
Nonlin. Processes Geophys., 20, 705–712, 2013
www.nonlin-processes-geophys.net/20/705/2013/
doi:10.5194/npg-20-705-2013
© Author(s) 2013. CC Attribution 3.0 License.

Nonlinear Processes 
in Geophysics

O
pen A

ccess

A mechanism for catastrophic filter divergence in data assimilation
for sparse observation networks

G. A. Gottwald1 and A. J. Majda2

1School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
2Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences,
New York University, USA

Correspondence to:G. A. Gottwald (georg.gottwald@sydney.edu.au)

Received: 28 March 2013 – Revised: 31 July 2013 – Accepted: 13 August 2013 – Published: 25 September 2013

Abstract. We study catastrophic filter divergence in data as-
similation procedures whereby the forecast model develops
severe numerical instabilities leading to a blow-up of the so-
lution. Catastrophic filter divergence can occur in sparse ob-
servational grids with small observational noise for interme-
diate observation intervals and finite ensemble sizes. Using
a minimal five-dimensional model, we establish that catas-
trophic filter divergence is a numerical instability of the un-
derlying forecast model caused by the filtering procedure
producing analyses which are not consistent with the true
dynamics, and stiffness caused by the fast attraction of the
inconsistent analyses towards the attractor during the fore-
cast step.

1 Introduction

Data assimilation is the procedure to find the best estima-
tion of the state of a dynamical system given a forecast
model with possible model error and noisy observations at
discrete observation intervals (Kalnay, 2002; Majda and Har-
lim, 2012). The presence of the often chaotic nature of the
underlying nonlinear dynamics, as well as the sparseness
of the observational network, significantly complicates this
process. In the setting of ensemble-based filters (Evensen,
1994, 2006), finite ensemble sizes may introduce additional
sources of error (see, for example,Ehrendorfer, 2007). In-
sufficient ensemble size typically causes an underestimation
of the error variances, which may ultimately lead to filter di-
vergence when the filter trusts its own forecast and ignores
the information provided by the observations. This filter di-
vergence is caused by ensemble members aligning with the

most unstable directions (Ng et al., 2011) and is exacerbated
by large observational noise. Finite size effects may also lead
to spurious overestimating correlations between otherwise
uncorrelated variables (Hamill et al., 2001; Whitaker et al.,
2004, 2009; Liu et al., 2008; Sacher and Bartello, 2008),
spoiling the overall analysis skill.

Harlim and Majda(2010) andGottwald et al.(2011) doc-
umented a new type of filter divergence which is charac-
terised by the forecast model diverging to machine infinity.
It was shown that this catastrophic filter divergence occurs in
sparse observational networks with small observational noise
for moderate observation intervals, in contrast to the classical
filter divergence described in the previous paragraph.

We will establish here the mechanism leading to this in-
stability in a minimal low-dimensional model: in a sparse
observational grid, finite ensemble sizes cause the ensemble
to align, and in the case of (sufficiently) small observational
noise generate analyses which are not consistent with the ac-
tual dynamics and are located in phase space off the attractor.
If the attraction towards the attractor is sufficiently strong,
the subsequent forecast step attempts to integrate a stiff dy-
namical system, which may cause the integrator to develop
numerical instabilities.

In Sect.2we introduce the minimal model for which catas-
trophic filter divergence is studied. We briefly describe en-
semble Kalman filters in Sect.3. Numerical results are pre-
sented in Sect.4, and the mechanism for catastrophic filter
divergence is established. We conclude with a discussion in
Sect.5.
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2 A minimal model

We study the Lorenz-96 (Lorenz, 1996) model

żi = zi−1(zi+1 − zi−2) − zi + F i = 1, · · · ,D (1)

with z = (z1, · · · ,zD) and periodiczi+D = zi in a five-
dimensional setting. We use negative forcing here, which
allows strong mixing with small dimensionD. We con-
sider hereD = 5 with F = −16 (Abramov and Majda,
2006). For these parameters we find as Lyapunov expo-
nentsλ = (2.72,0.09,−0.09,−1.83,−5.89) for an integra-
tion lasting 250 time units. One of the Lyapunov exponents
should be zero, corresponding to the flow direction; due to
slow convergence this is only approximately satisfied. Note
that

∑5
i=1λi = limt→∞

1
t

∫
Tr(M(t))dt , whereM is the lin-

earized vector field of Eq. (1), and hence
∑5

i=1λi = −5. Us-
ing the Kaplan–Yorke dimension (see for exampleSchuster
and Just, 2005), this suggests that the attractor has a fractal
dimension ofDattr = 4.15, and trajectories are on average at-
tracted to this manifold with the fast rateλ5 = −5.89. The
climatic mean and variance are estimated from a long time
trajectory as̄z = −2.47 andσ 2

clim = 33.7, respectively.
We remark that the system in Eq. (1) has not been

chosen to model any physical system but rather for
its simplicity in addressing the phenomenon of catas-
trophic blow-up. We will report as well on results with
F = 8, which is less chaotic withσ 2

clim = 13.1, λ =

(0.474,0.003,−0.523,−1.315,−3.636) andDattr = 2.9.
We assume that observations of the variables are given at

equally spaced discrete observation timesti with observa-
tion interval 1tobs. We observe only one variablez1. It is
well known that the Kalman filter is suboptimal for dynam-
ical systems which are nonlinear and involve non-Gaussian
statistics. It is pertinent to mention that although the five-
dimensional Lorenz system in Eq. (1) is highly nonlinear, its
probability density function is near-Gaussian forF = −16,
but highly non-Gaussian forF = 8. The Lorenz system in
Eq. (1) is assimilated using an ensemble transform Kalman
filter (ETKF) (Tippett et al., 2003; Wang et al., 2004), which
is briefly described in the following section.

3 Ensemble Kalman filter

In an ensemble Kalman filter (EnKF) (Evensen, 2006), an
ensemble withk memberszk ∈ RD

Z = [z1,z2, . . . ,zk] ∈ RD×k

is propagated by the full nonlinear dynamics

Ż = F(Z) , F(Z) =
[
f (z1),f (z2), . . . ,f (zk)

]
∈ RD×k . (2)

The ensemble is split into its mean

z̄ =
1

k

k∑
i=1

zi,

and its ensemble deviation matrix

Z′
= Z − z̄eT ,

wheree = [1, . . . ,1]T ∈ Rk. The ensemble deviation matrix
Z′ is used to provide a Monte Carlo estimate of the forecast
covariance matrix

Pf(t) =
1

k − 1
Z′(t)Z′(t)T ∈ RD×D .

Note thatPf(t) is rank-deficient if the ensemble sizek is
smaller than the rank of the covariance matrix.
Given the forecast ensembleZf = Z(ti − ε) and the associ-
ated forecast error covariance matrix (or the prior)Pf(ti −ε),
the actual Kalman analysis (Kalnay, 2002; Evensen, 2006;
Simon, 2006) updates a forecast into a so-called analysis (or
the posterior). Variables at timest = ti − ε are evaluated be-
fore taking observationsyo into account in the analysis step,
and variables at timest = ti + ε are evaluated after the anal-
ysis step when the observations, taken att = ti , have been
taken into account. Observationsyo ∈ Rn can be expressed
as a perturbed truth according to

yo(ti) = Hz(ti) + ro ,

where the observation operatorH : RD
→ Rn maps from the

whole space into observation space, andro ∈ Rn is i.i.d. ob-
servational Gaussian noise with associated error covariance
matrixRo and zero mean.

In the first step of the analysis, the forecast meanz̄f is up-
dated to the analysis mean

z̄a = z̄f − Ko
[
Hz̄f − yo

]
, (3)

where the Kalman gain matrix is defined as

Ko = PfHT
(
HPfHT

+ Ro

)−1
. (4)

The analysis covariancePa is given by

Pa = (I − KoH)Pf . (5)

To calculate an ensembleZa which is consistent with the
analysis error covariancePa, and which therefore needs to
satisfy

Pa =
1

k − 1
ZaZT

a ,

we use the method of deterministic ensemble square root fil-
ters (Simon, 2006) which expresses the analysis ensemble
as a linear combination of the forecast ensemble. In particu-
lar we use the method proposed inTippett et al.(2003) and
Wang et al.(2004), the so-called ensemble transform Kalman
filter (ETKF). Alternatively one could have chosen the en-
semble adjustment filter (Anderson, 2001) or the continu-
ous Kalman–Bucy filter, which does not require the inversion
of matrix inverses (Bergemann et al., 2009). A new forecast
Z(ti+1 − ε) is then obtained by propagatingZa with the full
nonlinear dynamics to the next time of observation. The nu-
merical results presented in the next section are obtained with
this method.
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4 The genesis of catastrophic filter divergence

We observe only one of the five variableszi (without loss
of generality we usez1) and generate observationsyo from
the truth by adding Gaussian observational noise with small
observational error covarianceRo = 0.01 after equal obser-
vation intervals1tobs. We use in the following a fourth-order
Runge–Kutta method to integrate forward in time the system
in Eq. (1) during the forecasting step.

In Fig. 1 we show an instance of catastrophic filter diver-
gence for dt = 0.025 and1tobs= 0.05 where we usedk = 6
ensemble members (so the forecast error covariance matrix
is not necessarily rank-deficient). Besides the maximal abso-
lute amplitude of the analysis ensemble, we show the norm
errorE of the analysis

E(ti) = ‖z̄a(ti) − zt (ti)‖ (6)

evaluated at each analysis cycleti between the truthzt and
the ensemble mean̄za. After ti = 62 the norm error becomes
machine infinity, due to the forecast model developing a nu-
merical instability. The genesis of the blow-up is clearly seen
from Fig. 1: until t1 ≈ 55.5 the filter is stable and the anal-
ysis tracks where the norm error may be even smaller than
the observational error (see the inset in Fig.1). This is fol-
lowed by a non-tracking episode lasting toti ≈ 59 in which
the norm error evolves around a mean value of approximately

〈E〉 ≈ 18≈

√
〈E2〉 − Var[E] =

√
2Dσ 2

clim − Var[E], suggest-
ing that the analysis is exploring the attractor, uncorrelated
from the truth and not controlled by the observations any-
more. This episode precedes the actual blow-up episode of
the forecast integrator in which the norm error grows to ma-
chine infinity.

In order to quantify the propensity for blow-up, we count
the numberNb of blow-ups that occur before a total of
5000 simulations have terminated without blow-up. A single
successful simulation consists ofna = 4000 analysis cycles.
Simulations differ in truth, observations and in the initial en-
semble with variance 1. The proportions of blow-ups is then
given by

Sb =
Nb

Nb + 5000
.

Note thatSb depends on the number of data assimilation cy-
clesna. In Fig.2 we showSb as a function of the observation
interval1tobs for several values of the integration time step
dt . It is seen that blow-up occurs for moderate observation
time intervals. No blow-up occurs for sufficiently small or
sufficiently large values of1tobs. The percentage of blow-
ups as well as the range of1tobs for which blow-up occurs
is reduced by reducing the integration time step, establish-
ing blow-up as a numerical instability of the forecast model.
Additionally, we performed simulations with the forcing pa-
rameter in Eq. (1) chosen asF = 8, corresponding to less
chaotic dynamics. We found similar behaviour; however, in
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Fig. 1.Top: maximal absolute valueZamax of the analysis ensemble
over all D = 5 components for dt = 0.025 and1tobs= 0.05 with
Ro = 0.01 andk = 6 ensemble members. Bottom: the error normE
as a function of analyses cycles. The continuous line (online blue)
in the inset shows the observational error

√
Ro.

line with the less chaotic nature of the system when com-
pared toF = −16, blow-up develops for larger values of the
integration time step dt . All results presented in the following
are forF = −16.

To obtain meaningful statistics for blow-up which are in-
dependent of the number of the analyses cyclesna, we esti-
mate the number of assimilation cyclesτi before blow-up oc-
curs. To generate statistics of these blow-up times, we numer-
ically calculatedτi for 10 000 instances of blow-up where we
allowed for a maximum ofna = 250000 assimilation cycles.
In Fig.3 we show the empirical cumulative distribution func-
tion Pb(τi) for the blow-up times. The results suggest that
catastrophic blow-up is a Poisson process with cumulative
probability distribution function
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Fig. 2. PercentageSb of blow-ups as a function of the observation
interval1tobs for several values of the integration time step dt for
fixed number of analyses cyclesna = 4000. We usedRo = 0.01 and
k = 6 ensemble members.

Pb(τi) = 1− exp

(
−

τi

τ̄b

)
, (7)

whereτ̄b denotes the mean blow-up time. The Poisson char-
acter of blow-up suggests that blow-up is not an accumu-
lative process, but rather that blow-up is a random process
with each assimilation having the same probability of blow-
up, independent of previous assimilations. Linear regression
of the curves in Fig.3 yields for the average blow-up times
τ̄b = 62633 (1tobs= 0.005), τ̄b = 3324 (1tobs= 0.05) and
τ̄b = 6160 (1tobs= 0.1). This is consistent with the blow-up
statisticsSb for fixed number of assimilation cyclesna and
shows that the probability of blow-up has a maximum for
an intermediate value of the observation interval1tobs for a
specified integration time step dt (cf. red curve with circles
in Fig. 2).

We now look at the dependency of the propensity for
blow-up on the observational varianceRo. Figure4 shows
that catastrophic filter blow-up requires the observational
noise to be sufficiently small but non-zero. For the smallest
value of the observational noise we used withRo = 10−6,
we still observedSb = 0.07 for na = 4000, dt = 0.0025 and
1tobs= 0.05. This is in stark contrast to the traditional filter
divergence which occurs for sufficiently large observational
noise.

We propose that catastrophic filter divergence is caused by
insufficient ensemble size paired with sufficiently small ob-
servational noise. We have checked that by increasing the en-
semble size to impractically high values ofk = 400, we were
able to avoid catastrophic blow-up. To monitor the ensemble
spread, we consider the ensemble dimensionDensas defined
in Patil et al.(2001); Pazó et al.(2011),
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Fig. 3. Log plot of the empirical normalised cumulative probability
density functionPb(τi) of blow-up timesτi for different observa-
tion intervals1tobs for dt = 0.0025. We usedRo = 0.01 andk = 6
ensemble members.

Dens=

(∑k
i=1

√
µi

)2

∑k
i=1µi

,

whereµi denotes theith eigenvalue of thek × k covariance
matrix

C = XT
f Xf .

Note thatDens takes values between 1 and min(k,D), de-
pending on whether the ensemble members are all aligned or
are orthogonal to each other. In Fig.5 we show the ensemble
dimension as a function of time for an ensemble withk = 6
members corresponding to the blow-up presented in Fig.1.
It is seen thatDens≈ 2 during the stable tracking episode,
indicating that the ensemble is not spanning all directions on
the attractor (we recall the fractal attractor dimension to be
Dattr = 4.15) but instead is aligning with the first two Lya-
punov vectors (cf.Ng et al., 2011). This triggers the non-
tracking period untilt ≈ 59. On the other hand, for ensem-
ble sizes ofk = 400 we observe that mostlyDens> 4, and
no blow-up occurs. Before the actual blow-up the ensemble
dimension reaches values of almostDens= 1, indicating en-
semble collapse.

Finite ensemble sizes and the associated loss of ensem-
ble spread are known to cause non-catastrophic filter diver-
gence in which the filter trusts the wrong forecasts, ignor-
ing error-correcting observations (Houtekamer and Mitchell,
1998; Hamill et al., 2001; Sacher and Bartello, 2008; Ng
et al., 2011). Finite ensemble sizes cause the forecast er-
ror covariancePf to exhibit on the one hand small diago-
nal variances and on the other hand off-diagonal entry values
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Fig. 4. Top: percentageSb of blow-ups as a function of the obser-
vation interval1tobs for several values of the observational noise
Ro for fixed number of analyses cyclesna = 4000, integration time
step dt = 0.0025. Bottom: percentageSb of blow-ups as a function
of the observational noise varianceRo for fixed number of analyses
cyclesna = 4000, integration time step dt = 0.0025 and observa-
tional interval1tobs= 0.05.

of unrealistically large absolute value (Hamill et al., 2001).
This leads to unrealistic innovations of the unobserved vari-
ables towards the observation of the observed distant vari-
able.Gottwald et al.(2011) showed that catastrophic filter
divergencies are suppressed by a variance limiting Kalman
filter (VLKF) which controls overestimation of the analysis
error covariance.

The destructive interplay of sparse (sufficiently) accurate
observations and finite size ensembles can be illustrated as
follows. The Kalman filter produces analyses according to
Eq. (3), which read for our case where onlyz1 is observed as

z̄ai = z̄f i −
Pf1i

Pf11+ Ro

[
z̄f1 − yo

]
, (8)
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Fig. 5. Ensemble dimensionDensas a function of analyses cycles.
Parameters as in Fig.1.

for i = 1, . . . ,5. The combination of small ensemble sizes
causing small values ofPf11 and large absolute values ofPf i1
for i > 1 and comparably small observational noiseRo leads
to analyses fori 6= 1 which are significantly influenced by the
observationyo at sitei = 1, irrespective of the actual physi-
cal correlations present in the dynamics. The resulting anal-
ysis may therefore not be dynamically consistent but may lie
in phase space off the attractor. As a proxy for the distance of
the analysis to the attractor, we measure the timeτattr taken
for the trajectory to reach an Euclidean distanceθ from the
attractor when propagating the analysis forward in time. We
created an approximation of the attractor by storing 2× 106

data points sampled at 0.005 time units. We chooseθ = 1.
Figure6 illustrates clearly that during the non-tracking pe-
riod episode (i.e. the periodti ∈ (55,59) in Fig. 1), one has
(predominantly)τattr = 0, consistent with our previous ob-
servation that the analysis lies on the attractor, but is uncor-
related from the truth and not controlled by the observations.
The subsequent initiation of blow-up fort > 59, however, is
characterised by non-zero values ofτattr. It is clearly seen that
blow-up is characterised by analyses lying off the attractor.
It is pertinent to mention that the existence of alignment of
the ensemble and the occurrence of off-attractor analyses (i.e.
large values ofτattr) does not necessarily cause catastrophic
filter divergence (for example as in Fig.6 at ti ≈ 56). The
effect of off-attractor analyses is the following: the forecast
model, initialised with such an analysis lying off the attrac-
tor, tries to follow the stable direction towards the globally
attracting set with a rate which is in our case very fast on
average with a Lyapunov exponent of−5.89. This renders
the dynamical system stiff developing numerical instabilities
for sufficiently large time steps dt , causing the filter to catas-
trophically diverge to machine infinity.
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Fig. 6. Distance between analysis and the attractor as measured by
τattr. Parameters as in Fig.1.

As seen in Fig.2 there is no filter divergence for suf-
ficiently small and sufficiently large observation intervals
1tobs. This can now be understood as follows: for too small
observation intervals, the forecast model will not have suffi-
ciently propagated the analysis away from dynamically real-
istic values, whereas for sufficiently large values of1tobs�

τcorr the ensemble will have acquired sufficient spread with
Dens≥ 4 exploring the whole of the attractor.

The behaviour of the propensitySb for blow-up as a func-
tion of the noise covarianceRo as depicted in Fig.4b can
also be readily understood from Eq. (8); for large observa-
tional noise withRo > 2 we obtain analyses̄za = z̄f which
are forced by the dynamics to lie on the attractor, and the
sampling error of finite ensemble sizes is not entering the
analysis. For small observational noise the magnitude of the
increments(Pf1i/(Pf11+ Ro))

[
z̄f1 − yo

]
is given as a bal-

ance between small innovations
[
z̄f1 − yo

]
and large finite

ensemble size induced gainsPf1i/(Pf11+ Ro) ≈ Pf1i/Pf11,
yielding a maximum atRo ≈ 0.025.

We now address the question how catastrophic blow-up
can be controlled, except through decreasing the time step
of the numerical forecast model to control the numerical in-
stability or through increasing the number of ensembles to
diminish the sampling effects. We found that catastrophic
blow-up can be avoided by employing covariance localisa-
tion into the data assimilation procedure, which controls the
unrealistic overestimation of off-diagonal entries of the fore-
cast covariance matrixPf . Houtekamer and Mitchell(2001)
and Hamill et al. (2001) achieved covariance localisation
by Schur multiplication of the forecast error covariancePf
with a localisation matrixCloc. We used the compactly sup-
ported localisation function introduced byGaspari and Cohn
(1999), in conjunction with a DEnKF proposed bySakov
and Oke(2008), and found that catastrophic filter diver-
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Fig. 7.PercentageSb of blow-ups as a function of the multiplicative
inflation factorδ for fixed number of analyses cyclesna = 4000,
integration time step dt = 0.0025 and observational noise variance
Ro = 0.01. We usedk = 6 ensemble members.

gence is completely suppressed for a localisation radius of
ρloc < 1.5 grid spacings. Other covariance limiting strate-
gies such as the ensemble filters suggested inGottwald et al.
(2011) andMitchell and Gottwald(2012) were also able to
suppress catastrophic filter divergence. We remark that the
actual truth, however, does indeed exhibit nontrivial corre-
lations between all variables for our parameters in this low
dimension withD = 5. Multiplicative error covariance (i.e.
the multiplication of the forecast error covariance matrixPf
by a constant inflation factorδ) is a standard remedy to con-
trol underestimation of covariances (Anderson and Ander-
son, 1999). In Fig. 7 we show the effect of multiplicative
covariance inflation on the propensity for blow-up. We ob-
serve that increasing the inflation factorδ from δ = 1 sig-
nificantly decreases the propensity for blow-upSb; this is
achieved by reducing occurrences of non-tracking periods
(the classical filter divergence), which are the precursors of
catastrophic blow-up. For sufficiently large values ofδ, how-
ever, the instances of catastrophic filter divergence are dras-
tically increased. Too large values of the inflation factor ex-
acerbate the sampling errors of the forecast error covariances
with δPf1i/(δPf11+ Ro) ≈ Pf1i/Pf11. Covariance inflation,
however, cannot completely suppress catastrophic filter di-
vergence for all observation times, and more complicated be-
haviour can occur as observed for example for1tobs= 0.04
in Fig. 7.
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5 Discussion

We have numerically established that catastrophic filter di-
vergence is caused by the interplay of finite size effects and
sparse observations with small observational noise produc-
ing analyses which may be situated in phase space far away
from the actual attractor. The subsequent attraction back to-
wards the attractor by the forecast model may cause numeri-
cal instabilities if the attraction rate is sufficiently large. This
suggests that blow-up is to be expected in sparse observa-
tional networks involving observables which exhibit a large
degree of irregularity. If those high variance fields are mea-
sured sufficiently accurately, catastrophic filter divergence is
possible. This is, for example, the case in data assimilation of
small-scale intermittent turbulent fields or in situations where
sparse accurate observations of variables exhibiting strong
spatial gradients such as jets can cause numerical instabilities
to occur (J. L. Anderson, personal communication, 2012).

We have checked that our results are independent of the
numerical integration scheme used during the forecasting
step. We have performed simulations with a first-order in
time forward Euler scheme and a second-order in time im-
plicit midpoint rule scheme. The latter is unconditionally sta-
ble for the system in Eq. (1) (see Theorem 5.5.6. inStu-
art and Humphries, 1996); however, in the case of the im-
plicit midpoint rule, we observed a large increase of the it-
erations required to solve the nonlinear fixed point equation,
rendering the scheme impractical. Furthermore, we have per-
formed simulations with the deterministic ensemble adjust-
ment Kalman filter (EAKF) (Anderson and Anderson, 1999)
and observed similar behaviour.

Our work established the dynamical genesis of catas-
trophic filter divergence. Besides an impractical reduction of
the integration time step (or an increase of the limit of itera-
tions required in an unconditionally stable implicit method),
to control the stiffness of the dynamical system, or an im-
practical increase of the number of ensembles to eliminate
finite size sampling errors, covariance localisation and ap-
propriately tuned covariance inflation were found to be ef-
fective in mitigating catastrophic filter divergence. Our study
further shows that choosing too small observation covari-
ances can lead to filter blow-ups as observed in numerical
weather prediction models (A. Shlyaeva, personal communi-
cation, 2012).
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