave propagation above the shelf as well. And
the parameters of the two-layer stratification became differ-
ent above the shelf and in the deep part of the tank.

Choi and Camassa (1999) concluded that generation
of the solitary wave of elevation type is possible when
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Figure 12.  Effective length  versus amplitude solitary waves of depression calculated via full 3 

Euler equations for 2/ 1 = 1.022, h1/h2  = 10/61.5. 4 
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Fig. 12. Effective lengthλ versus amplitude solitary waves of de-
pression calculated via full Euler equations forρ2/ρ1 = 1.022,
h1/h2 = 10/61.5.

(h1/h2)
2 > (ρ2/ρ1) as well as for (ρ1/ρ2) < (h1/h2)

2 <

(ρ2/ρ1). And for (h1/h2)
2 < (ρ1/ρ2) the solitary wave is

of depression. So strongly nonlinear solitons similar to KdV
solitons change their polarity towards a deeper and denser
layer of the two-layer fluid.

Time variations ofV and U for two values of the fluid
thickness above the shelf are presented in Fig. 15. When
comparing the upper graphs in the panels it is easy to note the
difference between the character of fluid motion produced
by the “shallow” and the “deep” shelf. In case of the “shal-
low” shelf, we could observe an induced horizontal shear
flow in the interface layer with its further side-wall reflection
within the pycnocline. The transverse velocity componentU

remains modulo constant but changes its sign immediately
after reflection form the wall.

The “deep” shelf produces within the interface layer three-
dimensional wavy fluid motion normal to the direction of
propagation of the solitary wave. The longitudinal veloc-
ity component was almost absent after the soliton’s passage
(central lower graph in Fig. 14). Three periods of short in-
ternal waves have been registered during experiment which
correlates with the ratio of tank to shelf widthB/ys =

0.50/0.17≈ 3.
The physical explanation of generation of the secondary

short-period internal wave system at the shelf’s edge may be
found in the frames of the strongly nonlinear internal wave
theory.

Particularly in the shelf zone (hs) where[
h1/(h2 − hs)

]2
= 4 > (ρ2/ρ1) = 1.022 the nonlin-

ear internal wave propagates in the form of elevation
of the pycnocline (see Fig. 10). For the deep part
(h1/h2)

2
= 0.024< (ρ2/ρ1) = 1.022 and the internal

wave causes a decrease of the pycnocline’s level.
The vertical deformation of the pycnocline oriented nor-

mally to the direction of the internal wave propagation pro-
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Figure 13.  Wave sped c versus amplitude a of solitary waves of depression for 2/ 1 = 1.022, 3 

h1/h2  = 10/61.5. 4 
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Fig. 13. Wave speedC versus amplitude of solitary waves of de-
pression forρ2/ρ1 = 1.022,h1/h2 = 10/61.5.

vides the physical conditions for induction of the secondary
internal wave system normal to the initial wave. And longi-
tudinal propagation of the solitary wave along the tank trans-
formed to the transverse wave motion with the wavelength of
about the shelf’s widthλ∗

≈ ys (see upper graphs in Fig. 15).
The results related to the “deep” shelf experimental condi-

tions (see Sect. 2.1) are in a good agreement with the surface
manifestation of internal processes shown at the satellite im-
ages in Fig. 4.

In case the wave amplitudea > h2 − hs intense fluid mix-
ing was observed at the level of the pycnocline. This high-
frequency disturbance was fixed by the measuring system
and is illustrated at the upper graph in Fig. 15. After the
wave’s passage the pycnocline initially representing a sharp
density jump had its thickness of abouth1/2.

4 Conclusions

The main goal of the comparative study of satellite data with
laboratory experiments was to model two typical conditions
observed in the shelf zone and caused by passing solitons
– secondary short internal waves and periodic shear flows
induced in the shallow part of the shelf.

Remote observations as well as the experimental study
gave evidence to conclude that bottom irregularities normal
to the direction of propagation of the solitary waves as plane
waves in the presence of the seasonal pycnocline can induce
near-bottom shear flows or three-dimensional wave motion
with the wave vector normal to that of the incoming wave.

In the “shallow” shelf condition internal waves do not
propagate onto the shelf because of the thinness of the layer
between the pycnocline and the shelf bottom. So the internal
processes are represented by the shear flow within the upper
quasi-homogeneous layer only.
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Fig. 14.Top view of horizontal velocity field at the “shallow” (upper) and “deep” (lower) shelf.
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Figure 15.  Time series of transverse U (normal to the shelf) and longitudinal V (along the 3 

shelf) velocity components in two close points at the shelf edge (two curves in each panel) 4 

(camera 2; x = 6.8 m, y = 0.17 m). Upper panels correspond to the “shallow” shelf, lower 5 

panels to the “deep” shelf.  6 
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Fig. 15.Time series of transverseU (normal to the shelf) and longi-
tudinalV (along the shelf) velocity components in two close points
at the shelf edge (two curves in each panel) (camera 2;x = 6.8 m,
y = 0.17 m):a, b – the “shallow” shelf;c, d – the “deep” shelf.

Propagation of the solitary wave along the transverse step-
like bottom under the “deep” shelf condition demonstrated
the nonlinear mechanism of formation of “runaway” edge in-
ternal waves contrary to known “trapped” edge waves.

This type of internal waves could be generated under
respective variation of hydrological conditions providing
change of the soliton’s polarity above the shelf edge along
the wave crest and across direction of its propagation. In this
case propagation of the incident internal wave of depression
is followed by generation of secondary transverse periodic
wave system propagating off-shore with the wave-length of
about the shelf’s width.

The phenomenon observed in the experimental conditions
with PIV visualization of the fluid flow confirms the mecha-
nism of mass and energy exchange between the shelf and the
deep part of the ocean due to induction of intense motion at

the shelf’s edge. According to the experimental estimations
this happens when the relative value of the amplitude of the
incident wavēa/̄(h2 − hs) ≥ 1.7.

Any intermediate dependences between the “shallow” and
the “deep” shelf typical conditions could not been obtained in
experiments with the applied PIV method because of rather
complicated 3-D flow structure. This requires more precise
visualizing technique as well as the application of statistical
methods of evaluation of measured parameters. And will be
the matter of the further study.

Taking into account the finite dimensions of the experi-
mental installation the series of the performed experiments
may be considered as a model of propagation of internal
waves in the restricted natural conditions, e.g. in channels
or straights.

The obtained results may be useful for solution of the
problems arising during planning of the field and remote
oceanographic investigations including the shelf zone, e.g.
for positioning of any equipment, planning of imagery or un-
derwater manipulations. Some particular interest this inves-
tigation may be represented by the ecological viewpoint for
modelling and prediction of the spreading of pollution in the
shelf zone.

Appendix A

Justification of the absent date of satellite images

Dealing with the satellite image database the authors met the
problem of the lack of dates of some photos. Particularly,
there is no systematic date of the photos for the time pe-
riod related to NASA mission STS41C from 6 to 13 April
1984.

To make any reasonable analysis of peculiarities of the ob-
served hydrological fields it was necessary to distinguish the
real date of each shot within the known period of the space
flight. This became possible due to performing an additional
study of a number of specific fields of the areas of observa-
tion. In different cases the role of the flow markers could be
played by the parameters of reflection of different frequency
bands of the radar beam following, e.g. chlorophyll distribu-
tion.

To clarify this item, four different meteorological param-
eters were calculated within the area of investigation. Time
series of the latent heat flux, the sea level pressure and the
surface skin temperature yielding hourly 2-D data analysis
made with MERRA system installed within Giovanni inter-
face are presented in Fig. A1.

An increase of the latent heat flux and the sea-level pres-
sure presented in Fig. A1 appeared to be the most informative
parameters contrary to the periodically varying surface tem-
perature. Though the latter displayed some variation in the
day-to-night amplitude, it was relatively weak to fix the
possible time and source of the internal waves generation
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Fig. A1. Time series of latent heat flux, sea level pressure and surface skin temperature for the shelf region of the Red Sea shown in Fig. 4
corresponding to NASA mission STS41C (6–13 April 1984).

Fig. A2. Sea level pressure related to STS41C NASA mission 0 a.m.–1 p.m. on 9 April 1984 (white square corresponds to Fig. 4).

and was used mainly for more exact date definition. So the
growth of the lateral heat flux followed with the increasing
sea-level pressure could be considered as the most possible
reasons for the appearance of the transverse internal solitary
wave in the middle part of the Red Sea.

A restoration of the distribution of the sea level pres-
sure presented in Fig. A2 with 2-h time interval related to
9 April 1984 proved a considerable change in orientation of
the pressure gradient field at the free surface during the stud-

ied period. Mean orientation of the pressure field has been
changing from along-shore to across-shore during day time.
An intense motion of water masses driven by the pressure
field over the bottom seal in front of the region of the satel-
lite observation (the white square at the figures) could be
reasonably considered as the source of the internal soliton
generation. Based on this study, the date of performance of
NASA photo series STS41C-51-2338/2341 was considered
as 9 April 1984.

Nonlin. Processes Geophys., 20, 743–757, 2013 www.nonlin-processes-geophys.net/20/743/2013/
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Fig. A2. Continued.
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