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DiscussionsStability and nonlinear regimes of flow over a saturated porous
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Abstract. The paper deals with the investigation of stabil-
ity and nonlinear regimes of flow over the saturated porous
medium applied to the problem of stability of water flow over
the bottom covered with vegetation. It is shown that the ve-
locity profile of steady plane-parallel flow has two inflection
points, which results in instability of this flow. The neutral
stability curves, the dependencies of critical Reynolds num-
ber and the wave number of most dangerous perturbations on
the ratio of porous layer thickness to the total thickness are
obtained. The nonlinear flow regimes are investigated numer-
ically by finite difference method. It is found that at supercrit-
ical parameter values waves travelling in the direction of the
base flow take place.

1 Introduction

Investigation of the stability of flows over a porous medium
saturated with liquid is important to understand the processes
associated with the propagation of wind in areas of vegeta-
tion and over vegetation canopy, as well as the stability of
water flows over the aquatic vegetation. In the propagation
of the wind in the areas of vegetation, transfer of various
physical quantities across the boundaries affects many atmo-
spheric processes. Examples are the destruction of trees and
shrubs by the wind, precipitation and propagation of dust and
other suspensions.

The motion of air under the canopy of vegetation is sub-
stantially nonuniform; the main contribution is made by co-
herent structures, the characteristic size of which is compa-
rable to the size of the canopy vegetation. It is now believed
that the main characteristics of the flow of air near the canopy
of vegetation are similar to the corresponding values of shear

flow (Raupach et al., 1996). Due to the friction of the vegeta-
tion, the average velocity of airflow under the canopy is less
than the velocity above the canopy, and the typical vertical
profile of the average velocity has an inflection point. The
sharp drop of tangential velocity component promotes the
development of instability similar to the Kelvin–Helmholtz
instability. The coherent structures arising at the boundary of
vegetation canopy due to the Kelvin–Helmholtz instability
are travelling waves of horizontal transverse rolls rotating in
one direction and propagating with the characteristic velocity
equal to the flow velocity at the inflection point.

The structures described above are observed not only in at-
mospheric flows, but also in water systems (Ghisalberti and
Nepf, 2002). Stability of Poiseuille flow in a fluid layer over-
lying highly porous layer was studied inChang et al.(2006),
Hill and Straughan(2008), andWhite and Nepf(2007). In
the present paper we investigate the stability and nonlinear
regimes of flow over the porous medium applied to the prob-
lem of stability of water flow over the bottom, covered with
vegetation. This study is important due to the applications to
the problem of a removal of contaminants from the bottom
vegetation layer.

2 Problem formulation

Let us consider a two-layer system consisting of a layer of
a viscous incompressible fluid and a porous layer saturated
with the same fluid located underneath (Fig. 1). The lower
boundary is assumed to be rigid, while the upper bound-
ary is free and non-deformable. The layers are inclined to
the horizontal position which corresponds to the river slope.
The question on the boundary conditions at the interface
of fluid layer and fluid-saturated porous layer is still under

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



544 T. P. Lyubimova et al.: Stability of flow over a saturated porous medium

Fig. 1.Problem configuration.

discussion, which is why we describe the fluid motion in a
two-layer system on the basis of a so-called one-equation
model (see, for example,Chen and Chen, 1988). Accord-
ing to this approach, we use the equations for fluid-saturated
porous medium in both layers, and the presence of two dif-
ferent layers is modelled by introducing the non-uniform (de-
pending on the coordinate across the layer) permeability and
porosity.

Description of the fluid-saturated porous medium is per-
formed in the framework of the Brinkman model, in terms of
the average velocity of the fluid in the pores:

ρ

[
∂V

∂t
+ (V ∇)V

]
= −∇p−

µ

K
ϕV + µ̃1V + ρg,

div(ϕV )= 0. (1)

HereV is the average flow velocity in pores,ρ the fluid den-
sity,µ the dynamic viscosity,̃µ the effective viscosity, andϕ
andK the porosity and permeability of porous medium; it is
assumed that they vary across the layer, andg is the gravity
acceleration; the effective viscositỹµ is accepted to be equal
toµ.

Let us choose the following scales: full thicknessh for
the length, characteristic velocityU =

(
gh2sinα

)
/ν for the

velocity, double maximal velocity of the run-off of a homo-
geneous fluid layer on an inclined plane for the timeh2/ν,
andρghsinα for the pressure, whereν = µ/ρ is the kine-
matic viscosity, andα is the angle of layer inclination to the
horizontal position.

The equations in the dimensionless form are

∂V

∂t
+Re(V ∇)V = −∇p−Da−1ϕ

κ
V +1V − (sinα)−1ev,

div(ϕV )= 0. (2)

Here Da=K0/h
2 is the Darcy number,Re= Uh/ν the

Reynolds number,κ =K/K0 the dimensionless permeabil-
ity of porous medium,K0 the characteristic value of the per-
meability, andev the unit vector directed vertically upward.

On the lower boundary of the system, the no-slip condi-
tion is imposed, and on the upper boundary the conditions
of the normal component of velocity and shear stress vanish;

the ambient pressure is taken as the reference value, with the
direction of the coordinate axes shown in Fig. 1:

z= 0 : V = 0;

z= 1 : V z = 0,

(
∂V x

∂z
+
∂V z

∂x

)
= 0,p = 0. (3)

3 Steady flow

We seek a solution for (2)–(3) corresponding to the steady
plane-parallel flowV 0 = (V 0(z),0,0). The equations de-
scribing such a solution, in the projections on the directions
x andz, are as follows:

∂p0

∂x
= −Da−1ϕ

κ
V 0 +

∂2V 0

∂z2
+ 1,

∂p0

∂z
= −ctgα. (4)

The boundary conditions are

z= 0 : V 0 = 0; z= 1 :
∂V 0

∂z
= 0, p = 0. (5)

Integrating the second equation in (4) with respect toz,
we obtainp0 = −zctgα+C(x). Accounting for the boundary
condition for the pressure at the free surfacep0(1)= 0 gives
C(x)= ctgα. Finally, for p0 we obtainp0 = (1− z)ctgα,
from which we have∂p0/∂x = 0. ForV 0 we obtain the equa-
tion

−Da−1ϕ

κ
V 0 +

∂2V 0

∂z2
+ 1 = 0 (6)

with the boundary conditions

z= 0 : V 0 = 0; z= 1 :
∂V 0

∂z
= 0. (7)

For the functionϕ/κ, we introduce the following approxi-
mation:

ϕ

κ
=

(d − z)√
1+ a (d − z)2

−
(d − 1)√

1+ a (d − 1)2
. (8)

Equation (8) contains two parameters: parametera, which
defines the thickness of the transient layer between the pure
fluid and fluid-saturated porous medium, and parameterd,
which is the ratio of porous layer thickness to the total thick-
ness. The calculations were performed for different values of
these parameters. In Fig. 2 the functionϕ/κ is plotted for
a = 100,d = 0.5.

Equations (6)–(7) were solved numerically by finite differ-
ence method. In Fig. 3 the velocity profile for steady flow is
plotted fora = 100,d = 0.5, Da= 0.0001. The profile con-
tains two inflection points: one in the liquid layer, another in
the porous medium. The presence of inflection points in the
velocity profile can lead to the instability of steady flow.
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Fig. 2.Distribution ofϕ/κ across the layer fora = 100,d = 0.5.

4 Linear stability of steady flow

Consider now the stability of steady flow with respect to
small perturbations. Linearized equations for small pertur-
bations read as follows:

∂V ′

∂t
+ Re

(
V 0 · ∇V ′

+ V ′
· ∇V 0

)
= −∇p′

− Da−1ϕ

κ
V ′

+1V ′, div
(
ϕV ′

)
= 0. (9)

We restrict ourselves to the plane perturbationsV ′
=

(u,0,w). Eliminating the pressure and horizontal velocity
components from the equations and introducing the vortic-
ity ω = curlyV ′, we obtain

∂ω

∂t
+ Re

(
V 0
∂ω

∂x
+wV ′′

0 −
ϕ′

ϕ
V ′

0w

)

=1ω− Da−1
[
ϕ

κ
ω+

(ϕ
κ

)′

u

]
,

∂u

∂x
+
∂w

∂z
+
ϕ′

ϕ
w = 0. (10)

We consider the perturbations periodical inx direction:

w =W(z, t)exp(ikx),u= U(z, t)exp(ikx),

ω =�(z, t)exp(ikx) .

Substituting the perturbations in this form into the equations
and introducing new variablē�≡ −ik�, we obtain

∂�̄

∂t
+ ikRe

(
V 0�̄− V ′′

0W +
ϕ′

ϕ
V ′

0W

)
=

(
�̄′′

− k2�̄
)

−Da−1
[
ϕ

κ
�̄+

(ϕ
κ

)′
(
W ′

+
ϕ′

ϕ
W

)]
(11)

Fig. 3. Velocity profile for steady flow ata = 100, d = 0.5,
Da= 0.0001.

W ′′
− k2W +

(
ϕ′

ϕ
W

)′

= �̄ (12)

z= 0 : W =W ′
= 0; z= 1 : W =W ′′

= 0. (13)

The stability problem contains not only the combination
of the porosity and permeability but also porosity itself. We
used the following approximation for the functionϕ(z) that
describes the dependence of the porosity on the coordinate
across the layer:

ϕ(z)= ϕ0 + (1−ϕ0) tanh(bz)/ tanh(b).

In this expressionϕ0 is the value of porosity atz= 0, while
the parameterb determines the thickness of the transition
layer between the layers of the fluid and the porous medium.
Main calculations were performed atϕ0 = 0.1, b = 5. In
Fig. 4 the functionϕ(z) is plotted for these values of the pa-
rameters.

Equations (11)–(13), which define the temporal evolution
of small perturbations of the base flow, were solved numer-
ically by finite difference method. Equation (12) was solved
at each time step by the scalar sweep method. Main calcula-
tions were carried out using a uniform grid with the number
of nodes equal to 100. The calculations for each parameter
set were performed as long as the temporal evolution of the
perturbation does not begin to be defined only by the most
dangerous mode.

In Fig. 5 the neutral stability curves of base flow are plot-
ted for different ratiosd of porous layer thickness to the total
thickness. As one can see, atd > 0.5 with an increase in the
thickness of the porous layer (i.e. with the decrease of liquid
layer thickness), the instability threshold grows. This is due
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Fig. 4.Porosity distribution across the layer forϕ0 = 0.1, b = 5.

to the fact that the instability is determined primarily by the
perturbations developing in the liquid layer.

The frequency of critical perturbations is non-zero, so, as
for conventional Kelvin–Helmholtz instability, the instability
is of the oscillatory type.

5 Nonlinear flow regimes

We also studied the nonlinear flow regimes. The two-
dimensional flows were considered. In this case it is conve-
nient to introduce the stream function and vorticity. Since the
divergence of the filtration velocityV is zero, and the diver-
gence of the average velocity in the poresV is non-zero, the
stream functionψ was introduced for the filtration velocity:
vx = ∂ψ/∂z, vz = −∂ψ/∂x. However, since the full nonlin-
ear equations in terms of the stream function and vorticity of
the filtration velocity are quite complex due to the variability
of the porosity and permeability, the calculations were based
on the equations for the average velocity in the pores having
a simpler form than the equations for the filtration velocity.
The average velocity of the fluid in the poresV is related to
the stream functionψ for the filtration velocity as

V = ϕ−1V =

(
ϕ−1∂ψ

∂z
,−ϕ−1∂ψ

∂x

)
.

Vorticity 8 of the average velocity in the pores is8=

curlyV , from which we have the Poisson equation for the
stream functionψ :

1ψ −
ϕ′

ϕ

∂ψ

∂z
−ϕ8= 0. (14)

Fig. 5.Neutral curves forDa= 0.0001 and differentd.

Applying the operation curly to Eq. (2), we obtain

∂8

∂t
+

1

ϕ

(
∂ψ

∂z

∂8

∂x
−
∂ψ

∂x

∂8

∂z

)
−
ϕ′

ϕ2
8
∂ψ

∂x

=18− Da−1
(

1

κ
1ψ −

κ ′

κ2

∂ψ

∂z

)
. (15)

The boundary conditions on the rigid and free boundaries
are as follows:

z= 0 : ψ = 0,
∂ψ

∂z
= 0; z= 1 : ψ =Q,

∂ψ

∂z
= 0, (16)

whereQ=

1∫
0
ϕV dz is the flow rate. The calculations were

performed under the assumption that the flow rate is not very
different from the value corresponding to a steady flow, and

the flow rate was assumed to beQ=

1∫
0
ϕV 0dz.

Equations (14)–(16) were solved by finite difference
method. The calculations were carried out for rectangular
cavities with the length equal to the wavelength of the most
dangerous perturbations according to the linear stability the-
ory. On the lateral boundaries, the periodicity conditions
were set.

The calculations show that at small values of the Reynolds
number the transient process leads to the stationary regime:
the stream function attains a constant value. Starting from
a certain value of the Reynolds number, which depends on
the ratio of the layer thicknesses and the Darcy number, the
transient process leads to the regime of stationary oscillations
with non-zero mean value. The amplitude and frequency of
oscillations, as well as the average value around which the
oscillations are performed, depend on the parameters.
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Fig. 6. Velocity vector field atDa= 0.0001,d = 0.5, Re= 40 000
and different phases of oscillation period.

The analysis of the dependencies of amplitude and fre-
quency of oscillations on the Reynolds number for different
values of the parametersDa andd shows that in all cases the
bifurcation to the oscillatory regime is supercritical; close to
the threshold, the oscillation amplitudeA changes with the
growth of Reynolds number according to the square root law.
Dependencies of the oscillation frequency on the Reynolds
number for all values of the parametersDa andd covered
by the calculations are close to linear. The critical Reynolds
number and the frequency of oscillations in the threshold are
close to the values obtained from linear stability analysis.

Figure 6 shows the instantaneous velocity vector fields for
various phases of the oscillation period at fixed values of the
parametersDa= 0.0001,d = 0.5, andRe= 40 000. As one
can see, there are waves propagating in the direction of the
base flow.

6 Conclusions

The flow over the porous medium has been investigated. It
has been shown that the velocity profile of steady flow has
two inflection points. The presence of inflection points re-
sults in instability of steady flow. The neutral stability curves,
the dependencies of critical Reynolds number and wave num-
ber of the most dangerous perturbations on the ratio of porous
layer thickness to the total thickness have been obtained. The
nonlinear flow regimes have been investigated numerically
by finite difference method. The instantaneous velocity fields
are obtained for different Reynolds and Darcy numbers and
ratios of layers thicknesses. It is found that at supercritical
parameter values waves travelling in the direction of the base
flow take place. Such a vortex flow may lead to the removal
of contaminants from the bottom vegetation layer.
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