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Abstract. We study stable axially and spherically symmetric
spatial solitons in plasma with diatomic ions. The stability
of a soliton against collapse is provided by the interaction
of induced electric dipole moments of ions with the rapidly
oscillating electric field of a plasmoid. We derive the new
cubic-quintic nonlinear Schrödinger equation, which governs
the soliton dynamics and numerically solve it. Then we dis-
cuss the possibility of implementation of such plasmoids in
realistic atmospheric plasma. In particular, we suggest that
spherically symmetric Langmuir solitons, described in the
present work, can be excited at the formation stage of long-
lived atmospheric plasma structures. The implication of our
model for the interpretation of the results of experiments for
the plasmoids generation is discussed.

1 Introduction

Stable spatial solitons are observed in the studies of optical
phenomena (Segev, 1998), in solid states physics (Burger et
al., 1999), and in the plasma research (Antipov et al., 1981).
Typically, a soliton can be stable owing to a certain nonlinear-
ity. For example, spatial plasma solitons, described in frames
of the classical electrodynamics, can exist due to the com-
bined action of electron–ion and electron–electron nonlinear
interactions. The former one was found to be focusing (Za-
kharov, 1972), whereas the latter interaction can be defocus-
ing (Kuznetsov, 1976; Škoríc and ter Haar, 1980; Davydova
et al., 2005). Recently,Haas and Shukla(2009) suggested
that, if one accounts for the additional quantum pressure of
electron gas, it may explain the appearance of two- and three-
dimensional Langmuir solitons in dense plasmas.

In the present work we shall study the existence of stable
Langmuir solitons in a plasma with ions possessing induced
electric dipole moments (EDM). We shall demonstrate that

the interaction of an ion’s EDM with a rapidly varying elec-
tric field of a plasma oscillation results in the arrest of the
Langmuir wave collapse. Thus the existence of a spatial soli-
ton becomes possible.

In our analysis we shall choose a plasma with diatomic
nitrogen ions, which corresponds to a realistic atmospheric
plasma. Thus our results may be applied for the theoretical
description of long-lived plasma structures observed in the
atmosphere (Bychkov et al., 2010). It is interesting to notice
that the role of EDM of charged particles for the explanation
of the stability of atmospheric plasmoids was also discussed
previously byBergstr̈om(1973) andStakhanov(1973).

This work is organized as follows. In Sect.2 we consider
the general description of nonlinear waves in plasma. We in-
troduce the new ponderomotive force, associated with EDM,
which acts on the ion component of plasma. Then we derive
a system of nonlinear equations for the electric field ampli-
tude and the perturbation of the ion density. In Sect.3 we re-
duce this system to a single nonlinear Schrödinger equation
(NLSE), containing cubic and quintic terms, for the envelope
of the electric field. This equation is analyzed numerically
for the case of a radial plasma oscillation. We show that both
axially and spherically symmetric stable solitons can exist.
Then, in Sect.4, we discuss a possible application of our
model of stable spatial solitons to the description of long-
lived atmospheric plasmoids as well as for the interpretation
of some experimental results. Finally, in Sect.5, we briefly
summarize our results. The calculation of the permittivity of
the ion component of plasma is presented in AppendixA.

2 Nonlinear Langmuir oscillations in plasma

In this section we shall derive the basic nonlinear equations
for the description of Langmuir waves in plasma accounting
for a ponderomotive force acting on nonpolar diatomic ions.
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582 M. Dvornikov: Stable Langmuir solitons

If we study electrostatic plasma oscillations, i.e., when the
magnetic field is zero,B = 0, the motion of the electron com-
ponent of plasma obeys the following plasma hydrodynamics
equations:

∂ne

∂t
+ ∇ · (neve)=0,

∂ve

∂t
+ (ve∇)ve = −

e

m
E −

1

nem
∇p, (1)

wherene is the number density of electrons,ve is the elec-
tron velocity,m is the mass of an electron,e > 0 is the pro-
ton charge,E is the strength of the electric field, andp is
the pressure. We should also consider Maxwell and Poisson’s
equations for the electric field evolution,

∂E

∂t
=4πe(neve− nivi),

(∇ ·E)= − 4πe(ne− ni), (2)

whereni is the ion number density andvi is the ion velocity.
In the zeroth approximation only electrons participate in a

plasma oscillation, with the number density of ions being ap-
proximately constant:ni ≈ n0 = const. Thus we may present
the electric field in the form:

E = E1e
−iωet + E∗

1e
iωet + ·· · , (3)

whereωe =

√
4πe2n0/m is the Langmuir frequency for elec-

trons andE1 is the amplitude of the electric field. It should be
noted that in the following (see, e.g., Sect.3) we shall study
axially and spherically symmetric plasma oscillations. In this
case one can find a scalar potentialφ1 such asE1 = −∇φ1
in Eq. (3).

In a realistic situation ions will also participate in a plasma
oscillation. Thus the ion density becomesni = n0 + n(r, t),
wheren is the perturbation of the ion density. It leads to
the appearance of higher harmonics omitted in Eq. (3). The
plasma hydrodynamic equations for the description of the
ions evolution have the form (Škoríc and ter Haar, 1980):

∂ni

∂t
+ ∇ · (nivi)=0,

∂vi

∂t
+ (vi∇)vi =

F i

M
, (4)

whereM is the ion mass, andF i is the force acting of ions.
The reason why one can omit the ion pressure term in Eq. (4)
will be discussed at the end of this section.

Using the quasineutrality of plasma we can find that (Za-
kharov, 1972)

n0 + n≈ ne = n0exp

(
eϕs−Upm

Te

)
, (5)

whereϕs is the slowly varying part of the electric poten-
tial, Te is the electron temperature, andUpm = |E1|

2/(4πn0)

is the potential of the ponderomotive force that acts on a
charged particle in a rapidly oscillating electric field given
in Eq. (3). Supposing that ions are mainly involved in the
slow motion of plasma we get thatF i = −e∇ϕs. Finally,
using Eqs. (1)–(5) one arrives to the system of equations
of Zakharov(1972). More detailed derivation of the non-
linear plasma evolution equations that include electron–ion
and electron–electron interactions can be found in the works
by Kuznetsov(1976) andŠkoríc and ter Haar(1980).

It should be noted that Eq. (4) is derived under the assump-
tion of ions having point-like charges. However realistic at-
mospheric plasma contains mainly nitrogen or oxygen ions,
which are diatomic (see also Sect.4). In this case the simpli-
fied ion hydrodynamics, Eq. (4), is incomplete since it does
not take into account the internal structure of ions.

A diatomic molecule is nonpolar, i.e., it cannot have an in-
trinsic EDM because of the symmetry reasons. Nevertheless,
this kind of molecules can acquire EDM,pi = αijEj , in an
external electric field. Here(αij ) is the polarizability tensor.
Hence the additional force,F pol = (p∇)E, will act on this
particle placed in an external inhomogeneous electric field.
Thus, if we study the plasma with diatomic ions, in Eq. (4)
one should replaceF i = −e∇ϕs → −e∇ϕs+f pol/ni , where
f pol is the volume density of the ponderomotive force related
to the matter polarization.

If an ion is diatomic and possesses an axial symmetry,
one can always reduce the polarizability tensor to the diag-
onal form,(αij )= diag

(
α⊥,α⊥,α‖

)
, whereα⊥ andα‖ are

transversal and longitudinal polarizabilities. Now the expres-
sion forf pol can be obtained using Eq. (A5) and the general
technique developed byTamm(1979), as

f pol =
1

8π

[
∇

(
ni
∂ε

∂ni
E2
)

− E2
∇ε

]
= ni

[
〈α〉 +

4

45

(1αE)2

Ti

]
∇E2, (6)

whereε is the permittivity of the ion component of plasma,
Ti is the ion temperature,〈α〉 = (2α⊥ +α‖)/3 is the mean
polarizability of an ion, and1α = α‖ −α⊥.

It should be noted that the general expression for the pon-
deromotive forcef pol was derived byTamm(1979) under
the assumption of static fields with(∇×E)= 0. However, as
we mentioned above, we study electrostatic plasma oscilla-
tions with zero magnetic field (see also Sect.3). Thus Eq. (6)
remains valid.

Combining Eqs. (1)–(6) we get the following nonlinear
coupled equations for the amplitude of the electric field:

iĖ1 +
3

2
ωer

2
D∇(∇ ·E1)−

ωe

2n0
nE1 = 0, (7)
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and for the perturbation of the ion density:(
∂2

∂t2
− c2

s∇
2

)
n=

1

4πM
∇

2
|E1|

2

−
4

15

(1α)2n0

MTi
∇

2
|E1|

4, (8)

where rD =

√
Te/4πe2n0 is the Debye length andcs =

√
Te/M is the sound velocity in plasma. To derive Eq. (8) we

take into account that〈E4
〉 = 6|E1|

4 while averaging over
the time interval∼ 1/ωe.

The first quadratic term in the rhs (right-hand side) of
Eq. (8) corresponds to the direct interaction of charged ions
with the electric field whereas the second quartic term there,
∼ ∇

2
|E1|

4, is related to the induced EDM interaction. Hence
the contribution of this second term to the Langmuir waves
dynamics should be typically smaller. However, as we shall
see in Sect.3, in some cases it is the EDM term that arrests
the collapse of Langmuir waves.

It should be noted that in Eq. (8) we neglect the contribu-
tion of the ion temperature to the sound velocity. Such a con-
tribution would correspond to a nonzero ion pressure term in
Eq. (4). Since we suppose thatTi � Te, we can omit the ion
pressure. However we keep the ion temperature in the quartic
nonlinear term in Eq. (8). In the rhs of Eq. (8) we also neglect
term∼ −n0〈α〉∇

2
|E1|

2/M, which is small compared to the
contribution of the Miller force. Indeed, the ratio of these
terms is∼ n0〈α〉. In Sect.4 we shall use the following val-
ues ofn0 and 〈α〉: n0 ∼ 1021 cm−3 and 〈α〉 ∼ 10−24 cm−3.
For such parameters, this ratio is about∼ 10−3. This fact jus-
tifies the validity of Eq. (8).

Finally we notice that the quartic nonlinear term in Eq. (8)
blows up ifTi → 0. It means that our model is not valid at
the very low ion temperature. However, in Sect.4, where we
shall discuss a possible application, we consider only rea-
sonable, relatively high values ofTi . Note that at extremely
low temperatures quantum corrections to the ion and electron
motion become important.

3 Cubic-quintic nonlinear Schrödinger equation

In this section we shall derive the nonlinear Schrödinger
equation for the amplitude of the electric field. This equa-
tion will be analyzed in a particular case of a radial plasma
oscillation. We shall numerically solve it and find the char-
acteristics of Langmuir solitons. The soliton stability will be
examined.

Let us suggest that the density variation in Eq. (8) is
slow, i.e.,∂2n/∂t2 � c2

s∇
2n. In this subsonic regime Eqs. (7)

and (8) can be cast in a single NLSE,

iĖ+
3

2
ωer

2
D∇(∇ ·E)

+
ωe

Te

(
1

8πn0
|E|

2
−

2(1α)2

15Ti
|E|

4

)
E = 0, (9)

which has both cubic and quintic nonlinear terms. NLSEs
analogous to Eq. (9) were previously examined byDesyat-
nikov et al.(2000) in connection to the studies of the light
bullet propagation in crystals. Note that in Eq. (9) we omit the
index “1” in the amplitude of the electric field, i.e.,E1 ≡ E,
in order not to encumber the formulas.

As we mentioned in Sect.2, we shall examine axially
or spherically symmetric plasma oscillations, i.e.,E = Eer,
whereer is a unit vector in radial direction andE is a scalar
function. Introducing the following dimensionless variables:

τ =
15

128π2

Ti

Te

1

(n01α)2
ωet, x =

1

8πn01α

√
5Ti
Te

r

rD
,

ψ = 41α

√
πn0

15Ti
E, (10)

we can represent Eq. (9) in the form:

i
∂ψ

∂τ
+ψ ′′

+
d − 1

x
ψ ′

−
d − 1

x2
ψ+

(
|ψ |

2
− |ψ |

4
)
ψ = 0, (11)

which contains no dimensionless parameters. Hered = 2,3
is the dimension of space.

One can check by the direct calculation that the plasmon
number,

N =

∞∫
0

�ddx xd−1
|ψ |

2, (12)

and the Hamiltonian,

H =

∞∫
0

�ddx xd−1

×

{∣∣∣∣ 1

xd−1

(
xd−1ψ

)′
∣∣∣∣2 −

1

2
|ψ |

4
+

1

3
|ψ |

6

}
, (13)

are the integrals of Eq. (11). Here�2 = 2π and�3 = 4π are
the solid angles in two and three dimensions.

We shall look for the solution of Eq. (11) asψ(x,τ)=

eiλτψ0(x), whereλ is a real number meaning the dimension-
less frequency shift. By the proper choice of the phase we can
always make the functionψ0 to be real. The corresponding
ordinary differential equation for the functionψ0 is solved
numerically using the MATLAB program.

Firstly, we analyze the stability of axially and spherically
symmetric solitons by plottingN(λ) dependence. It is shown

www.nonlin-processes-geophys.net/20/581/2013/ Nonlin. Processes Geophys., 20, 581–588, 2013
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Fig. 1. The analysis of Eq. (11) in a 2-D case.(a) The function
N(λ). (b) Examples of the numerical solitonsψ0(x) for differentλ.
(c) The functionν0(x)= |ψ0|

2
− |ψ0|

4 for different values ofλ.

in Fig. 1a for a 2-D case and in Fig.2a in a 3-D case. One
should notice that in the 2-D case∂N/∂λ > 0 in a quite broad
range ofλ. Thus according to theVakhitov and Kolokolov
(1973) criterion (VKC), this kind of 2-D soliton is stable.

In the 3-D case the accuracy of calculations is signifi-
cantly lower than that in 2-D situation. To build a smooth
N(λ) curve in Fig.2a the least squares method was used
since the points on this plot, obtained with numerical sim-
ulations in MATLAB, have a rather big spread, especially at
largeλ. Meanwhile one can see that unstable and stable soli-
tons coexist in a 3-D case. In Fig.2a we get that∂N/∂λ < 0
at λ. 0.26. Applying VKC we conclude that this branch
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Fig. 2. (a–c)are the same as in Fig.1 but correspond to a 3-D case.

corresponds to unstable solitons. However, ifλ& 0.26, we
obtain that∂N/∂λ > 0, which corresponds to stable solitons.

4 Application

In this section we discuss the application of the results ob-
tained in Secs.2and3 for the studies of a natural atmospheric
plasmoid called aball lightning (BL).

BL is a glowing object appearing mainly during a thun-
derstorm (Keul, 2013). Despite the existence of numer-
ous BL models (Bychkov et al., 2010), it is likely to be
a plasma based phenomenon.Dvornikov and Dvornikov
(2006); Dvornikov (2011, 2012a,b) and Dvornikov (2013)

Nonlin. Processes Geophys., 20, 581–588, 2013 www.nonlin-processes-geophys.net/20/581/2013/



M. Dvornikov: Stable Langmuir solitons 585

put forward a hypothesis that BL is based on a radial oscilla-
tion of plasma and discussed both classical and quantum ap-
proaches to this problem. Note that an analogous BL model
was also considered byFedele(1999), Shmatov(2003) and
Tennakone(2011).

Note that, in the BL model based on radial plasma oscil-
lations, it is not required to have any special force that main-
tains the shape of a plasma structure. On the contrary, in the
case of a model based on the static distribution of electric
charges inside a plasmoid one needs a self-consistent inter-
action, e.g., of the magnetic origin, which sustains a plasma
object in equilibrium. However, in this case plasma will radi-
ate electromagnetic waves and a plasmoid will lose its energy
within the millisecond timescale.

We already mentioned in Sect.2 that the magnetic field in
the system of radially oscillating particles is equal to zero.
This fact may explain the relative stability of a plasma struc-
ture since it does not lose energy by the electromagnetic radi-
ation. Moreover, here we are using the concept of collision-
less plasma. Later in this section we discuss how one can
account for the visible radiation of BL described in frames
of our model.

Let us discuss the conditions for the existence of a spher-
ical nonlinear Langmuir soliton in the atmospheric plasma.
Firstly, an atmospheric plasma can contain N+

2 (≈78 %) and
O+

2 (≈ 21 %) ions. These ions are diatomic and nonpolar. We
have already mentioned in Sect.2 that diatomic ions cannot
have an intrinsic EDM, whereas an induced EDM is well pos-
sible. Thus our results may be applied for the description of
atmospheric plasmoids.

Now let us evaluate the characteristics of the plasma struc-
ture. For the stability of a soliton its size should be greater
thanrD – otherwise thermal electrons will cross the soliton
leading to the development of a turbulence. One can see in
Figs. 1b and2b that in dimensionless variables the typical
soliton size can be up to 10. Using the values of the polariz-
abilities of aneutral nitrogen molecule (Alms et al., 1975),
αij ∼ 10−24 cm−3, and Eq. (10), we get that if

κ =

( n0

1021 cm−3

)2 Te

Ti
> 79, (14)

a plasmoid becomes stable.
The analysis of the soliton stability is based on the pertur-

bation theory, which requires thatδω < ωe, whereδω is the
frequency shift. Using the parameterκ defined in Eq. (14) we
get that this condition is equivalent to

κ > 4.7× 103, (15)

where we use Figs.1a and2a to obtain the typical value of
λ∼ 0.4.

The ion density inside a plasmoid is lower than the am-
bient density (Zakharov, 1972). Integrating Eq. (8) in the
subsonic regime and using Eq. (10) we should impose the

constraint on the normalized ion density variation:∣∣∣∣ nn0

∣∣∣∣≈ 2.4× 104ν0

κ
< 1, (16)

whereν0(x)= |ψ0|
2
−|ψ0|

4. Note thatn in Eq. (16) is nega-
tive. The functionν0(x), corresponding to different numeri-
cal solutions of Eq. (11), is shown in Figs.1c and2c for axial
and spherical plasma structures. As one can see in these plots,
the maximal value ofν0 is in the 0.05–0.25 range.

In a 2-D case, the bigger the parameterλ is, the greater the
maximum ofν0 is. Thus, if we takeλ. 0.4 andκ > 6×103,
then using Eq. (16), we get that|n|< n0 inside the whole
plasmoid. In a 3-D case, one can see in Fig.2c that the
smallest value of the maximum ofν0(x) is archived for
λmin ≈ 0.25. Note thatλmin corresponds to the minimum of
the functionN(λ), cf. Fig. 2a. Again, considering thatλ is
close toλmin, one obtains that the ion number density is pos-
itive in a spherical plasma structure ifκ > 6× 103.

The conditions of the plasma structure stability in
Eqs. (14)–(16) are satisfied if we suppose thatn0 ∼

1021 cm−3, Ti = 300 K andTe = 106 K. Now let us estimate
the typical size of a plasmoid requiring thatReff > rD. For the
chosen electron density and temperatures we get the lower
bound for the radius:Reff & (10−7

÷ 10−6) cm. Using the
numerical solutions of Eq. (11), shown in Figs.1b and2b,
as well as obtained estimates forλ, we get the upper bound
for the radius:Reff . 10−5 cm. Note that atn0 ∼ 1021 cm−3

and Reff ∼ 10−5 cm, there is still a significant number of
charged particles inside the plasmoid:4

3πR
3
effn0 ∼ 106. It

should be also noticed that the plasmoid radius is at least one
order of magnitude greater than the intermolecular distance:
Reff � n

−1/3
0 .

It should be mentioned that the obtained small size of
a plasma structure is very close to the estimates obtained
by Dvornikov and Dvornikov(2006); Dvornikov (2012a,b)
andDvornikov (2013), where radial nonlinear plasma oscil-
lations were studied using the quantum approach. Note that a
theoretical model of BL having a nano-sized kernel was de-
veloped byAlexeev(2008) using the methods of generalized
quantum hydrodynamics. The existence of plasma structures
having the size, which lies in the nanometer range, was theo-
retically suggested byAbrahamson and Dinniss(2000). Re-
cently their hypothesis was experimentally tested byDikht-
yar and Jerby(2006) andPaiva et al.(2007).

According to observations, the visible dimension of BL
is about several centimeters (Doe, 2013). However its core
should be much smaller. Otherwise it is difficult to explain
how BL easily passes through small holes or cracks in di-
electric materials (Doe, 2013). Therefore the visible size of a
plasmoid is likely to be caused by some auxiliary effects.

We can also assume that BL is a composite object. This as-
sumption is based on the fact that sometimes BL can decay
into pieces (Bychkov et al., 2010). The composite structure
of plasma objects was also confirmed experimentally. The

www.nonlin-processes-geophys.net/20/581/2013/ Nonlin. Processes Geophys., 20, 581–588, 2013



586 M. Dvornikov: Stable Langmuir solitons

photographs taken byPaiva et al.(2007) show that the visible
size of artificial plasmoids lies in the cm range. However, the
analysis of materials that were in contact with these plasma
objects demonstrates that plasmoids consist of multiple small
kernels. The models of a composite BL were previously dis-
cussed byMeshcheryakov(2007) andDvornikov (2012b). It
should be noted that the model of BL, consisting of multi-
ple oscillating plasmoids, can explain the visible radiation of
such a plasma structure. This radiation is due to the decay
of plasma oscillations in some small fraction of oscillating
kernels, whereas the majority of them are stable.

The results of the present work can be used to explain the
formation of a plasmoid in natural conditions. Let us sup-
pose that during a thunderstorm a high tension, related to a
linear lightning strike, is applied to a small object with the
appropriate size. It can be a natural spike, a piece of dust or
soot etc. Then this object turns out to be embedded in plasma
with n0 ∼ (1019–1020) cm−3. Moreover, this object will be
a source of divergent waves, where the electron density can
rise almost one order of magnitude (Gorbunov et al., 2010;
Bulanov et al., 2012) and reach the value required to excite an
axial or a spherical Langmuir soliton described in our work.
Note that the plasma heating up to∼ 106 K is also possible
in the vicinity of this object. We remind that the typical elec-
tron temperature in a linear lightning bolt is (Rakov, 1998)
Te ≈ 3×104 K. Note that at high electron temperature, atoms
can be multiply ionized, which will also increase the electron
density.

It should be mentioned that ions are unlikely to be involved
in the divergent waves because of their low mobility. Thus
the density of ions should keep the initial value, i.e., be lower
than that of electrons, in some region near the object; this can
explain the formation of a cavern (see Eq.16 and the work
by Zakharov, 1972).

Therefore we may consider a Langmuir soliton, which in-
volves the interaction of induced EDM of ions with the oscil-
lating electric field, as proto-BL, i.e., an atmospheric plasma
structure at its initial stages of evolution. Under certain con-
ditions, when other (maybe quantum) nonlinear effects be-
come important, this proto-BL can then be transformed into
a glowing object identified as BL.

We also mention that besides the explanation of the forma-
tion of natural plasmoids, the model of radial plasma oscilla-
tions, involving diatomic ions, can be used for the interpre-
tation of the results of the experiments performed byKlimov
et al.(1994); Dimitrov et al.(1994) andKirko et al. (1995),
where spherical luminous structures were obtained in elec-
tric discharges in liquid nitrogen. Indeed, in case of a plas-
moid in liquid nitrogen we can take thatTi = 77 K and
n0 ≈ 3.44× 1021 cm−3, which corresponds to 10 % ioniza-
tion. To satisfy conditions in Eqs. (14)–(16) one should re-
quire thatTe ∼ 104 K. Such electron temperatures are achiev-
able in laboratory plasmas. It makes rather plausible interpre-
tation of the results ofKlimov et al. (1994), Dimitrov et al.
(1994) andKirko et al. (1995) in frames of our model.

5 Conclusions

In the present work we have studied stable spatial plasma
structures possessing axial and spherical symmetry. The sta-
bility of soliton-like plasmoids against the collapse is pro-
vided by the defocusing interaction of the induced EDM of
ions with the rapidly oscillating electric field. Note that an
ion was supposed to be diatomic and nonpolar. In Sect.2,
starting from the complete set of plasma hydrodynamic equa-
tions we have derived the basic nonlinear equations for the
envelope of the electric field and for the perturbation of the
ion density (see Eqs.7 and8). In Sect.3 we have reduced
these equations to a single cubic-quintic NLSE (11), written
in the dimensionless variables. Then Eq. (11) was solved nu-
merically. Applying VKC, we have found that mainly stable
spatial solitons can exist in a 2-D case, whereas in a 3-D case
both stable and unstable solitons are present.

It should be noted that VKC was originally formulated
by Vakhitov and Kolokolov(1973) for a NLSE for a scalar
“wave function”9. In 2-D or 3-D cases, the kinetic term of
such an equation contains the Laplace operator of9, which
reads9 ′′

+
d−1
r
9 ′ for the function depending only on the

radial coordinate. The kinetic term of NLSE (11), derived
in our work, has different structure. Nevertheless, as shown
by Davydova et al.(2005), the application of VKC to the
analysis of NLSE analogous to Eq. (11) is justified.

In Sect.4 we have discussed a possible application of the
obtained results to the studies of a long-lived atmospheric
plasma structure, BL. It was found that in a realistic atmo-
spheric plasma, mainly composed of N+

2 and O+

2 ions, one
may expect that the initial stages of BL evolution can be de-
scribed in frames of the plasmoids model developed in the
present work. We have also suggested one of the possible
ways of the creation of this kind of plasma structures in natu-
ral conditions. Besides the description of natural plasmoids,
in Sect.4 we have considered the application of our model
for the interpretation of the results of experiments where
plasma structures were generated in liquid nitrogen.

As we mentioned in Sect.1, besides the mechanism pro-
posed in the present work, there are other ways to arrest the
collapse of a Langmuir wave. For example, it was shown
by Kuznetsov(1976), Škoríc and ter Haar(1980) andDavy-
dova et al.(2005) that the electron–electron nonlinear inter-
action prevents the soliton collapse. It should be noticed that
in this case higher harmonics are generated in the system.
However, a plasma structure, supported by this nonlinearity,
was demonstrated byDvornikov (2011) to exist only in the
upper ionosphere, where the density is very low. We remind
that the majority of the BL observations indicate that this
phenomenon happens in the lower troposphere (Bychkov et
al., 2010).

Note that in our work we have used polarizabilities of a
neutral nitrogen molecule rather than of N+

2 , which in fact
can differ significantly. Nowadays no measurements of N+

2
polarizabilities have been made. This fact can change the
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estimate of the critical background density, necessary for the
plasmoid existence, towards its reduction.

Appendix A

Polarization of a nonpolar diatomic gas in an external
electric field

The collective response of plasma results in the concept of
“dressed” particles. It means that the Coulomb interaction of
a charged particle is replaced by the Debye–Hückel poten-

tial, 1
r

exp
(
−

r
rD

)
. If the plasma density is quite high, i.e.,

the Debye length is short, we may suppose that the electric
charge of an ion is quite perfectly screened by surrounding
electrons. In this case the Hamiltonian of a diatomic ion pos-
sessing an axial symmetry in an external electric field reads

H=
M2

⊥

2I
+U, (A1)

whereM⊥ is the vector of the angular momentum of an ion
perpendicular to the ion axis,I is the moment of inertia of
an ion,U = −(pE)= −E2

(
α⊥ sin2θ +α‖ cos2θ

)
is the po-

tential energy of a polarized ion in an external electric field,
andθ is the angle between the ion axis and the electric field
direction.

On the classical level the thermodynamic properties of a
gas can be calculated on the basis of the canonical partition
function,Z = zN , whereN is the total number of ions. The
reduced partition functionz, which includes the rotational
degrees of freedom of an ion has the form:

zrot =
1

(2πh̄)2

∫
d2M⊥ exp

(
−

M2
⊥

2ITi

)

×

∫
d�exp

[
E2

Ti

(
α⊥ sin2θ +α‖ cos2θ

)]
, (A2)

where d�= 2π sinθdθ is the solid angle differential.
Calculating the integral over the angular momentum com-

ponents, we can expresszrot in the following form:

zrot =
2I

h̄2
Ti exp

(
E2

Ti
α⊥

)
z′,

z′ =

1∫
0

dxeξx
2
= 1+

ξ

3
+
ξ2

10
+ ·· · , (A3)

whereξ = E21α/Ti . The polarization of the gas in an ex-
ternal electric field can be calculated on the basis of the ex-
pression for the free energyF = −Ti lnZ. The polarization
vector has the following form:

P = −
1

V

(
∂F

∂E

)
Ti

= 2Eni

(
〈α〉 +

4

45

(1αE)2

Ti

)
, (A4)

whereV is the volume of a gas. Here we account for the
decomposition ofz′ in Eq. (A3).

Basing on Eq. (A4) we obtain the permittivity of the ion
component of plasma:

ε = 1+ 8πni

(
〈α〉 +

4

45

(1αE)2

Ti

)
, (A5)

which was used in Sect.2 to derive the ponderomotive force
acting on ions. Using Eqs. (A3) and (A4), one can get the
quartic contribution to the permittivity in Eq. (A5). It has the
form:

1ε =
64

945
πni

1α3E4

T 2
i

. (A6)

The obtained correction toε is small. However, using the
fact that1ε in Eq. (A6) is positive as well as the formalism
developed in Sects.2 and3, we get that, if one accounts for
this correction, it will defocus Langmuir waves and further
stabilize solitons.

Finally, we mention that our calculations are based on the
assumption of the constant electric field, whereas in Sects.2
and3 the electric field is supposed to oscillate with the high
frequency∼ ωe. According toAlms et al.(1975), the typical
frequency associated with the polarizability of a molecule is
∼ 1015 Hz. This value is several orders of magnitude greater
than plasma frequencies in realistic plasmas. Thus the ap-
proximation of the constant electric field is valid.
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