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Abstract. The nonlinear deformation of long internal waves
in the ocean is studied using the dispersionless Gardner
equation. The process of nonlinear wave deformation is
determined by the signs of the coefficients of the quadratic
and cubic nonlinear terms; the breaking time depends only
on their absolute values. The explicit formula for the Fourier
spectrum of the deformed Riemann wave is derived and
used to investigate the evolution of the spectrum of the
initially pure sine wave. It is shown that the spectrum has
exponential form for small times and a power asymptotic
before breaking. The power asymptotic is universal for
arbitrarily chosen coefficients of the nonlinear terms and has
a slope close to−8/3.

1 Introduction

Internal waves in the ocean are an important object of non-
linear geophysical hydrodynamics, discussed in numerous
books and reviews (e.g., Ostrovsky and Stepanyants, 1989;
Baines, 1995; Grimshaw et al., 1998, 2007; Lyapidevsky and
Teshukov, 2000; Miropolsky, 2002; Staquet and Sommeria,
2002; Grimshaw, 2002, 2007; Vlasenko et al., 2005; Helfrich
and Melville, 2006; and Hutter, 2012). The breaking
of internal waves contributes significantly to the mixing
processes in the ocean and has been frequently observed
in real nature (Smyth and Holloway, 1988; Henyey and
Hoering, 1997; Afanasyev and Pelter, 2001; Chant and
Wilson, 2000; Horn et al., 2001; Konyaev and Filonov,
2006).

Strongly nonlinear deformation and breaking of internal
waves is described theoretically in the framework of two-
layer flows with no dispersion (Baines, 1995; Klemp et
al., 1997; Lyapidevsky and Teshukov, 2000; Jiang and
Smith, 2001; Holland et al., 2002; Fringer and Street, 2003;
Milewski et al., 2004; Sakai and Redekopp, 2007; Zahibo
et al., 2007). In fact, the long interfacial waves in a two-
layer fluid as described in the Boussinesq approximation
with rigid-lid approximation are described by almost the
same equations of motion as surface shallow-water waves,
allowing to introduce the Riemann invariants and use
the classic theory of nonlinear hyperbolic equations. In
comparison with surface shallow-water waves the nonlinear
dynamics of interfacial Riemann (sometimes also called
simple) waves are significantly richer. In particular, breaking
can appear on the front-slope or back-slope of the wave
depending on the thicknesses of layers of uniform density
in the medium (Zahibo et al., 2007).

The possibility of Riemann waves to occur in a more
complicated stratified fluid containing several layers or with
continuous stratification is discussed by Chumakova et al.
(2009). A solution has been found for a smoothly stratified
basin (Ostrovsky and Helfrich, 2011), where it is shown
numerically that a simple wave can emerge from a wide
class of initial disturbances. It is important to mention that
they find strongly nonlinear Riemann waves not only for
the first mode, but also for the second and third modes.
Their evolution leads to wave breaking and the formation
of hydraulic lumps or bore-like pulses with different decay
rates depending on the modal number. This nonlinear process
influences the modal and spectral distribution of the internal

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



572 E. Kartashova et al.: Fourier spectrum of an internal Riemann wave

wave field (Yermakov and Pelinovsky, 1975; Filonov and
Novotryasov, 2007; Novotryasov and Karnaukhov, 2009).

In the present paper we study analytically long nonlinearly
deformed internal waves of moderate amplitude in the ocean
with arbitrary but stable stratification in density and shear
flow. Our mathematical model is based on the dispersionless
Gardner (extended Korteweg–de Vries) equation briefly
discussed in Sect. 2. The shape deformation of internal waves
resulting from different values and signs of the coefficients
of the quadratic and cubic nonlinear terms is analyzed in
Sect. 3. Spectra of Riemann waves are discussed in Sect. 4.
In particular it is demonstrated that before breaking, the
spectrum has a power asymptotic for all possible values of
nonlinear terms. The results obtained are summarized in the
Conclusions (Sect. 5).

2 Dispersionless Gardner equation for long internal
waves

The Korteweg–de Vries equation and its generalizations are
a popular model to describe weakly nonlinear and weakly
dispersive internal waves (Ostrovsky and Stepanyants, 1989;
Grimshaw et al., 1998, 2007; Miropolsky, 2002; Grimshaw,
2002, 2007; Vlasenko et al., 2005; Helfrich and Melville,
2006; Hutter, 2012). In many cases of the vertical distribution
of density and shear flow the coefficient of the quadratic
nonlinear term is small (for instance, it is zero for a two-layer
flow with equal thicknesses), and the cubic nonlinear term
should be accounted in the same order of perturbation theory
as the quadratic nonlinear term. This combined Korteweg–
de Vries equation is called the Gardner equation, and it is
very often used to model the solitary internal waves in the
ocean with real stratification (Grimshaw et al., 2007, 2010a),
or to demonstrate that modulation instability leads to the
formation of rogue internal waves (Grimshaw et al., 2010b;
Talipova et al., 2011), or to describe transformation of the
internal tide in the coastal zone (Holloway et al., 1999).
In the latter case in the initial stage of the transformation
dispersion effects are negligible (Smyth and Holloway, 1988;
Sakai and Redekopp, 2007; Zahibo et al., 2007) and so
the dispersionless Gardner equation can be chosen as an
appropriate model:

∂η

∂t
+ V (η)

∂η

∂x
= 0, V (η) = αη + βη2, (1)

whereη is vertical displacement of isopycne with maximal
oscillations. Here the coefficients of the quadratic and cubic
nonlinearity are

α =

(
3

2

) H∫
0

(c − U)2 (d8/dz)3dz

H∫
0

(c − U)(d8/dz)2dz

, (2)

β =
3

2∫
dz

{
(c−U)2

[
3(dT/dz)−2(d8/dz)2](d8/dz)2

−α2 (d8/dz)2
+ 5

}∫
(c−U)(d8/dz)2dz

, (3)

5 = α(c − U)
[
5(d8/dz)2

− 4dT/dz
]

d8/dz, (4)

and8(z) is the eigenfunction determined by the eigenvalue
problem:

d

dz

[
(c − U(z))2 d8

dz

]
+ N2(z)8 = 0, (5)

with zero boundary conditions on the sea bottom (z = 0)
and sea surface (z = H ), and normalization: max[8(z)] = 1.
This equation with zero boundary conditions has countable
number of eigenmodes, each with its own eigenvalue. As the
eigenvalue c is the long-wave speed of internal waves of any
mode, it is not important for our further study which specific
mode is analyzed.

The functionT (z) is the nonlinear correction to the modal
function 8(z), which is a solution of the inhomogeneous
eigenvalue problem:

d

dz

[
(c − U)2 dT

dz

]
+ N2T = −α

d

dz

[
(c − U)

d8

dz

]

+
3

2

d

dz

[
(c − U)2

(
d8

dz

)2
]

, (6)

solved with zero boundary conditions onz = 0 andz = H ,
and additional conditionT = 0 on the level where the modal
function is maximal. HereN(z) andU(z) are the buoyancy
frequency and shear flow respectively, and Boussinesq and
rigid-lid approximations are used.

The dispersionless Gardner equation describes the long
nonlinear internal waves of weak and moderate amplitudes.
It may be obtained as a result of the asymptotic procedure. In
the case of two-layer stratification (for interfacial waves) it
can be obtained from the full, strongly nonlinear Riemann
wave equation (Sakai and Redekopp, 2007; Zahibo et al.,
2007) or from the dispersionless limit of the Ostrovsky–
Grue equation (Ostrovsky and Grue, 2003) or the Choi–
Camassa system (Choi and Camassa, 1999). In the last case
it is necessary to use the Taylor expansion for functionV (η)

describing the local velocity of points on the wave surface.
It is important to notice that the coefficients of the

nonlinear terms in Eq. (1) may be positive, negative or
equal to zero. Moreover, for a very specific case of so-called
“symmetric” stratification, both coefficients vanish (Talipova
et al., 1999; Kurkina et al., 2011) and the next nonlinear
terms in the asymptotic expansion are required; this case is
not analyzed below.

In the present study we assume that both nonlinear terms
do not vanish simultaneously, but any one of them might have
a zero coefficient.
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If both coefficients are not zero, Eq. (1) can be reduced to
canonical dimensionless form:

∂u

∂t
+ V (u)

∂u

∂x
= 0, V (u) = 6u(1± u), (7)

by a change of variables

u =
η

6

∣∣∣∣βα
∣∣∣∣ , t ′ = αt

∣∣∣∣αβ
∣∣∣∣ . (8)

Below, both forms – dimensioned and dimensionless – of the
dispersionless Gardner equation will be used to analyze the
process of nonlinear wave deformation and the evolution of
its Fourier spectrum.

3 Nonlinear wave deformation

Here we begin with the dimensioned form of dispersionless
Gardner equation written above as Eq. (1); it can be solved
exactly, and its solution is the Riemann wave:

η(x, t) = F [x − V (η)t ] , (9)

whereF(x) describes the initial wave profile. This solution
describes the monotonically deformed wave and is “one-
valued” up to the time of breaking,T . This can be seen easily
regarding the expression for local wave steepness derived
from Eq. (9):

∂η

∂x
=

dF/dx

1+
dV
dx

t
. (10)

Where the initial slope dV/dx is negative, the denominator
in Eq. (10) tends to zero with growingt , and the local wave
steepness becomes infinite. The first time of wave breaking
is

T =
1

(−dV/dx)max
. (11)

Detailed calculation will be done below for a wave of initially
sinusoidal form:

F(x) = Asin(kx), (12)

with arbitrary amplitudeA and wave numberk. Formally,
Eq. (12) describes a sin of real arbitrary argument−∞ <

kx < ∞; however, the analysis below is also valid for one
period ofF(x), that is, for the argument range (0–2π ).

3.1 Breaking point location

The first step is determining the location of the breaking
point. Differentiation ofV with respect tox leads to

dV

dx
= αkA [cos(kx) + CQsin(2kx)] , CQ=

βA

α
. (13)

Parameter CQ is dimensionless and has evident physical
sense as the ratio of cubic to quadratic nonlinearity. The
analysis below shows the importance of this parameter: it
allows the description of the place of breaking point for
the systems with pure quadratic, pure cubic and mixed
nonlinearity in the same mathematical frame. Indeed, if
CQ = 0, then there is no cubic nonlinear term,β = 0; if
CQ= ∞, then there is no quadratic nonlinear term,α = 0.
Otherwise parameter CQ can be positive or negative. Without
loss of generality it is assumed below thatα ≥ 0.

The wave steepness given by Eq. (13) has negative
extremes at

F∗

A
= sin(kx∗) = −

1

8CQ
±

√
1

2
+

1

64CQ2
, cos(kx∗) < 0. (14)

The first root of this equation is

F1

A
= sin(kx1) =

√
1

2
+

1

64CQ2
−

1

8CQ
. (15)

It exists for any positive value of CQ and varies fromkx1 = π

for CQ= 0 (pure quadratic nonlinearity) tokx1 = 3π/4 for
CQ= ∞ (pure cubic nonlinearity). The breaking point on the
wave profile moves fromF = 0 for CQ= 0 toF = A(2)−1/2

for CQ= ∞.
The second root,

F2

A
= sin(kx2) = −

√
1

2
+

1

64CQ2
−

1

8CQ
, (16)

exists only if CQ> 1/2 (cubic nonlinear term prevails on
quadratic one). The breaking point is initially atkx2 = 3π/2
(on the wave trough) and moves to 7π/4 with increase in CQ.

In Fig. 1a it is shown how the locations of the breaking
points depend on the parameter CQ; the initial sine wave
is regarded for the case when both cubic and quadratic
coefficients are positive:α > 0 andβ > 0. The case, when
cubic and quadratic terms have different signs,α > 0 and
β < 0 is shown in Fig. 1b.

3.2 Breaking time

In the previous section we have computed the maximal
values of the derivative dV/dx. However, to apply the
formula for the breaking time, Eq. (11), we also need to
compare the values of it in the roots, Eqs. (15) and (16).
Notice that even if both roots exist (in case|CQ| > 1/2) they
behave differently, because the slopes dV/dx differ in both
points and|dV/dx| has absolute maximum on the first root.
This means that at first instance wave breaking will be near
phasekx = π and later in the second point. Only in the case
of pure cubic nonlinearity wave breaking will occur at both
points simultaneously.

www.nonlin-processes-geophys.net/20/571/2013/ Nonlin. Processes Geophys., 20, 571–580, 2013
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(a)

(b)

Fig. 1. Motion of bifurcation points with change in CQ:(a) β > 0,
and(b) β < 0.

In the case of purely quadratic nonlinearity (β = 0), the
breaking time is

T2 =
1

|α|kA
. (17)

In the case of purely cubic nonlinearity (α = 0), the breaking
time is

T3 =
1

|β|kA2
. (18)

The influence of the cubic nonlinear term on the breaking
time computed from Eq. (11) is shown in Fig. 2. As one may
expect, positive cubic nonlinearity decreases the breaking
time. Negative cubic nonlinearity decreases the absolute
value of local nonlinear speed, which also decreases the
breaking time. Even more, the total breaking time is a
function of|CQ|only.

3.2. Breaking time 

In the previous section we have computed the maximal values of the derivative dV/dx. However, 

to apply the formula for the breaking time (3.3) we also need to compare the values of it in the 

roots (3.7) and (3.8). Notice that even if both roots exist (in case |CQ| > 1/2) they behave 

differently, because the slopes dV/dx differ in both points and |dV/dx| has absolute maximum on 

the first root. This means that at first instance wave breaking will be near phase kx = π and later 

in the second point. Only in the case of pure cubic nonlinearity wave breaking will occur at both 

points simultaneously.  

In the case of purely quadratic nonlinearity (β = 0), the breaking time is 

 

kA
T

||
1

2 α
= .                                                                (3.9) 

 

In the case of purely cubic nonlinearity (α = 0), the breaking time is 

 

23 ||
1
kA

T
β

= .                                                              (3.10) 

 

The influence of the cubic nonlinear term on the breaking time computed from (3.3) is shown in 

Fig. 2. As one may expect, positive cubic nonlinearity decreases the breaking time. Negative 

cubic nonlinearity decreases the absolute value of local nonlinear speed which also decreases the 

breaking time. Even more, the total breaking time is a function of |CQ| only. 
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Figure 2. Breaking time versus CQ (T2 is the breaking time in a purely quadratic medium)  

 

 8

Fig. 2.Breaking time versus CQ (T2 is the breaking time in a purely
quadratic medium).

3.3 Time evolution of the wave shape

Nonlinear deformation of the initially sinusoidal wave,
Eq. (12), can be investigated in detail using the exact
solution, Eq. (9). Figure 3 demonstrates the deformation
in the limiting cases: (a)α > 0, β = 0 (CQ= 0); (b) α =

0, β > 0 (CQ= +∞) at different stages of development
(time is normalized on breaking time, which isT2 for pure
quadratic medium andT3 for pure cubic nonlinear medium).
Only one shock is formed in the case of purely quadratic
nonlinearity, and two shocks simultaneously in the case of
purely cubic nonlinearity. In case of mixed nonlinearity we
will use “canonical” values for the coefficients:α = 6, and
β = ±6, which amounts to CQ= ±A.

Below we consider the general case, when coefficients of
the dispersionless Gardner equation have canonical values
and CQ= +A. Figure 4a displays the wave deformation for
A = 0.4 at times 0.3, 0.4 (breaking time), and 0.5; there
exists only one breaking point. Of course, “multi-valued”
solutions of the Eq. (1) after breaking time shown in Fig. 4
do not materialize in real physical media and are given here
only for illustration of the breaking process to show the
asymmetry with respect to the horizontal axis.

With increase in amplitude (A = 2), the cubic nonlinear
term becomes important (CQ= 2) and we see the formation
of two shock fronts, faster on the crest and slower on the
trough (Fig. 4b).

Figure 5 demonstrates the different character of the
nonlinear wave deformation for positive and negative sign
of the cubic nonlinearity. In the latter case breaking occurs
on back slope of the wave shape.

Qualitatively, the same character of nonlinear deformation
is obtained for strongly nonlinear interfacial waves (Sakai
and Redekopp, 2007; Zahibo et al., 2007), where the cubic
nonlinear term is always negative.

Nonlin. Processes Geophys., 20, 571–580, 2013 www.nonlin-processes-geophys.net/20/571/2013/
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(a)

(b)

Fig. 3. Nonlinear wave transformation:(a) α > 0, β = 0 (CQ= 0);
(b) α = 0,β > 0 (CQ= +∞). Breaking timeT is T2 for (a) andT3
for (b).

4 Fourier spectrum of a nonlinearly deformed wave

It is known that a periodic wave can be represented by the
Fourier series:

η(x, t) =
a0(t)

2
+

∞∑
n=1

[an(t)cos(nkx) + bn(t)sin(nkx)], (19)

where the coefficients of Fourier series are defined as

Sn(t) = an + ibn =
k

π

2π/k∫
0

η(x, t)exp[inkx] dx. (20)

The problem to calculate integrals in Eq. (20) is that the
Riemann wave, Eq. (9), is given inexplicitly. Here we show
what can be done in this case.

(a)

(b)

Fig. 4. Nonlinear wave deformation in the case of positive sign
of the cubic nonlinearity.(a): CQ= A = 0.4, and(b) CQ= A = 2.
Numbers – different times.

Fig. 5 demonstrates the different character of the nonlinear wave deformation for positive and 

negative sign of the cubic nonlinearity.  In the latter case breaking occurs on back-slope of the 

wave shape.  
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Figure 5. Nonlinear wave deformation for different signs of cubic nonlinearity. A = 2, t = 0.06.  
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 11

Fig. 5. Nonlinear wave deformation for different signs of cubic
nonlinearity.A = 2, t = 0.06.
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It is convenient to perform the change of variables in
Eq. (20):

y = x − V (η)t, (21)

which replaces dx by

dx =
dy

1− t dV
dη

∂η
∂x

. (22)

Taking into account expression (10), formula (22) can be re-
written as

dx =

[
1+ t

dV

dF

dF

dy

]
dy. (23)

Accordingly, the spectrumSn takes the form:

Sn(t) =
k

π

2π/k∫
0

F(y)

[
1+ t

dV

dF

dF

dy

]

exp{ink [y + V (F)t ]}dy, (24)

where F(y) = Asin(ky) is the initial sine wave. Simple
manipulation in Eq. (24) reduces it to

Sn(t) =
i

nπ

2π/k∫
0

dU

dy
exp{ink [y + V (U)t ]}dy. (25)

Substitution ofx = ky yields the final expression for the
wave spectrum of the following form:

Sn(t) =
iA

nπ

2π∫
0

cosx

exp
{
in

[
x +

(
αkAsinx + βkA2sin2x

)
t
]}

dx. (26)

Introducing new variables:

p(t) = αkAt, q(t) = βktA2/2, (27)

we can rewrite Eq. (26) in a more convenient form:

Sn =
iA

nπ
exp(inq)

2π∫
0

cosx exp[pnsinx] exp[−qncos(2x)]

exp[inx]dx. (28)

This allows using the formulas for Bessel functions
(formulas 8.511–4 in Gradshteyn and Ryzhik, 2007):

exp[izcosφ] =

m=+∞∑
m=−∞

imJm(z)exp[imφ],

exp[izsinφ] =

m=+∞∑
m=−∞

(−1)mJm(z)exp[−imφ], (29)

to rewrite the integral on the RHS (right-hand side) of
Eq. (28) as a double sum:

Sn =
iA

nπ
exp(inq)

m=+∞∑
m=−∞

l=+∞∑
l=−∞

(−1)milJm(np)Jl(−nq)

2π∫
0

cosx exp[i (n + 2l − m)x] dx. (30)

Now the integral on the RHS of Eq. (30) can be computed as

2π∫
0

cosx exp[i (n + 2l − m)x] dx

= π
[
δn+2l−m+1 + δn+2l−m−1

]
, (31)

whereδj is the Kronecker symbol, which is equal to 1 if its
index is zero, and zero for other indexes, that isδ0 = 1 and
δj = 0 if j 6= 0.

So the double sum in Eq. (30) can be transformed into a
single sum as

Sn = (−1)n−1 2iA

n2p
exp(inq)

l=+∞∑
l=−∞

(−i)l(n + 2l)

Jn+2l(np)Jl(nq), (32)

where the following formulas for Bessel functions (Grad-
shteyn and Ryzhik, 2007) are used:

Jn+1(z) + Jn−1(z) =
2n

z
Jn(z), Jn(−z) = (−1)nJn(z). (33)

In the case of pure quadratic nonlinearity(β = 0),
expression (32) is simplified to

Sn = (−1)n−1 2iA

np
Jn(np), (34)

and coincides with the famous Bessel–Fubini spectrum of
a Riemann wave in nonlinear acoustics (Pelinovskii, 1976;
Rudenko and Soluyan, 1977). The Riemann wave may be
represented by a Fourier series containing only sine terms.
In Fig. 6 temporal evolution of the energy spectrumEn =

|Sn/A|
2 is shown, for the case of pure quadratic nonlinearity.

Using formulas (17) for T2 and (27) for p, it is easy to
show that in Eq. (34) p = t/T2. Accordingly, we demonstrate
graphically the spectrum evolution in terms of times 1/4,
1/2, 3/4, and 1 normalized overT2. One can clearly see the
formation of a power asymptotic with slope of –8/3. As it is
shown in Kartashova and Pelinovsky (2013) this asymptotic
is related to the formation of a singularity in the wave shape
at breaking time, of the formx1/3.

Nonlin. Processes Geophys., 20, 571–580, 2013 www.nonlin-processes-geophys.net/20/571/2013/
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In the case of pure quadratic nonlinearity (β= 0) expression (4.14) is simplified to 
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2013) this asymptotic is related to the formation of a singularity in the wave shape at breaking 

time of the form of x1/3. 
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Figure 6. Energy spectra (|Sn/A|2 of Riemann wave in purely quadratic nonlinear medium. Time 

is normalized on T2. . 

 

In the case of purely cubic nonlinearity (α= 0) expression (4.14) simplifies to (n = 2m+1) 
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quadratic nonlinear medium. Time is normalized onT2.

In the case of purely cubic nonlinearity(α = 0),
expression (32) simplifies to (n = 2m + 1),

Sm =
iA

2m + 1
exp[i (2m + 1)q] {Jm ([2m + 1] q)

+iJm+1 ([2m + 1] q)} . (35)

It contains both sine and cosine terms in the Fourier
series, and moreover the phase of each harmonic is shifted
(Pelinovskii, 1976; Kartashova and Pelinovsky, 2013).

In Fig. 7 temporal evolution of the energy spectrum
is shown, for the case of pure cubic nonlinearity. Using
formulas (18) for T3 and (27) for q, it is easy to show
that in Eq. (35) q = t/2T3. Accordingly, we demonstrate
graphically the spectrum evolution in terms of times 1/4,
1/2, 3/4, and 1 normalized overT3.

It is interesting to note that the “breaking spectrum
asymptotic” in the case of a purely cubic nonlinearity has
a slope of –8/3, the same as in the purely quadratic case
discussed above. This fact has been first established in
Kartashova and Pelinovsky (2013).

In the general case withα 6= 0 andβ 6= 0, it is convenient
to rewrite Eq. (32) using the sum on positive integers only.

Sn = (−1)n−1 2iA

n2p
exp(inq) { nJn(np)J0(nq)

+

m=+∞∑
m=1

(−i)mJm(nq)
[
(n + 2m)Jn+2m(np)

+(n − 2m)Jn−2m(np)
]
} (36)

For applications (e.g., in geophysics) it is important to have
also the energy spectrum of a Riemann wave, which can be
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Figure 7. Energy spectra of Riemann wave in purely cubic nonlinear medium. Time is 

normalized on T3 accordingly. 
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Fig. 7.Energy spectra of a Riemann wave in purely cubic nonlinear
medium. Time is normalized onT3 accordingly.

computed as

En = |Sn/A|
2
=

4

n4p2

[
W2

1n + W2
2n

]
, (37)

where

W1n = nJn(np)J0(nq) +

m=+∞∑
m=1

(−1)mJ2m(nq)

[
(n + 4m)Jn+4m(np) + (n − 4m)Jn−4m(np)

]
, (38)

W2n =

m=+∞∑
m=0

(−1)mJ2m+1(nq)
[
(n + 4m + 2)Jn+4m+2(np)

+(n − 4m − 2)Jn−4m−2(np)
]
. (39)

For the graphical presentations of the general case we use
canonic values of the parameters of nonlinearity:α = 6,
andβ = ±6. For this choice of values we have CQ= ±A.
Using the formulas (27) for p andq we conclude thatq =

±Ap/2 = CQp/2. As it is shown above,p = t/T2. Figure 8
below demonstrates the difference between the spectrum of
a Riemann wave with purely quadratic nonlinearity (CQ= 0,
shown in black) and the spectrum of a Riemann wave with
small positive cubic nonlinearity (CQ= 0.2, shown in blue)
for relatively small times (t/T2 = 0.5). For comparison,
the breaking spectrum asymptotic (–8/3) is also shown,
in red. As expected, being far from the breaking point
both pure quadratic and cubic-quadratic curves (black and
blue correspondingly) are lower than the red asymptotic.
Moreover, the cubic-quadratic curve lies higher than the
purely quadratic curve as cubic effects lead to an increase
of the total energy.
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Figure 8. Spectrum of Riemann wave, far from breaking point (t/T2= 0.5), for CQ = 0 (brown) 

and CQ = 0.2 (blue). The breaking power asymptotic (-8/3) is shown in red.   

 

As it can be seen from Fig. 8, the spectrum for both purely quadratic and combined cubic-

quadratic nonlinearity has exponential shape. We will demonstrate this analytically for purely 

quadratic nonlinearity. Using the tangent approximation of Bessel functions (formula (8.452) 

given in Gradshteyn and Ryzhik, 2007) 
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and the existence of the exponential (or quasi-exponential) asymptotic is evident. 

Figure 9 shows the spectrum of a Riemann wave at breaking time for the same value CQ = 0.2 

as in the previous example (in blue) together with the breaking power asymptotic -8/3 (in red) 

for the limiting cases of purely quadratic and purely cubic nonlinearity. It is clearly seen that the 

same asymptotic applies for the cubic-quadratic case. This is a very important result showing the 

existence of the universal asymptotic -8/3 for any  cubic-quadratic nonlinearity.  
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Fig. 8. Spectrum of a Riemann wave, far from breaking point
(t/T2 = 0.5), for CQ= 0 (brown) and CQ= 0.2 (blue). The
breaking power asymptotic (–8/3) is shown in red.

As it can be seen in Fig. 8, the spectrum for both purely
quadratic and combined cubic-quadratic nonlinearity has
exponential shape. We will demonstrate this analytically
for purely quadratic nonlinearity. Using the tangent
approximation of Bessel functions (formula 8.452 given in
Gradshteyn and Ryzhik, 2007):

Jn(np) ≈

exp
{
n
[√

1− p2 − acosh(1/p)
]}

√
2nπ

√
1− p2

, (40)

the spectrum of Eq. (34) transforms for small times (p � 1)
and bign to

Sn ≈ (−1)n−1 2iA

np
√

2nπ
exp[−n ln(2/p)] , (41)

and the existence of the exponential (or quasi-exponential)
asymptotic is evident.

Figure 9 shows the spectrum of a Riemann wave at
breaking time for the same value CQ= 0.2 as in the
previous example (in blue) together with the breaking power
asymptotic –8/3 (in red) for the limiting cases of purely
quadratic and purely cubic nonlinearity. It is clearly seen
that the same asymptotic applies for the cubic-quadratic
case. This is a very important result showing the existence
of the universal asymptotic –8/3 for any cubic-quadratic
nonlinearity.

In Fig. 10 we present the spectrum at breaking time for
much bigger cubic nonlinearity (CQ= 1). An increase of the
cubic nonlinearity leads to inhomogeneous energy transfer
for the lowest harmonics (Fig. 10), which can be interpreted
in the following way. A quadratic nonlinearity generates
all harmonics, that is, odd and even, whereas a cubic
nonlinearity generates only odd harmonics. This provides
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Figure 9. Spectrum of Riemann wave for a case CQ = 0.2 at breaking time 

 

In Fig. 10 we present the spectrum at braking time for much bigger cubic nonlinearity (CQ = 1). 

An increase of the cubic nonlinearity leads to inhomogeneous energy transfer for the lowest 

harmonics (Fig. 10): which can be interpreted in the following way. A quadratic nonlinearity 

generates all harmonics, that is, odd and even, whereas a cubic nonlinearity generates only odd 

harmonics. This gives some explanation that for low harmonics the spectrum follows a zigzag 

line with higher values for even harmonics. However, this effect disappears for harmonics above 

10, and we have again the universal power asymptotic.  
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Fig. 9.Spectrum of a Riemann wave for a case CQ= 0.2 at breaking
time.
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In Fig. 10 we present the spectrum at braking time for much bigger cubic nonlinearity (CQ = 1). 
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Fig. 10.Spectrum of a Riemann wave with CQ= 1 at breaking time
against breaking power asymptotic.

some explanation that for low harmonics the spectrum
follows a zigzag line with higher values for even harmonics.
However, this effect disappears for harmonics above 10, and
we have again the universal power asymptotic.

In Fig. 11 we show that non-uniformity of the energy
transfer increases with bigger nonlinearity (CQ= 5) and is
visible in the spectral domain also for higher harmonics (up
to 20).

Notice that there must be a limit to this effect, because, if
CQ goes to infinity, the nonlinearity becomes purely cubic
and the spectrum tends to the uniform breaking asymptotic
shown in Fig. 7b.

Finally, we note that the energy of a Riemann wave does
not depend on the sign of the cubic nonlinear term. This
may be seen in Fig. 5: the curves for positive and negative
values of parameterβ can be transformed into each other

Nonlin. Processes Geophys., 20, 571–580, 2013 www.nonlin-processes-geophys.net/20/571/2013/
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In Figure 11 we show that non-uniformity of the energy transfer increases with bigger 

nonlinearity (CQ = 5) and is visible in the spectral domain also for higher harmonics (up to 20).  
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Figure 11. Spectrum of breaking Riemann wave for a case of CQ = 5 

 

Notice that there must be a limit to this effect, because, if CQ goes to infinity, the nonlinearity 

becomes purely cubic and the spectrum tends to the uniform breaking asymptotic shown in Fig. 

7b.  

Finally we note that the energy of Riemann wave does not depend on the sign of the cubic 

nonlinear term. This may be seen from Fig. 5: the curves for positive and negative values of 

parameter β can be transformed into each other by changing the signs of amplitude and time, 

which does not change the Fourier spectrum, so the energy of both wave shapes is the same.  

5. Conclusion 
 
In previous studies the structure of a Riemann internal wave was analyzed for a two-layer flow 

and for the case of a negative cubic nonlinear term (Smyth and Holloway, 1988; Sakai, and 

Redekopp, 2007; Zahibo et al, 2007).   

In this study we use the dispersionless Gardner equation in a more elaborate form to study a 

Riemann internal wave in a medium with arbitrary stable stratification in density and shear flow 

and generic nonlinearity, which means that the coefficients of the quadratic and cubic nonlinear 

terms may have arbitrary signs but do not vanish simultaneously. 

The main results are 

-- The time for breaking to occur depends only on the absolute values of the coefficients of the 

quadratic and cubic nonlinear terms but not on their signs and it decreases with increasing wave 
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Fig. 11.Spectrum of a breaking Riemann wave for a case of CQ=

5.

by changing the signs of amplitude and time, which does
not change the Fourier spectrum, so the energy of both wave
shapes is the same.

5 Conclusions

In previous studies the structure of a Riemann internal wave
was analyzed for a two-layer flow and for the case of a
negative cubic nonlinear term (Smyth and Holloway, 1988;
Sakai and Redekopp, 2007; Zahibo et al., 2007).

In this study we use the dispersionless Gardner equation
in a more elaborate form to study a Riemann internal wave
in a medium with arbitrary stable stratification in density and
shear flow and generic nonlinearity, which means that the
coefficients of the quadratic and cubic nonlinear terms may
have arbitrary signs but do not vanish simultaneously.

The main results are the following:

- The time for breaking to occur depends only on the
absolute values of the coefficients of the quadratic and
cubic nonlinear terms but not on their signs and it
decreases with increasing wave amplitude. The shock
appears on the face or back slope depending on the signs
and ratio of the quadratic and cubic nonlinear terms.

- Using the dispersionless Gardner equation, the spec-
trum evolution of an initially sinusoidal wave has
been analyzed and an explicit formula for the Fourier
spectrum in terms of Bessel functions obtained. The
asymptotic behavior of the Fourier spectrum has been
studied in detail.

- The spectrum can be described by an exponential law
for small times and has a power asymptotic describing
the form of the singularity in the wave shape at the point
where the wave breaks at the time of breaking.

- The energy spectrum of the Riemann wave at the point
of breaking is universal for any kind of nonlinearity and
described by a power law with a slope close to –8/3.

One has to understand clearly that after breaking, the solution
given by the Gardner equation for the form of the Riemann
wave is not valid anymore and the Gardner equation has to
be modified taking into account dispersive and dissipative
effects. The study of the evolution of the Fourier spectrum
in this case will be done in the future.
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