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DiscussionsMultifractal analysis of vertical profiles of soil penetration
resistance at the field scale
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Abstract. Soil penetration resistance (PR) is widely used as
an indirect indicator of soil strength. Soil PR is linked to ba-
sic soil properties and correlated to root growth and plant
production, and as such it is extensively used as a practi-
cal tool for assessing soil compaction and to evaluate the
effects of soil management. This study investigates how re-
sults from multifractal analysis can quantify key elements of
depth-dependent soil PR profiles and how this information
can be used at the field scale. We analysed multifractality of
50 PR vertical profiles, measured from 0 to 60 cm depth and
randomly located on a 6.5 ha sugar cane field in northeast-
ern Brazil. The scaling property of each profile was typified
by singularity, and Ŕenyi spectra estimated by the method of
moments. The Hurst exponent was used to parameterize the
autocorrelation of the vertical PR data sets. The singularity
and R̀enyi spectra showed that the vertical PR data sets ex-
hibited a well-defined multifractal structure. Hurst exponent
values were close to 1, ranging from 0.944 to 0.988, indicat-
ing strong persistence in PR variation with soil depth. Also,
the Hurst exponent was negatively and significantly corre-
lated to coefficient of variation (CV), skewness and maxi-
mum values of the depth-dependent PR. Multifractal analysis
added valuable information to describe the spatial arrange-
ment of depth-dependent penetrometer data sets, which was
not taken into account by classical statistical indices. Multi-
fractal parameters were mapped over the experimental field
and compared with mean and maximum values of PR. Com-
bination of spatial variability survey and multifractal analysis
appear to be useful to manage soil compaction.

1 Introduction

Soil strength is defined as the resistance that has to be over-
come to cause soil physical deformation. Soil strength is an
important soil physical property as it affects basic aspects
of agricultural soils, including root growth, seedling emer-
gency, compaction, erodibility, trafficability and bearing ca-
pacity (Gúerif, 1990; Soane and Van Ouwerkerk, 1994). Di-
rect measurement of soil strength properties are difficult to
perform, so they have remained until now rather scarce. In-
stead, most frequently, soil resistance to deformation is indi-
rectly and empirically assessed by measuring the resistance
to penetration of a metallic plunger with a particular shape,
usually a cone, which is referred to as a penetrometer (e.g.
ASAE, 1986). Thus, penetrometers are simple and relatively
inexpensive devices, easily providing an indirect indication
of soil strength.

Penetration resistance is an easily measurable parameter
which has been found to depend on basic soil properties that
are vital for plant growth, mainly soil composition, struc-
ture, bulk density and water content. In addition, PR corre-
lates with several properties of agronomic importance, such
as crusting, compaction or vehicle trafficability. Thus, PR has
been often used as a surrogate measurement of key soil prop-
erties (e.g. Dexter et al., 2007). Indeed, penetrometers have
been utilized in a number of field experiments to assess soil
compaction (e.g. O’Sullivan et al., 1987) or the effects of
soil management (e.g. Castrignanó et al., 2002). Conversely,
equations for predicting penetrometer resistance from soil
properties have been proposed (e.g. Dexter et al., 2007; Vaz
et al., 2011). Moreover, soil PR above a given threshold has
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been shown to affect root penetration and hence crop produc-
tion (Häkansson et al., 1988). Consequently, field penetrom-
eters also have been frequently employed for estimating re-
sistance to root growth in soil as soil PR is a rough indicator
of the pressure encountered by roots for elongation.

Nowadays, micropenetrometers are increasingly used in
laboratory conditions. This is because of the wide acceptance
of a quality index based on three main soil physical proper-
ties: soil strength, matric potential and aeration. This index
was defined by Letey (1985) as “the range of moisture con-
tent at which plant water uptake is neither limited by soil re-
sistance when dry, nor by poor aeration when too wet”, and is
now referred to as “least limiting water range” (LLWR), fol-
lowing Da Silva et al. (1994). Soil strength data required for
LLWR evaluation are readily provided by PR measurements.

Soils are highly variable and heterogeneous over several
spatial scales. Over the past few decades scaling analysis,
such as fractal and multifractal analysis have been applied
to characterize soil properties and processes, and many stud-
ies have revealed scale-dependent patterns of soil variability
from very short distances (e.g. Pachepsky et al., 1996; Paz-
Ferreiro et al., 2010) to geomorphologic landscapes units
(Biswas et al., 2012), or even continents and the whole plane-
tary scale (Caniego et al., 2006). Both fractal and multifractal
scaling assume a hierarchical distribution of mass in space
so that the whole results from the union of similar subsets.
While in the fractal approach subsets are considered similar
to the whole, multifractal distributions hypothesize that sub-
sets are related to the whole through varying scaling factors
(e.g. Tarquis et al., 2003). As a consequence, in monofrac-
tal scaling, one single exponent is sufficient to characterize
the scaling behaviour, whereas multifractal scaling involves a
continuous spectrum of scale exponents, which are related to
different intensity levels of complex processes (Everstz and
Mandelbrot, 1992; Falconer, 1997).

Fractal geometry showed ability to address the complex
relations between a range of soil properties and soil-forming
factors and processes that do not operate disconnectedly but
as an ensemble of interacting forces driving complex and
nested effects, intuitively related to fractal or multifractal be-
haviour. For example, heterogeneity, tortuosity and connec-
tivity of the soil pore/solid space have been quantified us-
ing fractal (e.g. Pachespsky et al., 1996) or multifractal tech-
niques (e.g. Tarquis et al., 2003; Paz-Ferreiro et al., 2010;
San Jośe Mart́ınez et al., 2010). Likewise, soil surface mi-
crorelief has been described using fractal models (e.g. Huang
and Bradford, 1992; Vidal V́azquez et al., 2005, 2007) and
multifractal models (e.g. Vidal V́azquez et al., 2008; Garcı́a
Moreno et al., 2010).

Early attempts to model the spatial variation of soil proper-
ties using fractal theory rely on the fractional Brownian mo-
tion, i.e. af Bm model (Burrough, 1983; Armstrong, 1986).
A f Bm is an expansion of the random walk or Brownian mo-
tion model (Bm) which is characterized by the Hurst expo-
nentH = 0.5, and was first proposed by Mandelbrot and van

Ness (1968). The Bm model corresponds to a Gauss–Markov
process, i.e. a random process consisting of a sequence of
discrete steps of fixed length, where correlation between suc-
cessive values vanishes. For af Bm model the Hurst parame-
terH , (0< H < 1), is directly related to the long-term mem-
ory of the studied variable. The range 1/2 < H < 1 is usu-
ally associated with persistence (positive autocorrelation) or
long-range dependencies, whereas the range 0< H < 1/2
represents anti-persistent behaviour (negative autocorrela-
tion) and short-range dependencies (e.g. Feder, 1988). More
recently, it has been also recognized that a large class of mul-
tifractal processes could be approximated by the multifractal
Brownian motion (mBm) models, based on the fact that the
power law behaviour of second-order statistics allows esti-
mation of a generalized Hurst scaling function (e.g. Leland
et al., 1994; San José Mart́ınez et al., 2010). It is worth noth-
ing that, similar to the Hurst exponent, the generalized Hurst
scaling function can be categorized into three types, i.e. per-
sistent, entirely random distribution and anti-persistent.

Several studies also have reported self-affine scale-
dependent patterns and singularity of the spatial variation of
soil PR itself in horizontal layers (e.g. Usowicz and Lipiec,
2009; Ṕerez et al., 2010). Furthermore, multifractal analysis
has been used to assess patterns of spatial variation of pen-
etrometric data sets measured along transects (Folorunso et
al., 1994) or on planes (Roisin, 2007), providing valuable in-
formation to better understand the inner structure of PR for
horizontal soil layers. However, to the best of our knowledge,
until now multifractal analysis has not been applied to char-
acterize the spatial heterogeneity of depth-dependent, verti-
cal resistance profiles obtained by penetrometer. Therefore,
the objectives of this work were (a) to characterize the in-
trinsic variability and scaling of PR vertical profiles using
multifractal models and (b) to assess compaction at the field
scale by mapping classical descriptive statistics and multi-
fractal parameters.

2 Material and methods

2.1 Description of the experimental site

The field experiment was conducted at an agricultural
research site located in Goiania municipality, Pernam-
buco State, northeast Brazil (latitude 07◦34′25′′ S, longitude
34◦55′39′′ W) (Fig. 1a). The studied field, located 10 km in-
land from the Atlantic Ocean, is 6.5 ha in surface, and has a
mean altitude of 8.5 m a.s.l. This field is representative of a
regional lowlands landscape, whose soils are affected by sea-
water salinity, with plantations of sugarcane (Saccharum of-
ficinarumsp.) as the main economic activity. Sugarcane has
been cropped as a monoculture during the last 24 yr, and it
was managed by burning the straw each year after harvest-
ing. The plantation was renewed every seven years.
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Fig. 1a.Location of the experimental site.

According to K̈oppen the local climate, characterized by
constant high temperatures and a rainfall regime with con-
trasting wet and a dry seasons, was defined as tropical
(As type, also referred to as “pseudo-tropical”). Mean an-
nual temperature is about 24◦C and mean yearly precipi-
tation reaches approximately 1800 mm, from which about
1250 mm correspond to the rainy season, lasting from Oc-
tober to March during austral summer.

Soil was classified as an Orthic Podzol (Soil Survey Staff,
2010), which is equivalent to an “Espodossolo Humilúvico
órtico” following the Brazilian Soil Classification System
(EMBRAPA, 2006). Soil parent material consists of highly
weathered sediments from continental origin, dating from the
late Tertiary and belonging to the Barreiras group (Brasil,
1969, 1972).

Soil properties were analysed following methods de-
scribed in Camargo et al. (1986). As shown in Table 1, the
soil exhibited a sandy texture with a sand content of about
930 gkg−1 and the bulk density increased with depth from
1.52 kgdm−3 at the topsoil (0–20 cm) to 1.66 kgdm−3 at
> 1.00 m depth.

2.2 Penetrometer resistance data set

Soil penetration resistance data were collected at 50 points
randomly located across the experimental field (Fig. 1b).
Penetrometer measurements were done on 27 January 2012.
Cumulative rainfall in the period from 9 to 25 January was
386.5 mm. Even though on 27 January 0.5 mm rain was
recorded, this figure can be considered as negligible because
of the high evaporation. Thus, data collection was performed
two days after important rainfall had ceased, which corre-
sponds to the field capacity condition. Mean soil water con-
tent increased with depth from 34.5 m3m−3 at 0.0–0.3 m
depth to 47.2 m3m−3 at depths higher than 1 m (Table 1),
showing the effect of the subsurface water table.

Penetration resistance was measured with a dynamic ham-
mer penetrometer (model IAA/Planalsucar; Stolf, 1991) at
all the points marked over the field. This meant the vertical
stress of a steel cone with an angle of 30◦ and basal diame-

Table 1. Texture, bulk density and water content at the sampling
date.

Depth Texture Bulk density Water content
(m) (gkg−1) (kgdm−3) (m3m−3)

clay silt sand

0.0–0.3 44 26 930 1.52 34.50
0.3–0.6 43 25 932 1.54 36.80
0.6–1 44 26 930 1.60 42.60
> 1 32 40 928 1.66 47.20
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Fig. 1b.Sampling scheme for penetration resistance measurements.

ter of 1.25 cm (ASAE, 1986) to 60 cm depth was manually
determined. At each point, PR data sets were obtained at in-
tervals of 1 cm as described by Stolf (1991) and expressed in
MPa units.

2.3 Multifractal analysis and generalized Hurst
exponent

Multifractal analysis was implemented following the mo-
ment method. In addition, the traditional Hurst exponent,
originally developed for monofractal series, has been gener-
alized and used to parameterize scaling heterogeneity (mul-
tifractality).

To implement multifractal analysis, supposeµ (S) repre-
sents a measure (field) defined on a set S associated with a
geometrical support. To assess the heterogeneity of the mea-
sure,µi , the spaceRD can be split inton boxes of the same
linear sizeδ (equal intervals inR1) by sequential divisions
(e.g. Evertsz and Mandelbrot, 1992; Caniego et al., 2006).
Considering a one-dimensional profile of lengthL, this in-
volves successive partitioning intok stages (k = 1,2,3. . .).
Hence, at each scale,δ, a number of segments,N(δ) = 2k,
are obtained with characteristic size length,δ = L×2−k, cov-
ering the whole extent of the support,L. In this study the
interval of depths [1, 60] was taken as the support (in cm).
Thus, the total profile depth was subdivided into subintervals

www.nonlin-processes-geophys.net/20/529/2013/ Nonlin. Processes Geophys., 20, 529–541, 2013
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of equal length,δ (e.g. Miranda et al., 2006; San José
Mart́ınez et al., 2010), obtained with 1≤ k ≤ 5.

Then, the distribution of the studied data series was nor-
malized by introducing a new variable, the probability mass
function,µi(δ). This variable describes the portion of total
mass contained in each segment, and was estimated as

µi(δ) = Ni(δ)
/
Nt,

whereNi(δ) is the value of the measure in thei-th segment of
sizeδ, andNt represents the total mass in the whole transect.

For each box or segment, the probability mass function,
µi(δ), scales with the box or interval size,δ, as

µi(δ) ∝ δαi ,

whereαi is the singularity or Lipschitz–Ḧolder or Ḧolder ex-
ponent characterizing density in thei-th box (Halsey et al.,
1986). The Ḧolder exponent, given byαi = logµi(δ)/ logδ,
may be interpreted as a crowding index for the degree of con-
centration of the measure,µ. It is, in fact, the logarithmic
density of thei-th box of the partition of characteristic size
δ.

Also, for multifractal distributed measures, the number
Nδ(α) of cells of sizeδ, having a singularity or Ḧolder ex-
ponent equal toα, increases for decreasingδ and obeys a
power law:

N(α) ∝ δ−f (α),

where the exponentf (α) is a continuous function ofα de-
noted as singularity spectrum.

Based on the scaling properties of the normalized vari-
ableµi(δ) different scaling functions can be estimated using
either the moment or the direct method. The box-counting-
based moment method (Evertsz and Mandelbrot, 1992) relies
on the so-called partition function defined as

χ (q,δ) =

n(δ)∑
i=1

µ
q
i (δ),

whereq is a real number (−∞ < q < −∞) andn(δ) is the
number of cells of sizeδ.

A log–log plot of the quantityχ(q,δ) versusδ for different
values ofq yields

χ(q,δ) ∝ δ−τ(q),

whereτq is the mass scaling function of orderq. The method
of moments is only justified if the plots ofχ(q,δ) versusδ
are straight lines (Hasley et al., 1986). The mass exponent
function τq was estimated from the partition function with
Eq. (1) (Table 2). The functionτq controls how the moment
of measureµi scales withq. In general, multifractal mea-
sures yield a nonlinear function ofτq , whereas a monofractal
corresponds to linearτq .

Table 2. Algorithms used for computing mass exponent function,
τq , singularity spectrumf (α) versusαq and generalized dimension,
Dq , by the moment method.

Mass exponent function,τq

τ(q) = lim
δ→0

logχ(q,δ)

log(1/δ)
(1)

Singularity strength,αq , and multifractal spectrum,f (α)

α(q) ∝

∑N(δ)
i=1 µi(q,δ) log

[
µi(δ)

]
log(δ)

(2a)

f (α (q)) ∝

∑N(δ)
i=1 µi(q,δ) log

[
µi(q,δ)

]
log(δ)

(2b)

Generalized dimension,Dq

Dq = τ(q)/(q − 1) (3a)

Dq = lim
δ→0

1

q − 1

log[χ(q,δ)]

logδ
(3b)

D1 = lim
δ→0

n(δ)∑
i=1

χi(1,δ) log
[
χi(1,δ)

]
logδ

(3c)

The scaling functions denoted as singularity spectrum,
f (α), and local scaling index,αq , also might be estimated
from the mass exponent function,τq , through a Legendre
transformation. However, in this work these functions have
been obtained by the direct method (Chhabra and Jensen,
1989). This method relies on the quantitiesµi(q,δ) that cor-
respond to contributions of individual segments of the parti-
tion function, defined as

µi (q,δ) = µ
q
i (δ)/

∑n(δ)

1
µ

q
i (δ).

Then, using a set of real numbers,−∞ < q < ∞, the func-
tionsαq andf (α)q can be estimated by Eqs. (2a) and (2b),
respectively, presented in Table 2.

The graph off (α) versusα, called the multifractal spec-
trum, typically has a parabolic concave downward shape,
with the range ofα values increasing with the increase in
the heterogeneity of the measure. The minimum scaling ex-
ponent (αq+) corresponds to the most concentrated region of
the measure, whereas the maximum exponent (αq−) corre-
sponds to the rarefied regions of the measure.

Nonlin. Processes Geophys., 20, 529–541, 2013 www.nonlin-processes-geophys.net/20/529/2013/
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Additionally, the scaling functions denoted as mass expo-
nent function,τq , and generalized dimension,Dq , are also re-
lated (Hentschel and Procaccia, 1983), as defined by Eq. (3a)
(Table 2). In fact, the concept of generalized dimension,Dq ,
corresponds to the scaling exponent for theq-th moment of
the measure. Based on the work of Rényi (1955) generalized
dimensions can be also defined by Eq. (3b) (Table 2). How-
ever, using Eqs. (3a) or (3b),D1 becomes indeterminate be-
cause the value of the denominator is zero. Therefore, for the
particular case thatq = 1, an equivalent equation is obtained,
using L’Hôpital’s rule (Eq. 3c, Table 2).

For a monofractal,Dq is a constant function ofq; thus
no additional information is obtained by examining higher
moments. However, for multifractal measures, the relation-
ship betweenDq andq is not constant. In this case, the most
frequently used generalized dimensions areD0 for q = 0,D1
for q = 1 andD2 for q = 2, which are referred to as capacity,
information (Shannon entropy) and correlation dimension,
respectively.

The capacity or box-counting dimension,D0, is indepen-
dent of the quantity of mass in each box; it is the scaling
exponent of the number of non-empty boxes and takes into
account the fact that the boxes are occupied or not. The infor-
mation dimension,D1, gives the probability of occupation of
thei-th box of sizeδ, without taking into account the way in
which the measure is distributed within each box. Thus,D1
provides a physical characterization, indicating how hetero-
geneity changes across a certain range of scales, and it is also
related to the Shannon entropy index (Grassberger, 1983).
The correlation dimension,D2, describes the uniformity of
the measure values among intervals. The generalized dimen-
sion,Dq , may be more useful for the comprehensive study of
multifractals. Differences betweenDq allow comparison of
the complexity of the measure. In homogeneous structures,
Dq is close, whereas in a monofractal they are equal.

Now we consider a stationary stochastic process defined
byX = (Xi : i = 0,1,2, . . .), with constant meanµ and finite
varianceσ 2. The autocorrelation function at lagk, ρ(k), of a
stochastic data series is defined as

ρ(k) = E
[
(Xi − µ)(Xi+k − µ)

]
/E

[
(Xi − µ)2

]
,

whereE stands for the mathematical expectation and de-
pends only onk. Moreover, if the series,Xi , has a long-
range dependency, the autocorrelation function,ρ(k), scales
following the power law

ρ(k) ∝ kh(q),

whereh(q) is the generalized Hurst scaling function. For
simplicity, next will be assume that the stochastic process
of interest is a second-order stationary process (i.e. a zero
mean and first and second moments that do not change over
position). In this particular case the Hurst exponent mea-
sures the power law behaviour of the autocorrelation func-
tion: ρ(k) ∝ k2H−2 (Leland et al., 1994; San José Mart́ınez

et al., 2010). Thus, the scaling exponent provides information
about long-term memory of the spatial or temporal series of
interest.

On the other hand, the correlation dimension,D2, ap-
praises the average fluctuation of the spatial series. Hence,
both D2 and the Hurst exponentH account for the scaling
property of second-order stationary data sets. Therefore, as
proposed by Riedi et al. (1999) in multifractal stochastic pro-
cesses the Hurst exponent is related to the correlation dimen-
sion by

D2 = 2H − 1.

Consequently, multifractal analysis also allows parameteri-
zation of the log-range dependencies by the Hurst exponent,
H .

2.4 Statistical analysis and spatial representation over
the experimental field

Preliminary statistical analysis – involving calculation of
mean, variance, standard deviation, coefficient of variation
(CV), skewness and kurtosis – was performed using the
STAT code described in Vieira et al. (2002). Correlation anal-
yses between statistical parameters and multifractal indices
were made by Spearman ranking using the SAS package,
version 8.0 (SAS Institute, 1999).

Both PR variables and multifractal indices evaluated for
the 50 positions marked over the experimental field were sub-
jected to semivariogram analysis (e.g. Paz et al., 1996; Vieira
et al., 2002). Nevertheless, plots of semivariance versus lag
distance were nearly flat, and as such overall the pattern of
spatial dependence was described by the pure nugget effect
model. The lack of spatial dependence prevented the kriging
to be used for mapping purposes. Therefore, maps to visual-
ize spatial distribution of PR, statistical and multifractal in-
dices were made by means of the inverse distance method,
described elsewhere (e.g. Burrough and Mc Donnell, 1998;
Caridad-Cancela et al., 2005).

3 Results and discussion

3.1 Statistical analysis of penetration resistance

Mean and standard deviation of the PR measured over the
50 positions from surface 0 cm to 60 cm depth are shown in
Fig. 2. On average, PR over the entire field increased from
0 MPa at the surface to 2 MPa at about 40 cm depth. Be-
cause standard deviation also increased with depth, CVs of
the mean PR involved rather uniform, moderate values (be-
low 40 %) for the successive depths, except for the first 7 cm
near the soil surface, which exhibited higher CV values. Soil
composition (i.e. texture, organic matter content), water con-
tent and bulk density largely influence soil PR (e.g. Da Silva
et al., 1994; Dexter et al., 2007; Vaz et al., 2011). Soil sam-
ples collected at successive depths were coarse textured and

www.nonlin-processes-geophys.net/20/529/2013/ Nonlin. Processes Geophys., 20, 529–541, 2013
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 Fig. 2.Mean and standard deviation of 50 depth-dependent PR pro-

files recorded over the 6.5 ha experimental field.

on average had a similar sand percent (Table 1), and soil wa-
ter content was near field capacity conditions, as previously
stated; therefore the trend of increasing mean PR values with
depth might be mainly related to increasing bulk density. In
spite of the relatively moderate CV values of mean PR over
the entire field, for successive depths, both the vertical vari-
ability within each PR profile and the between profile vari-
ability (Fig. 3) were strong enough to suggest wide vertical
and lateral discontinuities in texture and soil water content
over the experimental field. Depth-dependent and horizontal
PR variability of individual profiles will be next addressed.

Mean PR for each of the 50 profiles measured ranged from
0.817 to 2.396 MPa, whereas maximum PR was between
1.193 and 5.201 MPa. For 36 out of 50 profiles, PR was
higher than 2.0 Mpa in some layer within 0 and 60 cm depth.
There is broad evidence indicating that plant root growth may
be limited above the 2.0 Mpa PR thresholds (e.g. Häkansson
et al., 1988; Soane and Van Ouwerkerk, 1994). Our PR mea-
surements have been performed with a relatively high water
content, near field capacity. Therefore, the coarse-textured
soil of the experimental field can be considered as prone to
compaction and limitations induced by compaction are ex-
pected to increase as the soil water content decreases, during
dry periods.

Coefficients of variation for individual PR profiles varied
from 24.1 to 74.2 %. The skewness of the PR frequency dis-
tributions was in the range from –2.673 to 0.862, which indi-
cates, in general, a lack of symmetry. Most of the PR data sets
(with 4 exceptions in 60 datasets) were negatively skewed.
Negative skewness is associated to a long left tail, which in-
dicates relatively few low values and that the bulk of the val-
ues are on the right of the mean. Kurtosis ranged from –1.591
to 7.229, with a similar number of profiles (i.e. 25) with pos-
itive and negative values; three of the profiles exhibit a very
flat histogram, matching values for kurtosis higher than 2.5.

Different patterns of depth-dependent PR profiles have
been recorded, as illustrated in Fig. 3, where three main types
can be observed. Thus, Fig. 3a (profiles #7, #15, #29, and
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Fig. 3.Selected types of single depth-dependent PR profiles.

#43) shows PR gradually increases with depth until a more-
or-less constant value is reached; CVs ranged from 24.5 to
37.9 %. In contrast, Fig. 3b (profiles #1, #45, #47, and #48)
illustrates a pattern of PR variation in depth, with successive
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“ridges” and “plains”; three maxima and three minima can be
recognized at the top, middle and bottom of the profile, and in
this sense this depth-dependent pattern is multimodal. CVs of
profiles in Fig. 3b were very much alike, varying from 30.7 to
31.8 %. Profiles in Fig. 3c (#21, #26, #34, and #41) appear to
be less ordered, showing increasing PR with increased depth
near the soil surface, and then one or two “ridges” irregularly
placed at greater depths so that they do not exhibit a common
pattern of depth-dependent PR variation; accordingly, these
profiles were characterized by CVs higher than 40 %.

3.2 Multifractal analysis of depth-dependent soil
penetration resistance

Plots of the normalized measureχ(q,δ) versus the measure-
ment scale,δ, were examined, for all the statistical moments
of interest,q, to find out whether or not depth-dependent PR
obeyed power law scaling. All the partition functions were
constructed for successive box sizes in steps of 2k, k = 0
to k = 5. For all statistical moments,q, in the range [–8,
8], the logarithm ofχ(q,δ), versus the logarithm ofδ fit-
ted a linear model (r2 > 0.977) in the imposed range of box
sizes, 0< k < 5. Figure 4 shows two selected log–log plots
of χ(q,δ) versusδ, which correspond to the worst (profile
#34) and the best (profile #45) linear fits obtained for the
50 PR profiles studied.

Next, singularity spectrum and generalized dimension
spectrum were estimated using Eqs. (2) and (3) listed in Ta-
ble 2, respectively. In both cases parameterq was chosen in
the interval [–8, 8], and calculations were performed in in-
crements of 0.5. To obtain the singularity spectrum, a min-
imum value ofR2

= 0.90 for coefficients of determination
of the straight lines relating numerator versus denominator
in Eq. (2) was taken up; thus, pairs of valuesf (α) versus
α below this threshold were not accepted in thef (α) − α

plots. Following this rule, all the positive moments in the in-
terval1q+ = [0,8] were used to construct thef (α)−α plots
of the 50 PR profiles, whereas the interval of negative mo-
ments in these plots varied from1q+ = [0,−2.5] to 1q+ =

[0,−8]. Selected examples of singularity spectra are shown
in Fig. 5, matching the PR patterns previously depicted in
Fig. 3. These spectra were concave down parabolic curves
with an asymmetrically long right part for all the studied PR
depth-dependent profiles, but there were various degrees of
asymmetry. The Ḧolder exponents of order zero,α0, i.e. the
scaling exponent corresponding to the maximumf (α), var-
ied between 1.020 and 1.112; determination coefficients in
estimatingα0 wereR2

≥ 0.998. Parametersαmax andαmin
were calculated with determination coefficientsR2 > 0.957
andR2 > 0.979, respectively. It is worth remembering that
in a homogeneous fractal system the singularity spectrum
would be reduced to a single point; therefore, shape, asym-
metry and goodness of fit statistics of thef (α) − α curves
obtained support the hypothesis of the singular behaviour of
PR profiles.
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(b)                    Profile # 45 

Fig. 4. Examples of log–log plots of the partition function,χ(q,δ),
versus depthdependent resolution,δ. Plots with the worst (profile
#34) and the best (profile #45) linear correlations are shown.

The width or amplitude of the singularity spectrum, de-
noted either as (αq− − αq+) or as (αmax− αmin), is an indi-
cator of multifractality because it provides information on
the diversity of he scaling exponents of the measure. Thus,
the wider thef (α) − α spectrum, the higher the heterogene-
ity in the scaling indices and in the distribution of the PR
profiles. The narrowest spectra (Fig. 5b), indicating a lower
scaling heterogeneity or multifractality of the measure, were
found for PR profiles typified by three successive “ridges”
more or less regularly spaced from top to bottom depicted in
Fig. 3b. The PR profile types depicted in Fig. 3a and c were
translated into wider distributions of the singularity spectra,
shown in Fig. 5a and b, respectively, which are indicative of
a higher inhomogeneity or multifractality. These results are
compatible with a high regularity in the intermittent high and
low values of the PR profiles in Fig. 3b, which contrast with
Fig. 3c with more changes and unevenness in the successive
PR maxima and minima values.

Shape and asymmetry of thef (α)−α curves may also pro-
vide much information about the inner structure of the mea-
sure and can also be employed to assess its heterogeneity. For
example, symmetry of theα−f (α) plots has been frequently
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Fig. 5.Selected examples of singularity spectra (types as in Fig. 4).

quantified using several indices relying on the widths of the
respective right (R) and the left (L) branches, such as the ra-
tio L/R= (α0−αmin)/(αmax−α0) in Macek and Wawrzaszek
(2009) or the difference R–L= ((αmax− α0) − (α0 − αmin))

in San Jośe Mart́ınez et al. (2010). Also, the presence of ex-
tremely high and extremely low data values and dominance
of either low or high data are related to the left (q � 1)
and right (q � 1) parts of thef (α) spectrum, respectively.
Overall, the right branch of the singularity spectrum, R, was
wider than the left branch, L, and accordingly the ratio L/R
was below the unity (L/R< 1). Asymmetry towards the right
indicates dominance of the highest singularity exponents,
α, which correspond to low concentrations of the measure.

Therefore, in terms of the studied variable, the right skewed
spectrum is the result of a higher scaling heterogeneity in the
distribution of lower PR data values. Again, the relative de-
gree of asymmetry was lower for PR profiles described by a
multimodal pattern of variation in depth. Notice also that the
general shape of the singularity spectra in Fig. 5 is compati-
ble with the negative skewness of most of the corresponding
experimental PR profiles.

On the other hand, lowf (α) values correspond to rare
events, whereas the highest value off (α) matches the ca-
pacity dimension. In general, the right-hand side (q < 0) of
the α − f (α) plots was also longer than the left-hand side
(q > 0), revealing that the geometrical size of points with the
largest exponents,α, was smaller. Therefore, the narrower
and shorter left-hand side of the singularity spectrum suggest
dominance of highest PR values and that these were quite
similar to each other, as compared to the lowest PR values
that were less frequent and showed more differences between
one another along the profile.

Next PR singularity spectra will be typified by parame-
ter (α0 − αmin) = (α0 − α8) as well as the Ḧolder exponent
of order zero,α0. This is becauseαmax values of all the
f (α) − α plots were computed for a similar statistical mo-
ment (1q+ = 8.0) and had smaller statistical errors, while
αmin values correspond to diverse moments (−8 ≤ 1q− ≤

−2.5) and showed larger statistical errors. Large statistical
errors for momentsq � 0 are known to be prevailing in mul-
tifractal analysis (e.g. Macek and Wawrzasek, 2009; Paz-
Ferreiro et al., 2010).

Generalized dimension,Dq , was estimated in the interval
of q moments1q = [−8,8] with Eq. (3b), except forq = 1,
where Eq. (3c) was used. As expected, coefficients of deter-
mination were highest forq = 0 (R2

= 1.00) and decreased
with increased| q | for the 50 PR profiles studied. Thus, the
values ofR2 were higher than 0.998, 0.994, 0.984 and 0.962
for q = 1, q = 2, q = 8 andq = −8, respectively. Examples
of Rényi dimension spectra,Dq , calculated for 0.5q steps in
the range of moments fromq = −8 to q = 8 together with
their standard error bars are shown in Fig. 6. Rènyi spec-
tra follow a typical monotonically decreasing trend with in-
creasingq values, which can be described by a sigma-shaped
curve. TheDq function crosses through 1.0 atq = 0 and
approaches minimum and maximum values asq � 1 and
q � −1, respectively. The absolute differences (D0 − Dq )
notably increase as the absolute value ofq grows in the two
branches of the sigma-shaped curves. On the other hand, the
curvature of theDq functions was always much higher for
negative than for positive values ofq, which is in accordance
with the fact that the singularity spectra had a wider right
branch that corresponds to the smallest concentrations of the
measure.

The difference1Dq = (D−8 − D8) between the most
negative (q = −8) and the most positive (q = 8) moments
has been also employed as a measure of heterogeneity
(e.g. Caniego et al., 2006; Paz-Ferreiro et al., 2010). Various
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Fig. 6.Selected examples of generalized dimension spectra.

degrees of heterogeneity are shown in the selected Rényi
spectra (Fig. 6), which correspond to CV values of 24.5 %
(profile# 43), 30.7 % (profile #1) and 60.0 % (profile #21). It
is worth noting, however, that the width of the generalized
dimension, (D−8−D8), had a different rank than CV. This is
because multifractal parameters reflect major aspects of the
spatial organization hidden in the PR data series, while CV is
a simple measure of data variability, which does not account
for the spatial structure of the points measured along a profile
(Everstz and Mandelbrot, 1992).

The capacity dimension,D0, was not significantly differ-
ent from 1 in all of the 50 data series. The entropy or in-
formation dimension,D1, of PR varied between 0.927 and
0.984.D0 andD1 would take the same value for a monofrac-
tal scaling type. Again the multifractal behaviour of depth-
dependent PR data series is very clearly expressed in the
shape and parameters derived from the generalized dimen-
sion, supporting the hypothesis of the singular behaviour of
depth-dependent PR data series.

The Hurst exponent,H , estimated from the correlation
dimension,D2, ranged from 0.944 to 0.988. Thus,H was
rather close to 1 and not very different in magnitude from one
PR profile to another. The relatively highH figures reflected
the presence of strong persistence, i.e. positive autocorrela-
tion, related to long-range dependencies. The strong correla-
tion dependencies with depth for PR profiles are consistent
with results reported by San José Mart́ınez et al. (2010) for
macroporosity data series. In spite of all the Hurst exponent
values obtained being rather close to 1, this parameter was
sensitive to differentiation of main PR patterns of vertical
variation; for example, profiles of type A (Fig. 3a) exhibited
meanH values significantly lower (P < 0.05) than those of
profiles of type B with a multimodal depth-dependent distri-
bution (Fig. 3b), indicative of a relatively smaller autocorre-
lation of the former.

Indeed, several of the selected multifractal parameters
showed strong positive or negative correlations between
them. For example, the higher the entropy dimension,D1,

and the Hurst exponent,H , the lower the Ḧolder exponent
of order zero,α0, and the degree of multifractality given by
indices, such as (αmax− αmin) or (D−8 − D8). The entropy
dimension,D1, describes the diversity of the measure (e.g.
Caniego et al., 2006; Paz-Ferreiro et al., 2010), so lowD1
values reflect the fact that most of the measure concentrates
in a small size domain, whereas high values ofD1 indicate
that the measure is more evenly distributed. The Hurst ex-
ponent,H , identifies persistence or long-range autocorrela-
tion (e.g. Ṕerez et al., 2010; San José Mart́ınez et al., 2010),
so low H means a weak persistence and vice versa. Great
α0 values and wide (D−8 − D8) spectra are characteristic of
a high heterogeneous measure. Therefore, in terms of soil
PR, the lower the entropy dimension,D1, the more clustered
(i.e. less evenly distributed), the weaker the persistence, the
smaller the autocorrelation and the large the heterogeneity
and anisotropy of the depth-dependent penetrometer read-
ings.

Scaling heterogeneity or multifractality in soil properties
result from the interaction of various underlying soil forming
factors and processes. In agricultural soils, the complexity
due to natural factors may be modified by man-made factors
(e.g. Biswas et al., 2012). Depth-dependent PR profiles vary
with soil properties that may show great spatial heterogene-
ity (Vaz et al., 2011), which, in turn, may be either relatively
constant over time (i.e. particle size distribution, soil miner-
alogy, organic matter content, etc.) or highly dynamic (i.e.
water content, bulk density, porosity, etc.). The joint action
of various sources of spatial variability, operating at different
scales, showed specific effects for PR profiles measured at
each point.

Thus, the scaling property is driven by the number, type
and spatial extent of factors and processes that control the dy-
namics of each soil PR profile. It is well established that PR
mostly depend on soil texture, bulk density and water content
(e.g. Dexter et al., 2007; Vaz et al., 2011). In turn, soil wa-
ter content near the soil surface is highly variable (Biswas et
al., 2012) because of the influence of external factors such as
rainfall and evaporation. Therefore, soil PR may be also in-
directly influenced by environmental factors, and soil surface
layers are more responsive to these factors than deep soil lay-
ers. Bulk density at the surface soil layers is also strongly in-
fluenced by tillage operations. Therefore, due to the dynam-
ics of soil water content and soil structure, strength properties
near the soil surface are highly variable in nature, which will
be also reflected in the scaling property of depth-dependent
PR profiles. To summarize, scale heterogeneity in the vertical
distribution of soil PR could be driven by various local and
non local agents or sources of variation, including soil tex-
ture, organic matter content, bulk density, water content and
water dynamics, rainfall, evaporation and tillage operations.

The multifractality observed in the PR profiles can be
viewed as the result of differences in autocorrelation for
the smallest and large fluctuations of the experimental data
series. At our experimental scale, PR peaks are most likely
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Fig. 7.Maps at the field scale of maximum and mean PR, parameter (α0 − α8), and Hurst exponent,H .

associated to the physical obstruction found by the steel cone
to enter or to push aside small soil structural units, whereas
drops in PR should correspond to voids or layers with loose
density. The higher the packing density of a soil layer, the
greater the resistance encountered by the penetrometer tip,
which results in increasing maximum and mean PR. More-
over, soil texture and soil water content along a vertical PR
profile may be far from homogeneous. The above-mentioned
factors operate and interact at closely related scales to give
rise to the observed PR features. The different PR types anal-
ysed showed in general a strong multifractality, although
there were differences in the degree of multifractality and
also in the degree of symmetry. Since multifractal structures
are the outcome of chaotic phenomena, our results may be
interpreted as a positive test on the suitability of nonlinear
dynamics to analyse PR profiles.

3.3 Linear and spatial relationship between
multifractal and statistical parameters

Table 3 shows Pearson product moment correlation between
selected parameters derived from multifractal analysis, i.e.
D−8, D8, (D−8, D8), D1, H , (α0 − α8) and α0, and vari-
ous commonly used PR statistical indices (maximum, mean,
standard deviation, CV, skewness and kurtosis). The Hurst
exponent,H , and CV showed a negative dependence with
the highest correlation coefficient (r = −0.978).H was also
significantly and negatively correlated to standard devia-
tion (r = −0.858), maximum PR (r = −0.733), skewness
(r = −0.729) and mean PR (r = 0.316), but showed a posi-
tive correlation to kurtosis (r = 0.557). The entropy dimen-

sion, D1, was also correlated to these descriptive statisti-
cal indices, but coefficients of correlation were somewhat
lower. ParameterD8, cropped from the right branch ofDq

spectra, showed the highest negative relationship with CV
(r = −0.891) and it is worth nothing thatD8 was even bet-
ter correlated to skewness (r = −0.851) and kurtosis (r =

0.612) than the Hurst exponent,H . However,D−8, derived
from the left branch ofDq spectra showed either no cor-
relation or low positive correlations with statistical indices
(r = 0.321 to standard deviation andr = 0.319 to CV). Pa-
rameter (α0−α8), in contrast, was positively correlated to CV
(r = 0.947), standard deviation (r = 0.782), skewness (r =

0.761) and maximum PR (r = 0.680), exhibiting a negative
correlation to kurtosis (r = −0.620). The above-mentioned
statistical indices were also significantly correlated to the
Hölder exponent of order zero,α0, but the sign of the cor-
relation was opposite to that ofH andD1.

In summary, parameters gathered from the central part of
the generalized dimension (i.e.D1, H ) or the singularity
spectrum (i.e. the Ḧolder exponent of order zero,α0), and
those obtained for positive moments of these curves,q � 1,
(i.e.D8, α8 and (α0 −α8)) showed strong correlations to sta-
tistical indices. In contrast, parameters obtained for negative
moments,q � 1, i.e.,D−8, α−8, showed no or less signifi-
cant correlation to statistical indices.

The strong correlation between statistical indices and mul-
tifractal parameters forq � 1, such asD8 or (α0 − α8),
can be attributed to the fact that these parameters repre-
sent high or extremely high values of PR that are amplified
by positiveq values. Again, this is also consistent with the
negatively skewed frequency distributions for most of the
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Table 3.Correlation between selected statistical and multifractal parameters.

D−8 D8 D1 H α0 − α8 α0

Maximum ns –0.720∗ –0.684∗ –0.733∗ 0.680∗ 0.516∗

Mean ns ns –0.310∗ –0.316∗ ns 0.290∗∗

Std 0.321∗∗ –0.751∗ –0.779∗ –0.858∗ 0.782∗ 0.699∗

CV 0.319∗∗ –0.891∗ –0.968∗ –0.978∗ 0.947∗ 0.811∗

Skewness ns –0.851∗ –0.620∗ –0.729∗ 0.761∗ 0.369∗∗

Kurtosis ns 0.612∗ 0.557∗ 0.596∗ –0.620∗ –0.423∗∗

∗ denotesP > 0.01, ∗∗ denotesP > 0.05, and ns stands for not significant.
std is standard deviation; CV, coefficient of variation;D−8, D8 andD1, generalized dimension for
momentsq = −8, 8 and 1, respectively;H , Hurst exponent; andα8 andα0, singularity strength forq = 8
and 0, respectively.

depth-dependent PR profiles, with the bulk of its values on
the right of the mean, and a few small values originating from
the relatively long left tail. Moreover, PR profiles with posi-
tive skewness exhibited the lowest values of (α0−α8), which
also is in agreement with the longer right tail of its corre-
sponding frequency distribution.

Maximum PR values were also negatively correlated to pa-
rameters of the central part of theDq spectra such asD1 and
H , suggesting that layers with the highest strength are as-
sociated to decreasing evenness and persistence of the data
sets. A few layers with high PR values increase mean PR and
its corresponding CV, and therefore the negative correlation
between these statistical parameters toD1 andH is also an
expected result.

Until now, multifractal analysis had not been used to de-
scribe the depth-dependent patterns of penetrometer mea-
sures. Multifractal theory takes advantage of the indepen-
dence of multifractal parameters over a range of scales and
the assumption of a non-specific distribution of the measure.
Assuming a non-specific distribution of PR allows for char-
acterization of features such as heterogeneity of high and low
values of soil resistance and the presence of rare events over
the measured depth.

Subsequently, multifractal analysis provides insight relat-
ing to the higher positive and negative statistical moments,
q, and how the higher moments change with scale. Hence,
not only parameters associated to high PR values (i.e.D8
and (α0−α8)), but also those related low PR values (i.e.D−8
or (α−8 − α0)) are required to fully characterize the depth-
dependent behaviour of data sets taken by penetrometer. In
other words, description of soil PR relies not only on the
distribution of the highest resistance values but also on the
distribution of the lowest ones (e.g. Vaz et al., 2011).

It follows that multifractal parameters, based on the global
statistical properties of the depth-dependent data series, re-
flect many of the major aspects of the vertical arrangement
of PR readings, while statistical parameters are basic mea-
sures that do not account for a thorough description of such
aspects. As an example, in Fig. 6, theD8 value of profile #43
is smaller than that of profile #1. However, examination of

the left part of the graph shows that theD8 value (associated
to the impact of low penetration resistance data) was much
more important for profile #43 than for profile #1.

Summarizing, multifractal analysis provides a powerful
method to amplify differences between depth-dependent PR
profiles as well as to distinguish themselves in more de-
tail. Clearly, this study shows that multifractal methods go
beyond statistical methods, allowing a more consistent and
better suited description of the inner structure of PR depth-
dependent profiles that complete the information provided by
descriptive statistics.

Figure 7 shows the spatial distribution maps for mean and
maximum PR at the 0–60 cm depth, as well as the Hurst ex-
ponent,H , and parameter (α0 − α8), constructed by the in-
verse distance method. In spite of the relatively high water
content at the date of measurement several small patches of
the experimental field exhibited mean PR resistance higher
than the 2.0 MPa threshold. Accordingly, maximum PR maps
showed that in most of the field surface, PR values higher
than 2.0 MPa occurred at least in one layer within the 0–
60 cm depth.

At the field scale, in general, areas with high mean or
maximum PR values correspond to areas with lowH val-
ues. Therefore, areas with highest levels or with highest risk
of soil compaction are expected to exhibit PR profiles rela-
tively less persistent, thus with a lower autocorrelation and
less evenly distributed than areas with lowest risk of soil
compaction. Likewise, areas with high mean or maximum
PR values, associated to compaction problems, correspond to
areas with the highest (α0 − α8) values resulting from more
heterogeneity in the distribution of the higher PR data values.

The above results also suggest that adequate assessment of
PR variability would need a greater sampling intensity in ar-
eas exhibiting a relatively weak depth-dependent persistence
or autocorrelation and vice versa. In other words, this means
higher sampling intensity is required in areas with the highest
scaling heterogeneity.

The location of areas with PR levels that can be lim-
iting for root development and plant growth is practical
information of interest for safe soil and crop management,
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particularly in situations that require alleviation of soil com-
paction. The combination of spatial variability survey and
multifractal analysis appears to be useful to manage soil
compaction. As previously stated, in our experimental con-
ditions, PR values were relatively low because of the high
water content. Further research is needed to test the options
open here for PR data series recorded in different soil types
and management conditions, and also to assess the spatial
variability of PR in our soil for drier soil conditions.

4 Conclusions

We studied 50 depth-dependent soil resistance profiles mea-
sured by penetrometer at the field scale on a sandy soil under
high moisture conditions. Vertical PR profiles behave like a
multifractal system and its multifractal structure was repre-
sented by the singularity spectrum,α, versusf (α), and the
generalized dimension,Dq . Various degrees of multifractal-
ity (scaling heterogeneity) were present in our data series and
the highest multifractality corresponded to vertical PR pro-
files described by an irregular multimodal pattern of variation
in depth.

Overall, singularity spectra were asymmetrical and shifted
to the right, which is compatible with a greater heterogeneity
of the low values in all the PR data sets. Again, the rela-
tive degree of asymmetry was lower for depth-dependent PR
profiles exhibiting a multimodal pattern of variation. These
results are also consistent with the negative skewness coeffi-
cient of most of the studied data sets.

The Hurst exponent,H , varied between 0.944 and 0.988,
indicating the presence of a rather strong persistence or
long-range dependence. Autocorrelation or long-range de-
pendence was higher for profiles with a multimodal pattern
of PR distribution.

Multifractal analysis completed descriptive statistics,
yielding information about changes with scale of the higher
moments, which gives a deep insight into the inner struc-
ture of PR depth-dependent profiles. Therefore, multifractal
analysis provided a powerful method to amplify differences
between depth-dependent PR profiles and contributed to dis-
tinguish themselves in more detail. In addition, combination
of spatial variability survey and multifractal analysis appear
to be an useful tool to manage soil compaction.
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Garćıa Moreno, R., D́ıaz Álvarez, M. C., Tarquis, A. M., Paz
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