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Abstract. We address the synthesis of distributed control
policies to enable a swarm of homogeneous mobile sensors
to maintain a desired spatial distribution in a geophysical
flow environment, or workspace. In this article, we assume
the mobile sensors (or robots) have a “map” of the envi-
ronment denoting the locations of the Lagrangian coherent
structures or LCS boundaries. Using this information, we de-
sign agent-level hybrid control policies that leverage the sur-
rounding fluid dynamics and inherent environmental noise
to enable the team to maintain a desired distribution in the
workspace. We discuss the stability properties of the ensem-
ble dynamics of the distributed control policies. Since re-
alistic quasi-geostrophic ocean models predict double-gyre
flow solutions, we use a wind-driven multi-gyre flow model
to verify the feasibility of the proposed distributed control
strategy and compare the proposed control strategy with a
baseline deterministic allocation strategy. Lastly, we validate
the control strategy using actual flow data obtained by our
coherent structure experimental testbed.

1 Introduction

Geophysical flows are naturally stochastic and aperiodic, yet
exhibit coherent structure. Coherent structures are of signifi-
cant importance since knowledge of them enables the predic-
tion and estimation of the underlying geophysical fluid dy-
namics. In realistic ocean flows, these time-dependent coher-
ent structures, or Lagrangian coherent structures (LCS), are
similar to separatrices that divide the flow into dynamically
distinct regions, and are essentially extensions of stable and
unstable manifolds to general time-dependent flows (Haller
and Yuan, 2000). As such, they encode a great deal of global

information about the dynamics and transport of the fluidic
environment. For two-dimensional (2-D) flows, ridges of lo-
cally maximal finite-time Lyapunov exponent (FTLE) (Shad-
den et al., 2005) values correspond, to a good approximation
(though seeHaller, 2011), to Lagrangian coherent structures.
Details regarding the derivation of the FTLE can be found in
the literature (Haller, 2000, 2001, 2002; Shadden et al., 2005;
Lekien et al., 2007; Branicki and Wiggins, 2010).

Recent years have seen the use of autonomous underwater
and surface vehicles (AUVs and ASVs) for persistent mon-
itoring of the ocean to study the dynamics of various bio-
logical and physical phenomena, such as plankton assem-
blages (Caron et al., 2008), temperature and salinity profiles
(Lynch et al., 2008; Wu and Zhang, 2011; Sydney and Pa-
ley, 2011), and the onset of harmful algae blooms (Zhang
et al., 2007; Chen et al., 2008; Das et al., 2010). These stud-
ies have mostly focused on the deployment of single, or small
numbers of AUVs working in conjunction with a few sta-
tionary sensors and ASVs. While data collection strategies
in these studies are driven by the dynamics of the processes
they study, most existing works treat the effect of the sur-
rounding fluid as solely external disturbances (Das et al.,
2010; Williams and Sukhatme, 2012), largely because of our
limited understanding of the complexities of ocean dynam-
ics. Recently, LCS have been shown to coincide with op-
timal trajectories in the ocean which minimize the energy
and the time needed to traverse from one point to another
(Inanc et al., 2005; Senatore and Ross, 2008). And while re-
cent works have begun to consider the dynamics of the sur-
rounding fluid in the development of fuel efficient navigation
strategies (Lolla et al., 2012; DeVries and Paley, 2011), they
rely mostly on historical ocean flow data and do not employ
knowledge of LCS boundaries.
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A drawback to operating both active and passive sensors in
time-dependent and stochastic environments like the ocean is
that the sensors will escape from their monitoring region of
interest with some finite probability. This is because the es-
cape likelihood of any given sensor is not only a function
of the unstable environmental dynamics and inherent noise,
but also the amount of control effort available to the sensor.
Since the LCS are inherently unstable and denote regions
of the flow where escape events occur with higher proba-
bility (Forgoston et al., 2011), knowledge of the LCS are of
paramount importance in maintaining a sensor in a particular
monitoring region.

In order to maintain stable patterns in unstable flows,
the objective of this work is to develop decentralized con-
trol policies for a team of autonomous underwater vehicles
(AUVs) and/or mobile sensing resources to maintain a de-
sired spatial distribution in a fluidic environment. Specifi-
cally, we devise agent-level control policies which allow in-
dividual AUVs to leverage the surrounding fluid dynamics
and inherent environmental noise to navigate from one dy-
namically distinct region to another in the workspace. While
our agent-level control policies are devised using a priori
knowledge of manifold/coherent structure locations within
the region of interest, execution of these control strategies by
the individual robots is achieved using only information that
can be obtained via local sensing and local communication
with neighboring AUVs. As such, individual robots do not
require information on the global dynamics of the surround-
ing fluid. The result is a distributed allocation strategy that
minimizes the overall control-effort employed by the team
to maintain the desired spatial formation for environmental
monitoring applications.

While this problem can be formulated as a multi-task
(MT), single-robot (SR), time-extended assignment (TA)
problem (Gerkey and Mataric, 2004), existing approaches do
not take into account the effects of fluid dynamics coupled
with the inherent environmental noise (Gerkey and Mataric,
2002; Dias et al., 2006; Dahl et al., 2006; Hsieh et al., 2008;
Berman et al., 2008). The novelty of this work lies in the
use of nonlinear dynamical-systems tools and recent results
in LCS theory applied to collaborative robot tracking (Hsieh
et al., 2012) to synthesize distributed control policies that en-
ables AUVs to maintain a desired distribution in a fluidic en-
vironment.

The paper is structured as follows: we formulate the prob-
lem and outline key assumptions in Sect.2. The development
of the distributed control strategy is presented in Sect.3 and
its theoretical properties are analyzed in Sect.4. Section5
presents our simulation methodology, results, and discussion.
We end with conclusions and directions for future work in
Sect.6.

2 Problem formulation

Consider the deployment ofN mobile sensing resources
(AUVs/ASVs) to monitorM regions in the ocean. The ob-
jective is to synthesize agent-level control policies that will
enable the team to autonomously maintain a desired distri-
bution across theM regions in a dynamic and noisy fluidic
environment. We assume the following kinematic model for
each AUV:

q̇k = uk + v
f
qk k ∈ {1, . . . ,n}, (1)

whereqk = [xk, yk, zk]
T denotes the vehicle’s position,uk

denotes the 3×1 control input vector, andvfqk denotes the
velocity of the fluid experienced/measured by thekth vehicle.

In this work, we limit our discussion to 2-D planar flows
and motions and thus we assumezk is constant for allk. As
such,vfqk is a sample of a 2-D vector field denoted byF(q)
atqk whosez component is equal to zero,i.e., Fz(q)= 0, for
all q. Since realistic quasi-geostrophic ocean models exhibit
multi-gyre flow solutions, we assumeF(q) is provided by
the 2-D wind-driven multi-gyre flow model given by

ẋ =−πAsin(π
f (x, t)

s
)cos(π

y

s
)−µx+ η1(t), (2a)

ẏ = πAcos(π
f (x, t)

s
)sin(π

y

s
)
df

dx
−µy+ η2(t), (2b)

ż= 0, (2c)

f (x, t)= x+ εsin(π
x

2s
)sin(ωt +ψ). (2d)

When ε = 0, the multi-gyre flow is time-independent,
while for ε 6= 0, the gyres undergo a periodic expansion and
contraction in thex direction. In Eq. (2), A approximately
determines the amplitude of the velocity vectors,ω/2π gives
the oscillation frequency,ε determines the amplitude of the
left–right motion of the separatrix between the gyres,ψ is
the phase,µ determines the dissipation,s scales the dimen-
sions of the workspace, andηi(t) describes a stochastic white
noise with mean zero and standard deviationσ =

√
2I , for

noise intensityI . Figure2a and b show the vector field of a
two-gyre model and the corresponding FTLE curves for the
time-dependent case.

Let W denote an obstacle-free workspace with flow dy-
namics given by Eq. (2). We assume a tessellation ofW
such that the boundaries of each cell roughly corresponds
to the stable/unstable manifolds or LCS curves quantified
by maximum FTLE ridges as shown in Fig.2. In gen-
eral, it may be unreasonable to expect small resource con-
strained autonomous vehicles to be able to track the LCS lo-
cations in real time. However, LCS boundary locations can
be determined using historical data, ocean model data, e.g.,
data provided by the Navy Coastal Ocean Model (NCOM)
databases, and/or data obtained a priori using LCS tracking
strategies similar toHsieh et al.(2012). This information can
then be used to obtain an LCS-based cell decomposition of

Nonlin. Processes Geophys., 20, 657–668, 2013 www.nonlin-processes-geophys.net/20/657/2013/



K. Mallory et al.: Allocation of swarms in gyre flows 659TEXT: TEXT 3

(a) (b)

Fig. 1. (a) Vector field and (b) FTLE field of the model given by (2)
for two gyres with A= 10, µ= 0.005, ε= 0.1, ψ = 0, I = 0.01,
and s= 50. LCS are characterized by regions with maximum FTLE
measures (denoted by red). In 2D flows, regions with maximum
FTLE measures correspond to 1D curves.

real time. However, LCS boundary locations can be deter-
mined using historical data, ocean model data, e.g., data pro-
vided by the Navy Coastal Ocean Model (NCOM) databases,
and/or data obtained a priori using LCS tracking strategies
similar to (Hsieh et al., 2012). This information can then be165

used to obtain an LCS-based cell decomposition ofW . Fig.
2 shows two manual cell decompositions of the workspace
where the cell boundaries roughly correspond to maximum
FLTE ridges. In this work, we assume the tessellation ofW
is given and do not address the problem of automatic tessella-170

tion of the workspace to achieve a decomposition where cell
boundaries correspond to LCS curves.

A tessellation of the workspace along boundaries charac-
terized by maximum FTLE ridges makes sense since they
separate regions within the flow field that exhibit distinct dy-175

namic behavior and denote regions in the flow field where
more escape events may occur probabilistically (Forgoston
et al., 2011). In the time-independent case, these boundaries
correspond to stable and unstable manifolds of saddle points
in the system. The manifolds can also be characterized by180

maximum FTLE ridges where the FTLE is computed based
on a backward (attracting structures) or forward (repelling
structures) integration in time. Since the manifolds demar-
cate the basin boundaries separating the distinct dynamical
regions, they are also regions that are uncertain with respect185

to velocity vectors within a neighborhood of the manifold.
Therefore, switching between regions in neighborhoods of
the manifold is influenced both by deterministic uncertainty
as well as stochasticity due to external noise.

Given an FTLE-based cell decomposition of W , let G =190

(V,E) denote an undirected graph whose vertex set V =
{V1, . . . ,VM} represents the collection of FTLE-derived cells
inW . An edge eij exists in the set E if cells Vi and Vj share a
physical boundary or are physically adjacent. In other words,
G serves as a roadmap for W . For the case shown in Fig.195

2(a), adjacency of an interior cell is defined based on four
neighborhoods. Let Ni denote the number of AUVs or mo-
bile sensing resources/robots within Vi. The objective is to

(a) (b)

Fig. 2. Two examples of LCS-based cell decomposition of the
region of interest assuming a flow field given by (2). These
cell decompositions were performed manually. (a) A 4× 4 time-
independent grid of gyres with A= 0.5, µ= 0.005, ε= 0, ψ = 0,
I = 35, and s= 20. The stable and unstable manifolds of each sad-
dle point in the system is shown by the black arrows. (b) An FTLE
based cell decomposition for a time-dependent double-gyre system
with the same parameters as Fig. 1(b).

synthesize agent-level control policies, or uk, to achieve and
maintain a desired distribution of the N agents across the M200

regions, denoted by N̄ = [N̄1, . . . , N̄M ]T , in an environment
whose dynamics are given by (2).

We assume that robots are given a map of the environ-
ment, G, and N̄. Since the tessellation of W is given, the
LCS locations corresponding to the boundaries of each Vi205

is also known a priori. Additionally, we assume robots co-
located within the same Vi have the ability to communicate
with each other. This makes sense since coherent structures
can act as transport barriers and prevent underwater acoustic
wave propagation (Wang et al., 2009; Rypina et al., 2011).210

Finally, we assume individual robots have the ability to local-
ize within the workspace, i.e., determine their own positions
in the workspace. These assumptions are necessary to en-
able the development of a prioritization scheme within each
Vi based on an individual robot’s escape likelihoods in order215

to achieve the desired allocation. The prioritization scheme
will allow robots to minimize the control effort expenditure
as they move within the set V . We describe the methodology
in the following section.

3 Methodology220

We propose to leverage the environmental dynamics and the
inherent environmental noise to synthesize energy-efficient
control policies for a team of mobile sensing resources/robots
to maintain the desired allocation in W at all times. We as-
sume each robot has a map of the environment. In our case,225

this translates to providing the robots the locations of LCS
boundaries that define each Vi in G. Since LCS curves sep-
arate W into regions with distinct flow dynamics, this be-
comes analogous to providing autonomous ground or aerial
vehicles a map of the environment which is often obtained a230
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based cell decomposition for a time-dependent double-gyre system
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Fig. 2. Two examples of LCS-based cell decomposition of the re-
gion of interest assuming a flow field given by Eq. (2). These
cell decompositions were performed manually.(a) A 4×4 time-
independent grid of gyres withA= 0.5, µ= 0.005,ε = 0, ψ = 0,
I = 35, ands = 20. The stable and unstable manifolds of each sad-
dle point in the system is shown by the black arrows.(b) An FTLE
based cell decomposition for a time-dependent double-gyre system
with the same parameters as Fig.2.

We assume that robots are given a map of the environ-
ment,G, and N̄ . Since the tessellation ofW is given, the
LCS locations corresponding to the boundaries of eachVi
is also known a priori. Additionally, we assume robots co-
located within the sameVi have the ability to communicate
with each other. This makes sense since coherent structures
can act as transport barriers and prevent underwater acoustic
wave propagation (Wang et al., 2009; Rypina et al., 2011).
Finally, we assume individual robots have the ability to local-
ize within the workspace, i.e., determine their own positions
in the workspace. These assumptions are necessary to en-
able the development of a prioritization scheme within each
Vi based on an individual robot’s escape likelihoods in order
to achieve the desired allocation. The prioritization scheme
will allow robots to minimize the control-effort expenditure
as they move within the setV. We describe the methodology
in the following section.

3 Methodology

We propose to leverage the environmental dynamics and the
inherent environmental noise to synthesize energy-efficient
control policies for a team of mobile sensing resources/robots
to maintain the desired allocation inW at all times. We as-
sume each robot has a map of the environment. In our case,
this translates to providing the robots the locations of LCS
boundaries that define eachVi in G. Since LCS curves sep-
arateW into regions with distinct flow dynamics, this be-
comes analogous to providing autonomous ground or aerial
vehicles a map of the environment which is often obtained
a priori. In a fluidic environment, the map consists of the
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locations of the maximum FTLE ridges computed from data
and refined, potentially in real-time, using a strategy simi-
lar to the one found inHsieh et al.(2012). Thus, we assume
each robot has a map of the environment and has the ability
to determine the direction it is moving in within the global
coordinate frame, i.e., the ability to localize.

3.1 Controller synthesis

Consider a team ofN robots initially distributed acrossM
gyres/cells. Since the objective is to achieve a desired allo-
cation of N̄ at all times, the proposed strategy will consist
of two phases: an auction phase to determine which robots
within eachVi should be tasked to leave/stay and an actu-
ation phase where robots execute the appropriate leave/stay
controller.

3.1.1 Auction phase

The purpose of the auction phase is to determine whether
Ni(t) > N̄i and to assign the appropriate actuation strategy
for each robot withinVi . LetQi denote an ordered set whose
elements provide robot identities that are arranged from high-
est escape likelihoods to lowest escape likelihoods fromVi .

In general, to first order we assume a geometric measure
whereby the escape likelihood of any particle withinVi in-
creases as it approaches the boundary ofVi , denoted as∂Vi
(Forgoston et al., 2011). GivenW, with dynamics given by
Eq. (2), consider the case whenε = 0 andI 6= 0, i.e., the case
when the fluid dynamics is time-independent in the pres-
ence of noise. The boundaries between eachVi are given
by the stable and unstable manifolds of the saddle points
within W as shown in Fig.2a. While there exists a stable
attractor in eachVi whenI = 0, the presence of noise means
that robots originating inVi have a non-zero probability of
landing in a neighboring gyreVj whereeij ∈ E . Here, we
assume that robots experience the same escape likelihoods
in each gyre/cell and assume thatPk(¬i|i), the probability
that a robot escapes from regioni to an adjacent region, can
be estimated based on a robot’s proximity to a cell bound-
ary with some assumption of the environmental noise profile
(Forgoston et al., 2011).

Let d(qk,∂Vi) denote the distance between a robotk

located in Vi and the boundary ofVi . We define the
setQi = {k1, . . . ,kNi } such thatd(qk1,∂Vi)≤ d(qk2,∂Vi)≤

. . .≤ d(qNi ,∂Vi). The setQi provides the prioritization
scheme for tasking robots withinVi to leave ifNi(t) > N̄i .
The assumption is that robots with higher escape likelihoods
are more likely to be “pushed” out ofVi by the environment
dynamics and will not have to exert as much control effort
when moving to another cell, minimizing the overall control
effort required by the team.

In general, a simple auction scheme can be used to deter-
mineQi in a distributed fashion by the robots inVi (Dias
et al., 2006). If Ni(t) > N̄i , then the firstNi−N̄i elements of

Qi , denoted byQiL ⊂Qi , are tasked to leaveVi . The number
of robots inVi can be established in a distributed manner in a
similar fashion. The auction can be executed periodically at
some frequency 1/Ta whereTa denotes the length of time be-
tween each auction and should be greater than the relaxation
time of the AUV/ASV dynamics.

3.1.2 Actuation phase

For the actuation phase, individual robots execute their as-
signed controllers depending on whether they were tasked
to stay or leave during the auction phase. As such, the indi-
vidual robot control strategy is a hybrid control policy con-
sisting of three discrete states: aleave state,UL , a stay
state,US, which is further distinguished intoUSA andUSP.
Robots who are tasked toleave will executeUL until they
have leftVi or until they have been once again tasked to
stay . Robots who are tasked tostay will executeUSP if
d(qk,∂Vi) > dmin andUSA otherwise. In other words, if a
robot’s distance to the cell boundary is below some mini-
mum threshold distancedmin, then the robot will actuate and
move itself away from∂Vi . If a robot’s distance to∂Vi is
abovedmin, then the robot will execute no control actions.
Robots will executeUSA until they have reached a state
whered(qk,∂Vi) > dmin or until they are tasked to leave at
a later assignment round. Similarly, robots will executeUSP

until eitherd(qk,∂Vi)≤ dmin or they are tasked to leave. The
hybrid robot control policy is given by

UL(qk)= ωi × c
F (qk)

‖F (qk)‖
, (3a)

USA (qk)=−ωi × c
F (qk)

‖F (qk)‖
, (3b)

USP(qk)= 0. (3c)

Here, ωi = [0, 0, 1]T denotes counterclockwise rotation
with respect to the centroid ofVi , with clockwise rotation
being denoted by the negative andc is a constant that sets the
linear speed of the robots. The hybrid control policy gener-
ates a control input perpendicular to the velocity of the fluid
as measured by robotk1 and pushes the robot towards∂Vi if
UL is selected, away from∂Vi if USA is selected, or results in
no control input ifUSP is selected The hybrid control policy
is summarized by Algorithm1 and Fig.3.

In general, the auction phase is executed at a frequency
of 1/Ta which means robots also switch between controller
states at a frequency of 1/Ta. To further reduce actuation ef-
forts exerted by each robot, it is possible to limit a robot’s ac-
tuation time to a period of timeTc ≤ Ta. Such a scheme may
prolong the amount of time required for the team to achieve
the desired allocation, but may result in significant energy-
efficiency gains. We further analyze the proposed strategy in
the following sections.

1The inertial velocity of the fluid can be computed from the
robot’s flow-relative velocity and position.
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Algorithm 1 Auction phase

1: if ElapsedT ime == Ta then
2: DetermineNi(t) andQi
3: ∀k ∈Qi
4: if Ni(t) > N̄i then
5: if k ∈QL then
6: uk← UL
7: else
8: uk← US
9: end if

10: else
11: uk← US
12: end if
13: end if

4 Analysis

In this section, we discuss the theoretical feasibility of the
proposed distributed allocation strategy. Instead of the tradi-
tional agent-based analysis, we employ a macroscopic anal-
ysis of the proposed distributed control strategy given by
Algorithm 1 and Eq. (3). We first note that while the sin-
gle robot controller shown in Fig.3 results in an agent-level
stochastic control policy, the ensemble dynamics of a team
of N robots each executing the same hybrid control strat-
egy can be modeled using apolynomial stochastic hybrid
system(pSHS). The advantage of this approach is that it al-
lows the use of moment closure techniques to model the time
evolution of the distribution of the team across the various
cells. This, in turn, enables the analysis of the stability of the
closed-loop ensemble dynamics. The technique was previ-
ously illustrated inMather and Hsieh(2011). For complete-
ness, we briefly summarize the approach here and refer the
interested reader toMather and Hsieh(2011) for further de-
tails.

The system state is given byN(t)= [N1(t), . . . ,NM(t)]T .
As the team distributes across theM regions, the rate in
which robots leave a givenVi can be modeled using con-
stant transition rates. For every edgeeij ∈ E , we assign a
constantaij > 0 such thataij gives the transition probability
per unit time for a robot fromVi to land inVj . Different from
Mather and Hsieh(2011), theaijs are a function of the pa-
rametersc, Tc, andTa of the individual robot control policy
is given by Eq. (3), the dynamics of the surrounding fluid,
and the inherent noise in the environment. Furthermore,aij
is a macroscopic description of the system and thus a param-
eter of the ensemble dynamics rather than the agent-based
system. As such, the macroscopic analysis is a description of
the steady-state behavior of the system and becomes exact as
N approaches infinity.

GivenG and the set ofaijs, we model the ensemble dy-
namics as a set of transition rules of the form:

Ni
aij
−→Nj ∀ eij ∈ E . (4)
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1: if ElapsedT ime== Ta then
2: Determine Ni(t) and Qi
3: ∀k ∈Qi
4: if Ni(t)> N̄i then
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6: uk← UL
7: else
8: uk← US
9: end if

10: else
11: uk← US
12: end if
13: end if

Fig. 3. Schematic of the single-robot hybrid robot control policy.

4 Analysis330

In this section, we discuss the theoretical feasibility of the
proposed distributed allocation strategy. Instead of the tradi-
tional agent-based analysis, we employ a macroscopic anal-
ysis of the proposed distributed control strategy given by Al-
gorithm 1 and (3). We first note that while the single robot335

controller shown in Fig. 3 results in an agent-level stochastic
control policy, the ensemble dynamics of a team of N robots
each executing the same hybrid control strategy can be mod-
eled using a polynomial stochastic hybrid system (pSHS).
The advantage of this approach is that it allows the use of mo-340

ment closure techniques to model the time evolution of the
distribution of the team across the various cells. This, in turn,
enables the analysis of the stability of the closed-loop en-
semble dynamics. The technique was previously illustrated
in (Mather and Hsieh, 2011). For completeness, we briefly345

summarize the approach here and refer the interested reader
to (Mather and Hsieh, 2011) for further details.

The system state is given by N(t) = [N1(t), . . . ,NM (t)]
T .

As the team distributes across the M regions, the rate in
which robots leave a given Vi can be modeled using con-350

stant transition rates. For every edge eij ∈ E , we assign a

constant aij > 0 such that aij gives the transition probability
per unit time for a robot from Vi to land in Vj . Different from
Mather and Hsieh (2011), the aijs are a function of the pa-
rameters c, Tc, and Ta of the individual robot control policy355

(3), the dynamics of the surrounding fluid, and the inherent
noise in the environment. Furthermore, aij is a macroscopic
description of the system and thus a parameter of the ensem-
ble dynamics rather than the agent-based system. As such,
the macroscopic analysis is a description of the steady-state360

behavior of the system and becomes exact as N approaches
infinity.

Given G and the set of aijs, we model the ensemble dy-
namics as a set of transition rules of the form:

Ni
aij−−→Nj ∀ eij ∈ E . (4)365

The above expression represents a stochastic transition rule
with aij as the per unit transition rate andNi(t) andNj(t) as
discrete random variables. In the robotics setting, (4) implies
that robots at Vi will move to Vj with a rate of aijNi. We
assume the ensemble dynamics is Markovian and note that in370

general aij 6= aji and aij encodes the inverse of the average
time a robot spends in Vi.

Given (4) and employing the extended generator we can
obtain the following description of the moment dynamics of
the system:375

d
dtE[N] = AE[N] (5)

where [A]ij = aji and [A]ii =−
∑

(i,j)∈E aij (Mather and
Hsieh, 2011). It is important to note that A is a Markov pro-
cess matrix and thus is negative semidefinite. This, coupled380

with the conservation constraint
∑

iNi =N leads to expo-
nential stability of the system given by (5) (Klavins, 2010).

In this work, we note that aijs can be determined experi-
mentally after the selection of the various parameters in the
distributed control strategy. While the aijs can be chosen to385

enable the team of robots to autonomously maintain the de-
sired steady-state distribution (Hsieh et al., 2008), extraction
of the control parameters from user specified transition rates
is a direction for future work. Thus, using the technique de-
scribed by Mather and Hsieh (2011), the following result can390

be stated for our current distributed control strategy

Theorem 1 Given a team of N robots with kinematics given
by (1) and vf given by (2), the distributed allocation strategy
given by Algorithm 1 and (3), at the ensemble level is stable
and achieves the desired allocation strategy.395

For the details of the model development and the proof, we
refer the interested reader to (Mather and Hsieh, 2011).

5 Simulation Results

We validate the proposed control strategy described by Al-
gorithm (1) and (3) using three different flow fields:400

Fig. 3.Schematic of the single-robot hybrid robot control policy.

The above expression represents a stochastic transition
rule with aij as the per unit transition rate andNi(t) and
Nj (t) as discrete random variables. In the robotics setting,
Eq. (4) implies that robots atVi will move toVj with a rate
of aijNi . We assume the ensemble dynamics is Markovian
and note that in generalaij 6= aji andaij encodes the inverse
of the average time a robot spends inVi .

Given Eq. (4) and employing the extended generator we
can obtain the following description of the moment dynamics
of the system:

d
dtE[N] = AE[N], (5)

where [A]ij = aji and [A]ii =−
∑
(i,j)∈E aij (Mather and

Hsieh, 2011). It is important to note thatA is a Markov pro-
cess matrix and thus is negative semidefinite. This, coupled
with the conservation constraint

∑
iNi =N leads to expo-

nential stability of the system given by Eq. (5) (Klavins,
2010).

In this work, we note thataijs can be determined experi-
mentally after the selection of the various parameters in the
distributed control strategy. While theaijs can be chosen to
enable the team of robots to autonomously maintain the de-
sired steady-state distribution (Hsieh et al., 2008), extraction
of the control parameters from user specified transition rates
is a direction for future work. Thus, using the technique de-
scribed byMather and Hsieh(2011), the following result can
be stated for our current distributed control strategy:

Theorem 1 Given a team ofN robots with kinematics given
by Eq.(1) andvf given by Eq.(2), the distributed allocation
strategy given by Algorithm1 and Eq.(3), at the ensemble
level is stable and achieves the desired allocation strategy.
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For the details of the model development and the proof, we
refer the interested reader toMather and Hsieh(2011).

5 Simulation results

We validate the proposed control strategy described by Al-
gorithm (1) and Eq. (3) using three different flow fields:

1. the time invariant wind driven multi-gyre model given
by Eq. (2) with ε = 0;

2. the time varying wind driven multi-gyre model given by
Eq. (2) for a range ofω 6= 0 andε 6= 0 values; and

3. an experimentally generated flow field using different
values ofTa andc in Eq. (3).

We refer to each of these as Cases 1, 2, and 3, respectively.
Two metrics are used to compare the three cases. The first is
the mean vehicle control effort to indicate the energy expen-
diture of each robot. The second is the population root mean
square error (RMSE) of the resulting robot population distri-
bution with respect to the desired population. The RMSE is
used to show effectiveness of the control policy in achieving
the desired distribution.

All cases assume a team ofN = 500 robots. The robots are
randomly distributed across the set ofM gyres inW. For the
theoretical models, the workspaceW consists of a 4×4 set
of gyres, and eachVi ∈ V corresponds to a gyre as shown in
Fig.2a. We considered three sets sets of desired distributions,
namely a ring formation, a block formation, and an L-shaped
formation as shown in Fig.4. The experimental flow data had
a set of 3×4 regions. The inner two cells comprisedW, while
the complement,WC , consisted of the remaining cells. This
designation of cells helped to isolate the system from bound-
ary effects, and allowed the robots to escape the center gyres
in all directions. The desired pattern for this experimental
data set was for all the agents to be contained within a single
cell. Each of the three cases was simulated a minimum of five
times and for a long enough period of time until steady-state
was reached.

5.1 Case I: time-invariant flows

For time-invariant flows, we assumeε = 0, A= 0.5, s =
20, µ= 0.005, andI = 35 in Eq. (2). For the ring pattern,
we consider the case when the actuation was applied for
Tc= f Ta amount of time wheref = 0.1,0.2, . . . ,1.0, and
Ta= 10. For the block and L-shape patterns, we considered
the cases whenTc= 0.5Ta and Tc= Ta. The final popula-
tion distribution of the team for the case with no controls and
the cases with controls for each of the patterns are shown in
Fig. 5.

We compared our results to a baseline deterministic allo-
cation strategy where the desired allocation is pre-computed
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Fig. 4. Three desired distributions of the team of N = 500 mobile
sensing resources/robots. (a) A Ring pattern formation, (b) a Block
pattern formation, and (c) an L-shaped pattern formation. Each box
represents a gyre and the number designates the desired number of
robots contained within each gyre.
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the Block and L-Shape patterns, we considered the cases
when Tc = 0.5Ta and Tc = Ta. The final population distri-
bution of the team for the case with no controls and the cases
with controls for each of the patterns are shown in Fig. 5.

(a) No Control (b) Ring
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Fig. 5. Histogram of the final allocations in the time-invariant
flow field for the swarm of (a) passive robots exerting no con-
trols and robots exerting control forming the (b) Ring pattern with
Tc = 0.8Ta at t= 450, (c) Block pattern with Tc = Ta at t= 450,
and (d) L-shape pattern with Tc = 0.5Ta at t= 450.

Tc 2 5 8 9 10 Baseline
Ring Pattern 12.99 5.98 3.45 3.49 3.66 4.09
Block Pattern - 11.21 - - 12.72 -
L Pattern - 30.09 - - 30.45 -

Table 1. Summary of the RMSE for each simulation pattern at
t=450 with the time-invariant flow field.

We compared our results to a baseline deterministic allo-440

cation strategy where the desired allocation is pre-computed
and individual robots follow fixed trajectories when navigat-
ing from one gyre to another. For this baseline case, robots
travel in straight lines at fixed speeds using a simple PID
trajectory follower and treat the surrounding fluid dynamics445

as an external disturbance source. The RMSE results for all
patterns are summarized in Table 1 and Fig. 6. The cumula-
tive control effort per agent is shown in Fig. 7. From Fig. 6,
we see that our proposed control strategy performs compa-
rable to the baseline case especially when Tc = Ta = 10 sec.450

In fact, even when Tc < Ta, our proposed strategy achieves
the desired distribution. The advantage of the proposed ap-
proach lies in the significant energy gains when compared to
the baseline case, especially when Tc < Ta, as seen in Fig.
7. We omit the cumulative control effort plots for the other455

cases since they are similar to Fig. 7.
In time-invariant flows, we note that for large enough Tc,

our proposed distributed control strategy performs compara-
ble to the baseline controller both in terms of steady-state
error and convergence time. As Tc decreases, less and less460

Fig. 4. Three desired distributions of the team ofN = 500 mobile
sensing resources/robots.(a) A ring pattern formation,(b) a block
pattern formation, and(c) an L-shaped pattern formation. Each box
represents a gyre and the number designates the desired number of
robots contained within each gyre.
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rable to the baseline case especially when Tc = Ta = 10 sec.450

In fact, even when Tc < Ta, our proposed strategy achieves
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Fig. 5. Histogram of the final allocations in the time-invariant flow
field for the swarm of(a) passive robots exerting no controls and
robots exerting control forming the(b) ring pattern withTc= 0.8Ta
at t = 450, (c) block pattern withTc= Ta at t = 450, and(d) L-
shape pattern withTc= 0.5Ta at t = 450.

and individual robots follow fixed trajectories when navigat-
ing from one gyre to another. For this baseline case, robots
travel in straight lines at fixed speeds using a simple PID tra-
jectory follower and treat the surrounding fluid dynamics as
an external disturbance source. The RMSE results for all pat-
terns are summarized in Table1 and Fig.6. The cumulative
control effort per agent is shown in Fig.7a. From Fig.6, we
see that our proposed control strategy performs comparable
to the baseline case especially whenTc= Ta= 10 s. In fact,
even whenTc < Ta, our proposed strategy achieves the de-
sired distribution. The advantage of the proposed approach
lies in the significant energy gains when compared to the
baseline case, especially whenTc < Ta, as seen in Fig.7. We
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Table 1.Summary of the RMSE for each simulation pattern att =

450 with the time-invariant flow field. The RMSE for the baseline
case is 4.09.

Tc 2 5 8 9 10

Ring Pattern 12.99 5.98 3.45 3.49 3.66
Block Pattern – 11.21 – – 12.72
L Pattern – 30.09 – – 30.45

omit the cumulative control effort plots for the other cases
since they are similar to Fig.7.

In time-invariant flows, we note that for large enoughTc,
our proposed distributed control strategy performs compara-
ble to the baseline controller both in terms of steady-state
error and convergence time. AsTc decreases, less and less
control effort is exerted and thus it becomes more and more
difficult for the team to achieve the desired allocation. This
is confirmed by both the RMSE results summarized in Ta-
ble 1 and Fig.6a–c. Furthermore, while the proposed con-
trol strategy does not beat the baseline strategy as seen in
Fig. 6a, it does come extremely close to matching the base-
line strategy performance. while requiring much less control
effort as shown in Fig.7 even at high duty cycles, i.e., when
Tc/Ta> 0.5.

More interestingly, we note that executing the proposed
control strategy at 100 % duty cycle, i.e., whenTc= Ta,
in time-invariant flows did not always result in better per-
formance. This is true for the cases whenTc= 0.5Ta= 5
for the block and L-shaped patterns shown in Fig.6b–c.
In these cases, less control effort yielded improved perfor-
mance. However, further studies are required to determine
the critical value ofTc when less control yields better over-
all performance. In time-invariant flows, our proposed con-
troller can more accurately match the desired pattern while
using approximately 20 % less effort when compared to the
baseline controller.

5.2 Case II: time-varying flows

For the time-varying, periodic flow, we assumeA= 0.5,
s = 20,µ= 0.005,I = 35, andψ = 0 in Eq. (2). Addition-
ally, we considered the performance of our control strategy
for different values ofω andε with Ta= 10 andTc= 8 for
the ring formation andTc= 5 for the L-shaped formation. In
all these simulations, we use the FTLE ridges obtained for
the time-independent case to define the boundaries of each
Vi . The final population distribution of the team for the case
with no controls and the cases with controls for the ring and
L-shape patterns are shown in Fig.8. The final population
RMSE for the cases with differentω andε values for the ring
and L-shape patterns are shown in Fig.9. These figures show
the average of 10 runs for eachω andε pair. In each of these
runs, the swarm of mobile sensors were initially randomly
distributed within a 4×4 grid cell. Finally, Fig.10 shows

TEXT: TEXT 7

Fig. 6. Comparison of the population RMSE in the time-varying
flow for the (a) Ring formation, (b) the Block formation, and (c) the
L-shape formation for different Tc, and for the PID control baseline
controller in the Ring case with time-invariant flows.

Fig. 7. Comparison of the total control effort for the Ring pattern for
different Tc with the baseline controller for time-invariant flows.

control effort is exerted and thus it becomes more and more
difficult for the team to achieve the desired allocation. This is
confirmed by both the RMSE results summarized in Table 1
and Fig. 6(a)-6(c). Furthermore, while the proposed control
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baseline controller.
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For the time-varying, periodic flow, we assume A= 0.5,
s= 20, µ= 0.005, I = 35, and ψ = 0 in (2). Additionally,
we considered the performance of our control strategy for485

different values of ω and ε with Ta = 10 and Tc = 8 for the
Ring formation and Tc = 5 for the L-shaped formation. In
all these simulations, we use the FTLE ridges obtained for
the time-independent case to define the boundaries of each
Vi. The final population distribution of the team for the case490

with no controls and the cases with controls for the Ring and
L-shape patterns are shown in Fig. 8. The final population
RMSE for the cases with different ω and ε values for the
Ring and L-shape patterns are shown in Fig. 9. These figures
show the average of 10 runs for each ω and ε pair. In each495

of these runs, the swarm of mobile sensors were initially ran-
domly distributed within the grid of 4× 4 cells. Finally, Fig.

Fig. 6. Comparison of the population RMSE in the time-invariant
flow for the(a) ring formation,(b) the block formation, and(c) the
L-shape formation for differentTc, and for the PID control baseline
controller in the ring case with time-invariant flows.

the population RMSE as a function of time for the ring and
L-shape patterns.

In time-varying, periodic flows we note that our proposed
control strategy is able to achieve the desired final allocation
even at 80 % duty cycle, i.e.,Tc= 0.8Ta. This is supported
by the results shown in Fig.9. In particular, we note that the
proposed control strategy performs quite well for a range of
ω andε parameters for both the ring and L-shape patterns.
While the variation in final RMSE values for the ring pattern
is significantly lower than the L-shape pattern, the variations
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of 60 s. Figure11 shows the top view of our experimental
testbed and the resulting flow field obtained via PIV. Further
details regarding the experimental testbed can be found in
Michini et al. (2013). Using this data, we simulated a swarm
of 500 mobile sensors executing the control strategy given by
Eq. (3).

To determine the appropriate tessellation of the
workspace, we used the LCS ridges obtained for the
temporal mean of the velocity field. This resulted in the
discretization of the space into a grid of 4×3 cells. Each
cell corresponds to a single gyre as shown Fig.12. The cells
of primary concern are the central pair and the remainder
boundary cells were not used to avoid boundary effects and
to allow robots to escape the center gyres in all directions.
The robots were initially uniformly distributed across the
two center cells and all 500 robots were tasked to stay within
the upper center cell. When no control effort is exerted by
the robots, the final population distribution achieved by the
team is shown in Fig.13a. With controls, the final population
distribution is shown in Fig.13b. The control strategy was
applied assumingTc/Ta= 0.8. The final RMSE for different
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Fig. 10. Comparison of RMSE over time for select ω and ε pairs for
the (a) Ring and (b) L-shaped patterns in periodic flows.
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In this work, we presented the development of a distributed
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sired spatial distribution in a stochastic geophysical fluid en-
vironment. We assumed robots have a map of the workspace
which in the fluid setting is akin to having some estimate of
the global fluid dynamics. This can be achieved by knowing
the locations of the material lines within the flow field that555

separate regions with distinct dynamics. Using this knowl-
edge, we leverage the surrounding fluid dynamics and inher-
ent environmental noise to synthesize energy efficient con-
trol strategies to achieve a distributed allocation of the team
to specific regions in the workspace. Our initial results show560

that using such a strategy can yield similar performance as
deterministic approaches that do not explicitly account for
the impact of the fluid dynamics while reducing the control
effort required by the team.

For future work we are interested in using actual ocean565

flow data to further evaluate our distributed allocation strat-
egy in the presence of jets and eddies (Rogerson et al., 1999;
Miller et al., 2002; Kuznetsov et al., 2002; Mancho et al.,
2008; Branicki et al., 2011; Mendoza and Mancho, 2012).
We also are interested in using more complicated flow mod-570

els including a bounded single-layer PDE ocean model (For-
goston et al., 2011), a multi-layer PDE ocean model (Wang
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Fig. 11. (a) Experimental setup of flow tank with 12 driven cylin-
ders. (b) Flow field for image (a) obtained via particle image ve-
locimetry (PIV).

Fig. 12. FTLE field for the temporal mean of the experimental ve-
locity data. The field is discretized into a grid of 4× 3 cells whose
boundaries are shown in black.
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which in the fluid setting is akin to having some estimate of
the global fluid dynamics. This can be achieved by know-
ing the locations of the material lines within the flow field
that separate regions with distinct dynamics. Using this
knowledge, we leverage the surrounding fluid dynamics and
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Fig. 13. Population distribution for a swarm of 500 mobile sensors
over a period of 60 sec (a) with no controls, i.e., passive, and (b)
with controls with Tc = 0.8Ta.
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Fig. 14. (a) Final RMSE for different values of c and Ta using the
experimental flow field. Tc/Ta = 0.8 is kept constant throughout.
(b) RMSE over time for select c and Ta parameters on an exper-
imental flow field. The duty cycle Tc/Ta = 0.8 is kept constant
throughout.

et al., 2009; Lolla et al., 2012), and realistic 2D and 3D un-
bounded flow models provided by the Navy Coastal Ocean
Model (NCOM) database. Particularly, we are interested in575

extending our strategy to non-periodic, time-varying flows.
In addition, we are currently developing an experimental
testbed capable of generating complex 2D flows in a con-
trolled laboratory setting. The objective is to be able to eval-
uate the proposed control strategy using experimentally gen-580

erated flow field data whose dynamics are similar to real-
istic ocean flows. Finally, since our proposed strategy re-
quires robots to have some estimate of the global fluid dy-
namics, another immediate direction for future work is to de-
termine how well one can estimate the fluid dynamics given585

knowledge of the locations of Lagrangian coherent structures
(LCS) in the flow field.
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Navy Coastal Ocean Model (NCOM) database. Particularly,
we are interested in extending our strategy to non-periodic,
time-varying flows. In addition, we are currently developing
an experimental testbed capable of generating complex 2-D
flows in a controlled laboratory setting. The objective is to
be able to evaluate the proposed control strategy using ex-
perimentally generated flow field data whose dynamics are
similar to realistic ocean flows. Finally, since our proposed
strategy requires robots to have some estimate of the global
fluid dynamics, another immediate direction for future work
is to determine how well one can estimate the fluid dynam-
ics given knowledge of the locations of Lagrangian coherent
structures (LCS) in the flow field.
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