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Abstract. We hypothesize that total hillslope water loss for
a rainfall–runoff event is inversely related to a function of
a lognormal random variable, based on basin- and point-
scale observations taken from the 21 km2 Goodwin Creek
Experimental Watershed (GCEW) in Mississippi, USA. A
top-down approach is used to develop a new runoff gener-
ation model both to test our physical-statistical hypothesis
and to provide a method of generating ensembles of runoff
from a large number of hillslopes in a basin. The model is
based on the assumption that the probability distributions of
a runoff/loss ratio have a space–time rescaling property. We
test this assumption using streamflow and rainfall data from
GCEW. For over 100 rainfall–runoff events, we find that the
spatial probability distributions of a runoff/loss ratio can be
rescaled to a new distribution that is common to all events.
We interpret random within-event differences in runoff/loss
ratios in the model to arise from soil moisture spatial vari-
ability. Observations of water loss during events in GCEW
support this interpretation. Our model preserves water bal-
ance in a mean statistical sense and supports our hypothesis.
As an example, we use the model to generate ensembles of
runoff at a large number of hillslopes for a rainfall–runoff
event in GCEW.

1 Introduction

Runoff generation is the net result of separating rainfall into
a surface runoff component and a “loss” component that
includes infiltration, interception, and evapotranspiration. A
spatial representation of runoff generation in a river basin,

at the hillslope scale of resolution, is necessary to simulate
streamflows for the purpose of understanding streamflow for-
mation in a diverse range of applied and theoretical research
contexts. A few important examples are understanding the
physical basis of observed scaling in floods (Gupta et al.,
2010; Sharma et al., 2012), understanding the bio-physical
basis of scaling in riparian vegetation (Dunn et al., 2011), and
predicting soil erosion and water quality from hillslopes dur-
ing floods under conventional and organic agricultural prac-
tices (Lowery et al., 2009). Direct measurements of processes
that produce runoff generation are generally unavailable or
spatially limited within the drainage area of a study basin.
Consequently, runoff generation must be represented using
an analytical or a numerical model, and estimates of model
variables and parameters must be made using available data.
The problem requires a holistic and highly interdisciplinary
approach (Wilby, 1997). Two challenges stand out in devel-
oping a runoff generation model: (1) representing physical
processes that produce runoff from rainfall and (2) repre-
senting their variability in space and time throughout a basin.
The following overarching question captures these issues and
serves as the focus of our paper: how can space–time vari-
able runoff generation in a river basin be modeled at a large
number of hillslopes when the finest scale of observed runoff
is substantially larger, and the scale of existing infiltration
equations and related measurements is much smaller?

We introduce a physical-statistical hypothesis, developed
from basin-scale and point-scale observations, that total hills-
lope water loss for a rainfall-runoff event is inversely related
to a function of a lognormal random variable. A top-down
statistical model is developed to test our hypothesis and to
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provide a theoretical framework for distributing total volume
of runoff in space among a large number of hillslopes in a
river basin for a rainfall–runoff event. This approach does
not require any calibration of model parameters. A key as-
sumption of the model is that the “runoff/loss ratio”, a di-
mensionless metric that describes the relationship between
total event runoff and water loss, has a space–time rescal-
ing property. Because this metric depends solely on water
balance, the assumption imposes a constraint on the possible
nature and magnitude of processes that govern water loss and
runoff generation over time during an event. Yet, the model
does not specify the processes themselves. We test the rescal-
ing assumption against observations from the 21 km2 Good-
win Creek Experimental Watershed (GCEW) in Mississippi,
USA, and find that observations support it. We also show
that, for a given rainfall event, the magnitudes of total basin
runoff from the model are, on the average, equal to those
obtained from observations. Our model can be used in both
applied and theoretical research contexts mentioned above.

The rest of the paper is organized as follows. In Sect.2,
we provide some background on the characteristics of and
relationships between bottom-up and top-down models. In
Sect. 3, we introduce the key variable in this study, the
runoff/loss ratioψ , and explain the data and data-processing
steps required to obtain estimates of it for GCEW and for
the unnested sub-basins within it. We also introduce our
physical-statistical hypothesis in this section. In Sect.4, we
present a pattern in data among unnested basins indicat-
ing that rescaled probability distributions ofψ are the same
among events. We introduce and explain the model using this
pattern as motivation. Finally, we test the model against data
in Sect.5, discuss test results and show an application of our
model for a selected rainfall–runoff event. We show that the
model supports our hypothesis in Sect.6, and summarize re-
sults in Sect.7.

2 Background

Spatial scales in hydrology extend upward from a point, to
a plot, to a hillslope, to a sub-basin and beyond. Conceptu-
ally, the point scale is about 0.01 m2 (100 cm2) and the other
scales increase in succession roughly by a factor of 103. We
define the third scale, hillslope, as the land surface area that
drains into a single channel link of a river network (Shreve,
1967); it can also be called a hillslope-link scale (Mantilla
and Gupta, 2005). The hillslope scale represents an impor-
tant transition in land surface form and process. At this scale,
surface runoff from a hillslope enters a channel link in a river
network. Above this scale, runoff occurs in multiple links
draining a sub-basin. The connectivity of links, as a channel
network, aggregates runoff and affects its space–time struc-
ture. Scale problems have been recognized in hydrology liter-
ature for quite some time (Amerman and McGuinness, 1967;
Pilgrim, 1983).

All rainfall–runoff models of engineering hydrology con-
front the challenge of representing runoff generation accu-
rately at multiple spatial scales, from a point to a plot to a
hillslope to a basin. The approaches taken to develop such
models have led to two types of models: bottom-up (up-
ward) and top-down (downward). Bottom-up models origi-
nate from observations at a point or plot scale (Kavvas et al.,
2004; Govindaraju et al., 2006), while top-down models orig-
inate from observations at the basin scale (Klemes, 1983;
Sivapalan et al., 2003). Most approaches taken to model
runoff generation as a space–time variable phenomenon
within a basin have been bottom-up.Kirkby (1988) has given
an insightful review of the early literature devoted to bottom-
up hillslope runoff processes and models.

2.1 Two limitations to bottom-up modeling of runoff
generation

Bottom-up models of runoff generation in real river basins
are developed from observations having a spatial resolution
that is much finer than that of the model. Results inGutmann
and Small(2007); Gutmann and Small(2010) indicate that
the uncertainty in representing runoff generation in determin-
istic land surface models can be substantial partly because
there is a great disparity, at least 8 orders of magnitude, be-
tween the spatial scale of estimated soil hydraulic proper-
ties that are derived from soil texture class data (100 cm2)
and the spatial scale (resolution) of most land surface mod-
els (≥ 1 km2). A similar scale disparity is found in applica-
tions of many rainfall–runoff models (Vieux, 2004). Also,
observations show that soil moisture and infiltration tend to
differ between points as well (e.g.Bell et al., 1980; Achouri
and Gifford, 1984). For an area where the mean saturated
hydraulic conductivity (Ks) is fixed, numerical studies indi-
cate that the time series of mean infiltration changes as the
spatial variability ofKs within the area increases (e.g.Smith
and Hebbert, 1979). Arguably, calibration occurs with both
bottom-up and top-down models because of a disparity be-
tween observational and model scales.

Bottom-up models of runoff generation also tend to be
founded on theoretical formulations of processes at the point
scale, while they are run at scales that are much larger. Thus,
the spatial resolution of the governing equations is much finer
than that of the model. For example, point-scale equations for
infiltration are derived from a combination of physical prin-
ciples under certain idealized conditions and laboratory ex-
perimental results, e.g. Philip’s infiltration equation (Philip,
1969). Yet, most bottom-up models assume that these equa-
tions extend to the plot scale or larger (e.g.Peck et al., 1977;
Merz and Bardossy, 1998), and thus point-scale parameters
are replaced by “effective parameters”. The existing litera-
ture suggests that such an assumption is not well founded for
infiltration under natural conditions. For example, an “effec-
tive” hydraulic conductivity for the plot scale, or larger, is not
easy to determine because hydraulic conductivity can change
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between points within a plot by many orders of magnitude
(e.g. Nielsen et al., 1973; Carvallo et al., 1976). Similarly,
analytical studies have shown that the functional form of
point- and hillslope-scale infiltration equations are different
(Maller and Sharma, 1981; Chen et al., 1994; Govindaraju
et al., 2006). Kavvas et al.(2004) consider these issues in
formulating the WHEY model.

2.2 Top-down modeling of runoff generation

Top-down models have limitations that are similar but oppo-
site of those in bottom-up models, yet they also have advan-
tages that can serve to complement bottom-up modeling re-
sults. In particular, the spatial resolution of observations and
governing equations on which a top-down model is based is
much coarser than the spatial resolution of the model itself. A
great advantage of a top-down model is that the model equa-
tions represent the collective effect of processes that produce
runoff generation. Thus, a top-down model groups together
the influences of vegetation, soil type, surface topography,
etc., on runoff, while a bottom-up model must treat these in-
fluences separately.

There are a relatively few studies on runoff generation that
may be considered top-down.Clark and Hebbert(1971) used
the phi index model to illustrate that spatially variable in-
filtration within a basin impacts basin-mean infiltration and
its relationship to basin-mean rainfall intensity.Gargouri-
Ellouzea and Bargaoui(2009) used the phi index to iden-
tify the primary physical factors that influence runoff gen-
eration among 22 basins; two important factors were found
to be maximum rainfall intensity and percent of forest cover.
Lan-Anh and Willems(2011) developed a top-down rainfall–
runoff model that requires calibration and treats runoff gener-
ation as a spatial mean process. A top-down perspective has
been taken in efforts to interpolate runoff in space, though not
in tandem with the components that lead to its generation (i.e.
rainfall and water loss). For example,Sauquet et al.(2000)
andGottschalk et al.(2006) developed a stochastic interpo-
lation method to distribute runoff in space, among pixels in a
basin, using observed runoff in nested sub-basins.

3 Estimating runoff/loss ratios for unnested basins
in GCEW

Our idea is to define a basin-wide event-based runoff gen-
eration metric for GCEW that can be estimated from obser-
vations and then to distribute random values of the metric
down to the scale of hillslopes that cover GCEW. Our strat-
egy for distributing the metric down to smaller scales is to
honor water balance such that, on average, total event runoff
for the basin equals the summation of total event runoff at the
smaller scales. Down-scaling models of precipitation capture
this idea (e.g.Over and Gupta, 1996; Perica and Foufoula-
Georgiou, 1996) as explained later in Sect.4.2.

The basin-wide metric in this paper,ψ , depends on the
depth of total event runoff,̃q = r − l, wherer is total event
rainfall and l is total event water loss. For a given rainfall
event over a basin of areaa,

ψ =
q̃

l
=
r

l
− 1 ; r =

s2∫
s1

r(t)dt,

l = 1/a

s2∫
s1

(r(t)a− q̃(t))dt, (1)

where t is time, (s1, s2) is a time period of durations2 −

s1 over which rainfall–runoff occurs such that post-event
streamflow conditions return to pre-event conditions,r(t) is
average rainfall rate over the basin, andq̃(t) is stream dis-
charge at the outlet of the basin derived solely from event
rainfall. Water balance is the basis forl, and thus it does not
require an assumption about the processes that affect water
loss during a rainfall event. Rather,l represents the collective
effects that soil and vegetation (type and spatial distribution)
and rainfall (rate, duration, and spatial distribution) have on
water that contributes to runoff and water that does not. The
first equality in Eq. (1) obeys mass conservation, and shows
thatψ ≥ 0 given that total water lossl cannot exceed total
rainfall r. We refer toψ as the runoff/loss ratio because it
equals the ratio of total runoff,̃q = r − l, to total loss,l.

GCEW has a drainage area of 21.19 km2, and the rainfall–
runoff data for the basin come from 13 stream gauges and
31 rain gauges (Blackmarr and the Channel and Watershed
Processes Research Unit, 1995). For this study, we excluded
another stream gauge in the basin (gauge 10) because of
problems with its data. Figure1 shows three maps of GCEW
that represent basin, unnested basin, and hillslope scales.
Map A shows only the drainage area of GCEW, defined here
as the upstream area of stream gauge 1. Map B shows the
drainage areas of the 13 stream gauges, which can overlap
(e.g. gauges 4 and 7). Map C shows the drainage areas of
544 hillslopes that compose GCEW. Rainfall and stream-
flow data were used to evaluateψ for the entire GCEW area
(see Map A) and for each unnested sub-basin of GCEW (see
Map B). Values ofψ were determined for numerous events,
and the methods for selecting events, estimating total event
rainfall and streamflow, and determiningψ are given below.

3.1 Selecting rainfall–runoff events from streamflow
data

We selected rainfall–runoff events having moderately simple
rainfall and streamflow conditions. Consecutive 2-day peri-
ods from 1981 to 1995 were identified where records indicate
that (1) rainfall occurred on the first day of the 2-day period at
all rainfall stations, (2) streamflow was present in all gauged
channels on both days, and (3) streamflow at gauge 1, the
outlet of GCEW, had a single distinct peak. These 2-day pe-
riods capture either an entire rainfall event or a subset of one
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30

Fig. 1. Decomposition of GCEW into three spatial scales. Plot A
shows the basin scale (a = 21.19 km2) along with the location of
stream gauge 1, the outlet of GCEW. Plot B shows the unnested
basin scale (a/n= 1.63 km2) and the locations of 13 stream gauges.
Plot C shows the hillslope scale (a/m= 0.04 km2).

that lasts more than two days. In the latter case, it is possible
that rainfall contributing to the outlet peak occurs prior to the
2-day period. Therefore, we used the time of peak streamflow
at gauge 1,ti , as a reference time for an eventi. We selected
only those 2-day periods where (4) rainfall did not occur at
any of the stations from 48 to 24 h beforeti , and (5) rainfall
did occur at all rainfall stations during the 24 h period leading
up to ti . A computer algorithm found 148 events that meet
criteria (1) to (5), about 10 events per year. For each event,
step (4) requires that antecedent conditions include a 24 h
period of zero rainfall. This step provides little constraint on
antecedent soil moisture, which can be near zero in late sum-
mer and near 1 in winter (Furey and Gupta, 2005).

3.2 Estimating rainfall and runoff for events

We generated rainfall fields using data from the 31 rain sta-
tions in GCEW. Rain station data for the basin record accu-
mulated rainfall depth per event, and the time interval be-
tween data points is not a constant. Therefore, we first pro-
duced a new 5-minute-interval time series of rainfall rates
for each station by expressing accumulated rainfall values
in terms of rain rate and then linearly interpolating between
data points. We set interpolated rain rates that were nega-
tive to zero. Then, for each event, we generated a time se-
ries of rainfall fields beginning atti − d and ending atti + d,
whered is a 24 h time period. At each 5-minute time step,
we produced a rainfall field by triangulating rain rates at
the stations and then linearly interpolating between values;
other more-involved approaches could be used that charac-
terize rainfall fields better when rainfall spatial variability is
high. For each event in this study, there are 576 five-minute
fields (2 days× 24 h day−1

× 12 five-minute fields h−1) that
describe the space–time structure of rainfall, including 5-
minute periods where there is no rain. Each field covers
GCEW and can be partitioned into areas corresponding to
the sub-basins (unnested or otherwise) and hillslopes in the
basin.

Using stream gauge data, we estimated the runoff gener-
ated during an eventi from each basinj by subtracting base-
flow as

q̃i,j (t)= qi,j (t)− qi,j
; s1 ≤ t ≤ s2, j = 1,2, . . . ,13 (2)

where

q
i,j

= min
t
(qi,j (t)) ; (ti − d)≤ t ≤ ti

s1 = max(t) whereqi,j (t)= q
i,j

; (ti − d)≤ t ≤ ti

s2 = min(t) whereqi,j (t)= q
i,j

; ti < t. (3)

Here,qi,j (t) represents observed streamflow andq
i,j

repre-

sents antecedent streamflow. We interpretq
i,j

as baseflow

that is constant during an event and subtract it fromqi,j (t) to
obtain event runoff,̃qi,j (t).

3.3 Determiningψ

We estimated runoff/loss ratios at the basin scale,ψi , and
unnested basin scale,ψi,j wherej = 1,2, . . . ,13 denotes an
unnested basin. For the basin scale (Fig.1, Map A), we used
Eq. (1) where the variables for runoff/loss ratio, total rainfall,
and streamflow are each given a subscripti. We averaged
rainfall over the drainage area of stream gauge 1 at each time
step to obtain rainfall rate, denotedri(t), and used Eq. (2)
to estimate streamflow, denotedq̃i(t). For the unnested basin
scale (Fig.1, Map B), we used a general form of Eq. (1) given
as
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ψi,j =
ri,j

li,j
− 1 ; ri,j =

s2∫
s1

ri,j (t)dt,

li,j = 1/aj

s2∫
s1

ri,j (t)aj +

∑
k∈Bj

q̃i,k(t)− q̃i,j (t)

dt, (4)

whereBj is a set of gauged sub-basins of basinj . If Bj is an
empty set, then

∑
k∈Bj

q̃i,k(t)= 0.
For the unnested basin scale, we unnested data from a

gauged basinj using data from a setBj of gauged sub-
basins. Table1 lists the 13 stream-gauged basins in GCEW
(j = 1,2, . . . ,13) and shows sub-basin gauges in setBj , if
any, and drainage areas before and after unnesting. We ob-
tained the unnested drainage area for basinj by subtract-
ing the areas of the sub-basin gauges inBj from the area
of basinj ; e.g. for basinj = 2, the unnested drainage area
is a2 = 17.92− (8.78+ 3.57+ 1.24+ 1.63)= 2.7 km2. We
used CUENCAS (Mantilla and Gupta, 2005) to determine
an unnested rainfall time series for eventi and basinj , de-
notedri,j (t), by averaging rainfall over the unnested area of
j at each time step. Finally, we evaluated the unnested total
runoff for eventi and basinj as the difference between total
runoff exiting and total runoff entering the unnested area.

3.4 Selecting a final collection of events

For many of the 148 events, there are unnested basins for
which water balance is unresolved. This feature arises in two
ways. For certain events, there is at least one unnested basin
for which the runoff exiting its area is less than the runoff en-
tering its area at upstream gauges. In Eq. (4), this situation
meansq̃i,j (t) <

∑
k∈Bj

q̃i,k(t), which suggests that water
loss occurs within the river channels of unnested basinj . It is
most often found with basinj = 2, which coincidentally has
the largest setBj of sub-basin gauges. Also, for some events,
there is an unnested basin for which the integrand in Eq. (4)
is negative, meaning̃qi,j (t) > ri,j (t)aj+

∑
k∈Bj

q̃i,k(t). This
situation suggests that there is an unknown source of wa-
ter that contributes to runoff exiting unnested basinj . These
two features could have natural or human-induced physical
origins, but they also could originate from inaccuracies in
streamflow measurements, rainfall estimates, and baseflow
q
i,j

estimates.

We selected events for which water balance is resolved
in a minimum of 11 unnested basins. This brings the num-
ber of events to 112, still a large number by which to de-
velop and test a top-down model. These events were put into
three groups: 112 events with 11 unnested basins (Case I), 75
events with 12 unnested basins (Case II), and 20 events with
13 unnested basins (Case III). Case I events include Case II
events which include Case III events. We grouped the data to
test our model. As explained in Sect.4, our model predicts
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31

Fig. 2.Plot A shows water-loss depths at the basin scale,li , for 112
events versus time of year. Plot B shows volumetric soil moisture
content versus time of year fromFurey and Gupta(2005). Plot C
shows empirical CDFs of water-loss depths at the unnested basin
scale,li,j , for 112 events. Each distribution represents a rainfall–
runoff event.

similarity between rescaled cumulative distribution functions
(CDFs). Statistical tests of this feature can be sensitive to
the number of samples that comprise empirical CDFs. Thus,
while Case I events include those for Case III, it is possible
that differences between the cases in the number of samples
per empirical CDF lead to contradictory test results that in-
validate the model.

The process we used to select events was designed to pro-
vide a large number of events but, as expected, it eliminated
many events from analysis. Nonetheless, events for each case
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Table 1.Properties of gauges used in this study.

ARS Basin ID Drainage area Sub-basin gauges Unnested drainage area

gauge ID j
[
km2

]
SetBj aj

[
km2

]
1 1 21.39 (a) 2 3.47
2 2 17.92 3, 4, 13, 14 2.70
3 3 8.78 5, 6 3.29
4 4 3.57 7 1.97
5 5 4.30 8, 9 2.57
6 6 1.19 – 1.19
7 7 1.60 – 1.60
8 8 1.55 11, 12 0.97
9 9 0.18 – 0.18
11 10 0.28 – 0.28
12 11 0.30 – 0.30
13 12 1.24 – 1.24
14 13 1.63 – 1.63

span a broad range of streamflow conditions. Among events,
the smallest streamflow peaks at the outlet of GCEW are
0.21, 0.25, and 0.40 m3 s−1 for Cases I to III, respectively.
The largest streamflow peaks at the outlet of GCEW are 102,
47.8, and 43.7 m3 s−1 for Cases I to III, respectively. The
small events have return periods of less than 1 yr, while the
large events have return periods of approximately 2 yr for
Cases II and III and 5 yr for Case I. Both the event selec-
tion process and the period of time we investigated, 15 yr,
are responsible for the lack of events having return periods
that exceed 5 yr.

3.5 Soil moisture in GCEW and a physical-statistical
hypothesis to test against the model

Before developing our model, we compared observations of
water-loss depths at the basin scale,li , to historical observa-
tions of soil moisture in GCEW at the point scale. Figure2a
presents values ofli versus time of year for the Case I events.
Values are low from December to March and high from July
to October. The peak water-loss depth for GCEW occurs
around late August. Figure2b comes fromFurey and Gupta
(2005) and shows observed values of volumetric soil mois-
ture content taken 5 cm below soil surface at two point loca-
tions in and near GCEW from January 1999 to June 2004.
The general relationship betweenli and time is a mirror im-
age of the general relationship between soil moisture and
time.

Spatial distributions of water-loss depth in GCEW also ap-
pear to depend on soil moisture. Figure2c shows the empir-
ical CDFs of water-loss depth at the unnested basin scale,
li,j , for the 112 events. Each CDF consists of 11 values of
water-loss depth corresponding to 11 unnested basins. The
figure shows that distributions that have a large mean tend
to have a large variance and vice versa. Because a largeli,j
implies that soil moisture is low (dry), it suggests that the

spatial variability of soil moisture in GCEW is greatest when
the spatial-mean soil moisture is low. This feature is consis-
tent with soil moisture observations in other humid climate
basins (Brocca et al., 2007). The patterns in Fig.2 show that
soil moisture plays an important role in runoff and loss in
GCEW and should be a component of our model.

The observations presented in Fig.2 also lead to a hypoth-
esis, as follows. Plots A and B in Fig.2 suggest thatli is
roughly proportional to some function of 1/θ , whereθ de-
notes point-scale soil moisture. It also suggests that thatli
characterizes surface infiltration amount as a first-order ef-
fect in GCEW. Based on the observations, we infer thatli,j,k
for any hillslope within an unnested sub-basin is also propor-
tional to some function of 1/θ ; there are no data sets available
to test this idea directly. Hydraulic conductivityK(θ) is ob-
served to be proportional to a function ofθ because, as soil
moisture decreases, conductivity decreases (Brutsaert, 2005,
p. 274–275, Figs. 8.23 and 8.25). A widely used parametric
relationship for conductivity isK(θ)=Ksf (θ), whereKs is
hydraulic conductivity at saturation, andf denotes a func-
tion of θ (Brutsaert, 2005, p. 279-280). Spatially variableKs
is commonly modeled as a lognormal random variable (e.g.
Govindaraju et al., 2006; Meng et al., 2006), which implies
thatK(θ) is lognormal within a hillslope. These relationships
serve as the basis for a physical-statistical hypothesis: hills-
lope water loss is inversely related to a function of a lognor-
mal random variable. We show that our model supports this
hypothesis at the end of Sect.6.

4 Runoff–loss model

Our goal is to develop a runoff–loss model that describes the
variability ofψ temporally, from event to event, and spatially,
both within a given scale, e.g. among unnested basins, and
between scales, e.g. from basin to unnested basin to hillslope.
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Such a model provides a method of using observations of
ψ at the basin and unnested basin scales to estimate runoff
generation and losses at the hillslope scale, where practically
no observations are available. Our first step in developing the
model was to explore the temporal and spatial variability of
runoff/loss ratios at the unnested basin scale,ψi,j , for Case I
events. We wanted to determine if a simple rescaling ofψi,j
with respect to a measure of an overall event magnitude could
account for event-to-event changes.

4.1 Establishing model form – temporal structure

Figure3a shows the empirical CDFs ofψi,j for Case I events.
There are 112 CDFs that correspond to 112 events, and each
CDF consists of 11 unnested basins. For each eventi, we
evaluated the geometric mean of observed runoff/loss ra-
tios, gi , and then rescaled the observed ratios asψi,j/gi .
Figure3b shows the CDFs of this rescaled runoff/loss ratio.
The curves in Fig.3b collapse nicely, indicating that tempo-
ral variability can, to a first order, be accounted for by the use
of the geometric mean as a simple scale parameter. An alter-
native approach is to rescaleψi,j by the arithmetic mean, but
test results (not shown here) indicate that a weaker collapse
occurs. Rescalingψi,j by its geometric mean is equivalent
to shifting log(ψi,j ) by its arithmetic mean, i.e. computing
log(ψi,j )− log(gi). Thus, the results in Fig.3 indicate that
an event-by-event first-moment shift yields similar distribu-
tions.

We took a step further to see if there is improvement when
incorporating second moments (variances). If the event-by-
event variances are all the same, then the first-moment shift
will suffice. Otherwise, we must take variances into consider-
ation. We incorporated a second-moment correction by com-
puting(log(ψi,j )− log(gi))/σ̂i , whereσ̂i is the standard de-
viation of log(ψi,j ). Figure3c shows the CDFs of the expo-
nential of this quantity, which is(ψi,j/gi)1/σ̂i . The collapse
improves compared to that in Fig. 3b, indicating that rescal-
ing should account for temporal differences in variances. The
implication of the results presented in Fig.3 is that event-to-
event temporal variability in the spatial distribution ofψi,j
can be characterized quite well by the use of two parame-
ters, the mean and variance of log(ψi,j ). The results in Fig.3
serve as the basis for developing our model.

4.2 Establishing model form – spatial structure

The model we develop needs to capture the features pre-
sented in Fig.3 but also connect runoff/loss ratios across
scales in a way that respects their nested spatial correlation
structure. At the unnested basin scale, we expect a high de-
gree of spatial correlation among values ofψi,j for eventi
because they will be influenced by overall event magnitude.
If we compare the spatial distribution ofψi,j for a large event
to one for a small event, e.g. large vs. small rainfall amounts,
then we expect that the two distributions will be distinct.

Fig. 3. Plot A shows a semi-log plot of empirical CDFs of runoff-lossratios at the unnested basin scale,ψi,j , for

112 events. Each distribution represents a rainfall-runoff event. Plot B shows corresponding CDFs ofψi,j/gi,

and Plot C shows corresponding CDFs of(ψi,j/gi)
1/σ̂i .

32

Fig. 3. Plot A shows a semi-log plot of empirical CDFs of
runoff/loss ratios at the unnested basin scale,ψi,j , for 112 events.
Each distribution represents a rainfall–runoff event. Plot B shows
corresponding CDFs ofψi,j /gi , and Plot C shows corresponding

CDFs of(ψi,j /gi)
1/σ̂i .

This effect can be modeled by takingψi,j to be a function
of ψi where the value ofψi reflects the overall event ef-
fect. Likewise, for unnested basinj , we can model hillslope
runoff/loss ratios to be a function ofψi,j whereψi,j reflects
the overall event effect.
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The nested structure of runoff/loss ratios must also be
weighted by the drainage areas with which they are associ-
ated. Suppose a basin is partitioned into five unnested basins,
j = 1,2, . . . ,5, whereψi,1 occupies 80 % of the total basin
area while the remainingψi,j occupy 20 %. The dependency
of ψi,1 on the overall event effect, represented byψi , will be
stronger than that of the remainingψi,j simply becauseψi,1
represents a larger fraction of the basin.

Discrete random cascade models (Gupta and Waymire,
1993) have a nested structure with spatial characteristics like
those described above. Therefore, we can use the equations
that define a cascade model to help establish the equations
that define our model. A brief self-contained explanation of
random cascades is given below that motivates the functional
form of our model.

Consider a discrete random cascade spatial model with a
branching numberb; i.e. a region of areaa0 = 1 is divided
into b subregions of equal size (called level-1 subregions),
each of these subregions is subdivided intob subregions of
equal size (called level-2 subregions), and so on. Denote to-
tal mass in the whole region byM0, and denote mass in the
j th level-1 subregion byM1,j , j = 1, . . . ,b. Then, under the
random cascade model,M1,j andM0 are related by

M1,j
d
= (1/b)W1,jM0, (5)

where
d
= means “equality in distribution”, andW1,j are inde-

pendent and identically distributed (iid) level-1 cascade gen-
erators with expectation 1. To understand the implications of
this equation in terms of mean mass conservation, we can
take the expectation of Eq. (5) to obtain

E[M1,j ] = E[M0]/b. (6)

Therefore,E[M0] = bE[M1,j ], showing that mass conserva-
tion holds in a mean sense. The area of a level-1 subregion is
a1,j = 1/b, and we can take the logarithm of equation (5) to
obtain

ln(M1,j )
d
= ln(M0)+ ln(a1,j )+ ln(W1,j ). (7)

Here, total massM1,j depends onM0, whereM0 reflects the
overall mass, andM1,j depends on the fraction of the overall
area. These relationships parallel those we want for a model
of ψ . An expression like Eq. (7) can also be written for each
level-n subregion. For example, it can be modified to a re-
lation between total mass for a level-2 subregion, with area
1/b2, and total massM1,j . Finally, notice that Eq. (7) in-
volves a Markov-like property. In a Markov process, a vari-
able at the present time that is conditioned on a set of vari-
ables representing past times has the same distribution as a
variable that is conditioned on only the most recent past time
(Feller, 1968). Random cascades have a Markov-like prop-
erty because a given spatial scale influences only the next
finer spatial scale (Over, 1995).

We can modelψ like a random cascade, though not ex-
actly as one. A random cascade model leads to a limit mass
distribution after a large number of subdivisions of space. It
describes a process, e.g. rainfall, at a large number of spatial
scales. By contrast, the smallest spatial scale for a model of
ψ is the hillslope; physical reasons are given inGupta et al.
(2010). Also, cascades are random spatial measures that obey
mass conservation in a mean sense, as shown by Eq. (6), but
ψ does not obey this condition. Rather, it is the components
of ψ (i.e. total rainfall and total loss) that obey mass conser-
vation, as shown in Sect.4.7.

In the sections that follow, we develop a runoff–loss model
based on two equations that are each similar in form to
Eq. (7), but are more general. Each equation characterizes
how ψ at one spatial scale depends on bothψ at the next
coarser spatial scale and drainage area fraction. We introduce
the model in terms of random and then fixed unnested basins
and hillslopes. Before testing the model, we also discuss how
it connects to water balance.

4.3 Definition of model variables

We develop a model under the postulate that certain prop-
erties ofψ observed at the basin scale are preserved down
to the hillslope scale. Consider a basin of areaa and di-
vide it into n unnested basins of similar size andm hill-
slopes of similar size wherem> n. We letmj denote the
number of hillslopes in an unnested basinj such thatm=∑n
j=1mj . We let aj denote the area of unnested basinj

wherej = 1,2, . . . ,n and aj,k denote the area of hillslope
k in unnested basinj wherek = 1,2, . . . ,mj . It follows that
a =

∑n
j=1aj =

∑n
j=1

∑mj
k=1aj,k. Finally, we leta/n define

the scale associated with the unnested basins anda/m de-
fine the scale associated with the hillslopes. Thus, we con-
sider three different spatial scales: basin scalea, unnested
basin scalea/n wheren > 1, and hillslope scalea/m where
m> n. Figure 1 shows the decomposition of GCEW into
these scales.

Random variablesRi andLi express basin scale condi-
tions in the model; see Table2. They represent total rainfall
and total water loss for eventi in a basin, respectively. Real-
izations are denoted byri andli . A given event is not asso-
ciated with a particular rainfall amount unlessri is specified.
Rather, a given event simply represents a distinct period of
time where rainfall from a single storm produces runoff from
a basin and streamflow conditions at the end of the time pe-
riod are equal to those at the beginning.

Random variablesJ , aJ , Ri,J , andLi,J express spatial
variability at the unnested basin scale; see Table2. Random
variableJ represents the stream-gauged unnested basins in
GCEW so that a realization,j , represents a specific unnested
basin. Random variableaJ represents the drainage areas of
unnested basins so that a realizationaj represents the area
of a specific unnested basin. Random variablesRi,J andLi,J
represent total event rainfall and total water loss for eventi
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Table 2. Variables that represent random and fixed locations (in space) for areaa, total rainfallR, total lossL, and runoff/loss ratioY .
Realizations ofR, L, andY (not shown) are obtained using a lowercase letter; e.g. a realization ofRi,j is given byri,j .

Scale Location Area Total rainfall Total loss Runoff/loss ratio

Basin Fixed a Ri Li Yi
Unnested basin Random aJ Ri,J Li,J Yi,J

Fixed aj Ri,j Li,j Yi,j
Hillslope Random aj,K Ri,j,K Li,j,K Yi,j,K

Fixed aj,k Ri,j,k Li,j,k Yi,j,k

at the unnested basin scale. Realizationsri,J andli,J refer to
an unnested basin with an outlet at a random location, while
realizationsri,j andli,j pertain to a specific unnested basin,
j .

Random variablesK, aj,K , Ri,j,K , andLi,j,K represent
spatial variability at the hillslope scale, and their meanings
parallel those for the unnested basin scale; see Table2. Thus,
K represents the hillslopes in an unnested basin so that a re-
alization,k, represents a specific hillslope. Random variable
aj,K represents the drainage areas of hillslopes in basinj ,
and a realizationaj,k represents the drainage area of a spe-
cific hillslope in unnested basinj . Lastly, random variables
Ri,j,K andLi,j,K represent total event rainfall and total wa-
ter loss for eventi in unnested basinj at the hillslope scale.
Realizationsri,j,K andli,j,K refer to a hillslope at a random
location in unnested basinj , and realizationsri,j,k andli,j,k
refer to a hillslope at a given location in unnested basinj .

Table2 provides a comparison between the notations used
to represent the basin, unnested basin, and hillslope scales.
The connection between variables across scales has been
made systematic. The first index corresponds to an event
(time), the second index corresponds to the unnested basin
scale (space), and the third index corresponds to the hillslope
scale (space). Thus, the number of indices attached to a ran-
dom variable defines its spatial scale. One index refers to an
eventi at the basin scale, e.g.Li ; two indices refers to an
eventi at the unnested basin scaleJ , e.g.Li,J ; and three in-
dices refers to an eventi for a fixed unnested basinj at the
hillslope scaleK, e.g.Li,j,K .

4.4 Model equations for random unnested basins and
hillslopes

The model equations introduced below represent a general-
ization of the random cascade model given in Eq. (7). The
nature of the generalization is explained after the model is
introduced. Before introducing the equations, we make some
assumptions about unnested basin and hillslope distributions.
Assume thatJ has a uniform distribution on the integers
1, . . . ,n, such that all unnested basins have the same prob-
ability of being selected at random. This definition is consis-
tent with our analysis of empirical CDFs in Sect.4.1. Like-
wise, assume thatK|J = j has a uniform distribution on the
integers 1, . . . ,mj , such that all hillslopes in unnested basinj

have the same probability of being selected at random. Also,
assume thatJ andK are independent of all random variables
R andL.

Let Yi = Ri/Li − 1 be a random variable for the
runoff/loss ratio at the basin scale. Similarly, letYi,J =

Ri,J /Li,J−1 andYi,j,K = Ri,j,K/Li,j,K−1 be random vari-
ables at the unnested basin and hillslope scales. For a random
variableX, letG[X] denote the geometric mean ofX. Then,
assume that for a given eventi

ln(Yi,J )= αi +βi ln(Yi)+ γi ln(aJ /G[aJ ])

+ σi ln(Ui,J ) (8a)

ln(Yi,j,K)= αi,j +βi,j ln(Yi,j )+ γi,j ln(aj,K/G[aj,K ])

+ σi,j ln(Hi,j,K). (8b)

Equation (8a) describes the variability in runoff/loss ra-
tios between unnested basins for eventi, while Eq. (8b) de-
scribes the variability in runoff/loss ratios between hillslopes
in unnested basinj for eventi. Here, in Eq. (8a), G[aJ ] is
a geometric mean of unnested basin areas, ln(Ui,J ) is a ran-
dom variable that has a mean of zero and is iid among events,
Yi is independent of ln(Ui,J ), and parametersαi , βi , γi , and
σi can change from event to event because they depend oni.
The iid condition on ln(Ui,J )means that a common probabil-
ity distribution connects events. The subscripti in ln(Ui,J ) is
needed because realizations of ln(Ui,J |J = j) for one event
are not necessarily the same as those for another. Similarly,
in Eq. (8b),G[aj,K ] is a geometric mean of hillslope areas in
unnested basinj , ln(Hi,j,K) is a random variable that has a
mean of zero and is iid among events,Yi,j is independent
of ln(Hi,j,K), and parametersαi,j , βi,j , γi,j , andσi,j can
change from event to event because they depend oni.

Equations (8a) and (8b) are general expressions of Eq. (7).
Equation (8a) includes a random termUi,j that corresponds
to the cascade generatorW1,j . It also includes additional pa-
rameters,αi , βi , γi , andσi , and an additional subscript,i,
which accounts for changes from event to event. If values of
αi , βi , γi andσi are 0, 1, 1, and 1, then the resulting equation
looks like Eq. (7). However, values of these parameters are
not specified a priori in the equation. Equation (8b) is also a
general expression of Eq. (7) but only when it is modified to a
relation between a level-2 subregion and a level-1 subregion.
Later, in Sect.4.6, we make an assumption that the distribu-
tions of error terms for Eqs. (8a) and (8b) are the same, which
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is essentially a scale invariance assumption. This assumption
is found in random cascades whereWn,j is the same dis-
tribution for all n. Thus, taken together, Eqs. (8a) and (8b)
are analogous to a “two-level” discrete cascade formulation
where intermediate scales and scales finer than the hillslope
scale are not explored. By including the event subscripti,
Eqs. (8a) and (8b) comprise a space–time model rather than
simply a spatial model.Over and Gupta(1996) considered a
similar space–time extension of the random cascade model
for space–time rainfall.

We next examine the physical implications of Eq. (8a)
and then show how it explains the observations presented
in Sect.4.1. Equation (8a) characterizes runoff/loss ratios at
the unnested basin scale. It captures two features that should
be upheld, as described in Sect.4.2. Namely, the equation
shows that ln(Yi,J ) depends on the runoff/loss ratio at the
next larger spatial scale,Yi , and only at this scale, a Markov-
like property. It also depends on unnested basin drainage
area,aJ /G[aJ ]. In the equation, the distributions ofaJ and
Ui,J do not change between events, andUi,J accounts for
both spatial variability and “fixed event” temporal variabil-
ity. The equation represents spatial variability through dif-
ferences in drainage area, viaaJ , and through differences
in physical conditions that affect water loss and runoff, via
Ui,J . For this paper, we interpretUi,J to represent the influ-
ence of antecedent soil moisture conditions for eventi. Tem-
poral variability, as expressed byUi,J , is represented as an
ensemble where realizations ofUi,J change under repeated
occurrences of the same event.

Equation (8a) helps to explain the observations presented
in Fig. 3 and discussed in Sect.4.1. Taking the expectation
of Eq. (8a), conditioned onYi = yi , gives

E[ln(Yi,J )|Yi = yi] = αi +βi ln(yi)

+ γi (E[ln(aJ )] − ln(G[aJ ])) .

Because ln(G[X])= E[ln(X)] for any random variableX,
the expression above can be rewritten as

ln(Gi(yi))= αi +βi ln(yi) ; Gi(yi)=G[Yi,J |Yi = yi].

Here, E[ln(aJ )] − ln(G[aJ ])= 0 because ln(G[aJ ])=

E[ln(aJ )], andGi(yi) corresponds to the sample estimates
of the geometric mean used to produce the CDFs in Fig.3.
Taking the exponential of both(ln(Yi,J )|Yi = yi), from
Eq. (8a), and ln(Gi(yi)), from the expression above, leads to
a rescaled runoff/loss ratio given as

Yi,J |Yi = yi

Gi(yi)
=

(
aJ

G[aJ ]

)γi
U
σi
i,J ,

or(
Yi,J |Yi = yi

Gi(yi)

)1/σi
=

(
aJ

G[aJ ]

)γi/σi
Ui,J . (9)

Equation (9), in conjunction with our discussion in
Sect.4.1, indicates that distributions of ln(ψi,j/gi) can be

normal for each event but dissimilar between events be-
cause of event-to-event changes inγi and/orσi ; Ui,j cannot
be a source of dissimilarity because it is iid among events.
In Sect.4.1, we showed that CDFs ofψi,j collapse to a
common distribution when rescaling accounts for event-to-
event changes in bothGi(yi) and σi (Fig. 3c). Based on

Eq. (9), this result occurs when
(

aJ
G[aJ ]

)γi/σi
is constant

among events becauseaJ
G[aJ ]

= 1,γi = 0, orγi/σi > 0 is con-
stant among events. In any case, only changes inGi(yi) and
σi are important for relating CDFs ofψi,j to a common dis-
tribution.

4.5 Model equations for fixed unnested basins
and hillslopes

Our objective is to develop an expression for the runoff/loss
ratio at the hillslope scale that provides a method of simulat-
ing event-based total runoff volume for each hillslope drain-
ing an unnested basin. To meet this objective, we first need to
describe ln(Yi,J ) for a given unnested basinj and ln(Yi,j,K)
for a given hillslopek within unnested basinj . It is being as-
sumed thatJ andK are independent of all random variables
Y . Also, subscriptj for Y means that we are conditioning
on unnested basinj , and a subscriptk for Y means that we
are conditioning on hillslopek. Consequently,(Yi,j |Yi = yi)

is equivalent to(Yi,J |Yi = yi,J = j), (Yi,j,k|Yi,j = yi,j ) is
equivalent to(Yi,j,K |Yi,j = yi,j ,K = k), and Eqs. (8a) and
(8b) provide the description we need when expressed con-
ditionally as(ln(Yi,j )|Yi = yi) and(ln(Yi,j,k)|Yi,j = yi,j ). In
these equations, unnested basin and hillslope drainage areas,
respectively, are fixed. Because of this feature, we denote

a′

j = aj/G[aJ ]

a′

j,k = aj,k/G[aj,K ] (10)

as the area terms in the equations.
The expression obtained from Eq. (8a) for (ln(Yi,j )|Yi =

yi) describes the variability in runoff/loss ratios for a given
unnested basinj and eventi. The area term,a′

j , expresses
the relative contribution that the runoff/loss ratio for the
unnested basin makes to the basin-wide value ln(yi). If a′

j =

1, then(ln(Yi,j )|Yi = yi) is independent of area. This situa-
tion can occur if all unnested basins have the same area, re-
gardless of size. However, gauged unnested basins rarely, if
ever, have the same unnested areas, including GCEW. When
the unnested basin is given asj ,Ui,J becomesUi,j . The dis-
tribution ofUi,j does not change between events, and, for a
given eventi, Ui,j accounts for both spatial variability and
fixed event temporal variability. The spatial variability de-
scribed byUi,j represents an ensemble where realizations of
Ui,j change under repeated copies of unnested basinj for the
same event. Differences in antecedent soil moisture between
copies are postulated to represent this change.

Similarly, the expression obtained from Eq. (8b) for
(ln(Yi,j,k)|Yi,j = yi,j ) describes variability for a given
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hillslopek in unnested basinj and for eventi. Its area term,
a′

j,k, represents a relative contribution to ln(yi,j ). Given a
hillslope,Hi,j,K becomesHi,j,k. The distribution ofHi,j,k
does not change between events, butHi,j,k accounts for both
spatial variability and fixed event temporal variability.

The rescaled runoff/loss ratio for a fixed basin is compara-
ble to but significantly different from Eq. (9). From Eq. (8a),
the expected runoff/loss ratio for a fixed basin is

E[ln(Yi,j )|Yi = yi] = αi +βi ln(yi)+ γi ln(a
′

j ),

which can be written as

ln(G̃i(yi,j))= αi +βi ln(yi)+ γi ln(a
′

j );

G̃i(yi,j)=G[Yi,j |Yi = yi],

because ln(G[X])= E[ln(X)] for any random variableX, as
mentioned previously. SincẽGi(yi,j) is given for a basin
j , it does not correspond to the sample estimates of the
geometric mean used to produce the CDFs in Fig.3. Tak-
ing the exponential of(ln(Yi,j )|Yi = yi), from Eq. (8a), and
ln(G̃i(yi,j)) leads to a rescaled runoff/loss ratio for a fixed
basin given as

Yi,j |Yi = yi

G̃i(yi,j)
= U

σi
i,j

or(
Yi,j |Yi = yi

G̃i(yi,j)

)1/σi
= Ui,j . (11)

Unlike Eq. (9), Eq. (11) shows that the distribution of
(Yi,j |Yi = yi), after a rescaling that includesσi , equalsUi,j
and thus is iid among events.

4.6 Assumptions for assigning water loss to hillslopes

To reach our final objective, we need to relateαi,j , βi,j , and
γi,j in Eq. (8b) to αi , βi , andγi in Eq. (8a) because hills-
lope observations needed to estimateαi,j , βi,j , andγi,j are
unavailable at present and are not expected to be available in
the foreseeable future. Therefore, we let

ᾱi = 1/n
n∑
j=1

αi,j vα,i = 1/n
n∑
j=1

(αi,j − ᾱi)
2, (12)

β̄i = 1/n
n∑
j=1

βi,j vβ,i = 1/n
n∑
j=1

(βi,j − β̄i)
2,

γ̄i = 1/n
n∑
j=1

γi,j vγ,i = 1/n
n∑
j=1

(γi,j − γ̄i)
2,

whereᾱi is the average ofαi,j over j for eventi, andvα,i
is the variance ofαi,j over j for eventi. Likewise, β̄i and
γ̄i are averages andvβ,i andvγ,i are variances. We assume
that, to a first order,vα,i = vβ,i = vγ,i = 0, which implies

that ᾱi = αi,j , β̄i = βi,j , andγ̄i = γi,j . We also assume that
ᾱi = αi , β̄i = βi , and γ̄i = γi , which means thatαi,j = αi ,
βi,j = βi , andγi,j = γi . We later assess the impact of these
assumptions by examining model results in the context of
water balance. Substituting these last three relationships into
Eq. (8b), conditioning onYi,j = yi,j andK = k, and expo-
nentiating the result gives

(Yi,j,k|Yi,j = yi,j )= exp(αi)y
βi
i,ja

′

j,k
γiH

σi,j
i,j,k.

In this expression, the right-hand side still depends on the
hillslope scale, throughH

σi,j
i,j,k. To remove this dependence,

we assume that the random variablesH
σi,j
i,j,k, k = 1,2, . . . ,mj

are iid and

U
σi
i,j

d
=H

σi,j
i,j,k. (13)

This equation holds for eachk and gives

(Yi,j,k|Yi,j = yi,j )
d
= exp(αi)y

βi
i,ja

′

j,k
γiU

σi
i,j ;

k = 1,2, . . . ,mj .

Now, (Yi,j,k|Yi,j = yi,j ) is a function of variables at the
unnested basin and basin scales where observations exist.

The distributions of(Yi,j |Yi = yi) and(Yi,j,k|Yi,j = yi,j )

must be specified to assign water loss to hillslopes. We as-
sume that

(Yi,j |Yi = yi)
d
= LN(µi,j ,σ

2
i ) (14)

(Yi,j,k|Yi,j = yi,j )
d
= LN(µi,j,k,σ

2
i );

µi,j,k = ln(exp(αi)y
βi
i,ja

′

j,k
γi ), (15)

where LN refers to a lognormal random variable and the dis-
tribution parameters in parentheses denote the mean and vari-
ance of the associated normal distribution. Here, normal dis-
tribution variances are constant in space (among hillslopes
and unnested basins). The assumption that distributions are
lognormal requires that total rainfall exceeds total loss for
a rain event; i.e.(Yi,j |Yi = yi) > 0, (Yi,j,k|Yi,j = yi,j ) > 0,
and runoff occurs. It also requires that total rainfall is posi-
tive. Under this assumption, we have

Ui,j
d
=Hi,j,k

d
= LN(0,1) (16)

(Yi,j,k|Yi,j = yi,j )
d
= exp(αi)y

βi
i,ja

′

j,k
γiU

σi
i,j ,

indicating that(Yi,j,k|Yi,j = yi,j ) is lognormally distributed
for a given event and unnested basin. The assumption also
means thatσi,j = σi , whereσi =

√
Var(ln(Yi,j )|Yi = yi) and

σi,j =
√

Var(ln(Yi,j,k)|Yi,j = yi,j ). Finally, the assumption
means that Eq. (8a), givenJ = j , and Eq. (8b), givenK = k,
take the form of a linear regression model. Notice that the
equality inσ ’s follows from Eq. (13). It is a first-order ap-
proximation and represents the simplest case of the expres-
sion,σi,j = cσi . Given the difference in scale betweenσi and
σi,j , it is possible thatc > 1.
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Table 3.Results of thek-sample Kolmogorov–Smirnov (KS),k-sampleZc, and Lilliefors tests for(ψi,j /gi)
1/σ̂i .

Test H0 – null hypothesis Do not rejectH0 if . . . Case: result

k-sample KS Distributions are similar c < 0.462 I: c = 0.091
II: c = 0.083
III: c = 0.154

k-sampleZC Distributions are similar p > 0.05 I: p = 1.0
II: p = 1.0
III: p = 1.0

Lilliefors Distributions of the logarithm are normal l = 0 I: l = 0 for 90 events of 112
II: l = 0 for 60 events of 75
III: l = 0 for 17 events of 20

The observations given in Fig.3b, which show that rescal-
ing ψi,j as(ψi,j/gi)1/σ̂i leads to a collapse in distributions,
supports the assumption thatψi,j is lognormally distributed.
The physical basis of this feature is linked to the hypothesis
explained in Sect.3.5, where it is stated that the spatial distri-
bution of saturated hydraulic conductivity, which influences
soil moisture and thus water loss, is commonly found to be
lognormal. As mentioned in Sect.4.4, we interpretUi,J to
represent antecedent soil moisture conditions for eventi. A
similar interpretation is made forUi,j andHi,j,k where fixed
event spatial variability arises through spatial changes in soil
moisture.

If there is a need to generate total runoff at the hillslope
scale for an observed rainfall event, then we need to make
an assumption about the statistical connection between the
runoff/loss ratio and total rainfall. We shall assume that the
runoff/loss ratio and rainfall are statistically independent at
both the unnested basin and hillslope scales; that is, the ran-
dom variablesYi,j andYi,j,k are all independent of the ran-
dom variablesRi,j andRi,j,k. Thus, the model in Eq. (16)
for the runoff/loss ratio will remain the same if total rainfall
at both scales is known and fixed.

Equation (16), together with the independence assumption
in the previous paragraph, is the model that we set out to
develop as it provides a way of assigning total water loss
to hillslopes in three steps. First, we obtain values foryi,j
from observations ofψi,j at the unnested basin scale. Sec-
ond, based on Eq. (8a) when conditioned onJ = j , we ob-
tain estimates ofαi , βi , γi , andσi via linear regression using
observations ofψi andψi,j and drainage areas of unnested
basins. Results from these two steps allow us to use Eq. (16)
to generate realizationsyi,j,k for each hillslopek. Third, we
determine values of total lossli,j,k = ri,j,k/(1+ yi,j,k) given
that we have a realizationyi,j,k and an observation-based es-
timate ofri,j,k. An example is given below in Sect.5.3.

4.7 Connection to water balance

We examined how the runoff–loss model is connected to wa-
ter balance under the following simplified conditions. For
eventi and basinj , let hillslope areaaj,k be the same for

all k, which means thata′

j,k = 1 in Eq. (16). Water balance
for unequal hillslope areas needs a more complicated formu-
lation and is beyond the scope of this paper. Let the total rain-
fall for eventi be known at the unnested basin and hillslope
scales; that is,ri,j andri,j,k are fixed and nonrandom. Also,
let eventi produce runoff, meaning that total rainfall over
basinj exceeds total water loss orri,j > li,J andyi,J > 0.

Under the conditions above, water balance for an event
i requires that (1) observed and modeled total runoff from
basin j are equal and that (2) modeled totals of rainfall,
runoff, and water loss in basinj equal the summation of
corresponding hillslope totals, over allk hillslopes in basin
j . Requirement 1 must be satisfied on average because wa-
ter loss is treated probabilistically. This situation is similar to
mean mass conservation, which is used to construct canon-
ical ensembles in statistical mechanics and is central to the
theory of random cascades, as illustrated in Sect.4.2.

Requirement 2 is satisfied if

ri,j = 1/mj

mj∑
k=1

ri,j,k, (17a)

li,j = 1/mj

mj∑
k=1

E[Li,j,k|Li,j = li,j ], (17b)

where (Li,j,k|Li,j = li,j )= (Li,j,K |Li,j = li,j ,K = k).
These equations represent conservation of mass with respect
to total rainfall depth and total depth of water loss. The
condition under which Eq. (17b) holds is seen by noting that
the definition ofYi,j,K givesLi,j,K = Ri,j,K/(Yi,j,K + 1).
When rainfallri,j,k is fixed for allk, as shown in Eq. (17a),
we haveLi,j,k = ri,j,k/(Yi,j,k + 1) in Eq. (17b). Also, the
definition ofYi,j givesLi,j = Ri,j/(Yi,j + 1). When rainfall
ri,j is fixed for all j , conditioning onLi,j = li,j , as shown
in Eq. (17b), is equivalent to conditioning onYi,j = yi,j ;
this feature follows becauseLi,j = Ri,j/(Yi,j + 1) becomes
li,j = ri,j/(yi,j + 1). Thus, with rainfall known at the
unnested basin and hillslope scales, Eq. (17b) yields
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li,j = 1/mj

mj∑
k=1

E

[
ri,j,k

Yi,j,k + 1
|Yi,j = yi,j

]
,

= 1/mj

mj∑
k=1

E

[
ri,j,k

exp(αi)y
βi
i,jLN(0,σ 2

i )+ 1

]
,

= ri,jE

[
1

exp(αi)y
βi
i,jLN(0,σ 2

i )+ 1

]
.

Conservation of mass with respect to water loss holds
when the expectation in the last equality equals 1/(yi,j + 1).
This expectation takes the form ofE[1/(X+1)] with X log-
normal, for which there is no analytical expression. In the
limit asσ 2

i → 0 the expectation is given by 1/(exp(αi)y
βi
i,j +

1). Further, for smallσi , an asymptotic approximation in-
volving powers ofσi can be made using standard expan-
sion techniques for integrals, but these results are beyond
the scope of this paper. To honor conservation of mass in
the small variance case, it is necessary forαi → 0 andβi →

1 as σ 2
i → 0 so that, in the limit, the expectation equals

1/(yi,j + 1). Observations presented in Sect.5.1 show that
αi andβi are near these limits.

Conservation of mass with respect to runoff, a component
of Requirement 2, follows from Eqs. (17a) and (17b). To see
the logic of this connection, consider that randomness in hill-
slope water-loss depth must lead to randomness in hillslope
and basin runoff. LetQi,j = (Qi,J |J = j) be a random vari-
able for the total volume of runoff for eventi and basinj . An
observed value of runoff, a realization ofQi,j , is given as

qi,j =
(
ri,j − li,j

)
aj ; ri,j > li,j . (18)

Substituting Eqs. (17a) and (17b) into Eq. (18) gives

qi,j =

(
1/mj

mj∑
k=1

ri,j,k − 1/mj

mj∑
k=1

E[Li,j,k|Li,j = li,j ]

)
aj, (19)

=

mj∑
k=1

(ri,j,k −E[Li,j,k|Li,j = li,j ])aj,k,

=

mj∑
k=1

E[Qi,j,k|Li,j = li,j ].

This equation shows that the observed total basin runoff
equals the summation of expected total runoff from hill-
slopes, which supports Requirement 2, i.e. mean mass con-
servation in terms of runoff. If Eqs. (17a) and (17b) hold true,
then so does Eq. (19) and the runoff–loss model preserves
water balance.

5 Analysis and results

5.1 Testing model relationships and assumptions

5.1.1 Equation (9): distributions of rescaled runoff/loss
ratios at the unnested basin scale for random
unnested basins

Figure 4 shows the empirical CDFs of runoff/loss ra-
tios at the unnested basin scale,ψi,j , and the CDFs of
rescaled ratios given as(ψi,j/gi)1/σ̂i , wheregi andσ̂i denote
observation-based estimates ofGi(yi) andσi in Eq. (9). The
figure presents results for Cases I, II, and III. As explained in
Sect.3.4, the number of events and unnested basins for these
cases are, respectively, (112,11), (75,12), and (20,13). The
first case consists of the same events examined in Sect.4.1.
Results in the figure suggest, qualitatively, that rescaled ra-
tios come from the same probability distribution.

Table 3 shows the results of comparing CDFs of
rescaled ratios using thek-sample Kolmogorov–Smirnov test
(Conover, 1999) and thek-sampleZC test (Zhang and Wu,
2007), which is shown to be more powerful. The first test re-
quires that the number of points in each CDF is the same in
the group of CDFs to be compared. Plots in Fig.4 meet this
requirement. Results indicate that rescaled distributions are
statistically identical among all events.

Table 3 also shows the results of applying a Lilliefors
test to the distribution of ln((ψi,j/gi)1/σ̂i ), the logarithm of
rescaled runoff/loss ratios, for each event. The Lilliefors test
allows for both the mean and variance of ln(ψi,j ) to change
from event to event, and thus it gives identical results when
applied to(ψi,j/gi)1/σ̂i , which is both mean- and variance-
corrected. Results in the table indicate whether a correction
by the mean and variance yields identical distributions. For
Case I events, they show that the hypothesis of normality is
rejected at the 5 % level for 22 of the 112 CDFs. Some or all
of the rejections could be erroneous, a type I error. Apply-
ing the same tests using a Bonferroni correction to account
for the large number of individual tests (Hsu, 1996) indi-
cates that all CDFs are normal except one. Similar results
are found for Cases II and III.

Figure 5 shows quantile–quantile (QQ) plots (Wilk and
Gnanadesikan, 1968) for ln((ψi,j/gi)1/σ̂i ), representing the
logarithm of the rescaled ratios in Fig.4. For each case, we
grouped the ratios from all events to make a plot. The lines
in the QQ plots for Cases I and II are relatively straight, sug-
gesting normality or approximate normality among rescaled
ratios; this linearity disappears ifσi is not used to rescale
observations. Results for Case III deviate from normality.
Based on Eq. (9) in Sect.4.4, the deviations could mean

that (γi/σi) ln
(

aJ
G[aJ ]

)
varies among some or all events. Al-

ternatively,(γi/σi) ln
(

aJ
G[aJ ]

)
is constant among all events,

but ln(Ui,J ) is not iid among all events, as assumed. The im-
portant issue of lognormality is analyzed later in Sect.5.1.3.
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Fig. 4. Left: Semi-log plot of empirical CDFs of runoff-loss ratiosat the unnested basin scale,ψi,j , for Cases

I to III. Each distribution represents a rainfall-runoff event. Right: Semi-log plot of corresponding CDFs of

rescaled runoff-loss ratios,(ψi,j/gi)
1/σ̂i .
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Fig. 4. Left: Semi-log plot of empirical CDFs of runoff/loss ratios at the unnested basin scale,ψi,j , for Cases I to III. Each distribution

represents a rainfall–runoff event. Right: Semi-log plot of corresponding CDFs of rescaled runoff/loss ratios,(ψi,j /gi)
1/σ̂i .

5.1.2 Equation (8): relationship between runoff/loss
ratios at the unnested basin and basin scales for
fixed unnested basins

Equation (8) provides an expression for ln(Yi,j ) for eventi
and unnested basinj , which takes the form of a multiple
weighted linear regression model where there are two ex-
planatory variables, ln(Yi) and ln(a′

j ), and a weight given

by 1/σ 2
i . This model assumes that, on average, ln(Yi,j ) de-

pends linearly on ln(Yi) and ln(a′

j ) for an event, but also al-
lows for the possibility that values of the coefficientsαi , βi ,

andγi change among events. The model is not identifiable
if all three coefficientsαi , βi , andγi are allowed to change
with event; the problem that arises is similar to trying to fit
a straight line to data where there is only one value for the
explanatory variable. Thus, two of the three parameters must
be fixed (no variation from event to event). In our analysis,
we fixed the value ofβi = β andγi = γ and treated the inter-
cept,αi , as a random variable (random from event to event).
The analysis also considered the influence that changes inσi
between events can have on results. We used the nlme pack-
age in R to obtain results (Gentleman et al., 2013).
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Fig. 5. QQ plot of ln((ψi,j/gi)
1/σ̂i), the rescaled runoff-loss ratios in Figure 4 after a log-transformation.

34

Fig. 5.QQ plot of ln((ψi,j /gi)
1/σ̂i ), the rescaled runoff/loss ratios

in Fig. 4 after a log-transformation.

Results from the statistical analysis indicate that there is
significant variability in the value ofαi between events for
Cases I and II but not Case III. For Case I,β̂ = 1.027,
γ̂ = −0.364, and the mean ofαi is estimated to be 0.316. The
variance ofαi among events is estimated to be 0.009 and, be-
cause this value exceeds zero,αi changes between events as
assumed in our model. For Case II,β̂ = 1.104,γ̂ = −0.342,
and the mean ofαi is estimated to be 0.449. The variance
of αi among events is estimated to be 0.002, and thusαi
changes between events. By contrast, results for the events
in Case III indicate that the variance ofαi is not significantly
greater than zero, so that all theαi are equal to a single value
α. For Case III,β̂ = 1.034,γ̂ = −0.415, andα̂ = 0.185.

The left-hand column of Fig.6 shows that observations of
ln(ψi,j ) and ln(ψi) for Cases I to III are, on average, linearly
related across events. The lines presented in the plots illus-
trate the influence ofαi on this relationship. To plot the lines,
we used values ofαi andβi = β obtained from our statistical
analysis but assumedγi ln(a′

j )= 0 so that, based on Eq. (8),
ln(ψi,j ) depends only on ln(ψi) and a line can be plotted.
The bottom line in a plot represents the minimum value of
αi among events, while the top line represents the maximum
value ofαi .

The left-hand column of Fig.7 presents the same results
shown in Fig.6 but using only events that pass the Lilliefors
test. The reduced number of events can be found in Table3.
Comparing the left-hand columns of Figs.6 and 7 reveals
that many of the events removed include “extreme” values of
ψi,j . This result suggests that events where the distribution of
ln(Ui,j ) is not Normal, according to the Lilliefors test, tend to
have extreme values. Non-normality could arise if there are
correlations among observations during these events that are
unaccounted for in the model, if ln(Ui,j ) is not Normal due
to some unique physical conditions in the rainfall–runoff pro-
cess, or if the model does not well represent extreme events.
Alternatively, the extreme values may simply represent mea-
surement errors.

We have applied Eq. (8) as a linear mixed-effects statis-
tical model where randomness is treated separately for each
event. A measure of goodness of fit, likeR2, can be diffi-
cult to interpret for such a model (Nakagawa and Schielzeth,
2013) and is not provided in Figs.6 and 7. However, if a
simple linear model is applied across all events for each of
the cases in the two figures, thenR2 values are around 0.6.
A comparable and possibly better goodness of fit can be ex-
pected for a linear mixed-effects model. One indication that
this situation holds is that the Akaike information criterion
(Akaike, 1974) is slightly better when treating events indi-
vidually (linear mixed effects) instead of collectively.
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Fig. 6. Left: Plot of ln(ψi,j) versusln(ψi) for Cases I to III. To plot the lines, we used values ofαi (intercept)

andβi = β (slope) obtained from our statistical analysis, but assumed γi ln(a′j)= 0; see equation (8). The bot-

tom line in a plot represents the minimum value ofαi among events while the top line represents the maximum

value ofαi. Right: QQ plot of residuals obtained from statistical analysis results.
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Fig. 6. Left: Plot of ln(ψi,j ) versus ln(ψi) for Cases I to III. To plot the lines, we used values ofαi (intercept) andβi = β (slope) obtained
from our statistical analysis, but assumedγi ln(a

′
j
)= 0; see Eq. (8). The bottom line in a plot represents the minimum value ofαi among

events, while the top line represents the maximum value ofαi . Right: QQ plot of residuals obtained from statistical analysis results.

5.1.3 Equation (14): lognormality of runoff /loss ratios
at the unnested basin scale for fixed unnested
basins

We tested the assumption given by Eq. (14) that (Yi,j |Yi =

yi) is equal in distribution to a lognormal. For this test, we
compared the relationship between quantiles of a normal dis-
tribution and those of residuals from the statistical analysis
results described in Sect.5.1.2. If Eq. (14) is correct, then
the residuals are normally distributed as ln(U)−E[ln(U)].
The right-hand column of Fig.7 presents this comparison in
a QQ plot for Cases I to III and indicates that the distribu-
tion of residuals is close to normality. This result supports

the lognormal assumption given by Eq. (14). By compari-
son, the QQ plots in Figs.5 and6 are, overall, further from
normality. Differences in QQ plots between the three figures
underscore the importance of both the area term in the model
and Lilliefors test results.

A QQ plot provides a qualitative indication of normality,
but the correlation coefficient of such a plot could be used to
quantify the degree to which normality is achieved. Accord-
ingly, we could compare the correlation coefficients of the
QQ plots in Fig. 6 against those in Fig. 7 to quantify changes
between the figures. This kind of analysis, however, is be-
yond the scope of our paper.
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Fig. 7. Left: Plot of ln(ψi,j) versusln(ψi) for Cases I to III using only those events that passed the Lilliefors

test. To plot the lines, we used values ofαi (intercept) andβi = β (slope) obtained from our statistical analysis,

but assumedγi ln(a′j) = 0. The bottom line in a plot represents the minimum value ofαi among events while

the top line represents the maximum value ofαi. Right: QQ plot of residuals obtained from statistical analysis

results. See Figure 6 for comparison.
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Fig. 7. Left: Plot of ln(ψi,j ) versus ln(ψi) for Cases I to III using only those events that passed the Lilliefors test. To plot the lines, we
used values ofαi (intercept) andβi = β (slope) obtained from our statistical analysis, but assumedγi ln(a

′
j
)= 0. The bottom line in a plot

represents the minimum value ofαi among events, while the top line represents the maximum value ofαi . Right: QQ plot of residuals
obtained from statistical analysis results. See Fig.6 for comparison.

5.1.4 Statistical independence between runoff/loss
ratios and rainfall depths at the unnested basin
scale

We tested the assumption given after Eq. (16) that the runoff
loss ratio is statistically independent of total rainfall. Figure8
shows test results for Case I events that passed the Lilliefors
test. The first plot in the figure indicates that observed rain-
fall at the unnested basin scale,ri,j , is largely independent of
the runoff/loss ratio at the basin scale,ψi . The slight positive
trend in the plot is not observed for Case II and III events. The
second plot comparesri,j to residuals from the fitted model

described in Sect.5.1.2and derived from the data presented
in Fig. 7. The residuals represent the unexplained variability
in values ofyi,j after accounting for the influence ofyi and
a′

j . Residuals appear to be independent ofri,j , and this same
result is found for the Case II and III events. Thus, observa-
tions support our assumption.

5.2 Testing water balance conditions of data

The water balance formulation in Sect.4.7 depends on two
mass conservation conditions, Eqs. (17a) and (17b), that re-
late the unnested basin and hillslope scales. For simplicity,
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Fig. 8. Plot A shows the relationship between the logarithm of rainfall depth,ln(ri,j), andln(ψi) for Case I

events. Plot B shows the relationship betweenln(ri,j) and regression residuals from the first plot (Case I) of

Figure 6.
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Fig. 8.Plot A shows the relationship between the logarithm of rain-
fall depth, ln(ri,j ), and ln(ψi) for Case I events. Plot B shows the
relationship between ln(ri,j ) and regression residuals from the firt
plot (Case I) of Fig.6.

we formulated both equations under the condition that hill-
slopes have the same area, but they hold without this con-
straint when rainfall and water loss are weighted by area.
Neither equation can be tested directly because rainfall ob-
servations and water-loss observations are unavailable at
the hillslope scale. However, similar conservation conditions
must hold that relate the basin and unnested basin scales.

We examined whether data at the basin and unnested
basins scales honor mass conservation. Plot A in Fig.9
shows that total rainfall at the basin scale,ri , equals to-
tal area-weighted rainfall at the unnested basin scale,r̄i,j =∑n
j=1 ri,jaj/a. Similarly, Plot B in the figure shows that to-

tal water loss at the basin scale,li , equals total area-weighted
loss at the unnested basin scale,l̄i,j =

∑n
j=1 li,jaj/a. Thus,

our data for total event rainfall and water loss preserve mass
conservation for Case III events. Cases I and II involve 11
and 12 unnested basins, respectively, and their areas do not
cover GCEW. In these cases, total water loss at the basin
scale should exceed or equal the total area-weighted loss at
the unnested-basin scale. Observations indicate that this con-
dition holds.

Fig. 9. Relationship between̄ri,j andri (Plot A) andl̄i,j andli (Plot B) for Case III events. The 1:1 relationship

in both plots means that mass is conserved.
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Fig. 9.Relationship between̄ri,j andri (Plot A) andl̄i,j andli (Plot
B) for Case III events. The 1: 1 relationship in both plots means that
mass is conserved.

5.3 Model application

We applied the runoff–loss model given by Eq. (16) to event
i = 2, a Case III rainfall–runoff event that occurred on 17
March 1982. We chose this event because the magnitude of
its runoff/loss ratios are close to the median of the range of
those found for all Case I to III events. For this event, we
let α2 = 0.185, β2 = 1.034, γ2 = −0.415, andσ 2

2 = 0.768.
We obtained these values from the statistical analysis results
above. They are not event-specific values insofar that results
for Case III show that parameter values do not differ signifi-
cantly between events.

We first used Eq. (16) to produce a map of expected hills-
lope loss for eventi = 2; see Fig.10. Three steps were taken
to make this map. We calculated the expected runoff/loss ra-
tio for each of the 544 hillslopes in GCEW. In the model, this
quantity isE[Y2,j,k|Y2,j = y2,j ], wherek = 1,2, . . . ,mj and∑13
j=1mj = 544. We then determined corresponding values

of hillslope loss,

l2,j,k = r2,j,k/(1+E[Y2,j,k|Y2,j = y2,j ]).
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Fig. 10. The expected water loss and runoff of each hillslope for event i= 2; i.e. E[L2,j,k] and r2,j,k −

E[L2,j,k].
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Fig. 10. The expected water loss and runoff of each hillslope for
eventi = 2; i.e.E[L2,j,k] andr2,j,k −E[L2,j,k].

Finally, we added a bias correction factor to each value of
l2,j,k so that the new value approximatesE[L2,j,k]. The dif-
ference betweenl2,j,k andE[L2,j,k] turns out to be rather
small, numerically. This last step is taken for mathematical
consistency and does not involve a model fitting procedure,
i.e. calibration.

We also produced model realizations of water loss and
runoff at both the hillslope and unnested basin scales. First,
we used Eq. (16) to produce 50 hillslope-loss sets, each rep-
resenting a possible spatial configuration of hillslope water
loss for eventi = 2. Then, for each hillslope-loss set, we
determined realizations of both water loss and runoff at the
unnested basin scale. For water loss, we added the hillslope-
loss values within each unnested basinj . For runoff, we
calculated the difference between total hillslope rainfall and
hillslope loss and then added the differences to obtain total
runoff for each unnested basin.

Figure11 compares water-loss and runoff model realiza-
tions to observations. Plot A in the figure shows that the
volume of rainfall exceeds the volume of model loss at the
unnested basin scale, for all realizations; i.e.r2,j > l2,j for
each basinj and each of the 50 hillslope-loss sets. Like-
wise, hillslope rainfall always exceeds or equals hillslope
loss. Plot B shows that total runoff values from the model
at the unnested basin scale are, on average, equal to those
obtained from observations. For a given unnested basin,
the variability in total runoff between realizations originates
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Fig. 11.Plot A shows the volume of observed rainfall and modeled
water loss for each unnested basin. Plot B shows the volume of
observed and modeled runoff for each unnested basin. On average,
model realizations of runoff equal observed runoff. Plot C shows
the log–log relationship between nested-basin runoff and upstream
drainage area for both observations and model realizations. Note
that runoff values do not include a baseflow component and thus
are not equivalent to streamflow.

from differences in the spatial configuration and magnitudes
of hillslope losses between realizations. Physically, such dif-
ferences in hillslope loss could represent differences in an-
tecedent (pre-rainfall) soil moisture. Plot C indicates that
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different realizations of total runoff for eventi = 2 produce
slightly different scaling relationships. In other words, hills-
lope loss conditions impact scaling.

6 Discussion

We have used space–time patterns inψi,j = q̃i,j/li,j =

ri,j/li,j − 1 to develop an approach for mapping water loss
and runoff at the hillslope scale. This metric is positive and
has no upper bound given thatq̃i,j > 0 and li,j > 0. Spa-
tial variability in q̃i,j/li,j for an event can be modeled by a
probability distribution with support on the set of all positive
numbers. Another metric could be used such as the ratio of
total event runoff to rainfall,̃qi,j/ri,j . However, this metric
has an upper bound of 1 given that total runoff cannot exceed
total rainfall orq̃i,j ≤ ri,j . Thus, by comparison, this metric
would need to be modeled by a probability distribution with
support restricted to values less than one. A transformation of
a commonly used distribution would be needed in this case.

Model results given in Sect.5.3are encouraging given the
different possible sources of error. Sources include model as-
sumptions, parameter estimation, and our representation of
space–time rainfall. In particular, in the model application
we have used linear regression to obtainαi for eventi = 2
and, by model construction, have assumed that this value is
the same for each unnested basinj . Using this value, model
results do conserve mass in a mean sense. It can be shown
that model results are sensitive to the value ofαi ; for in-
stance, ifα2 is arbitrarily set to 0.4 then model runoff no-
ticeably exceeds observed runoff. We also estimated rainfall
fields using a simple spatial-interpolation method applied to
rainfall data from 31 rain gauges. Other methods that better
estimate the high spatial variability of rainfall, when it exits,
could change model results. Nonetheless, there were no obvi-
ous problems in applying our model due to rainfall estimates,
possibly because rainfall tends to cover GCEW completely
during rainfall–runoff events.

We have developed the runoff–loss model in the context
of a lognormal distribution. The events we examined support
such a distribution, but it should also be possible to use an
empirical distribution, one which is not necessarily lognor-
mal. Empirical CDFs of rescaled runoff/loss ratios could be
used instead of assuming lognormality. An algorithm could
then be used to sample rescaled runoff/loss ratios from the
empirical distributions.

Observations presented in Sect.3.5were used to hypothe-
size that hillslope water loss should be inversely related to a
function of a lognormal distribution. Indeed, our model indi-
cates that the distribution of hillslope loss for an eventi in an
unnested basinj is given by

(Li,j,K |Yi,j = yi,j )
d
= ri,j,K/(exp(αi)y

βi
i,ja

′

j,K
γiLN(0,σ 2

i )+ 1), (20)

which shows this relationship. This result, obtained from
a top-down approach, supports our physical-statistical

hypothesis. We note that the events used to formulate our
hypothesis are the same as those used to develop our model,
yet the hypothesis is general and not specific to any events.
A more rigorous test of the hypothesis could be made using
other events and perhaps different types of data.

7 Conclusions

Understanding the physical basis of observed scaling in peak
flows in rainfall–runoff events (Ogden and Dawdy, 2003;
Gupta et al., 2010) requires that runoff generation be mod-
eled at a large number of hillslopes in a river basin. This
need is challenging to meet because direct measurements
of processes that produce runoff generation at hillslopes are
generally unavailable or spatially limited within a basin. In
addition, most rainfall–runoff models use point-scale equa-
tions and observations to represent runoff generation at larger
scales, e.g. the hillslope scale, yet the validity of this bottom-
up representation is unclear.

Based on basin- and point-scale observations in GCEW,
we have hypothesized that hillslope water loss is inversely re-
lated to a function of a lognormal random variable. We have
then developed a top-down model both to test this physical-
statistical hypothesis and to provide a method of generating
ensembles of runoff from a large number of hillslopes in a
basin. The basis of the model is an observed, previously un-
reported, rescaling property of runoff/loss ratios. The model
obeys water balance in a mean statistical sense, a mode of
mass conservation found both in the theory of random cas-
cades for modeling rainfall and turbulence and in statisti-
cal physics. The runoff–loss model supports our physical-
statistical hypothesis, as shown by Eq. (20).

We have given an example application of the model using a
rainfall–runoff event in GCEW, where we have observations
of streamflow at multiple locations and reasonable estimates
of spatial-mean rainfall depth at the basin, unnested basin,
and hillslope scales. Model-generated values of water loss
and runoff for hillslopes in GCEW were used to obtain cor-
responding model values for unnested basins. Comparison
of model-generated and observed values for unnested basins
support the model. Our results also reveal that hillslope wa-
ter losses for an event can impact the spatial scaling of event
runoff. Future tests of the model should use other rainfall–
runoff events that collectively span a broad range of rainfall
conditions. Unresolved issues have been identified in testing
the model against data, and these also require future research.

The runoff–loss model can be used to constrain simula-
tions of time-varying runoff at the hillslope scale where data
are unavailable. For example, suppose there is a need to sim-
ulate water loss in time at the hillslope scale during a known
rainfall–runoff event in GCEW. Such a simulation, involving
infiltration, ET, interception, and subsequent runoff, will pro-
vide values of total loss and total runoff for each hillslope in
the basin. These values will depend on the parameterization
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and description of processes in the simulation. The simu-
lation, its parameterization and formulation, could be con-
strained by matching simulated values of total loss and to-
tal runoff with those determined from the runoff–loss model.
Our approach has potential applications in a diverse range of
applied and theoretical research contexts where simulation
of runoff generation from a large number of hillslopes is re-
quired.
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