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Abstract. Using numerical simulations performed with a
pseudo-spectral incompressible Navier–Stokes solver, we
describe the asymmetries that arise in the recirculating core
of mode-2 internal, solitary-like waves. The waves are gen-
erated in a manner consistent with many laboratory studies,
namely via the collapse of a region of mixed fluid. Analysis
of the simulations reveals that asymmetries across both the
wave crest and the pycnocline centre develop in the spatial
distribution of density, kinetic energy and a passive tracer
transported by the mode-2 waves. The simulations are ex-
tended to three-dimensions to allow for the formation of
spanwise instabilities. We find that three-dimensionalization
modifies the structure and energetics of the core, but that the
majority of the results obtained from two dimensional simu-
lations remain valid. Taken together, our simulations demon-
strate that the cores of solitary-like mode-2 waves are differ-
ent then their counterparts for mode-1 waves and that their
accurate characterization on both lab and field scales should
account for the core asymmetry across the pycnocline centre.

1 Introduction

Internal solitary waves (ISWs) are a commonly observed
feature of coastal waters and lakes during the temperature
stratified season (Helfrich and Melville, 2006; Boehrer and
Schultze, 2008). These waves can transport mass (Inall et al.,
2001; Lamb, 1997) and induce mixing (Scotti et al., 2004)
and thereby can exert a significant impact on the nutrient cir-
culation system and ecological communities (Lennert-Cody
and Franks, 1999; Stastna, 2011).

The theoretical description of linear, horizontally propa-
gating (or vertically trapped) internal waves in a continu-
ously stratified fluid yields an infinite number of modes in
the vertical, with the exact structure of the modes determined

by the background density and horizontal velocity profiles
(Grimshaw, 2003; Wiegand and Chamberlain, 1987). How-
ever, nearly all of the energy is captured by the first few
modes (Wiegand and Chamberlain, 1987). In fact, the ex-
act theory of internal solitary waves considers only mode-1
waves (Turkington and Wang, 1991). Mode-1 waves are ex-
ceptional because long mode-1 waves will outpace all other
mode numbers. Thus, mode-1 nonlinear waves, which are
faster than linear waves, will propagate away from an ini-
tial disturbance and achieve a solitary state (in inviscid the-
ory). The simplest mathematical expression of this fact is
contained in the Korteweg deVries equation

Bt = −clwBx +αBBx +βBxxx, (1)

where the nonlinear and dispersive coefficients,α andβ, re-
spectively, can be determined from the background density
and horizontal velocity profiles (Grimshaw, 2003; Helfrich
and Melville, 2006). For a corresponding viewpoint on fully
nonlinear periodic internal waves seeCamassa et al.(2010).

Mode-2 waves, even in the long wave limit, cannot have
wave speeds that are faster than a finite length mode-1 wave.
Thus, whenever mode-2 waves are observed, they are ac-
companied by a tail of mode-1 waves. In terms of linear
wave theory, the phase speed of the mode-1 tail matches the
propagation speed of the mode-2 leading wave. However, the
mode-1 group velocity is smaller than the phase velocity and
thus energy is slowly drained from the mode-2 wave. For
this reason mode-2 waves are often referred to as solitary-
like as they will slowly decay. This scenario has been for-
mally justified using asymptotics beyond all orders inAkylas
and Grimshaw(1992). These, long-lived mode-2 waves have
been observed in experiments, numerical simulations and in
the field (Munroe et al., 2009; Ramp et al., 2012; Shroyer
et al., 2010; Vlasenko and Hutter, 2001; Dunphy et al., 2011;
Sveen et al., 2002).
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Fig. 1.Diagram of the basic experimental setup for numerical simulation.

More generally, mode-2 waves have been studied experi-
mentally (Munroe et al., 2009; Shroyer et al., 2010; Stamp
and Jacka, 1995; Vlasenko and Hutter, 2001; Yang et al.,
2010), analytically (Davis and Acrivos, 1967; Stamp and
Jacka, 1995) and numerically (Hodges et al., 2000; Rubino
et al., 2001; Terez and Knio, 1998; Salloum et al., 2012;
Dunphy et al., 2011). The typical lifecycle of mode-2 wave
generation and evolution due to the collapse of an interme-
diate density region that is thicker (in the vertical direction)
than the pycnocline is schematized in Fig.1. Terez and Knio
(1998) andSalloum et al.(2012) demonstrated that breaking
mode-2 waves efficiently trap and transport particles, though
a careful reading of their paper reveals that they, in fact, sim-
ulated mode-1 waves, and interpreted the results for mode-
2 waves by reflecting across a line of symmetry. Indeed,
nearly all theoretical discussion of mode-2 waves is provided
for waves traveling along a pycnocline centred at the mid-
depth of the domain. In this special case, mode-2 waves are
symmetric about their centre-line (Davis and Acrivos, 1967;
Stamp and Jacka, 1995). However, such a stratification is
never observed in natural waters.

Several papers also suggest that first-order KdV theory
yields good predictions for mode-2 propagation speeds, and
reasonable predictions for wave structure (Stamp and Jacka,
1995; Terez and Knio, 1998; Vlasenko and Hutter, 2001).
This is in contrast to the well-known disparity between exact
mode-1 waves and those predicted by equations in the KdV
hierarchy (Lamb and Yan, 1996; Lamb, 1999). For a strat-
ification dominated by a single pycnocline, mode-2 waves
overturn for moderate amplitudes. To see this consider a
stratification at the mid-depth for which mode-2 waves are
equivalent to mode-1 waves in a domain with a total depth
of H/2 and a stratification with a maximum buoyancy fre-
quency at the bottom. In the absence of a background cur-
rent, such waves are well-known to yield overturning and
recirculating cores (Lamb and Wilkie, 2004 and the refer-
ences therein). It is thus quite possible that KdV theory yields
a good prediction for both the propagation speed and the
wave structure over the majority of the water column while
the overturning, or core, region of the flow is fully three-
dimensional.

In this paper we use numerical simulations to discuss the
effects of a stratification that is not symmetric about the mid-

depth. In particular, we reexamine some of the conclusions
reached inTerez and Knio(1998) regarding the structure of
the wave core. We demonstrate that physical mode-2 waves
can become significantly asymmetric, especially in the core
region, and that they develop a mode-1 wave tail.

This paper is organized as follows: we begin with a brief
introduction to the theory of ISWs. We then describe the
numerical model used to simulate the mode-2 waves. We
demonstrate the effect of the asymmetry about the centre of
the pycnocline, and demonstrate how these results general-
ize from two-dimensions to three-dimensions. We conclude
with a discussion of the results and some suggestions for fu-
ture research.

2 Theory and methods

2.1 Theory

We consider a non-rotating, incompressible fluid that obeys
the Boussinesq approximation with a rigid lid. The governing
Navier–Stokes equations read

∂u

∂t
+ u · ∇u = −

1

ρ0
∇P + ν∇2u −

ρg

ρ0
k̂, (2)

∇ · u = 0, (3)
∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (4)

for the velocity fieldu and pressureP , whereρ0 is some
reference density of the fluid, and{ν,κ,g} are the dynamic
viscosity, the molecular diffusivity, and the acceleration due
to gravity, respectively. We take the x-axis to run along the
top of our domain, the z-axis to point upward, and the y-
axis to represent the spanwise direction that is absent in 2-D
simulations.

The theory of ISWs is based on the inviscid Euler equa-
tions which can be derived from the above by settingν =

κ = 0. In two dimensions, incompressibility implies the ex-
istence of a stream functionψ so that(u,w)= (ψz,−ψx)

where subscripts denote partial derivatives. The first-order
weakly nonlinear theoretical description in the absence of a
background current (Grimshaw, 2003) thus assumes

ψ = B(n)(x, t)φ(n)(z), (5)
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wheren denotes the mode number. The vertical structure is
determined by solving the Sturm–Liouville eigenvalue prob-
lem

d2φ(n)

dz2
+
N2(z)

c2
φ(n) = 0 (6)

whileN2 is the buoyancy frequency andc is the wave prop-
agation speed. Here, the evolution of the waveform is given
by the KdV equation

B
(n)
t = −c(n)B(n)x +α(n)B(n)B(n)x +β(n)B(n)xxx, (7)

where the nonlinear and dispersive coefficients,α andβ, re-
spectively, can be determined from the background density
and horizontal velocity profiles (Grimshaw, 2003; Helfrich
and Melville, 2006) for each mode.

For finite length linear waves with wavenumberk we have

ψlin = a(n)exp(ikx)φ(n)lin (z) (8)

where

d2φ
(n)
lin

dz2
+

(
N2(z)

c2
lin

− k2

)
φ
(n)
lin = 0. (9)

It is thus clear that the KdV theory is a long wave (k → 0)
theory. The vertical structure of short waves will be oscil-
latory in the pycnocline, but exponential decaying in the
weakly stratified regions. This has important implications
when solitary-like waves coexist with shorter finite length
waves since the former will induce velocities throughout the
water column, while the latter will only influence the region
near the pycnocline.

We model a single pycnocline density profile using a hy-
perbolic tangent function, thereby implying that

N2(z)= a sech2((z− z0)/d), (10)

where z0 sets the centre of the pycnocline andd sets its
thickness. For the simulations reported on below,a = 0.01,
corresponding to a 2 % top-to-bottom density change; while
d = 0.05H or 5 % of the total depth andz0 varies from the
purely symmetric case for whichz0 is located at the mid-
depth with departures given in terms of a percentage of the
total depth (5 %, 20 %, etc.).

If the profile ofN2(z) is symmetric about the mid-depth,
the mode-2 vertical structure function is then anti-symmetric
about the mid-depth. In this situation, mode-1 ISWs can-
not form producing true solitary mode-2 waves (Stamp and
Jacka, 1995). Moreover, even moderate deviations of the py-
cnocline centre (z0) from the mid-depth do not yield signifi-
cant departures of the zero of the mode-2 structure function
from the pycnocline centre. This is demonstrated in Fig.2
which shows shaded contours of the absolute difference be-
tween the location of the zero of the mode-2 structure func-
tion and the pycnocline centre. The pycnocline centre, width,
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Fig. 2. Contours plot indicating the location of mode 2 wave zeros
based on pycnocline centre and width. Note that as the pycnocline
is moved away from the centre and thickened, the zero of the mode
2 wave function moves away from the centre of the pycnocline.

and the absolute difference are scaled by the total depth. The
figure thus indicates that, as far as the linear theory is con-
cerned, mode-2 waves can be expected to be nearly sym-
metric about the pycnocline centre. Since this figure shows
dimensionless results, this is true for both the experimental
scale and the field scale, and indeed, as has been mentioned
above, this has been the standard assumption in much of the
literature. It is the central point of our numerical simulations
to demonstrate that this is not the case for actual finite ampli-
tude waves.

2.2 Numerical model

The numerical simulations are performed using a scalable,
pseudo-spectral code (Subich, 2011), parallelized using the
Message Passing Interface (MPI). MPI is a communications
protocol used to parallelize the execution of an applica-
tion across multiple CPUs. The code solves the full three-
dimensional Navier–Stokes equations for a stratified fluid un-
der the Boussinesq approximation (Kundu and Cohen, 2010).
A standard splitting methodology is used, in which an ad-
vective step is followed by an elliptic solve for the pressure,
and finally a Stokes problem imposes the no slip boundary
conditions. The code does allow for variable bottom topog-
raphy, as well as sidewalls; however, the configuration used
herein consists of a channel with flat, no slip walls at the top
and bottom and free slip side walls. Upon Fourier transform-
ing, and employing appropriate symmetries in the stream-
wise and spanwise directions, the implicit equations for pres-
sure and viscosity separate into a number of one-dimensional
(in z) problems. These are iteratively solved, at each step
of the simulation, using GMRES (Saad, 2003) with a finite-
difference preconditioner (Boyd, 2001).

The 2-D simulations reported on use 2048× 192 grid
points, with grid halving studies indicating that this resolu-
tion (along with spectral accuracy) was more than adequate
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(Boyd, 2001). The domain employed was 6 m in length and
0.4 m in depth. The simulations were run for 100 s, and out-
put was saved every 2.5 s. By the end of the simulation
the mode-2 waves approach the edge of the domain. The
numerical situation is thus a reasonable representation of
a laboratory scale setup. In the simulation we set viscos-
ity of water to ν = 1× 10−6 m2 s−1, with a diffusivity of
κ = 5× 10−7 m2 s−1.

In order to evaluate the extent to which 2-D simulations
faithfully represent asymmetries that would form in an actual
experiment, we performed three-dimensional simulations of
two of the 2-D cases. Extracting the flow profile att = 25 s,
we extend the various fields (density, velocity components,
etc.) into the third dimension and allow the flow profile to
evolve tot = 37.5 s. As spectral methods preserve symmetry,
we introduce low-level noise to the velocity field in order to
trigger any instabilities spanwise. The perturbation was de-
fined to be white noise with a maximum of 2 % of the max-
imum horizontal velocity. The domain was modified to be
3×0.2×0.4 m with a grid resolution of 832×192×96. The
reduction in domain length was reasonable, as we do not let
the simulation extend pastt = 37.5 s, where the initial mode-
2 wave nearly reaches the edge of the new domain. Values of
diffusivity and viscosity were the same as in the 2-D simu-
lations. Outputs were taken twice as often as the 2-D case
(1.25 s).

In order to visualize how the internal waves transport fluid,
we initialize a passive tracer which is simply advected along
with the flow (same diffusivity as the density). This is equiv-
alent to the particle tracking method found inTerez and Knio
(1998).

2.3 Experimental setup

Experimental realizations of mode-2 waves, as well as nu-
merical simulations designed to mimic them such asTerez
and Knio(1998), both employ a “lump” of intermediate den-
sity fluid that collapses to form the mode-2 waves. In numer-
ical calculations the interface between the perturbing fluid
and the undisturbed pycnocline is typically smoothed. For
the simulations reported on below, the initial condition is
chosen to be symmetric across the pycnocline centre and its
mathematical form is given by

ρ = ρ̄(z)+ ρM(x,z) (11)

ρ̄ = 1− 0.01tanh

(
z+ z0

0.05Lz

)
(12)

ρM =
1

2

[
2∑
i=1

tanh

(
x+ xi

λ

)
+

2∑
j=1

tanh

(
z+ zj

ζ

)]
(13)

(x1,x2)= Lx(0.9,1.1) (14)

(z1,z2)= Lz(z0 − 0.15,z0 + 0.15). (15)

Fig. 3.Plot of the density evolution at timest = {0,25,50} s. Three
isocontours of density highlight the location of the mode-2 waves.

For the symmetric stratificationz0 = Lz/2 and for the asym-
metric stratificationsz0 = 1.1×Lz/2 andz0 = 1.4×Lz/2.
We pickλ= 0.05Lx , andζ = 0.02Lz.

While this equation appears complex, Fig.3 plots this ini-
tialization of the density field and its time evolution. Note
that this figure demonstrates that the density evolution cor-
responds well with the cartoon of mode-2 wave generation
and evolution shown in Fig.1. To investigate the onset of
asymmetry in the mode-2 waves, especially in the region of
overturns, we gradually moved the centre of the pycnocline
from the mid-depth. In the Sect. 3 below, three cases are
discussed in detail (symmetric, 5 % and 20 % asymmetry).
Since the region of overturning will lead to vortex stretch-
ing and three-dimensional flow, three-dimensional simula-
tions are performed to investigate the physical characteristics
of the flow in this region.

3 Results

3.1 Symmetric stratification

As our base case, we consider a pycnocline centred at the
mid-depth of the tank. Initializing with an intermediate den-
sity layer as described above, we allow gravity to cause
the mixed region to collapse, allowing mode-2 waves to be
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Fig. 4.Plot of the tracer concentration att = 100 s for a initial mixed
layer symmetric about a mid-depth pycnocline. The colorbar was
saturated at 10 % of the maximum. Six contours of density are over-
layed in order to identify the location of the internal waves. No-
tice that the distribution is entirely symmetric about the mid-depth.
Three perfectly symmetric mode-2 waves are clearly observed.

generated. As the distribution is entirely symmetric about
the centre of the domain, we find no mode-1 wave forma-
tion with the mode-2 waves maintaining a perfect symmetry
about the pycnocline, as the theory predicts.

Figure4 shows the results of this simulation after 100 s.
Three perfectly symmetric mode-2 waves are clearly visible
with a number of smaller mode-2 waves following behind. A
certain amount of tracer is trapped by the mode-2 waves as
they propagate, though the majority remains behind near the
location of intermediate density fluid perturbation.

Once a particular mode-2 wave forms, it will propagate
along at a speed proportional to its amplitude. When the
experiment is run, assuming perfect vertical symmetry, no
mode-1 waves can form and thus there is no means for
draining energy from the main wave, apart from effects of
the viscous boundary layer (which were found to be in-
consequential). Figure5 shows a waterfall of the horizon-
tal wave structure of the flow, constructed from density iso-
contours taken 5 % above the centre of the pycnocline. Here
the mode-2 waves are clearly visible, as is the fact that
the wave speeds are essentially constant. As expected, the
largest mode-2 wave propagates faster than the smaller trail-
ing mode-2 waves.

3.2 Off-centre pycnocline

In the simulations with a pycnocline centre that is offset from
the mid-depth by 5 % and 20 % of the total depth, the es-
sential aspects of the wave generation process remain un-
changed. However, once the waves have formed, the accom-
panying mode-1 tail quickly becomes apparent.

Figure 6 plots the tracer found within the trapped core
of the leading mode-2 wave along with eight isocontours
of density att = 100 s. The colorbar for this figure is satu-
rated to 10 % of the initial tracer maximum. Notice that in
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Fig. 5. Waterfall plot of the horizontal wave structure. Notice three
clearly defined mode-two waves propagating in time.

Fig. 6. A comparison of the largest mode-2 wave at timet = 100 s
for a pycnocline centred at(a) −z0 =H/2, (b) −z0 =H/2+

0.05H , and(c) −z0 =H/2+ 0.20H . Eight isocontours of density
are overlayed to depict the location of the mode-two wave. It is very
clear the off-centre location of the pycnocline causes the tracer to
lose its symmetry about the centre of the mode-2 wave. Colorbar is
saturated to 10 % of its maximum value.

the symmetric stratification case (a), we find a perfect sym-
metry in both the mode-2 wave and the trapped tracer within
the wave core. When the pycnocline is displaced 5 % from
the mid-depth (b), we find that there is already some signifi-
cant differences in both tracer distribution and density pro-
file. Note the region of overturning density contours near
(x,z)= (5.35,−0.2)m, or the edge of the nearly trapped
core of the wave. When the pycnocline is displaced 20 %
from the mid-depth (c), the tracer is almost entirely located
within the upper half of the mode-2 wave with a density pro-
file whose structure is visibly asymmetric about the pycno-
cline centre. Based on this figure it is clear that the picture
of the trapped core, and particle transport by this core, as
advanced inTerez and Knio(1998), is not representative of
reality for pycnocline centres that are offset from the mid-
depth by more than a few percent of the total depth.

Figure7 shows the distribution of tracer along with seven
isocontours of density in the tail of the mode-2 wave train
at t = 100 s. The colorbar is saturated at 5 % of the ini-
tial maximum value of the tracer. Notice that the symmetric
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Fig. 7. A comparison of the tail behind the two largest mode-2
waves at timet = 100 s for a pycnocline centred at(a) −z0 =H/2,
(b) −z0 =H/2+ 0.05H , and(c) −z0 =H/2+ 0.20H . Seven iso-
contours of density are overlayed to depict the location of the mode-
1 waves. Notice that there are no mode-1 waves when the pycno-
cline is at the mid-depth. As the pycnocline is displaced from centre,
mode-1 waves quickly develop, eventually dominating the tail.

stratification case (a) has no mode-1 waves behind the last
coherent mode-2 wave. When the pycnocline centre is dis-
placed 5 % (b) from the mid-depth, we find that some small
mode-1 waves develop in the tail while the mode-2 wave is
still clearly visible at the front. However, once the pycno-
cline is displaced 20 % (c) from the centre of the domain,
the mode-1 waves almost completely dominate any mode-2
waves present. Upon close inspection, one can see that the
front of this tail is a superposition of a mode-1 and mode-2
wave. A second point to note is that as the pycnocline is dis-
placed from centre, the tracer is not transported as far from
the initial perturbation.

In all simulations, after an initial period of adjustment,
the estimated wave speed of the leading waves appear to be
nearly constant up to the end of the simulations (100 s). We
compared the computed wave speeds of the leading mode-2
waves with the KdV prediction and found that the error of
the simulated wave speeds was less than 1 % for the sym-
metric and 5 % cases. The small decrease can be attributed
to viscous effects. Since viscosity only plays an important
role near the solid top and bottom boundaries, the decrease in
wave speed for these cases was small. When the pycnocline
is significantly displaced from the mid-depth, one of the two
near boundary regions will have stronger wave-induced cur-
rents, and the effect on the wave speed can be expected to be
larger. In particular, for the 20 % shift, the estimated wave-
speed was decreased by less than 4 %. It is unclear whether
this is primarily due to viscous effects or the change in wave
shape from the idealized KdV soliton due to the presence of a
recirculating core. For large shifts (e.g. 40 %) the interaction
with the boundary layer can be expected to become domi-
nant, and this provides a direction for future study.

3.3 Asymmetry

A quantitative measure of the asymmetry of the core can be
derived by integrating the total amount of tracer above and
below the pycnocline centre and subtracting these two val-
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Fig. 8. Waterfall plot of the asymmetry in the tracer about the pyc-
nocline for(a) −z0 =H/2+0.05H , and(b) −z0 =H/2+0.20H .
(c) Plot of the maximum asymmetry versus time.

ues for each value ofx. Figure8 shows a waterfall plot of
this asymmetry measure when the pycnocline is displaced
by 5 % (a) and 20 % (b). As before, density profiles taken
5 % above the pycnocline are plotted at every time step. In
panel (c) of this figure, the maximum of the asymmetry mea-
sure is plotted as a function of time. We note that the max-
imum asymmetry is observed to correspond to the path of
the largest mode-2 wave. This is consistent with the distribu-
tion of tracer shown in Fig.6. Since the core is not perfectly
trapping, the asymmetry decays over time as material is left
behind by the wave. In the long run, the tracer tends to a
symmetric distribution about the pycnocline, though this is
the trivial state of no tracer left in the wave.

We know that the above discussed asymmetry is associ-
ated with the formation of a mode-1 tail, which will slowly
drain energy from the mode-2 waves. To quantify the amount
of energy drained into the mode-1 tail, Fig.9 shows shaded
contours of the kinetic energy of the flow att = 100 s. Here
the colorbar is saturated to 10 % of the maximum kinetic en-
ergy in the fluid. Four isocontours of density were also plot-
ted in order to highlight the location of the various mode-
2 waves and the mode-1 tail. The kinetic energy plot very
clearly highlights the dominance of the mode-2 waves. While
the kinetic energy induced by the mode-1 tail is not negligi-
ble, we have determined that the maximum kinetic energy in
the tail is only 5.68 % of the maximum kinetic energy of the
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Fig. 9.Plot of the kinetic energy att = 100 s for the symmetric(a),
5 % (b) and 20 %(c) shifts. The colorbar was saturated at 10 % of
the maximum value of the symmetric case.

flow. Thus, while the mode-1 tail does influence the evolu-
tion of the leading mode-2 waves, it will do so on long time
scales, and the asymmetry induced by the breaking of the
mode-2 waves will dominate in an experimental, and likely
in a field, setting.

In the 20 % shift case it can been that there is some evi-
dence of wave-induced kinetic energy beneath, but not above,
the pycnocline for the second mode-2 wave. This is due to
the conservation of volume which necessarily amplifies the
horizontal velocity in the narrower layer (found below the
pycnocline in this case). This occurs for all the waves, but is
visually the most apparent for the second mode-2 wave. At
the saturation level chosen, the leading wave induces signif-
icant currents throughout the portion of the domain shown.
However, a careful examination of the region nearx = 5.1
shows the same pattern of amplification as for the second
wave.

Finally, we note that numerical experiments in which the
initially mixed region is centred about the height of the zero
of the mode-2 wave structure function, with a density of the
mixed region chosen to match that the of the upstream den-
sity profile at the height of the zero of the mode-2 wave struc-
ture function, yielded nearly identical results as far as the
asymmetry of the wave core. The significant asymmetry is
thus a generic feature of breaking mode-2 waves generated
by the collapse of a mixed region.

3.4 Three-dimensional effects

While the two dimensional results are representative of the
early stages of wave evolution, three-dimensional effects
will come into play as the overturns in the core region un-
dergo spanwise instabilities. We extend the flow profile at
t = 25 s into the third dimension, as described in the Meth-
ods Sect.2.2, and follow its evolution. Figure10 shows the
evolution of the streamwise average of the spanwise standard
deviation of kinetic energy as a function of distance from py-

cnoline att = {33.75 s (a), 35 s (b), 36.25 (c), 37.5 s (d)}. All
panels were normalized to the maximum value of the sym-
metric case att = 37.5 s. We find that the spanwise variation
takes longer to develop for the 20 % shift than it does for
the symmetric case. This is due to the faster wave speeds
found within the symmetric case. That is, the maximum av-
erage variation is higher for the symmetric case earlier in
the three-dimensionalization while the variation ramps up for
the off-centre case. However, as is clearly demonstrated in
Fig. 10, the mean spanwise variation nearly quadruples over
the 3.75 s beforet = 37.5 s. We see then that the most sig-
nificant spanwise variation occurs at the end of the above
simulation. Here the 20 % shift case had a maximum aver-
age spanwise variation that was 12 % greater than the corre-
sponding symmetric case.

To get an idea of which portions of the wave are associ-
ated with three-dimensional motions, we plot the spanwise
standard deviation of the density and kinetic energy fields at
t = 37.5 s, at which time both cases have achieved signifi-
cant three-dimensionalization. The maximum spanwise vari-
ation at this point is about 10–20 % of the maximum kinetic
energy. In Fig.11, panels (a) and (b) contrast the standard
deviation of the density field for the symmetric and 20 %
cases. It can be seen that the symmetric stratification main-
tains a great deal of symmetry across the mid-depth even
as the fluid motions three-dimensionalize in and around the
core of the leading mode-2 wave. This is consistent with pan-
els (c) and (d) which show the standard deviation of the ki-
netic energy. Physical dimensions have been scaled out by
d = 1 m. We note that while the three-dimensionalization is
constrained to within the core region of the initial mode-2
wave, the spatial structure of the variation is strikingly dif-
ferent. The symmetric case maintains a variation that is sym-
metric about the pycnocline, with a spatial structure located
essentially in the centre of the mode-2 wave. This is in con-
trast to the asymmetric 20 % pycnocline shift case, where the
variation is positioned towards the back of the core region
with most of the variation occurring near the edge of the core.
The panels have been scaled by the background density jump
across the pycnocline and the maximum value of kinetic en-
ergy standard deviation for the symmetric case. The maximal
spanwise density variation is equal to 1.67 % of the back-
ground density jump across the pycnocline in the symmetric
case, but this increases to 3.09 % for the 20 % shift.

The spanwise structure of the three-dimensionalization is
shown in Fig.12 for the symmetric stratification case at
t = 37.5 s. Dimensions are presented in dimensionless form
with scalingd = 1 m. The figure shows two opaque density
surfaces above (green) and below (yellow) as well as the re-
gions wherev2 equals 5 % of its maximum value. It can be
seen that all of the active three-dimensionalization occurs in
the core region. At the back of the plot anx− z slice of the
horizontal velocity is shown. Here the variation is symmetric
across the pycnocline.
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Fig. 10.Plot of the streamwise average of the standard deviation in the spanwise direction of the kinetic energy att = {33.75 s(a), 35 s(b),
36.25(c), 37.5 s(d)}. The z-axis has been shifted for the asymmetric case so that both pycnocline centres are at 0. The fields were normalized
by the maximum value of the symmetric case att = 37.5 s.

Fig. 11. A plot of the spanwise standard deviation in the den-
sity field for the symmetric(a) and 20 %(b) cases and the span-
wise standard deviation in kinetic energy for the symmetric(c) and
20 % (d) cases. The region shown was cropped to show the core
region of the leading wave. Image output att = 37.5 s. Two con-
tours of density were plotted in order to highlight the location of the
mode-2 wave. Images have been scaled by the background density
jump across the pycnocline and the maximum value of the standard
deviation of kinetic energy for the symmetric case. Scalingd = 1 m.

We define a metric of the amount of spanwise flow as fol-
lows:

R3-D =
v2(

u2 + v2 +w2
) . (16)

For this symmetric case, we find thatR3-D = 1.764×

10−2.
We similarly plot the effect of three-dimensionalization for

the 20 % asymmetric pycnocline case in Fig.13. As before,
d = 1 m. We find that the spanwise velocity is similarly local-
ized to within the core of the initial mode-2 wave. However,
the spanwise flow is located primarily above the pycnocline,
where the majority of the overturning was observed in the 2-
D case. HereR3-D = 3.065×10−2, or approximately double
the symmetric case. As with Fig.11, we note that the major-
ity of the three-dimensionalization occurs at the edge of the
core region.

4 Discussion and conclusion

We have presented numerical simulations of the generation
and propagation of mode-2 waves formed by the collapse of
a mixed region of fluid. A single pycnocline stratification was
chosen and hence the mode-2 waves generated were found to
exhibit a recirculating core of mixed fluid, even for moder-
ate wave amplitudes. We have found that even a moderate
displacement of the pycnocline centre from the mid-depth
leads to significant asymmetry in the wave core across the
pycnocline centre. This asymmetry develops in both the den-
sity and kinetic energy fields as well as in the distribution of
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Fig. 12. Three-dimensional plot of the five percent isosurface of
the maximum spanwise velocity for the symmetric case. Two iso-
surfaces of density were also plotted at 25 percent above (yellow)
and below (green) the average density. Finally, the average horizon-
tal velocity is also displayed on the back plane of the image, nor-
malized to its maximum value. Image output att = 37.5 s. Scaling
d = 1 m.

a passive tracer that is initially symmetric across the pycn-
ocline centre. This result is in contrast to published results
(Terez and Knio, 1998; Salloum et al., 2012) and we have
provided an explanation for this discrepancy. Namely,Terez
and Knio (1998); Salloum et al.(2012) simulated mode-
1 waves with recirculating cores, and reflected their results
about the presumed centre of the pycnocline. Indeed, when
the centre of the pycnocline is located precisely at the mid-
depth, our results agree withTerez and Knio(1998); Salloum
et al.(2012).

The recent paper bySalloum et al.(2012) builds on the
past results ofTerez and Knio(1998), with the same restric-
tion to perfectly symmetric pycnoclines. In their paper, the
authors discuss mass transport by large mode-2 waves and
make note that instabilities within the wave core result in
less mass transported by the mode-2 wave. Our current work
suggests that the asymmetries developed within the mode-2
wave have the potential to amplify existing instabilities and
even induce new types of instability within the core. Thus,
we suggest that the mass transported by physical mode-2
waves could be significantly less than that predicted based on
models with a perfectly symmetric pycnocline. This should
be addressed by three-dimensional simulations and labora-
tory work in the future. Indeed, three-dimensional equiva-
lents of the simulations ofTerez and Knio(1998); Salloum
et al. (2012) could be compared to the experiments ofGrue
et al.(2000) on mode-1 breaking waves.

Since it is generally accepted that weakly nonlinear theory
provides a good estimate of the mode-2 wave propagation
speed, and a reasonable estimate of the wave structure out-
side of the recirculating core, it is the dynamics of the core
region that is the most appropriate focus for numerical sim-
ulations. By performing three-dimensional simulations we

Fig. 13.Similar layout to Fig.12 for the 20 % case. Note the signif-
icant amount of spanwise flow traveling with the core of the initial
mode-2 wave. Image output att = 37.5 s. Isosurfaces of the span-
wise velocity field were taken at 5 % of its maximum value. Scaling
d = 1 m.

were able to characterize the manner in which the core three-
dimensionalizes. We found that when the pycnocline cen-
tre is exactly at the mid-depth, three-dimensionalization does
lead to a small amount of asymmetry across the pycnocline
centre. When the pycnocline centre is displaced by 20 %
from the mid-depth, the process of three-dimensionalization
itself is asymmetric across the pycnocline centre, and the
strength of three-dimensional motions is increased over the
symmetric case.

Taken together, these results have a number of implica-
tions. In a laboratory setting, these results suggest that for
the core to reach a quasi-static regime, and thus to answer
whether mode-2 cores reach a quasi-steady state as has been
suggested for mode-1 waves (Derzho and Grimshaw, 1997),
a very long tank is necessary. However, to explore the three-
dimensionalization of these cores following the collapse of
the mixed region, a narrow tank of a reasonable length would
prove sufficient. Moreover, the most relevant experimental
work will be generated when the stratification centre is dis-
placed form the mid-depth.

Implications of the present results to field work are a bit
more speculative. Since the dominant effect of a recircu-
lating core is the potential for long-distance transport, the
asymmetry of the tracer distribution (shown in Fig.6) sug-
gests that any tracer transported a long distance by a mode-2
wave with a recirculating core would be found above (be-
low) the pycnocline centre when the pycnocline centre is be-
low (above) the mid-depth. The presence of a strong back-
ground shear current could modify this prediction, though a
strong current would likely affect the structure of the mode-2
waves themselves long before a recirculating core formed. In
the field, mode-2 waves do not exist in isolation and a sec-
ondary effect of the asymmetry observed, and quantified, in
our simulations would be in the interaction of mode-2 waves
with longer mode-1 waves. This is due to the fact that mode-1
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waves induce horizontal currents of opposite polarity across
the pycnocline. Returning again to Fig.6, a mode-1 wave
of elevation overtaking the mode-2 wave shown would in-
duce currents against the direction of propagation above the
pycnocline centre, and this could flush some of the trapped
tracer out of the mode-2 core. In a similar manner, a head-on
interaction with a mode-1 wave could serve to enhance the
trapping of tracer in the mode-2 wave’s core. Simulations of
this process provide a clear avenue for future work, as would
an effort to scale up the present simulations to larger domains
while maintaining the necessary resolution in the core region.

It is this last point that has the strongest relation to past
studies of cores in mode-1 waves. Mode-1 waves have a con-
siderably larger extent and their cores can range from nearly
quiescent to highly turbulent (Carr et al., 2012; Helfrich and
White, 2010; Lamb and Wilkie, 2004; Michallet and Ivey,
1999). Our simulations have the closest analogy with those
of Carr et al.(2012), who considered cores with weak insta-
bilities, though it is interesting that we found significant, if
not dominant, three-dimensionalization, while all past simu-
lations, to our best knowledge, have been two dimensional.

Appendix A

Non-dimensional results

The above physical problem can be reduced to non-
dimensional form in the following manner:

∂ũ

∂t
+ ũ · ∇̃ũ = −∇̃P̃ +

1

Re
∇̃

2ũ −Riρ̃k̂, (A1)

∇̃ · ũ = 0, (A2)
∂ρ̃

∂t
+ ũ · ∇̃ρ̃ =

1

Re

1

Sc
∇̃

2ρ̃, (A3)

where tildes denote non-dimensional quantities.Re, Ri, and
Scare the dimensionless Reynolds number, Richardson num-
ber and Schmidt number, respectively. Each of these is de-
fined as

Re =
UL

ν
Ri =

gL

U2
Sc =

ν

κ

for characteristic values of velocity (U ), length (L), viscosity
(ν), and molecular diffusion (κ). In the present paper, looking
at the velocity of the initial propagating mode-2 wave, we
determine our characteristic velocity to beU = 0.05 m s−1.
The characteristic height, viscosity and diffusivity are given
asL= 0.1 m,ν = 1×10−6 m3 s−2, κ = 5×10−7 m3 s−2. The
gravitational acceleration is rounded to a value of 10 m s−2.
The corresponding dimensional quantities are then computed
to give

Re = 5000 Ri = 400 Sc = 2.

Acknowledgements.This research was supported by the Natural
Sciences and Engineering Research Council of Canada. Christo-
pher Subich assisted with the set up of the numerical simulations.

Edited by: V. I. Vlasenko
Reviewed by: M. Carr and J. Grue

References

Akylas, T. R. and Grimshaw, R. H. J.: Solitary internal waves with
oscillatory tails, J. Fluid Mech., 242, 279–298, 1992.

Boehrer, B. and Schultze, M.: Stratification of lakes, Rev. Geophys.,
46, RG2005,doi:10.1029/2006RG000210, 2008.

Boyd, J.: Chebyshev and Fourier spectral methods: Second revised
edition, Dover books on mathematics, Dover Publications, 2001.
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