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Abstract. In the present work the statistical properties of
the earthquake activity in a highly seismic region, the West
Corinth rift (Central Greece), are being studied by means of
generalized statistical physics. By using a dataset that cov-
ers the period 2001–2008, we investigate the earthquake en-
ergy distribution and the distribution of the time intervals (in-
terevent times) between the successive events. As has been
reported previously, these distributions exhibit complex sta-
tistical properties and fractality. By using detrended fluctu-
ation analysis (DFA), a well-established method for detec-
tion of long-range correlations in non-stationary signals, it
is shown that long-range correlations are also present in the
earthquake activity. The existence of these properties mo-
tivates us to use non-extensive statistical physics (NESP)
to investigate the statistical properties of the frequency-
magnitude and the interevent time distributions, along with
other well-known relations in seismology, such as the gamma
distribution for interevent times. The results of the analysis
indicate that the statistical properties of the earthquake activ-
ity can be successfully reproduced by means of NESP and
that the earthquake activity at the West Corinth rift is corre-
lated at all-time scales.

1 Introduction

Earthquakes exhibit complex phenomenology that is related
to the deformation and sudden rupture of parts of the earth’s
brittle crust due to external forces arising from plate tectonic
motions. The lithosphere can be regarded as a large nonlin-
ear dynamical system (Keilis-Borok, 1990) that interacts on
a wide range of space and timescales (Main, 1996; Turcotte,
1997). Complex correlations in the earthquake activity have

been recognized and reported in a number of studies (Main,
1996; Turcotte, 1997; Bak et al., 2002; Rundle et al., 2003;
Varotsos et al., 2005; Lennartz et al., 2011). Despite this
complexity, there are some universal scaling relations that
characterize earthquakes. The best known is the Gutenberg–
Richter scaling relation (Gutenberg and Richter, 1944) that
indicates a fractal power-law earthquake size distribution.
Scale-invariance and fractality have been also reported for
the fracture/fault populations and the spatiotemporal prop-
erties of the earthquake activity (e.g. Main, 1996; Turcotte,
1997), leading to the consideration of a self-organized crit-
ical (SOC) mechanism in the origin of seismogenesis (e.g.
Bak and Tang, 1989; Main, 1996; Telesca et al., 2001; Sor-
nette, 2004).

Since the underlying physics that control the nucleation
and evolution of the earthquake activity still remains elusive,
statistical physics may be used to derive the macroscopic
laws from the specification of the relevant microscopic el-
ements and their interactions. In this direction, statistical
physics aims to explain the complex patterns that are evi-
dent from the fault and earthquake populations in a variety
of scales (Main, 1996; Rundle et al., 2003).

In this work, considering the fractal properties of earth-
quakes, we use generalized statistical physics to study the
statistical properties of the earthquake activity in a high seis-
mic risk zone, the West Corinth rift (central Greece). This
approach refers to non-extensive statistical physics (NESP)
that was proposed by Tsallis (1988) as a generalization
of the classic Boltzmann–Gibbs statistical physics. NESP
has been inspired by fractals and is a consistent theoreti-
cal framework for the analysis of nonlinear dynamical sys-
tems that exhibit fractal structures and long-range correla-
tions among their elements. The NESP concept has been
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recently applied to various fields of geophysics including
earthquakes (Abe and Suzuki, 2003; 2005; Telesca, 2010a, b,
2011), fault lengths distribution (Vallianatos and Sammonds,
2011), plate tectonics and geodynamics (Vallianatos and
Sammonds, 2010, 2013), rock physics (Vallianatos et al.,
2011, 2012a; Vallianatos and Triantis, 2012), natural hazards
(Vallianatos, 2009, 2013; Chen et al., 2011) and geomagnetic
reversals (Vallianatos, 2011).

The aim of the present work is to study the statistical prop-
erties of the earthquake activity at the West Corinth rift (cen-
tral Greece) by means of NESP principles and to establish
a firm basis for the statistical physics interpretation of the
earthquake phenomenon. We first use detrended fluctuation
analysis (DFA) to investigate the type of correlations that
might be present in the evolution of the earthquake activity at
the West Corinth rift. DFA is a reliable statistical method for
the detection of long-range correlation in non-stationary fluc-
tuating signals and has been widely applied to diverse fields
including geophysics (Varotsos et al., 2002; Telesca et al.,
2003; Lennartz et al., 2008; Telesca and Lovallo, 2009). We
then investigate the frequency-magnitude and the interevent
time distributions in a NESP framework for the period 2001–
2008 and then compare the results with other well-known
distributions in seismology, such as the G–R relation for
the earthquake energy distribution (Gutenberg and Richter,
1944) and the gamma distribution for the probability den-
sity of the time intervals between the successive earthquakes
(Corral, 2004). The results indicate that the earthquake ac-
tivity is correlated at all-time scales and that its statistical
properties can be successfully reproduced using NESP.

2 Dataset

The Corinth rift constitutes one of the most seismotectoni-
cally active areas in Europe (Makropoulos et al., 1989; Am-
braseys and Jackson, 1990) due to a significant continental
N–S extension of about 13 and 6 mmyr−1 at the west and
east part, respectively (Clarke et al., 1997). This extension is
expressed by important normal faults on the north and south
margin of the basin of an E–W general direction, creating
an asymmetric tectonic graben with the southern footwall
being uplifted (Armijo et al., 1996). The seismicity of the
area includes 5 main earthquakes of magnitude greater than
5.8 since 1960. The last major earthquake was the 1995 Ai-
gion earthquake (Ms = 6.2, Bernard et al., 1997) and since
then the seismic activity has been dominated by small- to
medium-sized earthquakes.

Here, we consider the crustal (depth≤ 35 km) earthquake
activity that occurred during the 2001–2008 period at the
West Corinth rift. The activity is concentrated in its great
majority in a narrow 52.23km×44.4km zone (area between
38.1–38.5◦ N and 21.8–22.4◦ E) (Fig. 1). A catalogue com-
piled by the CRL network (http://crlab.eu/), a dense network
located at the west part of the Corinth rift, is used. During
this period, sudden seismic crises of swarm-like character
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Figure 1: Map of central Greece with the earthquakes recorded from the CRL network 2 
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Fig. 1. Map of central Greece with the earthquakes recorded from
the CRL network during 2001–2008.

are frequent (Fig. 2a) (Bourouis and Cornet, 2009; Pacchi-
ani and Lyon-Caen, 2010), with earthquake magnitudes not
exceeding the value of 4 (ML) (Fig. 2b).

We have applied the Gutenberg–Richter (G–R) empirical
relationship (Gutenberg and Richter, 1944) in order to de-
tect the lower magnitude for which the dataset can be con-
sidered complete (Mc) (Fig. 2c). The G–R relation expresses
a power-law dependence of the cumulative number of earth-
quakesN greater than a threshold magnitudeM

N (> M) ∼ 10−bM , (1)

whereb is the slope of the frequency-magnitude distribution
and describes the size distribution of the earthquake events.
The application of the G–R relation to the dataset resulted
in a b value of b = 1.51± 0.03 and a lower magnitude of
Mc = 1.4 for which the G–R relation holds. The relatively
high b value that is found here reflects the domination of
small to moderate magnitude earthquakes and the absence of
larger magnitude earthquakes for the period considered here,
in comparison to theb value ofb = 1.08±0.05 that has been
found by Telesca et al. (2002) for the 1983–2000 period. A
closer inspection of Fig. 2b reveals a significant increase at
the lower magnitude earthquake events after 2001, implying
that differentMc may exist at the dataset for various time pe-
riods. The application of the G–R relation to different time
windows reveals that for 2001 the magnitude of complete-
ness isMc = 1.6 and for 2002–2008Mc = 1.2. Considering
the earthquakes of magnitudeM ≥ Mc, a dataset of 37622
earthquake events emerges for the period 2001–2008.

3 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA), originally introduced
by Peng et al. (1994), is a scaling technique based on random
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Figure 2. a) Seismicity rate per day, b) magnitude (ML) range per day and c) 3 

frequency-magnitude distribution for the period 2001-2008 at the West Corinth rift. 4 

The solid line represents the G-R relation. 5 
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Fig. 2. (a) Seismicity rate per day,(b) magnitude (ML ) range per
day, and(c) frequency-magnitude distribution for the period 2001–
2008 at the West Corinth rift. The solid line represents the G–R
relation.

walk theory that is used for the estimation of long-range
correlations in non-stationary fluctuating signals. In recent
years, DFA has been widely applied to various dynamical
systems where long-range correlations are of interest (e.g.

Bashan et al., 2008). The advantage of DFA over other
scaling techniques is that it can reliably estimate and quantify
the correlations in non-stationary fluctuating signals embed-
ded in polynomial trends, avoiding long-range correlations
that are artifacts of non-stationarity (Hu et al., 2001; Chen et
al., 2002).

For the application of DFA, a fluctuating signalu(i) of
total lengthN (i = 1, . . . ,N ) is first shifted by the average
< u > and integrated,

y(k) =

k∑
i=1

[u(i) − 〈u〉] , (2)

with k = 1,2, . . . ,N . Then the integrated signaly(k) is di-
vided into non-overlapping windows of equal sizen resulting
in Nn = (N/n) segments. Since the lengthN of the signal is
not always a multiple of the window sizen, a short part at
the end of the integrated signaly(k) is not included in the
analysis. In order not to disregard this part, the procedure
is repeated starting from the end ofy(k), resulting in this
way intoν = 2Nn total segments (Kantelhardt et al., 2001).
In each of the 2Nn segments, the integrated signaly(ν) is fit-
ted to a polynomial functionyn(ν) that represents the local
trend. For different ordersl of the polynomial functionyn(ν),
different orders of DFA are obtained and the method is de-
noted as DFA-l. Then the integrated signaly(ν) is detrended
by subtracting the local trendyn(ν) in each window and the
root-mean-square fluctuationF(n) is calculated,

F(n) =

√√√√ 1

2Nn

2Nn∑
ν=1

[
y(ν) − yn(ν)

]2
. (3)

These computations are repeated for various window sizesn

to provide a relationship betweenF(n) andn. If a power-
law relation betweenF(n) andn exists, it indicates the pres-
ence of scaling:F(n) ∼ nα. The parametera is the correla-
tion exponent that represents the slope of the line that fits
logF(n) to logn. For uncorrelated signals,a = 0.5 while
for a > 0.5 the signal is correlated and fora < 0.5 anti-
correlated. Thea = 1 case indicates flicker-noise dynam-
ics anda = 1.5 is characteristic for Brownian-like dynamics
(Peng et al., 1995). Artificial crossovers in the scaling behav-
ior of F(n) can be created due to trends in the fluctuating
signal and the DFA-l method should be applied for differ-
ent ordersl of the detrending polynomial function in order to
gain information on the order of the trends and to obtain a re-
liable estimate of the correlations in the signal (Kantelhardt
et al., 2001; Xu et al., 2005).

We have applied DFA on the interevent time seriesτi in
order to identify the type of correlations that are present in
this highly fluctuating series that characterize the temporal
evolution of the earthquake activity at the West Corinth rift.
The non-stationary and highly fluctuating behavior of the in-
terevent time series can be visualized in Fig. 3, where the
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time of the next earthquake greatly varies from the previous
one.

In Fig. 4 the logarithm of the root-mean-square fluctuation
F(n) that resulted for various window sizesn (up toN/10)
after the application of DFA-l (l = 1,2,3) to the interevent
time series forM ≥ Mc, is presented. The value of the corre-
lation exponenta is > 0.5 indicating that the interevent time
series is correlated. A change in the scaling behavior ofF(n)

also occurs for all the different orders of DFA, resulting in
greater values of the correlation exponentα for greater win-
dow sizesn. We have also applied DFA-l (l = 1,2,3) to a
randomly shuffled copy of the original interevent time se-
ries (Peng et al., 1995). In this way any correlations due to
the order of the original series are destroyed and the sur-
rogate series should exhibit a correlation exponenta = 0.5.
The resultedF(n) in this case exhibits a correlation exponent
a = 0.5 (Fig. 4), confirming that the scaling behavior ofF(n)

for the original interevent time series is due to correlations in
the time of the successive earthquakes. This result indicates
a persistent behavior, where short interevent times are more
likely to be followed by short ones and large interevent times
by large ones.

4 Non-extensive statistical physics concept

A monument of contemporary physics is Boltzmann–Gibbs
(BG) statistical physics. This refers to the Boltzmann–Gibbs
entropySBG that in the discrete form reads as

SBG = −kB

W∑
i=1

pi lnpi, (4)

wherekB is Boltzmann’s constant,pi is a set of probabil-
ities andW is the total number of microscopic configura-
tions. One of the main characteristics ofSBG is additivity,
namely the proportionality to the number of the systems’ ele-
ments. In 1988 Tsallis (Tsallis, 1988) proposed a generalized
form of SBG, the nonadditive Tsallis entropySq , which reads
as

Sq = kB

1−

W∑
i=1

p
q
i

q − 1
,q ∈ R. (5)

This particular entropic form depends on the value of the en-
tropic indexq, which is a measure of the non-extensivity of
the system. For the particular case ofq = 1, S1 = SBG and
Eq. (4) is obtained. Although Tsallis entropy shares a lot of
common properties with Boltzmann–Gibbs entropy,SBG is
additive, whereasSq (q 6= 1) is nonadditive (Tsallis, 2009).
According to this property,SBG exhibits only short-range
correlations and the total entropy depends on the size of the
systems’ elements. On the other hand,Sq allows all-length
scale correlations and seems more adequate for complex dy-
namical systems when long-range correlations between the
elements of the system are present.
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Figure 3: The inter-event time series τ of the earthquake activity for M ≥ Mc versus 2 

their index number i (i=1,…,N where N is the total length).  3 
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Fig. 3. The interevent time seriesτ of the earthquake activity for
M ≥ Mc versus their index numberi (i = 1, . . . ,N whereN is the
total length).
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Figure 4: The DFA-l (l=1,2,3) for the inter-event time series (F(n) shifted vertically 2 

for clarity). Bottom the DFA-l (l=1,2,3) for the surrogate inter-event time series. 3 
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Fig. 4. The DFA-l for the original inter-event time series (top) and
the surrogate series (bottom).F(n) has been shifted vertically for
clarity. The different symbols correspond to different ordersl (l =

1,2,3) of DFA.

For any two probabilistically independent systems A and
B, i.e. if the joint probability satisfiespA+B

ij = pA
i pB

j (∀(ij)),
Tsallis entropySq satisfies

Sq(A + B)

kB
=

Sq(A)

kB
+

Sq(B)

kB
+ (1−q)

Sq(A)

kB

Sq(B)

kB
. (6)

The origin of nonadditivity comes from the last term on the
right-hand side of this equation and is the fundamental prin-
ciple of non-extensive statistical physics (Tsallis, 2009). The
casesq > 1,q = 1 andq < 1 correspond to subadditivity, ad-
ditivity and superadditivity, respectively.
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5 Earthquake energy distribution

Earthquakes generally originate from the deformation and
the sudden rupture of parts of the earth’s brittle crust due
to the relative motion of the tectonic plates releasing energy.
The energy distribution of earthquakes exhibits power-law
decay, as it is stated in the G–R relation:

P(E) ∼ E−γ . (7)

This expression can be alternatively stated as Eq. (1) for the
cumulative distribution of the earthquake magnitudes. Con-
sidering that the earthquake energyE is related to the mag-
nitudeM asE ∼ 101.5M (Kanamori, 1978), Eq. (7) turns to
Eq. (1) forγ = 1+ b/1.5.

The mechanical phenomenology of this phenomenon is
captured in simple models (e.g. Burridge and Knopoff,
1967) where a stick-slip mechanism and the friction be-
tween the faults planes have a dominant role. Consistent with
this idea, Sotolongo-Costa and Posadas (2004), based on a
non-extensive formalism, have developed a general physical
model for earthquake dynamics that contains the G–R re-
lation as a particular case. In this model the mechanism of
earthquake triggering is based not only on the slippage of
fault planes and the relative displacement due to the break-
age of the asperities (e.g. De Rubeis et al., 1996), but is
also caused by the fragments filling the space between fault
planes. As the breakage and the displacement of the asperi-
ties and fragments cause the earthquake energy release, this
energy is thought to be proportional to the volume of the
fragments (Sotolongo-Costa and Posadas, 2004). Then the
energy distribution function of earthquakes can be expressed
in the terms of the size distribution of the fragments between
the fault planes.

Sotolongo-Costa and Posadas (2004) proposed that since
fragments are the result of the violent fractioning between the
fault planes, then long-range interactions are expected among
all the existent fragments. Fractioning is then a paradigm of
non-extensivity and NESP seems more appropriate to de-
scribe the phenomenon than BG statistical physics. This is
also supported by the scale-invariant properties of fractures
(Krajcinovic and Van Mier, 2000) and laboratory experi-
ments in fractured materials (Vallianatos et al., 2011, 2012a).

The maximum Tsallis entropySq for the probabilityp(σ)

of finding a fragment of surfaceσ is written as

Sq = kB

1−
∫

pq (σ )dσ

q − 1
. (8)

The sum of all the possible states in the definition of entropy
is here expressed through the integration in all the sizes of the
fragments. In what follows,kB is set askB = 1 for the sake of
simplicity. The probabilityp(σ) is obtained after maximiza-
tion of Sq under the appropriate two constraints. The first is
the normalization ofp(σ):

∞∫
0

p(σ)dσ = 1. (9)

The second is the condition about theq-expectation value
(Tsallis, 2009):

σq = 〈σ 〉q =

∞∫
0

σpq (σ )dσ

∞∫
0

pq (σ )dσ

. (10)

This last condition reduces to the definition of the mean value
in the limit q → 1.

By using the Lagrange multipliers technique, the func-
tional entropy to be maximized is (Silva et al., 2006)

δS∗
q = δ

Sq + α

∞∫
0

p(σ)dσ − βσq

= 0, (11)

whereα andβ are the Lagrange multipliers. After some al-
gebra, the following expression for the fragment size distri-
bution function can be derived (Silva et al., 2006):

p(σ) =

[
1−

(1− q)

(2− q)

(
σ − σq

)]1/(1−q)

. (12)

The proportionality between the released relative energyE

and the size of the fragmentsr is now introduced asE ∼ r3

(Silva et al., 2006), in accordance to the standard definition
of seismic moment scaling with rupture length (Lay and Wal-
lace, 1995). The proportionality between the released relative
energyE and the three-dimensional size of the fragmentsr3

now becomes

σ − σq =

(
E

αE

)2/3
. (13)

In the last equation,σ scales withr2 andαE is the propor-
tionality constant betweenE andr3 that has the dimension of
volumetric energy density. By using the latter equation, the
energy distribution function (EDF) of the earthquakes can be
written on the base of the relationship between density func-
tions of correlated stochastic variables (Telesca, 2012):

p(E) =
1

dE
dσ

p

[(
E

αE

)2/3
+ σq

]

=
dσ

dE

[
1−

(1− q)

(2− q)

(
E

αE

)2/3
] 1

1−q

, (14)

where the term dσ/dE can be obtained by differentiating
Eq. (13):

dσ

dE
=

2

3

E−
1
3

α
2
3
E

dE. (15)
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The EDF now becomes (Silva et al., 2006; Telesca, 2012)

p(E) =
C1E

−
1
3[

1+ C2E
2
3

]1/(q−1)
, (16)

with C1 =
2

3α
2
3
E

andC2 = −
(1−q)

(2−q)α
2
3
E

.

In the latter expression, the probability of the energy is
p(E) = n(E)/N , wheren(E) corresponds to the number of
earthquakes with energyE and N is the total number of
earthquakes. A more viable expression can now be obtained
by introducing the normalized cumulative number of earth-
quakes given by the integral of Eq. (16):

N (E > Eth)

N
=

∞∫
Eth

p(E)dE, (17)

whereN(E > Eth) is the number of earthquakes with en-
ergyE greater than the threshold energyEth andN the total
number of earthquakes. Substituting Eq. (16) in Eq. (17) the
following expression is derived:

N (E > Eth)

N
=

[
1−

(
1− qE

2− qE

)(
E

αE

) 2
3
] 2−qE

1−qE

. (18)

Now the latter expression can be written in terms of the earth-
quake magnitudeM, if we consider thatE is related toM as
M =

2
3 log(E) (Kanamori, 1978). Then Eq. (18) becomes

N (> M)

N
=

[
1−

(
1− qE

2− qE

)(
10M

α
2/3
E

)] 2−qE
1−qE

. (19)

This relationship describes (from the first principles and in
NESP formalism) the cumulative distribution of the number
of earthquakesN greater than the threshold magnitudeM in
a seismic region, normalized by the total number of earth-
quakes. The constantaE expresses the proportionality be-
tween the released energyE and the fragment sizer, while
q is the entropic index that from now on we will refer to as
qE for reasons of clarity. This model was recently applied to
regional seismicity, covering diverse tectonic regions (Silva
et al., 2006; Vilar et al., 2007; Telesca, 2010a, b, 2011) and
volcano related seismicity (Telesca, 2010a; Vallianatos et al.,
2013) and has been found to describe appropriately the en-
ergy distribution in a wider detectable range of magnitudes
than the G–R relation. Above some threshold magnitude,
the G–R relation can be deduced as a particular case of the
non-extensive model of Eq. (19) forb = (2− qE)/(qE − 1)

(Telesca, 2012).
In real earthquake catalogues the threshold magnitude

M0, i.e. the minimum magnitudeM0 of the catalogue, has
to be taken into account and Eq. (19) should be slightly

changed to (Telesca, 2012)

N (> M)

N
=

 1−

(
1−qE

2−qE

)(
10M

α
2/3
E

)
1−

(
1−qE

2−qE

)(
10M0

α
2/3
E

)


2−qE
1−qE

. (20)

We have applied the non-extensive model of Eq. (20) to
the magnitude distribution of the earthquake activity at the
West Corinth rift. The model describes quite well the nor-
malized cumulative magnitude distribution for the values of
qE = 1.37±0.01 andαE = 19.05±6.86 and forM ≥ M0 =

1 (Fig. 5a). In comparison to the G–R relation (Eq. 1), the
model of Eq. (20) provides a better descriptor for the data in
the lower magnitude range (M ≤ 1.3), while forM ≥ 1.4 the
magnitude distribution decays as a power-law (Fig. 5a). This
is also evident from the energy distribution function (EDF)
that is plotted in Fig. 5b. The non-extensive model, in this
case according to Eq. (16) and for the same values ofqE

andαE as previously, describes well the EDF. Above some
threshold energy the EDF decays as power-law with expo-
nentγ = 1.98 (Eq. 7).

6 Interevent time distribution

DFA analysis indicated that long-range correlations exist at
the interevent time series. This property should be also re-
flected in the probability distribution function, where a de-
viation from the ordinary exponential function and BG sta-
tistical physics, which are commonly used to describe un-
correlated processes, can be expected. Then NESP may pro-
vide a more appropriate framework for a statistical physics
approach to the time of earthquake occurrences. In this di-
rection, Abe and Suzuki (2005) have proposed that the cu-
mulative interevent time distributionP(> τ ), i.e. the proba-
bility finding an event greater than the interevent timeτ , fol-
lows aq-exponential distribution withq > 1. This function
has been frequently used in studies of complex dynamical
systems (Gell-Mann and Tsallis, 2004; Tsallis, 2009), where
long-range correlations lead to asymptotic power-law behav-
ior. Theq-exponential distribution forq > 1 corresponds to
a Zipf–Mandelbrot-type distribution (Mandelbrot, 1983) and
exhibits in a novel manner the scale-free nature of seismicity
(Abe and Suzuki, 2005). This approach has been success-
fully applied to global (Vallianatos and Sammonds, 2013),
regional (Abe and Suzuki, 2005; Darooneh and Dadashinia,
2008) and laboratory scale (Vallianatos et al., 2012a), includ-
ing the Aigion earthquake aftershock sequence (Vallianatos
et al., 2012b) and volcano-related seismicity (Vallianatos et
al., 2013).

Theq-exponential distribution is derived after maximiza-
tion of the Tsallis entropySq under the appropriate con-
straints with the Lagrange multipliers method (Abe and
Suzuki, 2005; Tsallis, 2009). In terms of the probability

Nonlin. Processes Geophys., 20, 713–724, 2013 www.nonlin-processes-geophys.net/20/713/2013/
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Figure 5: a) Normalized cumulative magnitude distribution for M ≥ Mo =1 (circles) 5 
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Fig. 5. (a)Normalized cumulative magnitude distribution forM ≥

Mo = 1 (circles) and the model of Eq. (20) (solid line) for the values
of qE = 1.37±0.01 andαE = 19.05±6.86. The dashed line repre-
sents the G–R relation forb = 1.51± 0.03. (b) The corresponding
energy distribution function (circles). The fitted curve (solid line) is
according to Eq. (16) for the same values ofqE andαE as previ-
ously and the G–R relation (Eq. 7) forγ = 1.98± 0.03.

distribution of the interevent timesp(τ) and forkB = 1, Sq

reads as

Sq =

1−

∞∫
0

pq (τ )dτ

q − 1
. (21)

The two constraints refer to the normalization ofp(τ)

∞∫
0

p(τ)dτ = 1 (22)

and the condition about theq-expectation value (Tsallis,
2009)

τq = 〈τ 〉q =

∞∫
0

τpq (τ )dτ

∞∫
0

pq (τ )dτ

. (23)

The functional that we require optimizing is in this case:

δS∗
q = δ

Sq − a

τmax∫
0

p(τ)dτ − β∗τq

= 0, (24)

whereα andβ∗ represent the Lagrange multipliers. Thus we
obtain the physical probability:

p(τ) =

[
1− (1− q)Bqτ

]1/1−q

Zq

=
exp(−Bqτ)

Zq

, (25)

where theq-exponential function is defined as

eq(x) =
[
1+ (1− q)x

]1/(1−q)
, for1+ (1− q)x ≥ 0

and

eq(x) = 0, for1+ (1− q)x < 0, (26)

Zq is theq partition function

Zq =

τmax∫
0

expq

(
−Bqτ

)
dτ, (27)

whereBq =
β∗

Cq−(1−q)β∗τq
andCq =

∫ τmax
0 pq (τ )dτ . The in-

verse ofeq(x) is theq-logarithmic distribution lnq(x):

lnq(x) =
1

1− q

(
x1−q

− 1
)

(28)

that is linear withx for the appropriateq-value. In the limit
q → 1, the ordinary exponential and logarithmic functions
are obtained from theeq(x) and lnq(x) functions, respec-
tively.

The cumulative distributionP(> τ) that is associated to
the physical probabilityp(τ) of Eq. (25) is given by

P(> τ) =

∞∫
τ

p(τ)dτ = expq ′

(
−Bq ′τ

)
, (29)

q ′
= 1/(2− q) and Bq ′ = (2− q)/Bq (Picoli et al., 2009).

The cumulative distributionP(> τ) also exhibits theq-
exponential form as the physical probabilityp(τ).

The form ofP(> τ) given in Eq. (29) is equivalent to the
form derived by Abe and Suzuki (2005), where the cumu-
lative distribution forτ is obtained by integrating the escort
probability and not the physical probability as here. These
forms are related to the condition for the expectation value
(Eq. 23) and has been the subject of detailed discussions
(Wada and Scarfone, 2005; Ferri et al., 2005; Tsallis, 2009),
where it was shown that the different forms are equivalent
and can be transformed one into the other through simple
operations definingqs andBqs.
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Finally, by applying the transformations forq ′ andBq ′ , the
following form for P(> τ) is derived:

P(> τ) =
[
1− (1− q)Bqτ

] 2−q
1−q . (30)

We now apply this model to the scaled cumulative in-
terevent time distribution of the earthquake activity at the
West Corinth rift. We normalize interevent timesτ (in sec-
onds) asτ ′

= τ/τ̄ , whereτ scales with the mean interevent
time τ̄ = (tN − t1)

/
(N − 1), leading to the scaledP(> τ ′).

This is equivalent to the mean seismic rateR = τ̄−1 that has
been frequently used as a scaling factor for studying the in-
terevent time distribution (e.g. Corral, 2004; Hainzl et al.,
2006; Davidsen and Kwiatek, 2013). We also consider in-
terevent times greater than 60 s due to possible incomplete-
ness in lower time intervals, related to shadow effects in
the seismograms. In Fig. 6aP(> τ ′) is plotted for the en-
tire dataset and forM ≥ Mc. The cumulative distribution
P(> τ ′) deviates at the intermediate and largerτ ′ from the
exponential function and rather exhibits a power-law long
tail. The q-exponential distribution in the form of Eq. (30)
provides on the other hand an excellent fit to the observed
P(> τ ′) for the values ofq = 1.25±0.02 andBq = 1.9±0.3.
This is also apparent from theq-logarithmic distribution
lnq ′

(
P
(
> τ ′

))
that is plotted in Fig. 6b, where the straight

line is theq-exponential distribution. The proportion of the
data that deviates from theq-exponential function at larger
τ ′ is less than 0.05 % forM ≥ Mc.

We now turn our attention to the physical probability of
the interevent times as it is interpreted in the probability den-
sity function. The probability densityp(τ ′) for the normal-
ized interevent timesτ ′ is obtained by dividingτ ′ logarith-
mically and count the number ofτ ′ that falls into each bin.
Then dividing this number by the total number ofτ ′ and the
bin length, the normalizedp(τ ′) is obtained over each bin.

Studying the normalized probability density, Corral (2004)
analyzed the interevent time distribution for a number of
seismic catalogues and showed that it can be described by
a unique probability density function. This function can be
well approximated by a gamma distribution of the form
(Hainzl et al., 2006)

p
(
τ ′
)
= Cτ ′(γ−1) exp

(
−τ ′/β

)
. (31)

This result led Corral (2004) to claim that this empirical dis-
tribution is universal in the sense that it holds for regional and
local scales and for a wide range of magnitudes when seis-
mic activity is stationary, with constantsC = 0.5± 0.1, γ =

0.67± 0.05, andβ = 1.58± 0.15. This distribution exhibits
two regions, where short interevent times scale as a power
law with exponent 1− γ and large interevent times decay
exponentially. This defines a correlated behavior for earth-
quakes separated by short time intervals, while for larger time
intervals earthquakes are independent.

In later studies the universal behavior in the interevent time
distribution has been questioned (Davidsen and Goltz, 2004;
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Figure 6: a) Log-log plot of P (>τ΄) for the entire dataset (circles) and for M ≥ Mc 5 

(exes). The solid line represents the q-exponential distribution of Eq. (30) for the 6 

values of q = 1.25 ±0.02 and Bq = 1.9 ±0.3. An exponential distribution (dashed line) 7 

is also plotted for comparison. b) The corresponding q-logarithmic distributions lnq΄ 8 

(P(>τ’)) for the entire dataset (circles) and for M ≥ Mc (exes), exhibiting correlation 9 

coefficients ρ = -0.9842 and ρ = -0.9952 respectively. The straight line is the q-10 

exponential distribution. 11 
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Fig. 6. (a) Log-log plot of P(> τ ′) for the entire dataset (cir-
cles) and forM ≥ Mc (crosses). The solid line represents theq-
exponential distribution of Eq. (30) for the values ofq = 1.25±0.02
andBq = 1.9±0.3. An exponential distribution (dashed line) is also
plotted for comparison.(b) The correspondingq-logarithmic distri-
butions lnq ′(P (> τ ′)) for the entire dataset (circles) and forM ≥

Mc (crosses), exhibiting correlation coefficientsρ = −0.9842 and
ρ = −0.9952, respectively. The straight line is theq-exponential
distribution.

Hainzl et al., 2006; Saichev and Sornette, 2006; Touati et al.,
2009). In particular, deviations from this universal charac-
ter seem to be controlled by the rate between correlated and
uncorrelated activity at shorter and larger interevent times,
respectively (Hainzl et al., 2006; Touati et al., 2009). More-
over, by analyzing simulations of the ETAS model, Touati et
al. (2009) showed that the interevent time distribution can be
best described by a mixture distribution between correlated
events exhibiting gamma-distributed interevent times and un-
correlated events that are separated by larger time intervals
decaying exponentially. Touati et al. (2009) also showed
that the rate between correlated and uncorrelated events is
strongly affected by the scale of the area that is considered.
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Larger areas have a high rate of independent events, while in
smaller areas interevent times are highly nonrandom. More
pronounced memory effects in local earthquake catalogues
have been also reported by Livina et al. (2005).

Considering the high locality of the earthquake activity
at the West Corinth rift, and taking into account the pre-
vious discussion, we can expect that the earthquake activ-
ity is highly nonrandom in this area. This is strongly sup-
ported by the results of DFA analysis and theq-exponential
form of the cumulative interevent time distribution that in-
dicated correlated behavior even at larger interevent times.
This motivates us to propose a generalization of the gamma
distribution (Eq. 31) as a possible scaling distribution of the
probability density that does not decay exponentially but as
a power-law. This distribution can be calledq-generalized
gamma distribution (Queirós, 2005) and has the form

p(τ ′) = Cτ ′(γ−1) expq(−τ ′
/
θ). (32)

Its connection to NESP is realized by the lastq-exponential
term, where theq-exponential function has been defined
in Eq. (26). In the limitq → 1, it recovers the ordinary
gamma distribution. This is also known in statistics as the
F-distribution (Marchand, 2003).

This distribution has been obtained theoretically by
Queirós (2005), by considering a stochastic dynamical mech-
anism with memory effects that produces the observed vari-
able. In our case, this mechanism can be considered the one
that produces the successive earthquakes and thus the ob-
served interevent time distribution. Then this process can be
expressed in terms of a Feller process and its corresponding
Fokker–Planck equation (see Queirós, 2005). For stationary
periods, where the mean interevent time〈τ 〉 does not fluctu-
ate, the solution is a gamma distribution. On the other hand,
if local fluctuations of mean〈τ 〉 are produced, then the so-
lution is theq-generalized gamma distribution of Eq. (32)
(Queirós, 2005).

In Fig. 7 the normalizedp(τ ′) is plotted for the en-
tire dataset and forM ≥ Mc. The two distributions fall
into the same curve and present two power-law regions at
shorter and larger interevent times, respectively (Fig. 7a).
Short interevent times decay as∼ τ ′−0.65, larger ones as
∼ τ ′−3.45. In Fig. 7b the three distributions, namely theq-
exponential (Eq. 25), gamma (Eq. 31), andq-generalized
gamma (Eq. 32), are fitted to the normalizedp(τ ′). Theq-
exponential distribution, for the values ofZq = 1.47, B =

1.34, andq = 1.23, provides a good fit at intermediate and
larger τ ′, while it deviates at shortτ ′. On the other hand,
gamma distribution describes well the normalizedp(τ ′) at
short and intermediate interevent times, for the values of
C = 0.35,γ = 0.39,β = 1.97 and deviates at largerτ ′. Then,
the q-generalized gamma distribution provides an excellent
fit for the entire range ofτ ′, for the values ofC = 0.35,γ =

0.39, θ = 1.55, andq = 1.23. This result indicates the pres-
ence of correlated seismicity at all timescales and justifies
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Fig. 7. Normalized probability densityp(τ ′) for the scaled in-
terevent timesτ ′. (a) Power-law fit. (b) The fitted curves that
correspond to theq-exponential (Eq. 25) for the values ofZq =

1.47, B = 1.34, andq = 1.23, gamma (Eq. 31) for the values of
C = 0.35, γ = 0.39, β = 1.97, andq-generalized gamma distribu-
tion (Eq. 32) for the values ofC = 0.35, γ = 0.39, θ = 1.55, and
q = 1.23.

our approach. Moreover, the presence of scaling at short and
large interevent times implies the multifractal character of the
time evolution of the earthquake activity at the West Corinth
rift that has been also reported in the work of Telesca et
al. (2002).

7 Conclusions

In the present study the statistical properties of the earth-
quake activity at the West Corinth rift, a highly seismic
zone in central Greece, have been investigated by means of
non-extensive statistical physics (NESP) and detrended fluc-
tuation analysis (DFA). The earthquake activity is highly
localized in this area and exhibits long-range correlations
between the times of the earthquakes events, as has been
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indicated by DFA. By applying a generalized physical model
for earthquake dynamics, derived in a NESP formalism, the
energy distribution function and the cumulative frequency-
magnitude distribution were successfully described. Addi-
tionally, the properties of the cumulative distribution and
the probability density of the interevent times were stud-
ied. The analysis showed that the cumulative distribution
deviates from an ordinary exponential function that states
uncorrelated behavior and can rather be well described by
a q-exponential distribution that exhibits a power-law long
tail. On the other hand, the probability density exhibits two
power-law regions for the shorter and larger interevent times
respectively, indicating that seismicity is correlated at all-
time scales. The probability density, in comparison to aq-
exponential and a gamma distribution, can be better de-
scribed by aq-generalized gamma distribution that exhibits
two power-law regions and accounts for nonstationarity and
memory effects at all-time scales.

Summarizing, the present study indicates that the statisti-
cal properties of the earthquake activity at the West Corinth
rift for the studied period are governed by long-range correla-
tions and power-laws. These properties were successfully re-
produced by means of NESP principles and should be taken
into account in any probabilistic seismic hazard assessment
for the area.
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