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Abstract. We hypothesize that total hillslope water loss for at the hillslope scale of resolution, is necessary to simulate
a rainfall-runoff event is inversely related to a function of streamflows for the purpose of understanding streamflow for-
a lognormal random variable, based on basin- and pointmation in a diverse range of applied and theoretical research
scale observations taken from the 21%@oodwin Creek  contexts. A few important examples are understanding the
Experimental Watershed (GCEW) in Mississippi, USA. A physical basis of observed scaling in floodsupta et al.
top-down approach is used to develop a new runoff gener201Q Sharma et al.2012, understanding the bio-physical
ation model both to test our physical-statistical hypothesisbasis of scaling in riparian vegetatiddynn et al, 2011), and
and to provide a method of generating ensembles of runofpredicting soil erosion and water quality from hillslopes dur-
from a large number of hillslopes in a basin. The model ising floods under conventional and organic agricultural prac-
based on the assumption that the probability distributions otices (Lowery et al, 2009. Direct measurements of processes
a runoff/loss ratio have a space—time rescaling property. Wethat produce runoff generation are generally unavailable or
test this assumption using streamflow and rainfall data fromspatially limited within the drainage area of a study basin.
GCEW. For over 100 rainfall-runoff events, we find that the Consequently, runoff generation must be represented using
spatial probability distributions of a rungfbss ratio can be an analytical or a numerical model, and estimates of model
rescaled to a new distribution that is common to all events.variables and parameters must be made using available data.
We interpret random within-event differences in rugitidfs ~ The problem requires a holistic and highly interdisciplinary
ratios in the model to arise from soil moisture spatial vari- approach\ilby, 1997. Two challenges stand out in devel-
ability. Observations of water loss during events in GCEW oping a runoff generation model: (1) representing physical
support this interpretation. Our model preserves water balprocesses that produce runoff from rainfall and (2) repre-
ance in a mean statistical sense and supports our hypothesisenting their variability in space and time throughout a basin.
As an example, we use the model to generate ensembles dthe following overarching question captures these issues and
runoff at a large number of hillslopes for a rainfall-runoff serves as the focus of our paper: how can space—time vari-
event in GCEW. able runoff generation in a river basin be modeled at a large
number of hillslopes when the finest scale of observed runoff
is substantially larger, and the scale of existing infiltration
equations and related measurements is much smaller?
1 Introduction We introduce a physical-statistical hypothesis, developed
from basin-scale and point-scale observations, that total hills-
Runoff generation is the net result of separating rainfall intojope water loss for a rainfall-runoff event is inversely related
a surface runoff component and a “loss” component that a function of a lognormal random variable. A top-down

includes infiltration, interception, and evapotranspiration. A statistical model is deve|oped to test our hypothesis and to
spatial representation of runoff generation in a river basin,
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provide a theoretical framework for distributing total volume  All rainfall-runoff models of engineering hydrology con-
of runoff in space among a large number of hillslopes in afront the challenge of representing runoff generation accu-
river basin for a rainfall-runoff event. This approach doesrately at multiple spatial scales, from a point to a plot to a
not require any calibration of model parameters. A key as-hillslope to a basin. The approaches taken to develop such
sumption of the model is that the “rungfbss ratio”, a di- models have led to two types of models: bottom-up (up-
mensionless metric that describes the relationship betweeward) and top-down (downward). Bottom-up models origi-
total event runoff and water loss, has a space-time rescahate from observations at a point or plot scdde\vas et al.
ing property. Because this metric depends solely on wate2004 Govindaraju et a]2006), while top-down models orig-
balance, the assumption imposes a constraint on the possibieate from observations at the basin scafée(nes 1983
nature and magnitude of processes that govern water loss arglvapalan et al.2003. Most approaches taken to model
runoff generation over time during an event. Yet, the modelrunoff generation as a space-time variable phenomenon
does not specify the processes themselves. We test the rescalithin a basin have been bottom-ufirkby (1988 has given
ing assumption against observations from the 22 Bonod-  an insightful review of the early literature devoted to bottom-
win Creek Experimental Watershed (GCEW) in Mississippi, up hillslope runoff processes and models.
USA, and find that observations support it. We also show
that, for a given rainfall event, the magnitudes of total basin2.1 Two limitations to bottom-up modeling of runoff
runoff from the model are, on the average, equal to those generation
obtained from observations. Our model can be used in both
applied and theoretical research contexts mentioned above.Bottom-up models of runoff generation in real river basins
The rest of the paper is organized as follows. In SBct. are developed from observations having a spatial resolution
we provide some background on the characteristics of andhat is much finer than that of the model. Result&utmann
relationships between bottom-up and top-down models. Inrand Small(2007); Gutmann and Sma(2010 indicate that
Sect. 3, we introduce the key variable in this study, the the uncertainty in representing runoff generation in determin-
runoff/loss ratioyr, and explain the data and data-processingistic land surface models can be substantial partly because
steps required to obtain estimates of it for GCEW and forthere is a great disparity, at least 8 orders of magnitude, be-
the unnested sub-basins within it. We also introduce ourtween the spatial scale of estimated soil hydraulic proper-
physical-statistical hypothesis in this section. In Sécive ties that are derived from soil texture class data (10€)cm
present a pattern in data among unnested basins indicagnd the spatial scale (resolution) of most land surface mod-
ing that rescaled probability distributions ¢fare the same els (= 1 k). A similar scale disparity is found in applica-
among events. We introduce and explain the model using thisions of many rainfall-runoff modelsv{eux, 2004). Also,
pattern as motivation. Finally, we test the model against databservations show that soil moisture and infiltration tend to
in Sect.5, discuss test results and show an application of ourdiffer between points as well (e.Bell et al, 1980 Achouri
model for a selected rainfall-runoff event. We show that theand Gifford 1984). For an area where the mean saturated
model supports our hypothesis in Seégtand summarize re- hydraulic conductivity K) is fixed, numerical studies indi-
sults in Sect7. cate that the time series of mean infiltration changes as the
spatial variability ofKs within the area increases (e$mith
and Hebbert1979. Arguably, calibration occurs with both
2 Background bottom-up and top-down models because of a disparity be-

. . . tween observational and model scales.

Spatial scale; in hydrology extenq upward from a point, o Bottom-up models of runoff generation also tend to be
:”plottﬁéo git?tl ILS(:Iglp; ei’stgbijfg'g%fgo%nf n%e;/r?g(:hgg:hceiptufounded on theoretical formulations of processes at the point
sc)al;les inpcrease in successioﬁ rouahly by a factor 3f e scale, while they are run at scales that are much larger. Thus,

X : : ghly oy the spatial resolution of the governing equations is much finer
define the third scale, hillslope, as the land surface area th% an that of the model. For example, point-scale equations for
drains into a single channel link of a river netwo&hfeve P L LR . )
1067; it can also be called a hillslope-link scalgntilla infiltration are derived from a combination of physical prin

and Gupta2005. The hillslope scale represents an impor- ciples under certain idealized conditions and laboratory ex-

tant transition in land surface form and process. At this Scaleperlmental results, e.g. Philip's infiltration equatidhlip,
) Lo - 71969. Yet, most bottom-up models assume that these equa-
surface runoff from a hillslope enters a channel link in a river .
. . . . tions extend to the plot scale or larger (Pgck et al.1977,
network. Above this scale, runoff occurs in multiple links )
- . L . Merz and Bardossy1998, and thus point-scale parameters
draining a sub-basin. The connectivity of links, as a channel o ) ” TR
: ! are replaced by “effective parameters”. The existing litera-
network, aggregates runoff and affects its space-time struc: o
T .. ture suggests that such an assumption is not well founded for
ture. Scale problems have been recognized in hydrology liter-

ature for quite some time\erman and McGuinnes$967 mflI:[,ratlon ur?der naturf_;ll_condmons. For example, an _effec-
Pilgrim, 1983. tive” hydraulic conductivity for the plot scale, or larger, is not

easy to determine because hydraulic conductivity can change
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between points within a plot by many orders of magnitude The basin-wide metric in this papef;,, depends on the
(e.g.Nielsen et al. 1973 Carvallo et al. 1976. Similarly, depth of total event runoff; =r — [, wherer is total event
analytical studies have shown that the functional form ofrainfall and!/ is total event water loss. For a given rainfall
point- and hillslope-scale infiltration equations are different event over a basin of area

(Maller and Sharmal981, Chen et al. 1994 Govindaraju 52

et al, 2009. Kavvas et al(2009 consider these issues in v = q 1. ,= /r(t)dt

formulating the WHEY model. ’ ’

~

s1

2.2 Top-down modeling of runoff generation

Top-down models have limitations that are similar but oppo-
site of those in bottom-up models, yet they also have advan- T ] ) . )
tages that can serve to complement bottom-up modeling reherez is time, (s, s2) is a time period of duration; —

sults. In particular, the spatial resolution of observations and1 Over which rainfall-runoff occurs such that post-event
governing equations on which a top-down model is based i$treamflow conditions return to pre-event condition) is
much coarser than the spatial resolution of the model itself. A2verage rainfall rate over the basin, ajd) is stream dis-
great advantage of a top-down model is that the model equatharge at the outlet of the basin derived solely from event
tions represent the collective effect of processes that producginfall. Water balance is the basis forand thus it does not
runoff generation. Thus, a top-down model groups togethef€duire an assumption about the processes that affect water
the influences of vegetation, soil type, surface topographyl0ss during a rainfall event. Rathérepresents the collective

etc., on runoff, while a bottom-up model must treat these in-€ffects that soil and vegetation (type and spatial distribution)
fluences separately. and rainfall (rate, duration, and spatial distribution) have on

There are a relatively few studies on runoff generation thatwater that contributes to runoff and water that does not. The

may be considered top-dow@lark and Hebbet1971) used first equality.in Eq. {) obeys mass conservation, and shows
the phi index model to illustrate that spatially variable in- thaty > 0 given that total water losscannot exceed total
filtration within a basin impacts basin-mean infiltration and rainfall 7. We refer toy as the runoffloss ratio because it

its relationship to basin-mean rainfall intensiargouri- ~ €quals the ratio of total runof§, = r —, to total loss.

Ellouzea and Bargaou2009 used the phi index to iden- ~ GCEW has a drainage area of 21.1%kand the rainfall-

tify the primary physical factors that influence runoff gen- runoff data for the basin come from 13 stream gauges and
eration among 22 basins; two important factors were found31 rain gaugesglackmarr and the Channel and Watershed
to be maximum rainfall intensity and percent of forest cover, Processes Research Udif93. For this study, we excluded
Lan-Anh and Willemg2011) developed a top-down rainfall- another stream gauge in the basin (gauge 10) because of
runoff model that requires calibration and treats runoff gener-Problems with its data. Figuteshows three maps of GCEW
ation as a spatial mean process. A top-down perspective h4bat represent basin, unnested basin, and h|IIsIope scales.
been taken in efforts to interpolate runoff in space, though notViap A shows only the drainage area of GCEW, defined here
in tandem with the components that lead to its generation (i.e@S the upstream area of stream gauge 1. Map B shows the
rainfall and water loss). For examplBauquet et al(2000 drainage areas of the 13 stream gauges, Whlgh can overlap
andGottschalk et al(2006 developed a stochastic interpo- (€-9- gauges 4 and 7). Map C shows the drainage areas of

lation method to distribute runoff in space, among pixels in a>44 hillslopes that compose GCEW. Rainfall and stream-
basin, using observed runoff in nested sub-basins. flow data were used to evaluatefor the entire GCEW area

(see Map A) and for each unnested sub-basin of GCEW (see
Map B). Values ofyr were determined for numerous events,
3 Estimating runoff /loss ratios for unnested basins and the methods for selecting events, estimating total event
in GCEW rainfall and streamflow, and determinimggare given below.

52
= l/af(r(t)a —G@))dr, (1)
51

Our idea is to define a basin-wide event-based runoff gen3.1 Selecting rainfall-runoff events from streamflow
eration metric for GCEW that can be estimated from obser- data

vations and then to distribute random values of the metric

down to the scale of hillslopes that cover GCEW. Our strat-We selected rainfall-runoff events having moderately simple
egy for digtributing the metric down to smaller scales is to rainfall and streamflow conditions. Consecutive 2-day peri—
honor water balance such that, on average, total event runoﬂds from 1981 to 1995 were identified where records indicate
for the basin equals the summation of total event runoff at thethat (1) rainfall occurred on the first day of the 2-day period at
smaller scales. Down-scaling models of precipitation captured!l rainfall stations, (2) streamflow was present in all gauged

this idea (e.gOver and Guptal996 Perica and Foufoula- Cchannels on both days, and (3) streamflow at gauge 1, the
Georgioy 1996 as explained later in Seet.2 outlet of GCEW, had a single distinct peak. These 2-day pe-

riods capture either an entire rainfall event or a subset of one
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Goodwin Creek Basin 3.2 Estimating rainfall and runoff for events
34281 )\ Basin Scale ' ' ' We generated rainfall fields using data from the 31 rain sta-
§ 34.27f tions in GCEW. Rain station data for the basin record accu-
5 mulated rainfall depth per event, and the time interval be-
& 3426] tween data points is not a constant. Therefore, we first pro-
3B 3405} duced a new 5-minute-interval time series of rainfall rates
2 for each station by expressing accumulated rainfall values
§ sa.241 in terms of rain rate and then linearly interpolating between
34231 data points. We set interpolated rain rates that were nega-
tive to zero. Then, for each event, we generated a time se-
ries of rainfall fields beginning at — d and ending at; + d,
whered is a 24 h time period. At each 5-minute time step,
34.28 we produced a rainfall field by triangulating rain rates at
a 227 the stations and then linearly interpolating between values;
% other more-involved approaches could be used that charac-
8 s426r terize rainfall fields better when rainfall spatial variability is
D gu2s) high. For each event in this study, there are 576 five-minute
E fields (2 days< 24 hday* x 12 five-minute fields h') that
§ 34.241 describe the space-time structure of rainfall, including 5-
3a03| minute periods where there is no rain. Each field covers
GCEW and can be partitioned into areas corresponding to
the sub-basins (unnested or otherwise) and hillslopes in the
basin.
3a28f Hillslo‘pe ccalo Using_stream gauge data, we egtimated the r_unoff gener-
2 sanrl : ISR ated during an evenmtfrom each basirn by subtracting base-
o UANSTAT R e G =qi () —q si<t<sp j=12..13 (2
a 3 3 “'\:ﬁfl‘:“‘:"’glé.ﬁ“""‘g (’Il,](t)—%,j(t) zi,j yS1=t=s2, J=1L14 ..., ( )
T %2 & "\‘"s S
2 A S where
5 ' g, =min(gi;(0); G —d) <t =1
34.23¢ . . . L L]
-89.92 -89.9 -89.88  -89.86 -89.84  -89.82 s1 = max) whereg; ;(t) = Zi,j s (ti—d)<t<g

Longitude Degrees .
52 = min(r) whereg; ; (1) =4, L <t. 3)

Fig. 1. Decomposition of GCEW into three spatial scales. Plot A
shows the basin scale & 2119 kn?) along with the location of ~ Here,qi,j(¢) represents observed streamflow "'l'?(/j repre-
stream gauge 1, the outlet of GCEW. Plot B shows the unnestedents antecedent streamflow. We inter@’i(at as baseflow

basin scaleq/n = 1.63 kn?) and the locations of 13 stream gauges. that is constant during an event and subtréét it feem(¢) to
Plot C shows the hillslope scale/mn = 0.04 kmz). obtain event runoff; ; (1) ’
129} .

. . .3.3 Determiningy
that lasts more than two days. In the latter case, it is possible

that rainfall contributing to the outlet peak occurs prior to the \we estimated runoffoss ratios at the basin scalg;, and
2-day period. Therefore, we used the time of peak streamflow,nnested basin scalg; ; wherej =1,2,...,13 denotes an

at gauge 1y, as a reference time for an evéniVe selected  ynnested basin. For the basin scale (EigVlap A), we used
only those 2-day periods where (4) rainfall did not occur atgq, (1) where the variables for runofbss ratio, total rainfall,

any of the stations from 48 to 24 h befafeand (5) rainfall  and streamflow are each given a subsciipiVe averaged

did occur at all rainfall stations during the 24 h period leading rainfall over the drainage area of stream gauge 1 at each time
up tor;. A computer algorithm found 148 events that meet step to obtain rainfall rate, denotegr), and used Eq.2
criteria (1) to (5), about 10 events per year. For each eventy estimate streamflow, denotéd). For the unnested basin

step (4) requires that antecedent conditions include a 24 Rcale (Fig1, Map B), we used a general form of Ed) given
period of zero rainfall. This step provides little constraint on g5

antecedent soil moisture, which can be near zero in late sum-
mer and near 1 in winteFurey and Gupt&2005.
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whereB; is a set of gauged sub-basins of bagilf B; is an ‘ ‘

empty set, theEkij gix(t)=0. (J)an Apr ol Oct Jan
For the unnested basin scale, we unnested data from ¢ Time Of Year

gauged basiry using data from a seB; of gauged sub-

basins. Tabld lists the 13 stream-gauged basins in GCEW

(j=1,2,...,13) and shows sub-basin gauges in Bet if

any, and drainage areas before and after unnesting. We ob

tained the unnested drainage area for bgsiy subtract-

ing the areas of the sub-basin gaugesBinfrom the area

of basinj; e.g. for basinj = 2, the unnested drainage area

is ap =17.92— (8.78+ 357+ 1.24+ 1.63) = 2.7kn?. We

used CUENCAS Mlantilla and Gupta2005 to determine

an unnested rainfall time series for eveérgnd basinj, de-

notedr; ;(¢), by averaging rainfall over the unnested area of Apr i ot Jan

J at each time step. Finally, we evaluated the unnested total Time Of Year

runoff for eventi and basinj as the difference between total

runoff exiting and total runoff entering the unnested area.

o
o

N w B
o o o
T ~——

=
o
T

Volumetric Soil Moisture (%)

[
I
=1

[

3.4 Selecting a final collection of events

0.81 1
For many of the 148 events, there are unnested basins fo 06l |
which water balance is unresolved. This feature arises in two
ways. For certain events, there is at least one unnested basi 04 1

for which the runoff exiting its area is less than the runoff en-
tering its area at upstream gauges. In B, this situation
meansg; ;(t) < Zkij gi x (), which suggests that water
loss occurs within the river channels of unnested basinis 0 20 40 6
most often found with basiy = 2, which coincidentally has Iy tmm]
the largest seB; of sub-basin gauges. Also, for some events,
there is an unnested basin for which the integrand in &q. ( Fig. 2. Plot A shows V\;ater-lo;sl (:egths atthe ?aSintsdﬁl'ﬁ?lf 112 t
is negative, meaning.; (1) > ri.j(aj+Y .. Gik (). This ~ €vents versus time of year. Plot B shows volumetric soil moisture
situation suggests that there is an unknown source of waSoent versus time of year frofurey and Guptg2009. Plot C :
ter that contributes to runoff exiting unnested bagihese ~ S/OWS empirical CDFs of water-loss depths at the unnested basin
. .__scale,; ;, for 112 events. Each distribution represents a rainfall-

two features could have natural or human-induced physmafunoff e’i;ent.
origins, but they also could originate from inaccuracies in
streamflow measurements, rainfall estimates, and baseflow
4 ; estimates. similarity between rescaled cumulative distribution functions

We selected events for which water balance is resolvedCDFs). Statistical tests of this feature can be sensitive to
in a minimum of 11 unnested basins. This brings the num-the number of samples that comprise empirical CDFs. Thus,
ber of events to 112, still a large number by which to de-while Case | events include those for Case lll, it is possible
velop and test a top-down model. These events were put intthat differences between the cases in the number of samples
three groups: 112 events with 11 unnested basins (Case I), 7er empirical CDF lead to contradictory test results that in-
events with 12 unnested basins (Case Il), and 20 events witkialidate the model.
13 unnested basins (Case Ill). Case | events include Case Il The process we used to select events was designed to pro-
events which include Case Ill events. We grouped the data teide a large number of events but, as expected, it eliminated
test our model. As explained in Sedt.our model predicts many events from analysis. Nonetheless, events for each case

o
N

112 Events b
11 Obs. per Event

0 80 100

Non-Exceedance Probability

o
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Table 1. Properties of gauges used in this study.

ARS Basin ID Drainage area  Sub-basin gauges Unnested drainage area

gauge ID j [kmz] SetB; a; [kmz]
1 1 21.394) 2 3.47
2 2 17.92 3,4,13,14 2.70
3 3 8.78 5,6 3.29
4 4 3.57 7 1.97
5 5 4.30 8,9 2.57
6 6 1.19 - 1.19
7 7 1.60 - 1.60
8 8 1.55 11,12 0.97
9 9 0.18 - 0.18
11 10 0.28 - 0.28
12 11 0.30 — 0.30
13 12 1.24 - 1.24
14 13 1.63 - 1.63

span a broad range of streamflow conditions. Among eventsspatial variability of soil moisture in GCEW is greatest when

the smallest streamflow peaks at the outlet of GCEW arethe spatial-mean soil moisture is low. This feature is consis-

0.21, 0.25, and 0.40%s 1 for Cases | to lIl, respectively. tent with soil moisture observations in other humid climate

The largest streamflow peaks at the outlet of GCEW are 102basins Brocca et al.2007). The patterns in Fig2 show that

47.8, and 43.7/s ! for Cases | to Ill, respectively. The soil moisture plays an important role in runoff and loss in

small events have return periods of less than 1 yr, while theGCEW and should be a component of our model.

large events have return periods of approximately 2yr for The observations presented in Rglso lead to a hypoth-

Cases Il and Il and 5yr for Case |. Both the event selec-esis, as follows. Plots A and B in Fig. suggest that; is

tion process and the period of time we investigated, 15 yrroughly proportional to some function of/d, whereé de-

are responsible for the lack of events having return periodsotes point-scale soil moisture. It also suggests that/that

that exceed 5yr. characterizes surface infiltration amount as a first-order ef-

fectin GCEW. Based on the observations, we infer that

3.5 Soil moisture in GCEW and a physical-statistical ~ for any hillslope within an unnested sub-basin is also propor-

hypothesis to test against the model tional to some function of /; there are no data sets available
to test this idea directly. Hydraulic conductivif§(0) is ob-

Before developing our model, we compared observations of€ved to be proportional to a function @because, as soil

water-loss depths at the basin scaleto historical observa- Moisture decreases, conductivity decreaBestgaert2005

tions of soil moisture in GCEW at the point scale. Figlee ~ P- 274275, Figs. 8.23 and 8.25). A widely used parametric

presents values df versus time of year for the Case | events. "elationship for conductivity i (6) = Ksf (), whereKsis

Values are low from December to March and high from July hydraulic conductivity at saturation, an denotes a func-

to October. The peak water-loss depth for GCEW occursfion of ¢ (Brutsaert2003 p. 279-280). Spatially variabls

around late August. Figurgb comes fronFurey and Gupta 1S cqmmoqu modeled as a lognormal random vgrlab_le (e..

(2005 and shows observed values of volumetric soil mois- Govindaraju et a).2006 Meng et al, 2009, which implies

ture content taken 5 cm below soil surface at two point loca-thatK (0) is lognormal within a hillslope. These relationships

tions in and near GCEW from January 1999 to June 2004S€rve as the basis for a physical-statistical hypothesis: hills-

The general relationship betwegrand time is a mirror im- lope water loss i_s inversely related to a function of a Iognor_-

age of the general relationship between soil moisture andn@l random variable. We show that our model supports this

time. hypothesis at the end of Seé6t.

Spatial distributions of water-loss depth in GCEW also ap-

pear to depend on soil moisture. Fig@eshows the empir-

ical CDFs of water-loss depth at the unnested basin scale4 Runoff-loss model

l; j, for the 112 events. Each CDF consists of 11 values of

water-loss depth corresponding to 11 unnested basins. Th@ur goal is to develop a runoff—-loss model that describes the

figure shows that distributions that have a large mean tendariability of v temporally, from event to event, and spatially,

to have a large variance and vice versa. Because alarge both within a given scale, e.g. among unnested basins, and

implies that soil moisture is low (dry), it suggests that the between scales, e.g. from basin to unnested basin to hillslope.

Nonlin. Processes Geophys., 20, 68834, 2013 www.nonlin-processes-geophys.net/20/683/2013/
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Such a model provides a method of using observations of
Y at the basin and unnested basin scales to estimate runoff
generation and losses at the hillslope scale, where practically
no observations are available. Our first step in developing the
model was to explore the temporal and spatial variability of
runoff/loss ratios at the unnested basin scdig;, for Case |
events. We wanted to determine if a simple rescaling;of

with respect to a measure of an overall event magnitude could
account for event-to-event changes.

-

o
o

o
)

N
'S

o
o

112 Events
11 Obs. per Event

Non-Exceedance Probability

4.1 Establishing model form — temporal structure

o

10 10 10
Figure3a shows the empirical CDFs ¢f ; for Case | events. Vi,

There are 112 CDFs that correspond to 112 events, and eact
CDF consists of 11 unnested basins. For each eyent
evaluated the geometric mean of observed rythadt ra-

tios, g;, and then rescaled the observed ratios/as/g;.
Figure3b shows the CDFs of this rescaled runitdfs ratio.

The curves in Fig3b collapse nicely, indicating that tempo-

ral variability can, to a first order, be accounted for by the use
of the geometric mean as a simple scale parameter. An alter-
native approach is to rescaje ; by the arithmetic mean, but
test results (not shown here) indicate that a weaker collapse
occurs. Rescaling; ; by its geometric mean is equivalent

to shifting log; ;) by its arithmetic mean, i.e. computing
log(yri, ;) —log(gi). Thus, the results in Fig indicate that

an event-by-event first-moment shift yields similar distribu-
tions.

We took a step further to see if there is improvement when
incorporating second moments (variances). If the event-by-
event variances are all the same, then the first-moment shift
will suffice. Otherwise, we must take variances into consider-
ation. We incorporated a second-moment correction by com-
puting (log(vy;, ;) —l0g(gi))/6:, whereo; is the standard de-
viation of log(y; ;). Figure3c shows the CDFs of the expo-
nential of this quantity, which isw,-,j/gi)l/&i. The collapse
improves compared to that in Fig. 3b, indicating that rescal-
ing should account for temporal differences in variances. The
implication of the results presented in F&jis that event-to-
event temporal variability in the spatial distribution f ;
can be characterized quite well by the use of two parame-

ters, the mean and variance of (gg ;). The results in Fig3 Fig. 3. Plot A shows a semi-log p!ot of empirical CDFs of
. A runoff/loss ratios at the unnested basin scélg;, for 112 events.
serve as the basis for developing our model. i

Each distribution represents a rainfall-runoff event. Plot B shows
corresponding CDFs of; ;/g;, and Plot C shows corresponding

CDFs of (y; ;/gi)Y/%.
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4.2 Establishing model form — spatial structure

The model we develop needs to capture the features pre-

sented_m Fig.3 but also connect_runqﬁoss rat|ps aCross  pic ottact can be modeled by taking_, to be a function
scales in a way that respects their nested spatial correlatlogf ; where the value off; reflects tHe overall event ef-
l l

structure. At the unnested basin scale, we expect a high d%ct. Likewise, for unnested basjn we can model hillslope

gree of S?ﬁt'alwﬁﬁ rgel?rtl;?n ﬁmc()jng va\l/uersﬁqfil f?lt[ (rer:/enr?it d runoff/loss ratios to be a function af; ; wherey; ; reflects
ecause they € Infiueénced by overall eve agnitu@€ye overall event effect.

If we compare the spatial distribution ¢f ; for a large event
to one for a small event, e.g. large vs. small rainfall amounts,
then we expect that the two distributions will be distinct.
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The nested structure of runglbss ratios must also be We can model) like a random cascade, though not ex-
weighted by the drainage areas with which they are associactly as one. A random cascade model leads to a limit mass
ated. Suppose a basin is partitioned into five unnested basindjstribution after a large number of subdivisions of space. It
j=12,...,5, wherey; 1 occupies 80 % of the total basin describes a process, e.qg. rainfall, at a large number of spatial
area while the remaining; ; occupy 20 %. The dependency scales. By contrast, the smallest spatial scale for a model of
of ;.1 on the overall event effect, representedyhy will be ¥ is the hillslope; physical reasons are giverGuopta et al.
stronger than that of the remaining, ; simply because; 1 (2010. Also, cascades are random spatial measures that obey
represents a larger fraction of the basin. mass conservation in a mean sense, as shown by6E dput

Discrete random cascade modeGGupta and Waymire ¢ does not obey this condition. Rather, it is the components
1993 have a nested structure with spatial characteristics likeof i (i.e. total rainfall and total loss) that obey mass conser-
those described above. Therefore, we can use the equationation, as shown in Sect.7.
that define a cascade model to help establish the equations In the sections that follow, we develop a runoff-loss model
that define our model. A brief self-contained explanation of based on two equations that are each similar in form to
random cascades is given below that motivates the functiondtq. (7), but are more general. Each equation characterizes
form of our model. how  at one spatial scale depends on bgthat the next

Consider a discrete random cascade spatial model with aoarser spatial scale and drainage area fraction. We introduce
branching numbeb; i.e. a region of areag =1 is divided  the model in terms of random and then fixed unnested basins
into b subregions of equal size (called level-1 subregions),and hillslopes. Before testing the model, we also discuss how
each of these subregions is subdivided ihtsubregions of it connects to water balance.
equal size (called level-2 subregions), and so on. Denote to-
tal mass in the whole region b, and denote mass in the 4.3 Definition of model variables
jth level-1 subregion by/y ;, j =1,...,b. Then, under the

random cascade modall; ; and Mo are related by We develop a model under the postulate that certain prop-
erties ofyr observed at the basin scale are preserved down

d . . . -

M £ (1/b)W1,j Mo, (5)  to the hillslope scale. Consider a basin of areand di

vide it into n unnested basins of similar size and hill-

whereZ means “equality in distribution”. anis : are inde- slopes of similar size whera > n. We letm; denote the
N q y ' Lj number of hillslopes in an unnested bagisuch thatn =

pendent gnd |dentlcglly distributed (iid) IeveI—l_ cas.cad.e gen;Z”»:lmj- We leta; denote the area of unnested bagin
erators with expectation 1. To understand the implications of=/=1 " .
wherej =1,2,...,n anda;; denote the area of hillslope

this equation in terms of mean mass conservation, we can . :
take the expectation of EcBYto obtain k in unnested basin wherek =1,2,...,m;. It follows that

a=Y"_ja;j=Y"_13"" a;x. Finally, we leta/n define
E[M1 ;1= E[Mol/b. (6) the scale associated with the unnested basinsu@ndde-

fine the scale associated with the hillslopes. Thus, we con-
Therefore E[Mo] = bE[M4 ], showing that mass conserva- sider three different spatial scales: basin seal@nnested
tion holds in a mean sense. The area of a level-1 subregion ibasin scale:/n wheren > 1, and hillslope scale/m where
ay,j = 1/b, and we can take the logarithm of equatié to m > n. Figure 1 shows the decomposition of GCEW into

obtain these scales.
J Random variable®; and L; express basin scale condi-
IN(M1,;) = In(Mo) + In(ay, ;) +In(Wy ;). @) tions in the model; see Tab® They represent total rainfall

and total water loss for evenin a basin, respectively. Real-
Here, total mass/; ; depends oo, whereMo reflects the  jzations are denoted by and/;. A given event is not asso-
overall mass, and/;, ; depends on the fraction of the overall cjated with a particular rainfall amount unlesss specified.
area. These relationships parallel those we want for a modegkather, a given event simply represents a distinct period of
of 4. An expression like Eq.7) can also be written for each  time where rainfall from a single storm produces runoff from
level-n subregion. For example, it can be modified to a re- 3 pasin and streamflow conditions at the end of the time pe-
lation between total mass for a level-2 subregion, with aregijgd are equal to those at the beginning.
1/b%, and total massy ;. Finally, notice that Eq.7) in- Random variables, a;, R; s, and L; ; express spatial
volves a Markov-like property. In a Markov process, a vari- yariability at the unnested basin scale; see T2bRandom
able at the present time that is conditioned on a set of Vari'variab|e] represents the Stream_gauged unnested basins in
ables representing past times has the same distribution as@CgWw so that a realizatior, represents a specific unnested
variable that is conditioned on only the most recent past timepasin. Random variable, represents the drainage areas of
(Feller, 1968. Random cascades have a Markov-like prop-unnested basins so that a realizatignrepresents the area
erty because a given spatial scale influences only the nexf a specific unnested basin. Random variatfles andL; ;
finer spatial scaleGver, 1993. represent total event rainfall and total water loss for event
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Table 2. Variables that represent random and fixed locations (in space) foatetal rainfall R, total lossL, and runoffloss ratioY.
Realizations oR, L, andY (not shown) are obtained using a lowercase letter; e.g. a realizati®n;ak given byr; ;.

Scale Location Area Total rainfall Totalloss Rundiss ratio
Basin Fixed a R; L; Y;
Unnested basin  Random a; R; j Liyj Yig
. Fixed aj Ri,j Li,j Yi,j
Hlllslope Random aj K Ri,j,K Li,j,K Yi,j,K
Fixed ajk Rijk Lijk Yi ik

at the unnested basin scale. Realizatignsand/; ; refer to have the same probability of being selected at random. Also,

an unnested basin with an outlet at a random location, whileassume thal andK are independent of all random variables

realizations; ; and/; ; pertain to a specific unnested basin, R andL.

Jj- Let ¥;=R;/L;—1 be a random variable for the
Random variables, a; x, R; j x, andL; j ¢ represent runoff/loss ratio at the basin scale. Similarly, & ; =

spatial variability at the hillslope scale, and their meaningsR; ;/L; j—1andY; ; x = R; j x/Li j xk —1 be random vari-

parallel those for the unnested basin scale; see Pafileus,  ables at the unnested basin and hillslope scales. For a random
K represents the hillslopes in an unnested basin so that a reariableX, let G[ X] denote the geometric mean ¥f Then,

alization,k, represents a specific hillslope. Random variableassume that for a given event

aj x represents the drainage areas of hillslopes in basin N : ‘

and a realizatiom, ; represents the drainage area of a spe- In(Yi,j) = e + i In(¥i) + yiln(a, / GlasD

cific hillslope in unnested basip Lastly, random variables +0iIn(Ui.1) (8a)
R, j.x andL; ; x represent total event rainfall and total wa- In(Y; jx) =0 j+BijIn(Y; ;) +vijIn(ajx/Glajk])

ter loss for event in unnested basin at the hillslope scale. +0i;In(Hi j k). (8b)
Realizations ; ¢ andi; ; x refer to a hillslope at a random i ) S

location in unnested basii and realizations; ; x andl; ; Equation 8g) describes the variability in rungfioss ra-

refer to a hillslope at a given location in unnested bgsin ~ t10S between unnested basins for evewhile Eq. 8b) de-

Table2 provides a comparison between the notations used;cribes the variapility in runoffoss rati_os between hiIIsIo_pes
to represent the basin, unnested basin, and hillslope scale$! Unnested basiri for eventi. Here, in Eq. 83, Gla,] is
The connection between variables across scales has be&g®0metric mean of unnested basin areas/In) is a ran-
made systematic. The first index corresponds to an everflom variable thathas a mean of zero and is iid among events,
(time), the second index corresponds to the unnested basil IS independent of eU; ;), and parameters;, §;, yi, and
scale (space), and the third index corresponds to the hillslopgi €@n change from event to event because they depend on
scale (space). Thus, the number of indices attached to a rar-N€ iid condition on IU;, ;) means that a common probabil-

dom variable defines its spatial scale. One index refers to afy distribution connects events. The subscriptin(Us,,) is
eventi at the basin scale, e.g.;; two indices refers to an N€eded because realizations ot |/ = j) for one event

eventi at the unnested basin scalee.g.L; ;: and three in- ~ &re not necessarily the same as those for another. Similarly,

dices refers to an eventfor a fixed unnested basipatthe " EG- 8D), Gla;j k]is a geometric mean of hillslope areas in
hillslope scalek, e.q.L;.; k. unnested basin, IN(H; ; x) is a random variable that has a

mean of zero and is iid among eveni3,; is independent

4.4 Model equations for random unnested basins and Of IN(H; j k), and parameters; ;, B ;, vi,j, ando; ; can
hillslopes change from event to event because they deperid on
Equations 8a) and 8b) are general expressions of E@).(

The model equations introduced below represent a generaEquation 8a) includes a random terdi; ; that corresponds
ization of the random cascade model given in Ef). The  to the cascade generafidt; ;. It also includes additional pa-
nature of the generalization is explained after the model isametersy;, 8;, v; , ando;, and an additional subscript,
introduced. Before introducing the equations, we make somavhich accounts for changes from event to event. If values of
assumptions about unnested basin and hillslope distributionsy;, §;, y; ando; are 0, 1, 1, and 1, then the resulting equation
Assume that/ has a uniform distribution on the integers looks like Eq. ). However, values of these parameters are
1,...,n, such that all unnested basins have the same probrot specified a priori in the equation. Equati®b)(is also a
ability of being selected at random. This definition is consis-general expression of Ecf)(but only when it is modified to a
tent with our analysis of empirical CDFs in Sedtl Like- relation between a level-2 subregion and a level-1 subregion.
wise, assume that'|J = j has a uniform distribution on the Later, in Sect4.6, we make an assumption that the distribu-
integers 1...,m, such that all hillslopes in unnested bagin tions of error terms for Eqs8é) and @b) are the same, which
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is essentially a scale invariance assumption. This assumptionormal for each event but dissimilar between events be-
is found in random cascades whelig ; is the same dis- cause of event-to-event changes/jrand/oro;; U; ; cannot
tribution for all n. Thus, taken together, Eq8d and 8b) be a source of dissimilarity because it is iid among events.
are analogous to a “two-level” discrete cascade formulationin Sect.4.1, we showed that CDFs of; ; collapse to a
where intermediate scales and scales finer than the hillslopeommon distribution when rescaling accounts for event-to-
scale are not explored. By including the event subsdript event changes in botly;(y;) ando; (Fig. 3c). Based on
E_qs. 8a and _Bb) comprise a space—time model rather than Eq. ©), this result occurs Wher(a_J)Vi/Ui is constant
simply a spatial modelOver and Gupt§1996 considered a Glas]

similar space—time extension of the random cascade modéMmong events becauggy = 1,y; =0, 0ry;/o; > s con-
for space—time rainfall. stant among events. In any case, only changé&s {ty;) and

We next examine the physical implications of E§g( % are important for relating CDFs af; ; to a common dis-

and then show how it explains the observations presentediPution.

in Sect.4.1 Equat_|on 83 characterizes rungffoss ratios at 45 Model equations for fixed unnested basins
the unnested basin scale. It captures two features that should and hillslopes

be upheld, as described in Se4t2 Namely, the equation P

shows that IY; ;) depends on the rungibss ratio at the o gpjective is to develop an expression for the rufioffs
next larger spatial scalé;, and only at this scale, a Markov-  44iq 4t the hillslope scale that provides a method of simulat-
like property. It also depends on unnested basin drainagg,q event-based total runoff volume for each hillslope drain-

area,a;/Glay]. In the equation, the distributions of and  jng an unnested basin. To meet this objective, we first need to
U;,; do not change between events, aitd; accounts for  yagcribe y; ;) for a given unnested basjnand InY; j x)

both spatial variability and “fixed event” temporal variabil- ¢, 5 given hillslopet within unnested basip. It is being as-

ity. The equation represents spatial variability through dif- meq thay andk are independent of all random variables

ferences in drainage area, wa, and through differences y aiso, subscriptj for ¥ means that we are conditioning

in physical conditions that affect water loss and runoff, via 5, unnested basip, and a subscript for ¥ means that we

Ui,y For this paper, we interpré; , to represent the influ- 56 conditioning on hillslopg. ConsequentlyY; ;|Y; = y;)

ence of antecedent soil moisture conditions for evemem- s equivalent to(Y; ;|Y: = vi, J = j), (Y: ixlYi J,’ =yi,) is

poral variability, as expressed Hy; ;, is represented as an  gqjivalent to(Y; ; <|Yi =y K=k, and Egs. 83 and

ensemble where realizations 0f ; change under repeated (gp nrovide the description we need when expressed con-

occurrences of the same event. . ditionally as(In(¥; j)|¥; = y;) and(In(¥; ; 1)|Yi.; = yi.;). In
Equation 88 helps to explain the observations presentedihese equations, unnested basin and hillslope drainage areas,

in Fig. 3 and discussed in Seet.1 Taking the expectation  regpectively, are fixed. Because of this feature, we denote
of Eq. 8d), conditioned or¥; = y;, gives

E[n(Y; DIY; = yil=a; + Bi In(y;)
+yi (ElIn(a;)] —In(Gla D).

Because I0G[X]) = E[In(X)] for any random variable,
the expression above can be rewritten as

a} =a;j/Glay]
di=ajx/Glaj k] (10)

as the area terms in the equations.
The expression obtained from E@g for (In(Y; ;)|Y; =
yi) describes the variability in rungffoss ratios for a given

IN(Gi(y)) =o; + BiIn(yi) ;  Gi(yi)) =GlYislYi = yil. unnested basiri and event. The area termy’;, expresses
the relative contribution that the rungffss ratio for the
Here, E[In(a;)]—In(Glay])=0 because IGlas])=  unnested basin makes to the basin-wide valge Jnif a; =

E[In(a;)], and G;(y;) corresponds to the sample estimates 1, then(In(Y; ;)|Y; = y;) is independent of area. This situa-

of the geometric mean used to produce the CDFs in&ig. tjon can occur if all unnested basins have the same area, re-
Taking the exponential of bothin(Y; ,)IY; =yi), from  gardless of size. However, gauged unnested basins rarely, if
Eq. @a), and ING; (y:)), from the expression above, leads to eyer, have the same unnested areas, including GCEW. When

arescaled runoffoss ratio given as the unnested basin is given AU; ; becomedJ; ;. The dis-
YislY: = y; a; \" tribution of U; ; does not change between events, and, for a
Gion = <G[a ]> U’y given event, U; ; accounts f(_)r both spat|a_1I var|a_1bll_|t_y and
iy I fixed event temporal variability. The spatial variability de-
or scribed byU; ; represents an ensemble where realizations of
Yi Vi = 1/0; a; \"/e U;,j change un_der repeatgd copies of unngsteq hasirthe
<Ty;)) = < G[a,]) iJ 9) same event. Differences in antecedent soil moisture between

copies are postulated to represent this change.
Equation @), in conjunction with our discussion in Similarly, the expression obtained from EBb) for
Sect.4.1, indicates that distributions of (g; ;/g;) can be  (In(Y; ;«)|Y; ; =y ;) describes variability for a given
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hillslope k in unnested basin and for event. Its area term,
a/.’k, represents a relative contribution ta(3n;). Given a
hillslope, H; ; ¥ becomesH; ; ;. The distribution ofH; ; «
does not change between events, Byj , accounts for both
spatial variability and fixed event temporal variability.

The rescaled runoffoss ratio for a fixed basin is compara-
ble to but significantly different from Eq9). From Eq. 83,
the expected runoffoss ratio for a fixed basin is

E[In(Y; )IY; = yil = o + B In(yi) + i In(a)),

which can be written as

IN(Gi(yi. ) =i + i IN(yi) + yi In(@)):
Gi(yi, j) = GIY; |Y: = yil,

because I(G[X]) = E[In(X)]jor any random variabl¥, as
mentioned previously. Sinc€;(y;, j) is given for a basin

j, it does not correspond to the sample estimates of th%

geometric mean used to produce the CDFs in Bigrak-
ing the exponential ofin(Y; ;)|Y; = y;), from Eq. 8a), and
In(G; (i, j)) leads to a rescaled runglbss ratio for a fixed
basin given as

YijlYi=yi o
Gi(yi, J) o
or

<Yi,j|Yi =yz'>1/0’ U
f —_— i,]
Gi(i, J)

Unlike Eq. @), Eq. (11) shows that the distribution of
(Y; j1Y; = y;), after a rescaling that includes, equalsU; ;
and thus is iid among events.

(11)

4.6 Assumptions for assigning water loss to hillslopes

To reach our final objective, we need to relatg, g; ;, and
¥i.j in EQ. Bb) to «;, Bi, andy; in Eq. 8a) because hills-
lope observations needed to estimatg, g; ;, andy; ; are
unavailable at present and are not expected to be available
the foreseeable future. Therefore, we let

n
Vai =1/n ) (aij— @), (12)
=1

J

vg,i =1/n Z(,Bi,j — B)?,
i—1

J

n
vy =1nY i -
—~

J

n
5[,’ = 1/n Za,”j
j=1

Bi=1/n)y Bi;
=1

J
n
vi=1/n) v,
=1

whereg; is the average o&; ; over j for eventi, andv ;

is the variance ofy; ; over j for eventi. Likewise, 8; and

y; are averages angs; andv,,; are variances. We assume
that, to a first orderp,,; = vg; = v,; =0, which implies
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thata; = «; ;, Bi = Bi,j,» andy; = y; ;. We also assume that
a; = a;, Bi = Bi, andy; = y;, which means thady,-,j =,
Bi.j = Bi, andy; ; = y;. We later assess the impact of these
assumptions by examining model results in the context of
water balance. Substituting these last three relationships into
Eq. @b), conditioning onY; ; =y; ; and K =k, and expo-
nentiating the result gives
(YijklYij =yij) = eXD(ai)YfZ-a},kYi Hf',f,jk-

In this expression, the right-hand side still depends on the
hillslope scale, throughlfi:y’){. To remove this dependence,

we assume that the random variablg‘%ff k=1,2,...,m;
are iid and

7o

o d
U'j_ i,j.k

L,

(13)
This equation holds for eadhand gives

d Bi 1 Vippoi.
Yi jxlYij=yij) =explei)y; a; " U; s
k=1,2,...,mj.

Now, (Y; ;«|Y;; =y.;) is a function of variables at the
unnested basin and basin scales where observations exist.

The distributions OKY[,/' |Y; = y;) and YijxlYij =i j)
must be specified to assign water loss to hillslopes. We as-
sume that

d
(Yi ;1Y = yi) = LN (i j, 0?) (14)
d
YijxlYi i =i j) = LN jk, 0,»2);
wij.x = In(exploy)y!a} 7, (15)

where LN refers to a lognormal random variable and the dis-
tribution parameters in parentheses denote the mean and vari-
ance of the associated normal distribution. Here, normal dis-
tribution variances are constant in space (among hillslopes
and unnested basins). The assumption that distributions are
lognormal requires that total rainfall exceeds total loss for
a rain event; i.e(Y,-,j|Yl- =y;) > 0, (Yi,j,k|Yi,j = yi,j) >0,

and runoff occurs. It also requires that total rainfall is posi-
five. Under this assumption, we have

Ui L Hijx £LN(, 1) (16)

d Bi 1 Viyr0i
(YijklYij = yij) = explei)y; ja; U,

indicating that(Y; ; «|Y; ; = yi,;) is lognormally distributed

for a given event and unnested basin. The assumption also
means that; ; = o;, whereo; = ,/Var(In(Y; ;)|Y; = y;) and
0= \/Var(ln(Yi,j,k)m,j =y;,;). Finally, the assumption
means that Eq8@), givenJ = j, and Eq. 8b), givenK =k,

take the form of a linear regression model. Notice that the
equality ino’s follows from Eq. (L3). It is a first-order ap-
proximation and represents the simplest case of the expres-
sion,o; ; = co;. Given the difference in scale betwegrand

o; j, itis possible that > 1.

Nonlin. Processes Geophys., 2076832013



694 P. R. Furey et al.: A top-down model to generate ensembles of runoff

Table 3. Results of thé&-sample Kolmogorov—Smirnov (KS);sampleZ.., and Lilliefors tests fo(zp,»,j/g,-)l/&f.

Test Hg — null hypothesis Do notrejediyif ... Caseresult
k-sample KS  Distributions are similar ¢ <0.462 l:c=0.091
Il: ¢=0.083
Il: ¢=0.154
k-sampleZ-  Distributions are similar p > 0.05 Lp=1.0
ll: p=1.0
H: p=1.0
Lilliefors Distributions of the logarithm are normal [=0 I: 1 =0 for 90 events of 112

II: 1 =0 for 60 events of 75
Ill: I =0 for 17 events of 20

The observations given in Figb, which show that rescal- all k&, which means tha&’ «=11in Eq. (6). Water balance
ing v, ;j as(y;, ,/g,)l/”' leads to a collapse in distributions, for unequal hillslope areas needs a more complicated formu-
supports the assumption that ; is lognormally distributed.  lation and is beyond the scope of this paper. Let the total rain-
The physical basis of this feature is linked to the hypothesisfall for eventi be known at the unnested basin and hillslope
explained in SecB.5, where itis stated that the spatial distri- scales; that is;; ; andr; ; x are fixed and nonrandom. Also,
bution of saturated hydraulic conductivity, which influences let eventi produce runoff, meaning that total rainfall over
soil moisture and thus water loss, is commonly found to bebasinj exceeds total water loss ar; > I; ; andy; y > 0.
lognormal. As mentioned in Sect.4, we interpretU; ; to Under the conditions above, water balance for an event
represent antecedent soil moisture conditions for evefit i requires that (1) observed and modeled total runoff from
similar interpretation is made fdr; ; andH; ; , where fixed  basin j are equal and that (2) modeled totals of rainfall,
event spatial variability arises through spatial changes in soitunoff, and water loss in basip equal the summation of
moisture. corresponding hillslope totals, over &llhillslopes in basin

If there is a need to generate total runoff at the hillslope j. Requirement 1 must be satisfied on average because wa-
scale for an observed rainfall event, then we need to makeer loss is treated probabilistically. This situation is similar to
an assumption about the statistical connection between thmean mass conservation, which is used to construct canon-
runoff/loss ratio and total rainfall. We shall assume that theical ensembles in statistical mechanics and is central to the
runoff/loss ratio and rainfall are statistically independent attheory of random cascades, as illustrated in Skegt.
both the unnested basin and hillslope scales; that is, the ran- Requirement 2 is satisfied if
dom variables; ; andY; ; ; are all independent of the ran-
dom variablesr; ; and R; j x. Thus, the model in Eq.16) il

1/m Zrt jkos

for the runoff/loss ratio will remain the same if total rainfall "%/ = (17a)
at both scales is known and fixed. -
Equation (6), together with the independence assumptlon .

=1 E[L; L; ;=1 17b

in the previous paragraph, is the model that we set out to’ J=1m; Z (LijklLij =il (17)

k=1
develop as it provides a way of assigning total water loss

to hillslopes in three steps. First, we obtain values oy where (LijklLij=1i;) =L jklLij=1j,K=k).

from observations off; ; at the unnested basin scale. Sec- These equations represent conservation of mass with respect
ond, based on Eq86 when conditioned oy = j, we ob-  to total rainfall depth and total depth of water loss. The
tain estimates of;, B;, y;, ando; via linear regression using condition under which Eq(b) holds is seen by noting that
observations off; andy; ; and drainage areas of unnested the definition ofY; ; x givesL; j k = R; j x/(Yi jx +1).
basins. Results from these two steps allow us to uselgy. (  When rainfallr; ; ; is fixed for allk, as shown in Eq.1(73),

to generate realizations ; ; for each hillslopet. Third, we ~ we havel,; i =r; j«/(Yi jx+1) in Eq. @70). Also, the
determine values of total logs; x =r; j«/(1+yi jx) given  definition ofY; ; givesL; ; = R; ;/(Y; j +1). When rainfall

that we have a realization ; x and an observation-based es- r; ; is fixed for all j, conditioning onL; ; =1; ;, as shown

timate ofr; ; . An example is given below in Se&.3. in Eq. (17b), is equivalent to conditioning ol ; = y;,;;
_ this feature follows becausk; ; = R; ;j/(Y; j + 1) becomes
4.7 Connection to water balance lij=rij/(yij+1. Thus, with rainfall known at the

unnested basin and hillslope scales, BqY] yields
We examined how the runoff-loss model is connected to wa-

ter balance under the following simplified conditions. For
eventi and basinj, let hillslope areaz; ; be the same for
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5 Analysis and results

s
& Vi jk . 5.1 Testing model relationships and assumptions
IYij=yij|
Yijr+1

li;j=1/m; Z E
k=1 . o
m 5.1.1 Equation Q): distributions of rescaled runoff/loss
=l/ijE[ Fi,j.k } ratios at the unnested basin scale for random
k

expei)y;LN(0,62) +1 unnested basins

=1

—ri iE |: 1 ] _ Figure 4 shows the empirical CDFs of rungfbss ra-
' exr(ai)ylﬁ;.LN(O’ gi2)+1 tios at the unnested basin scalg;, ;, and the CDFs of
’ rescaled ratios given &g ;/g;)*/%, whereg; ands; denote
Conservation of mass with respect to water loss holdsobservation-based estimates®f(y;) ando; in Eq. ©). The
when the expectation in the last equality equale/d; +1).  figure presents results for Cases I, II, and Ill. As explained in
This expectation takes the form 8{1/(X +1)] with X log-  Sect.3.4, the number of events and unnested basins for these
normal, for which there is no analytical expression. In the cases are, respectively, (112,11), (75,12), and (20,13). The
limit aSUZ.2 — 0 the expectation is given by/(lexp(ai)yf ; + first case consists of the same events examined in $dct.
1). Further, for smalls;, an asymptotic approximation in- Results in the figure suggest, qualitatively, that rescaled ra-
volving powers ofo; can be made using standard expan- tios come from the same probability distribution.
sion techniques for integrals, but these results are beyond Table 3 shows the results of comparing CDFs of
the scope of this paper. To honor conservation of mass irescaled ratios using tltesample Kolmogorov—Smirnov test
the small variance case, it is necessaryfor> 0 andg; — (Conover 1999 and thek-sampleZ¢ test hang and Wu
1 as al? — 0 so that, in the limit, the expectation equals 2007, which is shown to be more powerful. The first test re-
1/(y;,j +1). Observations presented in SeBtl show that  quires that the number of points in each CDF is the same in
«; andg; are near these limits. the group of CDFs to be compared. Plots in Figneet this
Conservation of mass with respect to runoff, a componentrequirement. Results indicate that rescaled distributions are
of Requirement 2, follows from Egsl{g and (L7b). To see  statistically identical among all events.
the logic of this connection, consider that randomness in hill-  Table 3 also shows the results of applying a Lilliefors
slope water-loss depth must lead to randomness in hillslopgest to the distribution of I((wj’j/gi)l/&"), the logarithm of
and basin runoff. LeQ; ; = (Q; s|J = j) be arandom vari-  rescaled runoffioss ratios, for each event. The Lilliefors test
able for the total volume of runoff for eventind basiry. An allows for both the mean and variance ofyf ;) to change

observed value of runoff, a realization @f ;, is given as from event to event, and thus it gives identical results when
i .. 1o\ 1/Gi ichi - i -
applied to(y; ;/gi)*/°, which is both mean- and variance
qi,j = (Vi,j —li,j)aj ;o> (18) corrected. Results in the table indicate whether a correction
o ) ) by the mean and variance yields identical distributions. For
Substituting Egs.17g and (L7h) into Eq. (L8) gives Case | events, they show that the hypothesis of normality is

m; m; rejected at the 5% level for 22 of the 112 CDFs. Some or all
gij= (1/mjzri,j,k —1/ijE[Li,j,k|Li,j zlw.]) a; (19) of the rejections could be erroneous, a type | error. Apply-

k=1 k=1 ing the same tests using a Bonferroni correction to account
mj for the large number of individual testsigu, 1996 indi-
= Z(ri,j,k —E[LijklLij=lijDajk, cates that all CDFs are normal except one. Similar results
k=1 are found for Cases Il and IIl.
o Figure 5 shows quantile—quantile (QQ) plot8vilk and
= ;E[Qiﬂj,kww =1 . Gnanadesikanl 96§ for In((v;,;/g:)Y/%), representing the

logarithm of the rescaled ratios in Fig. For each case, we
This equation shows that the observed total basin runof@rouped the ratios from all events to make a plot. The lines
equals the summation of expected total runoff from hill- in the QQ plots for Cases | and Il are relatively straight, sug-
slopes, which supports Requirement 2, i.e. mean mass cordesting normality or approximate normality among rescaled
servation in terms of runoff. If Eqs1{4 and (L7b) hold true, ratios; this linearity disappears df; is not used to rescale

water balance. Based on Eq.9) in Sect.4.4, the deviations could mean

that (y; /o;)In (#f”) varies among some or all events. Al-

ternatively, (y; /o;) In (G‘[‘;,]) is constant among all events,
but In(U; ;) is not iid among all events, as assumed. The im-

portant issue of lognormality is analyzed later in S&ct.3
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Fig. 4. Left: Semi-log plot of empirical CDFs of rungfioss ratios at the unnested basin scélig,, for Cases | to Ill. Each distribution
represents a rainfall-runoff event. Right: Semi-log plot of corresponding CDFs of rescaledlmsmfatios,(l//i,j/gl-)l/‘;i.

5.1.2 Equation @): relationship between runoff/loss andy; change among events. The model is not identifiable
ratios at the unnested basin and basin scales for if all three coefficientsy;, 8;, andy; are allowed to change
fixed unnested basins with event; the problem that arises is similar to trying to fit

a straight line to data where there is only one value for the
explanatory variable. Thus, two of the three parameters must

Equation 8) provides an expression for(lf§ ;) for eventi be fixed iation f " ol Vsi
and unnested basip, which takes the form of a multiple € fixe (no variation from event to event). In our analysis,
we fixed the value oB; = g andy; = y and treated the inter-

weighted linear regression model where there are two ex- o q bl dom f ‘1 ¢
planatory variables, It¥;) and Ir(a;.), and a weight given cept,;, as a random variable (random from event to event).

2 The analysis also considered the influence that changgs in
by 1/o;". This model assumes that, on averageyin) de-  penyeen events can have on results. We used the nime pack-
pends linearly on Ift;) and Ir(a}) for an event, but also al-

. o age in R to obtain result&gentleman et 3/12013.
lows for the possibility that values of the coefficients 8;,
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Results from the statistical analysis indicate that there is
significant variability in the value of; between events for
Cases | and Il but not Case Ill. For Casefl=1.027,

y = —0.364, and the mean of is estimated to be 0.316. The
variance ofy; among events is estimated to h8@ and, be-
cause this value exceeds zewp changes between events as
assumed in our model. For Casefll= 1.104,7 = —0.342,

and the mean of; is estimated to be 0.449. The variance
of «; among events is estimated to b®@2, and thusy;
changes between events. By contrast, results for the events
in Case lll indicate that the variance®fis not significantly
greater than zero, so that all theare equal to a single value

«. For Case Il 3 = 1.034,7 = —0.415, and = 0.185.

The left-hand column of Figh shows that observations of
In(y;, ;) and In(y;) for Cases | to Ill are, on average, linearly
related across events. The lines presented in the plots illus-
trate the influence af; on this relationship. To plot the lines,
we used values af; andg; = 8 obtained from our statistical
analysis but assumegIn(a’,) = 0 so that, based on EB)(
In(y;, ;) depends only on "(rwl-) and a line can be plotted.
The bottom line in a plot represents the minimum value of
«; among events, while the top line represents the maximum
value ofq;.

The left-hand column of Figr presents the same results
shown in Fig.6 but using only events that pass the Lilliefors
test. The reduced number of events can be found in Table
Comparing the left-hand columns of Figg.and 7 reveals
that many of the events removed include “extreme” values of
¥; j. This result suggests that events where the distribution of
In(U;, ;) is not Normal, according to the Lilliefors test, tend to
have extreme values. Non-normality could arise if there are
correlations among observations during these events that are
unaccounted for in the model, if (@V; ;) is not Normal due
to some unique physical conditions in the rainfall-runoff pro-
cess, or if the model does not well represent extreme events.
Alternatively, the extreme values may simply represent mea-
surement errors.

We have applied Eq8] as a linear mixed-effects statis-
tical model where randomness is treated separately for each
event. A measure of goodness of fit, lil&#, can be diffi-
cult to interpret for such a moddNg@kagawa and Schielzeth
2013 and is not provided in Fig$s and 7. However, if a
simple linear model is applied across all events for each of
the cases in the two figures, th&$ values are around 0.6.

A comparable and possibly better goodness of fit can be ex-
pected for a linear mixed-effects model. One indication that
this situation holds is that the Akaike information criterion
(Akaike, 1974 is slightly better when treating events indi-
vidually (linear mixed effects) instead of collectively.
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Fig. 6. Left: Plot of In(y; ;) versus Iriy;) for Cases I to lll. To plot the lines, we used valuesvpf{(intercept) and; = g (slope) obtained
from our statistical analysis, but assurryedh(a}) =0; see Eq.&). The bottom line in a plot represents the minimum value;pdmong
events, while the top line represents the maximum valug oRight: QQ plot of residuals obtained from statistical analysis results.

5.1.3 Equation (4): lognormality of runoff /loss ratios  the lognormal assumption given by Eq.4]. By compari-
at the unnested basin scale for fixed unnested son, the QQ plots in Figsh and6 are, overall, further from

basins normality. Differences in QQ plots between the three figures
. _ underscore the importance of both the area term in the model
We tested the assumption given by Eté)(that (Y; ;1Y; =  and Lilliefors test results.

yi) is equal in distribution to a lognormal. For this test, we A QQ plot provides a qualitative indication of normality,
compared the relationship between quantiles of a normal dishuyt the correlation coefficient of such a plot could be used to
tribution and those of residuals from the statistical analysisquantify the degree to which normality is achieved. Accord-
results described in Sed.1.2 If Eq. (14) is correct, then  ingly, we could compare the correlation coefficients of the
the residuals are normally distributed astin — E[In(U)].  QQ plots in Fig. 6 against those in Fig. 7 to quantify changes
The right-hand column of Figl presents this comparison in - petween the figures. This kind of analysis, however, is be-
a QQ p|0t for Cases | to Ill and indicates that the distribu- yond the scope of our paper.

tion of residuals is close to normality. This result supports
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5.1.4 Statistical independence between rungfifoss described in Secbk.1.2and derived from the data presented
ratios and rainfall depths at the unnested basin  in Fig. 7. The residuals represent the unexplained variability
scale in values ofy; ; after accounting for the influence f and

a’;. Residuals appear to be independent; of and this same
result is found for the Case Il and Il events. Thus, observa-

We tested the assumption given after Ef) that the runoff _ ;
tions support our assumption.

loss ratio is statistically independent of total rainfall. Fig8re
shows test results for Case | events that passed the Lilliefors

test. The first plot in the figure indicates that observed rain-5.2 Testing water balance conditions of data

fall at the unnested basin scatg;, is largely independent of

the runoff/loss ratio at the basin scalg;. The slight positive ~ The water balance formulation in Sedt7 depends on two
trend in the plot is not observed for Case Il and Il events. Themass conservation conditions, Egk74 and (L7b), that re-
second plot compares ; to residuals from the fitted model late the unnested basin and hillslope scales. For simplicity,
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Fig. 8. Plot A shows the relationship between the logarithm of rain-
fall depth, Inr; ;), and In(y;) for Case | events. Plot B shows the
relationship between {n; ;) and regression residuals from the firt
plot (Case ) of Fig6.

Fig. 9. Relationship between ; andr; (Plot A) andl_i)j andl; (Plot
B) for Case Il events. The 11 relationship in both plots means that
mass is conserved.

we formulated both equations under the condition that hill-5'3 Model application

slopes have the; same area, but they hold vyithout this congyq applied the runoff—loss model given by E&6)to event
straint when rainfall and water loss are weighted by area; _ "5 case 11l rainfall-runoff event that occurred on 17
Neither equation can be tested directly because rainfall 0bysarch 1982, We chose this event because the magnitude of

servations and water-loss observations are unavailable s runoff/loss ratios are close to the median of the range of
the hillslope scale. However, similar conservation conditionsi, yse found for all Case | to Ill events. For this event. we

must hold that relate the basin and unnested basin scales. | ap = 0.185, B = 1.034, y, = —0.415, ando2 = 0.768.
We examined whether data at the basin and unnesteg), gptained these values from 2
basins scales honor mass conservation. Plot A in 8ig.
shows that total rainfall at the basin scalg, equals to-
tal area-weighted rainfall at the unnested basin s¢ale=
Z;leri,jaj/a. Similarly, Plot B in the figure shows that to-

tal water loss at the basin scalg,equals total area-weighted lope loss for event = 2; see Fig10. Three steps were taken

H 1 n
loss at the unnested basin scalg,= > _,1;ja;/a. ThUS, {4 make this map. We calculated the expected rytass ra-

our data for total event rainfall and water loss preserve mas§ for each of the 544 hillslopes in GCEW. In the model, this
conservation for Case Il events. Cases | and Il involve 11quantity ISE[Y2,;x|Ya2, = y2.;], wherek = 1,2,...,m; and

and 12 unnested basins, respectively, and their areas do nQt13 _ . .
cover GCEW. In these cases, total water loss at the basif={=1""/ = 544. We then determined corresponding values
. of hillslope loss,
scale should exceed or equal the total area-weighted loss at
;cjhg unrr:elsdted-basin scale. Observations indicate that this COMs i =ro jk/(L+ E[Y2jk|Y2j=y2 ).
ition holds.

the statistical analysis results
above. They are not event-specific values insofar that results
for Case Il show that parameter values do not differ signifi-
cantly between events.

We first used Eq.16) to produce a map of expected hills-
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Finally, we added a bias correction factor to each value of
I2,j « so that the new value approximatésLy ;j «]. The dif- 10°F ¢ o® 1
ference betweetp ;; and E[Ly ;] turns out to be rather
small, numerically. This last step is taken for mathematical Y &
consistency and does not involve a model fitting procedure, $ ®
. . . = 10"+ i
i.e. calibration. 2 ‘P¢
We also produced model realizations of water loss and = :
. . . (=]
runoff at both the hillslope and unnested basin scales. First, > o
we used Eq.X6) to produce 50 hillslope-loss sets, each rep- 10°L ¢ ,
resenting a possible spatial configuration of hillslope water é? b O Runoff from Observations
loss for eventi = 2. Then, for each hillslope-loss set, we : ‘ __Runoffirom Model
determined realizations of both water loss and runoff at the 10" 10° ,
unnested basin scale. For water loss, we added the hillslope Drainage Area a, [km’]

loss values within each unnested baginFor runoff, we _ :
. #in - Fig. 11.Plot A shows the volume of observed rainfall and modeled
calculated the difference between total hillslope rainfall and

hills | d th dded the diff to obtain tot ﬁ/ater loss for each unnested basin. Plot B shows the volume of
ISIOpE 0SS an L € drfrerences 1o obtain totay,qared and modeled runoff for each unnested basin. On average,

runoff for each unnested basin. model realizations of runoff equal observed runoff. Plot C shows
Figure11 compares water-loss and runoff model realiza- the |og-log relationship between nested-basin runoff and upstream

tions to observations. Plot A in the figure shows that thedrainage area for both observations and model realizations. Note

volume of rainfall exceeds the volume of model loss at thethat runoff values do not include a baseflow component and thus

unnested basin scale, for all realizations; ig; > I ; for are not equivalent to streamflow.

each basinj and each of the 50 hillslope-loss sets. Like-

wise, hillslope rainfall always exceeds or equals hillslope

loss. Plot B shows that total runoff values from the model from differences in the spatial configuration and magnitudes

at the unnested basin scale are, on average, equal to thoséhillslope losses between realizations. Physically, such dif-

obtained from observations. For a given unnested basinferences in hillslope loss could represent differences in an-

the variability in total runoff between realizations originates tecedent (pre-rainfall) soil moisture. Plot C indicates that
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different realizations of total runoff for event= 2 produce  hypothesis. We note that the events used to formulate our

slightly different scaling relationships. In other words, hills- hypothesis are the same as those used to develop our model,

lope loss conditions impact scaling. yet the hypothesis is general and not specific to any events.
A more rigorous test of the hypothesis could be made using

) ) other events and perhaps different types of data.
6 Discussion

We have used space-time patternsin; =g; /1 ;j =
ri,j/li,j — 1 to develop an approach for mapping water loss
and runoff at the hillslope scale. This metric is positive and
has no upper bound given that; > 0 and/; ; > 0. Spa-
tial variability in g; ;/1; ; for an event can be modeled by a
probability distribution with support on the set of all positive
numbers. Another metric could be used such as the ratio o
total event runoff to rainfallg; ;/r; ;. However, this metric
has an upper bound of 1 given that total runoff cannot excee

total rainfall org; ; < r; ;. Thus, by comparison, this metric - . .
9i.j =11 y P addition, most rainfall-runoff models use point-scale equa-

would need to be modeled by a probability distribution with . . )
: . ions and observations to represent runoff generation at larger
support restricted to values less than one. A transformation o : = )
scales, e.g. the hillslope scale, yet the validity of this bottom-

a commonly used distribution would be needed in this case. L
up representation is unclear.

. Model resu!ts given in Sech.3are encouraging given the Based on basin- and point-scale observations in GCEW,
different possible sources of error. Sources include model as- . . _
we have hypothesized that hillslope water loss is inversely re-

sumptions, parameter estimation, and our representation ciated to a function of a lognormal random variable. We have

—time rainfall. In particular, in the model lication . .
space-time rainia particular, in the model applicatio then developed a top-down model both to test this physical-

we have used linear regression to obtajrfor eventi = 2 statistical hypothesis and to provide a method of generatin
and, by model construction, have assumed that this value i5 yp P 9 9

o . ensembles of runoff from a large number of hillslopes in a
the same for each unnested bagitJsing this value, model ) : 9 P
) basin. The basis of the model is an observed, previously un-
results do conserve mass in a mean sense. It can be shown

that model results are sensitive to the valuexgf for in- reported, rescaling prgperty of rungifs Tss.ratlos. The mode
AR . obeys water balance in a mean statistical sense, a mode of
stance, ifay is arbitrarily set to 04 then model runoff no-

. . infa2SS conservation found both in the theory of random cas-
ticeably exceeds observed runoff. We also estimated rainfal ; . : -

. : . o , . cades for modeling rainfall and turbulence and in statisti-
fields using a simple spatial-interpolation method applied toCal hvsics. The runofi-loss model supports our phvsical-
rainfall data from 31 rain gauges. Other methods that better PRYSICS. pp phy

estimate the high spatial variability of rainfall, when it exits, statistical hypothe3|s, as shown b_y EZ. Ok .
. We have given an example application of the model using a
could change model results. Nonetheless, there were no obvi-

. ; : . rainfall-runoff event in GCEW, where we have observations
ous problems in applying our model due to rainfall estimates,

possibly because rainfall tends to cover GCEW completerOf streamflow at multiple locations and reasonable estimates

. . of spatial-mean rainfall depth at the basin, unnested basin,
during rainfall-runoff events.

We have developed the runofi-loss model in the Contextand hillslope scales. Model-generated values of water loss

S . and runoff for hillslopes in GCEW were used to obtain cor-

of a lognormal distribution. The events we examined support : ; .

o . . responding model values for unnested basins. Comparison

such a distribution, but it should also be possible to use an :

i o S : of model-generated and observed values for unnested basins
empirical distribution, one which is not necessarily lognor-

mal. Empirical CDFs of rescaled runglss ratios could be support the model. Our results also reveal that hillslope wa-

used instead of assuming lognormality. An algorithm Couldter losses for an event can impact the spatial scaling of event

: runoff. Future tests of the model should use other rainfall-
then be used to sample rescaled ruyio8s ratios from the . .
o A runoff events that collectively span a broad range of rainfall
empirical distributions.

Observations presented in Se&6were used to hypothe- conditions. Unresolved issues have been identified in testing

. . : the model against data, and these also require future research.
size that hillslope water loss should be inversely related to a T
The runoff-loss model can be used to constrain simula-

function of a lognormal distribution. Indeed, our model indi- .. . ) .
S . . tions of time-varying runoff at the hillslope scale where data
cates that the distribution of hillslope loss for an evieintan . ! .
A are unavailable. For example, suppose there is a need to sim-
unnested basi is given by S . .
ulate water loss in time at the hillslope scale during a known
(LijkYij = i) ir,-,j,K/(exp(a,-)yf;a}A’Ky’LN(O, o2 +1), (20) 'ral'r1fallfrunoﬁ e;vent in QCEW. Such a simulation, mvglvmg
’ infiltration, ET, interception, and subsequent runoff, will pro-
which shows this relationship. This result, obtained from vide values of total loss and total runoff for each hillslope in
a top-down approach, supports our physical-statisticalthe basin. These values will depend on the parameterization

7 Conclusions

Understanding the physical basis of observed scaling in peak
flows in rainfall-runoff events@gden and Dawdy2003
Gupta et al.2010 requires that runoff generation be mod-
?Ied at a large number of hillslopes in a river basin. This
need is challenging to meet because direct measurements
é’f processes that produce runoff generation at hillslopes are
generally unavailable or spatially limited within a basin. In
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and description of processes in the simulation. The simu-+eller, W.: An Introduction to Probability Theory and Its Applica-
lation, its parameterization and formulation, could be con- tions, Vol. 1, 3rd Edn., Wiley, 1968.

strained by matching simulated values of total loss and toFurey, P. R. and Gupta, V. K.: Effects of excess rainfall on the tem-
tal runoff with those determined from the runoff-loss model. ~ Poral variability of observed peak-discharge power laws, Adv.
Our approach has potential applications in a diverse range of \ater Resour., 28, 1240-1253, 2005. o

applied and theoretical research contexts where Simula,[iOﬁBargour|-EIIouzea, E. and Bargaoui, Z.: Investigation with Kendall

f ff tion f a larae number of hillslopes is re- plots of infiltration index — maximum rainfall intensity relation-
0 !’UI’:jO generation from ge nu : P ship for regionalization, Phys. Chem. Earth, Parts A/B/C, 34,
quired.
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