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Abstract. Rain and cloud fields produced by fully nonlin-
ear idealized cloud resolving numerical simulations of oro-
graphic convective precipitation display statistical multiscal-
ing behavior, implying that multifractal diagnostics should
provide a physically robust basis for the downscaling and
sub-grid scale parameterizations of moist processes. Our re-
sults show that the horizontal scaling exponent function (and
respective multiscaling parameters) of the simulated rainfall
and cloud fields varies with atmospheric and terrain proper-
ties, particularly small-scale terrain spectra, atmospheric sta-
bility, and advective timescale. This implies that multifractal
diagnostics of moist processes for these simulations are fun-
damentally transient, exhibiting complex nonlinear behavior
depending on atmospheric conditions and terrain forcing at
each location. A particularly robust behavior found here is
the transition of the multifractal parameters between stable
and unstable cases, which has a clear physical correspon-
dence to the transition from stratiform to organized (banded
and cellular) convective regime. This result is reinforced by a
similar behavior in the horizontal spectral exponent. Finally,
our results indicate that although nonlinearly coupled fields
(such as rain and clouds) have different scaling exponent
functions, there are robust relationships with physical under-
pinnings between the scaling parameters that can be explored
for hybrid dynamical-statistical downscaling.

1 Introduction

It is often observed that air masses impinging upon a moun-
tain range lead to the development of an orographic cloud
with shallow embedded convective structures, which change
the rainfall pattern and amount considerably, and can lead

to localized extreme values of rainfall. These localized ex-
tremes present a great challenge for forecasters and are re-
sponsible for mountain hazards including landslides, debris
flows and flash floods.

The notion that embedded convective structures are the re-
sult of exponential growth of small-scale disturbances in an
unstable stratified layer (Kuo, 1963) motivated the applica-
tion of linear stability analyses to gain insight on the dynam-
ics of orographic convective precipitation, including the esti-
mation of the unstable growth rate,ω, for each small-scale
disturbance mode of wavenumberk = (kx,ky,kz) (Fuhrer
and Schär, 2005):

ω =

√
−N2

m

k2
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whereNm is the moist Brunt–Väisälä frequency of the satu-
rated layer (as defined by Emanuel, 1994), which has a nega-
tive value in the moist unstable case. In this inviscid formula-
tion, the linear model predicts maximum growth for infinites-
imally small horizontal wavelengths. Admitting that small-
scale disturbances are ubiquitous in the real atmosphere,
this does not agree with the observed finite spacing between
bands observed in nature, e.g., in western Kyushu in Japan
(Yoshizaki et al., 2000), in the Cévennes region in southern
France (Miniscloux et al., 2001; Cosma et al., 2002) and the
Oregon Coastal Range (Kirshbaum and Durran, 2005b; Kir-
shbaum et al., 2007b). Kirshbaum et al. (2007a) developed a
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606 M. Nogueira et al.: Toward subgrid-scale predictability

new (also inviscid) linear model that includes an upstream
stable region where stationary small-scale lee waves are
triggered and subsequently used as the initial disturbances
for the convective region. Their model agrees with the re-
sults from numerical simulations that showed that such lee
waves play a dominant role in triggering and organizing
banded convection with finite spacing (Kirshbaum and Dur-
ran, 2005a; Fuhrer and Schär, 2007). Using both linear stabil-
ity analysis and idealized numerical simulations, additional
factors were also found to be important such as (i) cloud
depth (which determines the minimum value ofkz allowed
in Eq. 1) (Kirshbaum and Durran, 2004); (ii) the advec-
tive timescale, i.e., the in-cloud residence time of air parcels
which can be controlled by mean wind speed and mountain
width (Furher and Schär, 2005); (iii) dry stability outside the
cloud layer (Kirshbaum and Durran 2005a); and (iv) cloud
base height (Kirshbaum et al., 2007a).

A different approach to the problem has gradually devel-
oped concurrent but separately in the last thirty years, where
the (statistical) scaling behavior of physical processes is ex-
plored. In these processes the statistical properties of a field
at different scales are related by a scale-changing operation
(generally a power law) that involves only the scale ratio and
a scaling exponent, the simplicity of which is very appealing
for statistical downscaling applications. In geophysical fields
it is usually found that the scaling is determined not by one,
but by an infinity of scaling exponents given by the scaling
exponent function, i.e., they are multiscaling. Schertzer and
Lovejoy (1987) proposed a functional form for this function,
the universal multifractal (UM) model, briefly presented in
Sect. 4. There are a number of publications reporting mul-
tiscaling behavior in various geophysical fields, including
cloud and rain fields, over various temporal (see e.g., de Lima
and de Lima, 2009 for a review) and spatial ranges, e.g.,
Schertzer and Lovejoy (1987). Nykanen (2008) found scal-
ing on horizontal maps of radar rain reflectivity; Gupta and
Waymire (1993) found scaling on spatial fields of oceanic
rainfall; Tessier et al. (1993) and Barros et al. (2004) found
scaling in satellite-based fields of cloud radiances. Recently,
Lovejoy et al. (2008a) looked at TRMM product 2A25 near
surface reflectivity from rain measurements and found evi-
dence of multiplicative cascades from planetary scales down
to a few kilometers (∼ 4 km, the data set resolution) in the en-
semble averaged scaling statistics. Also, note that the 2A25
product is an orbit based product with limited dimensions in
the direction perpendicular to the satellite movement. They
argued that the UM model with well posed fixed values of
the scaling parameters is a good approach when considering
the entire range of scales. Stolle et al. (2009) showed that
data from global models (including ERA40 reanalysis and
NOAA GFS) also accurately follow cascade statistics from
nearly 20 000 km down to around 100 km, where there was a
cut off by hyper viscosity of the numerical model linked to
grid resolution.

However, there is no consensus on the specific values of
the scaling exponents (and associated UM parameters) and
scaling ranges in the literature, although some of the differ-
ences might be attributed to sample size or differences in
measurements (sensors, measurement methods or measure-
ment errors, etc.). Another view is that the scaling exponents
vary depending on contextual environmental conditions, and
therefore the observed variations can be attributed in part to
physical processes. Over and Gupta (1994) also used 2-D
oceanic rainfall fields from GATE (GARP Atlantic Tropical
Experiment), and proposed a relation between a scaling pa-
rameter and large-scale average rain (argued to be an index
of synoptic-scale weather conditions); Perica and Foufoula-
Georgiou (1996) related scaling parameters computed from
horizontal rainfall radar fields to the Convective Available
Potential Energy (CAPE) of the pre-storm environment over
the same area; Deidda (2000) and Deidda et al. (2004) also
found a dependency in one of their scaling parameters com-
puted from radar reflectivity on the large-scale mean rainfall
rate; and more recently Nykanen (2008) linked the variation
in the values of the multiscale statistical parameters com-
puted from radar rainfall fields to the underlying topographic
elevation, predominant orographic forcing and storm loca-
tion, and movement relative to the orographic cross sections.
These results suggest that UM parameters vary from event to
event, or case study to case study as a function of atmospheric
conditions, and local terrain parameters. If this behavior can
be translated into robust relationships between UM parame-
ters of particular states (e.g., precipitation) and the specific
physical processes that determine the space-time evolution
of these states (e.g., moist convection), then inference and
induction modeling approaches can be used to develop quan-
titative dynamical models of the state of interest relying on
knowledge of the specific physical processes alone. For in-
stance, to predict precipitation fields over a wide range of
spatial scales knowing atmospheric stability conditions and
precipitation at one (coarser) scale. This type of modeling
could be used to formulate parameterizations of unresolved
processes in numerical weather and climate prediction mod-
els, and to predict states at spatial resolutions much finer than
those resolved by models or observations, i.e., downscaling.
In practical terms, this requires investigating possible rela-
tionships between physical properties and statistical param-
eters that would allow statistical downscaling from coarse to
fine resolutions.

In the present work scaling analysis is performed on the
output of highly idealized numerical simulations, in particu-
lar on surface accumulated rainfall fields and horizontal cross
sections of cloud water mixing ratios at several vertical lev-
els. This gives us the opportunity to investigate horizontal
scaling at several vertical levels at the same time, obtain-
ing a horizontal scaling regime for 3-D physically consis-
tent fields, instead of 2-D fields used previously in the litera-
ture (see above). The behavior of the scaling parameters for
varying configurations of small-scale terrain and upstream
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M. Nogueira et al.: Toward subgrid-scale predictability 607

profiles is investigated under different idealized climatologi-
cal regimes (presented in Sect. 2), aiming to find physically
based relationships between scaling parameters and atmo-
spheric and terrain properties that can be estimated systemat-
ically from coarser resolution simulations. The paper is orga-
nized as follows: Sect. 2 presents the numerical setup; a sum-
mary interpretation of the simulation results in light of the
linear theories is presented in Sect. 3; and the empirical scal-
ing analysis is presented in Sect. 4. The multifractal analysis
based on the statistical moments and the UM model is briefly
presented in Sect. 4.1. These methods are then applied to the
simulations results and the variation of the scaling properties
with simulation parameters is investigated for both 2-D rain
and cloud fields (Sect. 4.2) and 3-D cloud fields (Sect. 4.3).
The scaling in different fields is compared in Sect. 4.4. In
Sect. 4.5, scaling analysis based on Fourier power spectra is
performed on the 3-D cloud fields. The final section (Sect. 5)
presents a summary and discussion of the main results.

2 Numerical simulations

The numerical model Advanced Weather and Research Fore-
casting (WRF-ARW) version 3.1 (Skamarock et al., 2008)
is used to perform idealized cloud resolving simulations of
conditionally unstable moist flow impinging upon a Gaussian
shaped ridge (defined by Eq. 3), elongated on the cross-flow
direction,y, and with a maximum terrain heighthm = 600 m.
When the flow is lifted by orography, it saturates and releases
latent heat generating an unstable orographic cloud where the
embedded convective structures will develop.

h(x,y)= (3)
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Decay parametersσx and σy are 12.5 and 5 km, respec-
tively, and the center of the ridge is defined at(xc,yc) =

(80,60) km. The resulting modified Gaussian ridge is repre-
sented in Fig. 1a. In all simulations the horizontal resolution
is 250 m and there are 70 vertical terrain-following levels, un-
equally distributed over the 15 km of the domain, with verti-
cal spacing stretching from lower to higher levels in order to
have better resolution in the region where orographic clouds
will develop. A Rayleigh damping layer is introduced in the
top 5 km to reduce spurious reflections at the top. To simplify
the problem, the parameterizations for radiation or surface
and boundary layer are turned off, and the effects of earth’s
rotation are also neglected. The 3-D Smagorinsky scheme is
used for sub-grid turbulence closure.

Fig. 1. Horizontal maps of topographic elevation (in meters) for
simulations:(a) CTL and(b) Sst10km. The inner black square rep-
resents the domain of interest where the scaling analysis computa-
tions are performed.

These highly idealized simulations are based on previous
works of Kirshbaum and Durran (2005a, b) and Kirshbaum
et al. (2007a, b) where the authors showed that they repro-
duce essential features of observed convective bands in the
Oregon Coastal Range. The model resolution is fine enough
to resolve the convective scale (see e.g., Fuhrer and Schär,
2007), and thus it is assumed that these simulations repre-
sent the appropriate convective structures. However, there are
two important differences between the present simulations
and previous work: (i) the Thompson microphysics scheme
(available in WRF 3.1) including cold microphysics is used
in this study instead of warm rain schemes, which may be dif-
ficult to justify in the case of orographic precipitation simula-
tions; (ii) the large-scale orography is a finite length ridge and
open boundary conditions are used in this study for all lateral
boundaries instead of a quasi-1-D ridge with periodic bound-
ary conditions in they boundaries. Periodic boundary condi-
tions used in previous studies would reintroduce small-scale
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608 M. Nogueira et al.: Toward subgrid-scale predictability

disturbances in the domain reinforcing certain wavelengths,
and would not allow the upstream stable flow to flow around
the ridge, eventually forcing it all to transpose the orographic
barrier.

The upstream profiles are also highly idealized, initially
being horizontally homogeneous. In order to constrain the
parameter space, they are defined in a very simple manner
by a background flow in thex direction (V = W = 0) with-
out shear (U(z) = const), a constant stable dry Brunt–Väisälä
frequency (Nd = 0.01 s−1), a constant surface temperature,
Ts and a relative humidity profile defined by three sepa-
rate layers: RH= 90 % from the surface to 2500 m, followed
by linear decay from 90 % to 1 % from 2500 m to 3500 m,
and then RH= 1 % above 3500 m. Small-scale topography is
added by superposing a 2-D sinusoidal field with a maximum
amplitude of 50 m (which is less than 10 % ofhm), and the
same wavelength in thex andy directions (lsstx = lssty = lsst)

(Fig. 1b). The base case simulation, called Sst10km, has
lsst= 10 km,Ts = 285 K andU = 10 ms−1. A population of
simulations is built from the base case by varying one of the
simulation parameters (lsst, Ts andU ) at a time, while keep-
ing the other parameters constant (see Table 1 for a sum-
mary of the population of WRF simulations conducted in this
study). The particular choice of parameters derives from the
physical intuition given by linear stability analysis on embed-
ded convection briefly presented above. In this simple setup
N2

m is varied by varyingTs and the advective timescale,τadv,
is varied by varyingU . The control simulation CTL has no
small-scale terrain.

3 Dynamical interpretation: linear stability analysis

Simulation CTL shows weak and relatively disorganized
banded structures with a spacing between them on the or-
der of the minimum wavelength that can be represented by
the model horizontal resolution (Fig. 2a), consistent with the
inviscid linear model in the absence of small-scale terrain.
Here, the small-scale disturbances required for convective
triggering should be introduced either by physical mecha-
nisms (e.g., adjustment of the initial profiles to the large-
scale terrain), or nonphysical numerical errors. This is not
a particularly relevant case for the atmosphere where small-
scale roughness is always present at the surface, triggering
lee waves that will play a dominant effect in embedded con-
vection as discussed above. This fact becomes clear by com-
parison of CTL with simulations that have small-scale ter-
rain, the latter showing intense and well-organized convec-
tive rain bands aligned parallel to the mean wind (Fig. 2b, c,
d), with significant precipitation enhancement: total domain
precipitation can be more than doubled and maximum local
rainfall intensity can increase more than 17 times, depend-
ing onlsst (Table 2). These results are qualitatively similar to
Kirshbaum et al. (2007a) linear model predictions. However,
for a single scale of terrain variability the analytical model

Table 1.Summary of WRF simulations population.

Simulation lsst (km) U (m s−1) Ts (K)

CTL – 10 285
Sst10km 10 10 285
Sst4km 4 10 285
Sst5km 5 10 285
Sst8km 8 10 285
Sst12km 12 10 285
Sst15km 15 10 285
Sst10km_T272.5 10 10 272.5
Sst10km_T275 10 10 275
Sst10km_T276 10 10 276
Sst10km_T277.5 10 10 277.5
Sst10km_T280 10 10 280
Sst10km_T282.5 10 10 282.5
Sst10km_T287.5 10 10 287.5
Sst10km_T290 10 10 290
Sst10km_T292.5 10 10 292.5
Sst10km_U5 10 5 285
Sst10km_U12.5 10 12.5 285
Sst10km_U15 10 15 285
Sst5km_T275 5 10 275
Sst5km_T277.5 5 10 277.5
Sst5km_T280 5 10 280
Sst5km_290 5 10 290

predicts a band spacing equal tolsst whereas our simulations
show banding withlsst/2 spacing. The reason is that while
the linear model assumes that the upstream cloud edge posi-
tion is fixed, the numerical simulations show that bands can
form at differentx positions, generated by terrain features
that are 90◦ out of phase, a nonlinear effect not captured by
the linear model.

Although the idealized analytical models give interesting
insights on governing parameters and physical mechanisms,
they fail to predict the correct pattern except in particular ide-
alized cases, and they are unable to produce realistic quanti-
tative results. Besides different cloud edge positions, the lin-
ear models are also unable to capture other nonlinear effects
observed in the numerical simulations such as decay of con-
vective structures, different intensities between bands in the
same simulation, and band narrowing (see Kirshbaum et al.,
2007a). Furthermore, the linear models should only be valid
(at most) in the initial stage of convective growth, while dis-
turbance amplitudes are small. Thus, nonlinear models are
necessary to improve our knowledge of embedded convec-
tion, and for quantitative predictions. In the next section,
one particularly promising nonlinear model based on cascade
scaling models from turbulence is introduced.

Nonlin. Processes Geophys., 20, 605–620, 2013 www.nonlin-processes-geophys.net/20/605/2013/



M. Nogueira et al.: Toward subgrid-scale predictability 609

Fig. 2. Horizontal maps ofP 5h
ac (black isolines at values 1, 10 and 50 mm/5h), and terrain height (gray scale, inm) for simulations(a) CTL,

(b) Sst5km,(c) Sst10km and(d) Sst15km.

4 Empirical scaling analysis

4.1 The universal multifractal model

The existence of scale invariance in atmospheric fields is of-
ten investigated by analyzing their statistical moments, which
are expected to obey the generic multiscaling relation:

〈ϕ
q
λ 〉 = λK(q), (4)

where the angled brackets represent the statistical average,q

is the moment order generalized to any positive real number,
λ =

L0
l

is the scale ratio,L0 being the outer scale of the cas-
cade (the largest scale of variability) andl the scale of the
observation, or simulation.ϕλ is a quantity that is on aver-
age conserved from scale to scale in a similar way to what
happens in turbulence cascade models. The turbulent flux is
non-dimensionalized and normalized, such that〈ϕλ〉 = 1. In
general geophysical fields are multifractals, i.e. the exponent
K is a nonlinear function ofq, and thus an infinity of expo-
nents are required to characterize the scaling behavior. How-
ever, one can use the UM framework to model the variation
of K with q for a conserved process, reducing the problem
to two parameters (α andC1; Schertzer and Lovejoy, 1987):

K (q) =


C1

α−1 (qα
− q), a 6= 1

C1q log(q) , a = 1
, (5)

The Levy index,α, defined in the interval [0,2], indicates
the degree of multifractality (α = 0 for monofractals); and
the co-dimension of the mean singularity,C1, describes the
sparseness or non-homogeneity of the mean of the process.
The moment order must be positive (q > 0) in this frame-
work.

Table 2. Local maximum and domain total ofP 5h
ac field in simula-

tions with different small-scale terrain wavelengths.

Simulation Local maximumP 5h
ac Total domainP 5h

ac
(mm/5h) (mm/5h)× 104

CTL 11.2 3.79
Sst4km 33.3 6.97
Sst5km 64.0 7.38
Sst8km 154.2 8.75
Sst10km 153.3 9.70
Sst12km 192.1 9.29
Sst15km 170.7 8.38

There is no physical basis to assume that a general ob-
servable,f , (e.g., wind, temperature, rainfall, etc.) should be
conserved on a scale by scale basis. In analogy with turbu-
lence models, we may expect that observable fluctuations,
1f (l), over a distance,l, are related to a general turbulent
conserved flux,ϕl , by

1f (l) = ϕ
η
l lH . (6)

A third universal multifractal parameter is introduced in
Eq. (6): the Hurst exponent (or nonconservation parameter),
H . In a conservative process〈ϕλ〉 = cte, and thusH = 0 and
K(1) = 0. But in the general case, the mean has a depen-
dence on scale,< 1f >∼ lH . The other exponent,η, de-
pends on the particular field being analyzed. Note that Eq. (6)
is a generalization of the classical laws of turbulence. For
example, in the Kolmogorov (1941) law for turbulent ve-
locity fluctuations:1v(l) = ε1/3l1/3, we have thatH = 1/3,
η = 1/3 andϕl = ε. In this case the observable (turbulent

www.nonlin-processes-geophys.net/20/605/2013/ Nonlin. Processes Geophys., 20, 605–620, 2013



610 M. Nogueira et al.: Toward subgrid-scale predictability

wind field, v) is not the direct result of a multiplicative cas-
cade that role being reserved for the (cascade conserved)
energy flux,ε. The cascade conserved flux can have more
complex forms that include nonlinear interactions of differ-
ent fluxes, e.g., the Corsin–Obukhov law for passive scalar
advection (Obukhov, 1949; Corsin, 1951):1ρ(l) = ξ1/3l1/3,
whereξ = ϕl = χ3/2ε−1/2, χ being the scalar variance flux.
In these classic turbulence cases, the laws relating the ob-
servable fluctuations and conserved turbulent fluxes can be
obtained from the governing dynamical equations, assuming
isotropy, and via dimensional analysis. For rain and cloud
processes (which generally cannot be assumed to behave as
passive scalars), the values ofη andH are unknown, and so
is the physical nature of the conserved flux. However it is
still possible to perform scaling analysis. We start by taking
the simplifying assumptionη = 1, as usually done in similar
previous works, noticing that ifϕλ is a pure multiplicative
cascade then that is also true forϕ

η
λ , although with differ-

ent C1 values (e.g., Tessier et al., 1993; Stolle et al., 2009).
The next step is to remove the influence of thelH term. One
method used for this purpose is to rely on the absolute value
of a finite difference gradient to compute the fluctuations at
the highest resolution available,1f (lres) (see e.g., Lavallée
et al., 1993; Tessier et al., 1993):

ϕ
η
λ = 1f (lres) =

{[
f (x + lres,y) − f (x,y)

]2 (7)

+
[
f (x,y + lres) − f (x,y)

]2
}1/2

.

The flux estimates given by Eq. (7) are systematically de-
graded to lower resolutions (lower values ofλ) by spatial av-
eraging. The Double Trace Moment (DTM) technique (e.g.,
Lavallée et al., 1993) can be used subsequently to estimate
α andC1. Notice that the values of the UM parameters esti-
mated from data generated by numerical models are not the
same as the ones obtained from observations due to cascade
cutoff by model resolution and model domain, but it is pos-
sible to convert between them (Stolle et al., 2009). Never-
theless, incorrect representation of physical processes in the
models cannot be corrected. In the present work we aim only
to investigate the variation of the UM parameters in numer-
ical simulations with similar setup, so no conversion is re-
quired.

Spectral analysis can also be used to investigate the be-
havior of a field over a wide range of scales. The spatial
Fourier power spectrum,E(kx,ky), is computed by multi-
plying the 2-D fast Fourier transform of a field by its com-
plex conjugate, wherekx andky are the wavenumber compo-
nents. The power spectrum is then averaged angularly about(
kx,ky

)
= (0,0) to yield what is usually called isotropic

power spectrumE(k), with k =

√
k2
x + k2

y . Spatial scaling

invariance manifests itself as log–log linearity of the power
spectrum in space:

E(k) ∼ k−β−1, (8)

whereβ is the spectral exponent and the addition of−1 in
the exponent is required due radial averaging is phase space
(e.g., Turcotte, 1992; Lovejoy et al., 2008b). Least square
regression is used to estimateβ from a log–log plot ofE(k)

againstk.
The spectral exponent is related to the UM parameters by

(Tessier et al., 1993)

β = 1+ 2H − K(2). (9)

Finally, we estimateH from the slope of the log–log plot
of the first order structure function against the lag, as de-
scribed by Harris et al. (2001), Nykanen (2008) and Lovejoy
et al. (2008a, b).

4.2 Scaling in simulated 2-D fields

The empirical scaling analysis described above is applied to
surface accumulated precipitation spatial fields over 5 h sim-
ulations,P 5h

ac . Here the constant value 80 km (scaling analy-
sis domain length) was used for the cascade outer scale,L0.
Changing the chosen value ofL0 has no effect on the es-
timated value of the slope of the fitted lines, i.e., onK(q)

and respective UM parameter estimation. Figure 3a–c show
log–log plots ofMq againstλ for P 5h

ac fields for three dif-
ferent simulations. The lines are only fitted to the range of
scales that are well resolved by the model, i.e., larger than
51x(= 1.25 km) and smaller than aboutL0/4(= 20 km). For
q ≤ 2 the linear fits are good implying that statistical scale
invariance predicted by Eq. (4) is a good representation, and
that there are no characteristic scales or scale breaks for the
considered ranges ofq andλ (from ∼ 1 to ∼ 20 km). This
range ofq is similar to the ones found in literature for sim-
ilar analysis (e.g Douglas and Barros, 2003; Lovejoy et al.,
2008a, b; Nykanen, 2008; de Lima and de Lima, 2009). Some
simulations show persistent deviations from linear behavior
at particular scales, but the relation between these scales and
lsst varies between simulations, suggesting that the small-
scale terrain wavelength is not (statistically) a characteristic
scale in the rain fields. The same spatial scaling analysis was
repeated for theP 5h

ac fields resulting from all simulations in
Table 1, all of them showing the same robust scaling behavior
(linear relations).

The scaling exponent function,K(q), and respective UM
parameters can be used to quantify the multifractal behavior.
Figure 4 shows that forq < 2 there is a very robust match
between the empirically estimated scaling exponent func-
tion, K(q), (i.e., slopes of the fitted lines in log–log plots
of Mq againstλ) from P 5h

ac fields for the different simula-
tions and the UM model curves (solid lines), computed from
Eq. (5) with the UM parameters obtained from DTM tech-
nique, which is consistent with the literature (e.g., Nykanen,
2008; Lovejoy et al. 2008a; Stolle et al., 2009, among oth-
ers). It is also important to notice the variation ofK(q) with
varying simulation attributes (lsst, Ts and τadv). This vari-
ation is quantified in Fig. 5 (black line) usingC1 and α,
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Fig. 3.Relationship betweenMq andλ for different values ofq. Mq

is computed fromP 5h
ac from simulation(a) Sst5km,(b) Sst10km,(c)

Sst15km. The scales considered on the analysis are marked by “o”
while “x” marks the ones not considered. The plots are on a log–log
scale.

which display a complex nonlinear variation with simula-
tion attributes. A particularly remarkable feature is the abrupt
transition in both UM parameters forTs between 275 K and
285 K. The transition has a physical correspondence when
interpreted against the spatial rainfall patterns (red lines in
Fig. 6), capturing the evolution from terrain-following (more
stratiform) and less intense rainfall fields in the colder sim-
ulation cases to well-organized and intense bands for simu-
lations at intermediate temperatures. For warmer simulations
the rainfall pattern changes again to more intense but less or-
ganized (more cellular) convective features (Fig. 6d), and the
UM parameters also show variation (Fig. 5c and d). These
differences in convective dynamics have important effects in

Fig. 4.The scaling exponent function,K(q) for (a) varyinglsst, (b)
varying Ts with lsst= 10 km and(c) varying U with lsst= 10 km.
The empirical estimatedK(q) is showed with markers and the UM
model fit is represented by full line.

rainfall intensities and patterns leading to high localized rain-
fall accumulation values (Table 3, and see also Kirhsbaum
and Durran, 2005b and Fuhrer and Schär, 2007).

The same analysis was performed on instantaneous hori-
zontal cross sections of cloud water mixing ratio,qc, at two
different levels (the height ofqc maximum intensity,zqc max
andz = 1100 m) after 3, 4 and 5 h of simulation, correspond-
ing to the mature stage when the convective structures are
fully grown. Figure 7 illustrates the robust scaling of mo-
ments ofqc fields atzqc max for three different simulations.
The same behavior is found for cloud fields in all simula-
tions in Table 1, at all the analyzed times and heights. The
UM parameters computed fromqc also display complex non-
linear variation with simulation properties (red line atzqc max
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Table 3.Local maximum ofP 5h
ac , qc andqi fields and domain totalP 5h

ac for simulations with different temperature profiles.

Simulation Local maximum of Total domain Local maximum of Local maximum of
P 5h

ac (mm/5h) P 5h
ac (mm/5h)× 104 qc (g kg−1) qi (g kg−1)

Sst10km_T272.5_WR 0.00 0.00 0.53 –
Sst10km_T272.5 1.90 4.79 0.24 0.11
Sst10km_T275 1.75 3.63 0.27 0.13
Sst10km_T276 1.80 3.05 0.33 0.13
Sst10km_T277.5 0.33 0.07 0.71 0.00
Sst10km_T280 23.77 1.20 1.10 0.00
Sst10km_T282.5 83.72 2.83 1.34 0.00
Sst10km 153.28 4.68 1.49 0.00
Sst10km_T287.5 143.06 9.20 1.57 0.83
Sst10km_T290 214.45 31.59 1.79 2.13
Sst10km_T292.5 258.87 76.43 2.18 5.25

Fig. 5.Relationship between UM parameters (C1 andα) and:(a, b)
lsst; (c, d)Ts; and(e, f) τadv. Black lines represent values computed
from P 5h

ac , red and blue lines are computed fromqc at zqc max and
z = 1100 m, respectively. Light blue markers are computed from
ice mixing ratio fields at the level of their maximum intensity. “x”,
“o”, “ �” markers represent simulation times 05:00 h, 04:00 h and
03:00 h, respectively.

and blue atz = 1100 m in Fig. 5). In particular the transi-
tion between colder and warmer cases is again clear. Both
α andC1 show similar values at the different times, due to
the quasi-stationary state of the convective structures that is

Fig. 6. Horizontal cross sections ofP 5h
ac (red isolines),qc fields

at zqc max at 04:00 h (black isolines) andqi at the level of its
maximum intensity at 04:00 h (blue isolines) from simulations
(a) Sst10km_T272.5,(b) Sst10km_T277.5,(c) Sst10km and(d)
Sst10km_T290. Grayscale represents topographic elevation (in me-
ters).

attained in these simulations. Comparison of the scaling pa-
rameters computed fromqc fields at different vertical levels
shows vertical variation of both UM parameters, although the
shape of the curve is largely preserved. Notice that thezqc max
level varies between simulations and with time, and it can
sometimes capture different structures and cause significant
variations of the parameters. This explains some values that
seem to fall outside the curves: for example the value ofC1
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Fig. 7.Relationship betweenMq andλ for different values ofq. Mq

is computed fromqc atzqc max at 04:00 h for simulation(a) Sst5km,
(b) Sst10km and(c) Sst15km. The scales considered on the analysis
are marked by “o” while “x” marks the ones not considered. The
plots are on a log–log scale.

for Sst15km at 05:00 h computed fromqc at zqc max is quite
different from the one at 04:00 h, which is easily understood
by examining Fig. 8: in Sst10km thezqc max level crosses the
core of the cloud band, the same happening for Sst15km at
04:00 h, while at Sst15km at 05:00 h it is actually crossing
a region of instabilities that has formed on the top region of
the band, resulting in a different horizontal pattern and asso-
ciated scaling parameters. The large variation inC1 for the
largest advective timescaleτadv at different times has a simi-
lar explanation.

The cumulative rainfall field analyzed here is viewed as
representative of the entire simulated convective rain event.
It is important to stress that a time integrated quantity will
depend on the evolution of the system during the integra-

Fig. 8. Cross sections (xz) of qc at they position of its maximum
intensity for simulations(a) Sst10km at 04:00 h,(b) Sst15km at
04:00 h and(c) Sst15km at 05:00 h. The solid black line represents
topography. The upper and lower black dashed lines represent the
levelszqc max andz = 1100 m, respectively.

tion interval and the specific quantitative values of scaling
parameters should change during this period due to the tran-
sient nature of the interactions among various physical pro-
cesses. Presently, at this stage of the research, the analysis
is focused on the spatial properties of the accumulated pre-
cipitation fields for a specific time of integration in a manner
consistent with standard rainfall observations that consist of
rainfall accumulations over a measurement timescale. Down-
scaling is critical to obtain robust spatial distributions of rain-
fall for use in hydrological studies and applications.

4.3 Scaling in cloud simulated fields – 3-D analysis

The previous section showed a vertical variation of 2-D hori-
zontal UM parameters. One possibility to avoid the complex
problem of knowing the vertical variation of horizontal scal-
ing exponents is to consider each horizontal level (different
height) as a realization of the field and average over these
several realizations, obtaining a single set of horizontal UM
parameters representative of the horizontal scaling for the en-
tire volume. The moments averaged over several vertical lev-
els show improved linear fits as compared to the 2-D cases
for all simulations (Fig. 9), and in particularly for higher or-
der moments, which should be explained by the larger data
sample size considered. Like in the 2-D case, some persistent
deviations are identifiable but they have smaller amplitudes,
and the particular scales for each simulation between 2- and
3-D cases are different, providing support to the notion of
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Fig. 9. Relationship betweenMq andλ for different values ofq.
Mq is computed fromqc at 04:00 h for simulations(a) Sst5km,(b)
Sst10km,(c) Sst15km. The scales considered on the analysis are
marked by “o” while “x” marks the ones not considered. The plots
are on log–log scale.

absence of characteristic scales. The presence of scaling be-
havior for the entire volume implies that concurrent spatial
structures (e.g., band core region, instabilities at the top of
the bands, clouds that form downstream of the large scale
orography, among others, Fig. 8) fall in the same average
horizontal scaling regime. The scaling behavior in the ver-
tical direction is not investigated here due to data limitations
associated with the limited number of vertical levels in the
model (see Sect. 2) together with the fact that we are looking
at instantaneous realizations of fields rather than ensemble
average statistics. But in other cases it could be investigated
using a different set of UM parameters to describe anisotropy

Fig. 10. C1 andα computed from 3-D averages ofqc horizontal
fluctuations against:(a, b) lsst, (c, d) Ts and(e, f) τadv. Black lines
represent values computed fromP 5h

ac . Green, blue and red lines are
computed fromqc. The light blue markers lines are computed from
qi . “x”, “o” and “ �” markers represent simulation times 05:00 h,
04:00 h and 03:00 h, respectively.

between horizontal and vertical directions (see e.g., Lovejoy
et al., 1987; Lazarev et al., 1994; Radkevich et al., 2007).

As in the 2-D case, the UM parameters vary with mean at-
mospheric and terrain properties (Fig. 10). Figure 10a shows
C1 decreasing withlsst while Fig. 10b shows there is little
variation ofα with lsst. Figure 10c and d show the abrupt tran-
sitions in both scaling parameters with changes inTs, further
providing support for this result. Recall that in these idealized
simulations the temperature profiles and cloud layer stability
are determined byTs. However, in more realistic profiles this
will not generally be true. Linear stability analysis suggests
that a good alternative is to characterize the atmospheric en-
vironment using a (spatial) averageN2

m value. This average is
computed at each time instant and only from points that ex-
ceed a fixed (arbitrary)qc threshold (e.g., 0.01 g kg−1) as it is
defined only in saturated regions. Figure 11a and b show that
the abrupt transition corresponds to the transition between
the stable (N2

m > 0) and unstable (N2
m < 0) cases. For larger

negative values,N2
m < −2.5× 10−6 s−2 there is a break in

variability of the UM parameters for small changes inN2
m,

particularly clear inC1. This behavior poses an intriguing
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Fig. 11. C1 andα computed from 3-D averages ofqc horizontal
fluctuations against:(a, b) N2

m; (c, d) cf × N2
m; and (e, f) CAPE.

Blue lines and markers are computed from simulations with vary-
ing Ts andlsst= 10 km, pink from simulations with varyingTs and
lsst= 5 km, red for varyingτadv and green for varyinglsst. Plots(g,
h) showC1 andα against cf×N2

m for all simulations. Black mark-
ers in plots(b) and(h) represent simulation Sst10km (i.e., the base
case). “x”, “o” and “�” markers represent simulation times 05:00 h,
04:00 h and 03:00 h, respectively.

question as to the character of the underlying physics and of
this flow transition for highly unstable flows, not unlike the
transition to high Reynolds numbers in the case of fully de-
veloped turbulence turbulence. The fields with the strongest
instability values are not necessarily the warmer ones as de-
fined by the initial conditions, as the averageN2

m value can be

significantly altered by the release of latent heating or due to
the presence of downstream stable clouds and other features.

To capture the effect of space–time co-localization of
moist instability release and moist processes,N2

m can be mul-
tiplied by a measure of the cloud fraction, cf, defined here
by the ratio of number of grid points that exceed the chosen
qc threshold to the total number of points. This transforma-
tion gives a measure of the overall realized moist instabil-
ity at a given point in time, and provides a physically based
framework to arrange the simulations in the order of colder
(more stable, higher cf× Nm

2) to warmer profiles (more un-
stable, lower cf× Nm

2), consequently yielding more robust
relationships (Fig. 11c and d). Indeed, this result holds for
different values of the threshold, and the transition between
stable and unstable cases becomes clearer in these plots. The
stable region shows nearly constant UM parameters, with
lower values ofC1 associated with a more space filling mean
component in stratiform clouds as compared to more local-
ized convective structures; the region of low realized instabil-
ity corresponds to simulations that produce quasi-stationary
rainbands, in agreement with the numerical experiments of
Kirshbaum and Durran (2005a) who found that marginal po-
tential instability and moderate wind speeds were the most
favorable atmospheric conditions for convective bands to de-
velop. This region displays complex variation of the scal-
ing parameters that might be associated with the presence of
different regimes due to competition between buoyancy and
mechanical generation/dissipation of turbulence. Further in-
vestigation – with a larger population of simulations in this
specific region of instability values – is necessary for further
confirmation of this finding. In particular, the role of wind
shear (usually understood as a mechanical turbulence gener-
ator) in band generation is not clear and requires more de-
tailed analysis. The bands form in the absence of any basic-
state vertical shear (as it is seen in our simulation and also in
Kirshbaum and Durran, 2005a; and Kirhsbaum et al., 2007b),
although wind shear will dynamically develop in these sim-
ulations eventually due, for example, to adjustment to terrain
or formation of localized convective circulations. Kirshbaum
and Durran (2005a) also found that in some cases, wind shear
can actually suppress rainbands. Figure 11c and d also sug-
gest that for higher instability conditions, when free convec-
tion dominates, and corresponding to the more cellular and
disorganized patterns, the parameter variation becomes less
complex.

The quantity cf× Nm
2 is transient, depending on the dy-

namical evolution of the system. In particular, besides vary-
ing with upstream temperature profile, it also varies withτadv
and lsst. Thus we investigate its potential utility as a sin-
gle predictor for the UM parameters for all the simulated
qc fields analyzed here. Figure 11g and h show the UM pa-
rameters for all analyzed simulations. Forα, all the points
seem to fall into a single curve, suggesting cf× Nm

2 might
be used potentially as a single predictor. HoweverC1 shows
variability with lsst (green and pink markers) andτadv (red
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markers), particularly in the region of low instability (sta-
ble cases). Also the pink curves in Fig. 11c, d, and g and
11h show that, for the same initial temperature profiles but
lsst= 5 km instead of 10 km, different values ofC1 are ob-
tained. Thus cf× Nm

2 alone cannot be used as a single pre-
dictor for both UM parameters, and variation withlsst and
τadv has to be considered separately.

As mentioned earlier, Perica and Foufoula-Georgiou
(1996) found a linear dependency of statistical scaling pa-
rameters on another atmospheric stability measure, the Con-
vective Available Potential Energy (CAPE), for a small num-
ber of rainfall fields of selected convective storms over rel-
atively flat topography. This result was tested in our simu-
lated fields which have a wider range of CAPE values, and a
more complex nonlinear relation was obtained (Fig. 11e and
f). Compared toN2

m, the use of CAPE has the disadvantage
that the stable range of the profiles is ambiguous (CAPE= 0
for all stable cases), which presents a problem unless UM
parameters were shown to be constant for all stable cases.
Nevertheless, note that the unstable/stable transition of the
parameters is still clear as CAPE goes to zero, as well as the
complex nonlinear behavior for the small magnitude insta-
bility values – the banded cases – and again less complex
behavior for higher magnitude instability values – cellular
disorganized cases. This is consistent with Kirshbaum and
Durran (2005b) who proposed that the distinction between
more banded and cellular cases is related to enhanced suscep-
tibility to free convection, with larger CAPE implying more
cellular structures. They suggest that Convective INhibtion
(CIN) could be an important parameter as well, but all our
simulations have very small values of CIN and are not suit-
able for such analysis.

4.4 Relations between different scaling fields

In both 2- and 3-D analysis, UM parameters computed from
P 5h

ac andqc show clear relations for certain ranges of simu-
lation properties, either in the shape of the variation curve in
Fig. 5a, c, d and Fig. 10a, c, d, e, or for the exact values of
the parameter, as can be seen for example in Fig. 5a forC1
computed fromqc atzqc max for lsst≥ 8 km and C1 computed
from z = 1100 m for smallerlsst (also in Fig. 5c, see theC1
computed fromqc at zqc max for Ts ≥ 285 K, and in Fig. 11c
for Ts ≥ 287.5 K). For the 2-D analysis these relationships
depend on the chosen vertical level, sometimes best relating
to the level of maximum intensity, sometimes to some other
level, which makes its use difficult in practical applications,
further supporting the 3-D analysis.

Figures 5c, d and 10c, d show that for colder simula-
tions (Ts ≤ 277.5 K) both UM parameters computed from
P 5h

ac are very similar to the ones computed from ice phase
(snow+ ice+ graupel) mixing ratio fields,qi , which is par-
ticularly remarkable in the 3-D analysis. The role of cold mi-
crophysics on precipitation processes is also clear in simula-
tion Sst10km_T272.5_WR (which is exactly the same as in

Sst10km_T272.5, except that the Kessler warm rain scheme
is used in WRF and ice microphysics is turned off). The
simulation with warm rain processes only produces a cloud
pattern similar to the one including cold microphysics, but
it yields zeroP 5h

ac (Table 3). This result is strengthened by
the fact that below 277.5 K the values of precipitation inten-
sity andqi increase with decreasing temperature (Table 3).
Finally, it is also apparent in Fig. 6a that for the colder
case there is a clear relation between theP 5h

ac (red line) and
qi (blue line) patterns, while theqc (black line) seems to
be more closely related to the underlying topography (grey
scale). If the temperature is slightly raised, bothqi andP 5h

ac
go to zero (Fig. 6b and Table 3). If the temperature is raised
further, well-organized cloud bands form with a clearly asso-
ciatedP 5h

ac pattern and no ice phase (Fig. 6c). Besides varying
N2

m, changingTs also changes the amounts of water in each
phase and the vertical structure of the clouds, particularly the
cloud depth (Fig. 12), which the linear theory also predicts as
being an important parameter in embedded convection. For
the warmer cases considered here, the cloud depth growths
enough so that ice processes become important again (blue
lines in Fig. 6d and Table 3), but the precipitation pattern now
seems to be more related toqc (Fig. 6d). In these warmer
cases, the parameterC1 from P 5h

ac seems to relate better to
qc while α seems to relate better toqi (Fig. 10c, d). Over-
all, these results suggest that scaling of the simulated total
precipitation fields is a complex function of the scaling of
several other fields including water mixing ratio in the differ-
ent phases, and probably also small-scale terrain spectra and
τadv. That is, the scaling of the integral precipitation fields
reflects the underlying governing physical processes, which
change with time and space as weather systems evolve and
propagate over complex terrain.

4.5 Spectral analysis

The isotropic power spectra, described in Sect. 4.1, can also
be used to investigate the spatial scaling of horizontal fields.
Here we average the spectra of instantaneousqc fields over
several vertical levels, similar to what was done in Sect. 4.3
for moment scaling analysis. Figure 13 shows three exam-
ples of log–log power spectra (black lines) computed at sim-
ulation hour 04:00: at the bottom for a colder stable case
(Sst10km_T275), in the middle for an intermediate banded
case (Sst10km), and at the top for a warmer more disor-
ganized convective case (Sst10km_T292.5). Only the scales
well resolved by the model are considered (and represented),
assumed here to be larger than 51x (limited by model resolu-
tion). It is important to keep in mind that Fourier analysis has
the implicit requirement (assumption) of an infinite domain,
and clearly here, as in general in all applications of Fourier
analysis to digital data, we are limited by the domain size of
the grid, to which the analysis is quite sensitive. It was found
that the scale range we considered aboveL0/4 is too large
based on the lack of symmetry of the domain, and the upper
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Fig. 12. Vertical profiles ofqc at the position of their maximum
intensity at 04:00 h, for simulations withlsst= 10 km and varying
Ts.

boundary of the range was reduced to a valueL0/8. Outside
this range, we do not have enough information on the power
spectrum of the field.

The black dashed lines in Fig. 13 are least-square fits to
the considered range of scales (wavenumbers) of the power
spectrum. There is a clear mean linear trend (scaling) in the
log–log power spectra, withR2 values for the least-square
fits always above 0.90. Peaks in the power spectra, particu-
larly evident in the intermediate banded case spectrum (mid-
dle spectra in Fig. 13), are consistent with harmonics re-
sulting from the banded pattern. This behavior is expected
when analyzing single realizations of cloud fields (e.g., Har-
ris et al., 2001), and more so for events over complex ter-
rain when orographic forcing is dominant (e.g., see scaling
analysis in Barros et al., 2004). The scaling analysis was
repeated here for all the simulations withlsst= 10 km and
varying Ts, all of them showing a mean linear trend in the
log–log power spectra. Figure 14 shows that the variation of
fitted values ofβ with cf×N2

m displays similar transitions to
the ones found for UM parameters, between stable/unstable
cases and banded/disorganized convection. The location of
the stable/unstable transition now seems to have been shifted
to values slightly lower thanN2

m = 0. For numerical model-
ing parameterizations or downscaling, the exact location of
this transition should be determined using a large data base
of realistic simulations. Yet, the existence of such transition
alone, which is supported by both spectra and moment scal-
ing analysis and agrees with expected physical behavior such
as for example the Richardson number criteria in boundary
layer stability analysis, is an important finding in itself. The
colder stratiform cases show some spread inβ values that
was not found in the UM parameters, including an unphys-
ical β > 3 value. It should be taken into consideration these
cases have shallower clouds (Fig. 12), which imply fewer

Fig. 13. Log–log plots of isotropic power spectra computed from
horizontalqc field at 04:00 h averaged over several vertical levels,
from simulations: Sst10km_T292.5 (top), Sst10km (middle) and
Sst10km_T272.5 (bottom). Only the range of scales between 51x

and aboutL0/8 is represented. The black dashed lines are least
square fits to the spectra.

levels of data for computation, along with low intensities of
cloud fields, making them susceptible to computational un-
certainty in the spectral exponent, adding to the limitations in
the spectral analysis. The highly idealized topography with
a superposed 2-D sinusoidal field used in the simulations
here was designed to replicate and build upon previous works
that used linear theory to investigate the development of oro-
graphic convection, and is not scaling. The structure of strat-
iform (terrain following) and orographically triggered con-
vective fields is very influenced by the properties of the topo-
graphic elevation (e.g., Barros and Lettenmaier, 1994; Kirsh-
baum and Durran, 2004; Barros et al., 2004), and therefore a
linkage between their scaling properties should exist. Follow
up work, with realistic terrain should give further insight into
this question.

Theoretically (isotropic) wind speed and passive scale ad-
vection in turbulent processes hasβ = 5/3 for 3-D turbu-
lence, and 3 for 2-D turbulence. However cloud fields in con-
vective turbulence should not be treated as passive scalars
due to strong nonlinear effects such as latent heating release,
entrainment, and active thermodynamics and microphysical
processes, and therefore these theoretical results cannot be
expected to hold. Additionally these theories assume isotropy
between horizontal and vertical directions which is not the
case in the atmosphere.
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Fig. 14.Relationship betweenβ (computed from horizontalqc field
averaged over several vertical levels) and cf×N2

m(×10−5 s−2). “x”,
“o”, “ �” markers represent simulation times 05:00 h, 04:00 h and
03:00 h, respectively.

5 Summary and discussion

Linear stability analysis reveals that embedded convective
structures are the result of unstable growth of small-scale dis-
turbances, which should be very important in determining the
predictability of orographic precipitation. They also suggest
the governing role of parameters such as atmospheric stabil-
ity, advective timescale, small-scale terrain spectra and cloud
depth. The results from idealized numerical simulations of
orographic convective precipitation qualitatively agree with
these predictions. Particularly, they show that the represen-
tation of small-scale terrain (and associated lee waves) plays
a very important role for these events, controlling the band
spacing and significantly enhancing the convective intensity
and rainfall amounts. But these simple models are unable to
do any quantitative predictions or even predict the correct
pattern (except in very particular cases) due to the presence
of nonlinear effects, and alternative nonlinear models are re-
quired.

As pointed out by Schertzer and Lovejoy (1992), the con-
tributions of small-scale activity to much larger scales are
non-negligible, and indeed the corresponding variability has
the most extreme behavior which explains in part the rea-
son why multifractals have been successful on the study of
extreme events. In fact several previous works reported sta-
tistical multiscaling behavior to be a very general property
of geophysical fields (including rain and clouds), provid-
ing a convenient alternative framework due to its theoreti-
cal simplicity, its ability to handle nonlinear dynamics over
very wide range of scales, its potential for downscaling ap-
plications and the fact that the convective events studied here
are a particular kind of turbulent flow and hence a statisti-

cal approach to the problem is appropriate. This multiscaling
behavior holds for statistical moments and isotropic power
spectra of the simulated rain and cloud fields in the consid-
ered range of scales (∼ 1 km to∼ 20 km). The universal mul-
tifractal model reproduces quite well the empirical estimates
of the horizontal scaling exponent function,K(q), and can
be used to quantify the multiscaling behavior of the fields.
Analysis of single horizontal sections of cloud fields revealed
variation of the scaling parameters with vertical position. We
argue that if we use an average over several horizontal sec-
tions at different vertical levels, we obtain estimates for the
horizontal parameters of the entire volume, while the vertical
structure should be represented by a different set of (vertical)
scaling parameters. This transient 3-D anisotropic scaling
framework seems to be a promising starting point to investi-
gate relations between the statistical and physical properties
and perform downscaling for mesoscale events. Results from
both 2- and 3-D approaches revealed significant variations
of K(q) and respective UM parameters with small-scale ter-
rain spectra, atmospheric stability and advective timescale.
Therefore, the representation of sub-grid scale variability of
cloud and rainfall fields using statistical multifractal diagnos-
tics would intrinsically depend not only on the properties of
the field itself, but also on particular geographic location and
atmospheric conditions, bringing the necessity of developing
relationships to predict the scaling parameters from coarse
grid atmospheric data and terrain spectra. However, the re-
sults also suggest that the development of such relationships
is far from being trivial because they appear to involve com-
plex nonlinear behavior.

A particularly robust behavior found here is the abrupt
transition in the UM parameters between stable and unstable
cases, which has a clear physical correspondence as a tran-
sition from a more stratiform to a more organized (banded)
convective regime. This behavior is also found in the spectral
exponentβ. Another instability measure, CAPE, also seems
to be a good predictor, but it is unable to distinguish between
the different stable cases and CIN might have to be used in
conjunction.N2

m also has the advantage of allowing a linkage
with the analytical models where it appears explicitly, which
is not so clear for CAPE. It was also found that the scaling of
the surface accumulated precipitation field (usually an impor-
tant field to be parameterized and downscaled) is a complex
function of the horizontal scaling of several other fields such
as water mixing ratios in the different phases and probably
lsst andτadv.

The scaling of the power spectrum can be taken advantage
to perform stochastic spatial downscaling (disaggregation)
of instantaneous rain and cloud field (see e.g., Bindlish and
Barros, 2002; or Rebora et al., 2006). The present work sug-
gests that scaling parameters could be computed from known
large scale measures (such as stability and terrain spectra).
Although the focus of spectral analysis is on second order
statistics, and hence the scaling behavior at other orders is
neglected by this type of downscaling approach, the time
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dependency of the scaling parameters is introduced by the
temporal evolution of the atmospheric conditions, and the
usually small time step used in numerical simulations can
be advantageous to achieve a high temporal representation.
Further improvements could include scaling constraints us-
ing higher-order moments.

Finally, it is important to point out some limitations of
our study. In order to investigate the dependence of the mul-
tifractal properties on mean properties, a limited range of
highly idealized simulations are used where we can control
the mean atmosphere with a small number of simulation pa-
rameters. Because our work suggests a transient dependence
of the scaling on mean properties, the analysis is performed
on instantaneous fields, rather than ensemble averages, which
increases the volume of data necessary for analysis. Horizon-
tal isotropy is assumed, and it is important to stress that the
issue of existence of horizontal anisotropy must be tackled in
the future. The solutions show robust horizontal scaling even
though the only external forcing is a very simple terrain with
poor scaling and the initial conditions are horizontally homo-
geneous. In realistic cases, the atmosphere and terrain forcing
will themselves be scaling, which might influence the scaling
of the solutions. Models such as WRF involve many subgrid
scale parameterizations which vary among model configura-
tions. Here we use parameterizations only for subgrid tur-
bulence closure and microphysical processes. Whether these
parameterizations introduce unphysical scaling behavior in
the models at resolved scales, and whether the scaling de-
pends on the particular chosen parameterizations are legit-
imate questions. Furthermore, in the real atmosphere there
are many other effects not considered here such as radia-
tion, earth rotation, surface and boundary layer effects which
might introduce further complications and influence the scal-
ing. In this study, however we spell out unambiguously what
processes are resolved or not, and there is general a body
of literature that shows that the resolution adopted can re-
solve explicitly dominant convective structures (see for ex-
ample Fuhrer and Schär, 2007). In fact, as pointed out in
Sect. 2, our simulations are based on previous work where
the authors showed that they reproduce the essential features
of the observed convective structures in the Oregon Coastal
Range. Harris et al. (2001) compared the scaling observed
and model produced precipitation fields at 3-km resolution,
finding an encouragingly similar behavior at scales above 5
times the resolution (i.e., 15 km). Although they simulated
realistic cases with different model and parameterizations
than here, the model is based on the same governing equa-
tions. Our assumption here is that our simulations, based on
nonlinear, compressible and non-hydrostatic Navier–Stokes
equations coupled with the thermodynamics equations in the
WRF model under the specified forcing conditions represent
the key physical processes of interest and that the multifrac-
tal parameters can be used to describe the behavior of the
simulated system in the explicitly well-resolved scales. It is
important to stress that the fields resulting from numerical

simulations should reproduce the scaling in geophysical ob-
servations if they are to be realistic. Furthermore, we apply
multifractal analysis not as means to find universal parame-
ters that will exhibit consistency, though that could be a re-
sult, but rather as a mathematical model can capture, at any
given scale, variability that reflects a large dynamical range
of the phenomena determined by the long-range dependen-
cies. Thus, what is consistent is the model used to describe
variability; we then make use of the multifractal model pa-
rameters as metrics that can help interpret model dynamics
and thermodynamics in a systematic way. The presence of
an underlying multifractal behavior is robustly supported by
the evidence presented: a clear mean linear trend in the spec-
tral analysis in conjunction with the robust scaling in the mo-
ment analysis, which is less sensitive to the data limitations
and reveals robust scaling behavior up to orders of about 2,
as it is typically found in atmospheric fields and reported in
literature consistent with the scope of the present manuscript.

Although much insight was gained into scaling depen-
dencies, particularly the presence of transient dependence of
scaling parameters on mean conditions found here, an inves-
tigation on observational atmospheric data and realistic nu-
merical simulations is warranted, along with further support
to whether numerical weather prediction models are able to
reproduce, at least to some extent, the multifractal proper-
ties of simulated fields and what is the effect of the particular
parameterizations chosen on the scaling. This is currently on-
going work.
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