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Abstract. Soil penetration resistance (PR) is widely used asl Introduction
an indirect indicator of soil strength. Soil PR is linked to ba-

sic soil properties and correlated to root growth and plant ) ] )
production, and as such it is extensively used as a practiSOil strength is defined as the resistance that has to be over-

cal tool for assessing soil compaction and to evaluate th&€Ome to cause soil physical deformation. Soil strength is an
effects of soil management. This study investigates how reimportant soil physical property as it affects basic aspects
sults from multifractal analysis can quantify key elements of Of agricultural soils, including root growth, seedling emer-
depth-dependent soil PR profiles and how this informationdency, compaction, erodibility, trafficability and bearing ca-
can be used at the field scale. We analysed multifractality ofacity (Grif, 1990; Soane and Van Ouwerkerk, 1994). Di-
50 PR vertical profiles, measured from 0 to 60 cm depth and€Ct measurement of soil strength properties are difficult to
randomly located on a 6.5 ha sugar cane field in northeastPerform, so they have remained until now rather scarce. In-
ern Brazil. The scaling property of each profile was typified stead, most frequently, soil resistance to deformation is indi-
by singularity, and Bnyi spectra estimated by the method of rectly and empirically assessed by measuring the resistance
moments. The Hurst exponent was used to parameterize tH@ Penetration of a metallic plunger with a particular shape,
autocorrelation of the vertical PR data sets. The singularityusually a cone, which is referred to as a penetrometer (e.g.
and Renyi spectra showed that the vertical PR data sets exASAE, 1986). Thus, penetrometers are simple and relatively
hibited a well-defined multifractal structure. Hurst exponent inéxpensive devices, easily providing an indirect indication
values were close to 1, ranging from 0.944 to 0.988, indicat-Of soil strength.

ing strong persistence in PR variation with soil depth. Also, Penetration resistance is an easily measurable parameter
the Hurst exponent was negatively and significantly corre-Which has been found to depend on basic soil properties that
lated to coefficient of variation (CV), skewness and maxi- @re Vvital for plant growth, mainly soil composition, struc-
mum values of the depth-dependent PR. Multifractal analysigure, bulk density and water content. In addition, PR corre-
added valuable information to describe the spatial arrangel@tes with several properties of agronomic importance, such
ment of depth-dependent penetrometer data sets, which we$ crusting, compaction or vehicle trafficability. Thus, PR has
not taken into account by classical statistical indices. Multi- P€€n often used as a surrogate measurement of key soil prop-
fractal parameters were mapped over the experimental fiel§'ties (e.g. Dexter et al., 2007). Indeed, penetrometers have
and compared with mean and maximum values of PR. combeen utilized in a number of field experiments to assess soil
bination of spatial variability survey and multifractal analysis compaction (e.g. O'Sullivan et al., 1987) or the effects of

equations for predicting penetrometer resistance from soil

properties have been proposed (e.g. Dexter et al., 2007; Vaz
et al., 2011). Moreover, soil PR above a given threshold has
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been shown to affect root penetration and hence crop produdNess (1968). The Bm model corresponds to a Gauss—Markov
tion (Hakansson et al., 1988). Consequently, field penetromsprocess, i.e. a random process consisting of a sequence of
eters also have been frequently employed for estimating rediscrete steps of fixed length, where correlation between suc-
sistance to root growth in soil as soil PR is a rough indicatorcessive values vanishes. Fof Bm model the Hurst parame-
of the pressure encountered by roots for elongation. terH, (0 < H < 1), is directly related to the long-term mem-
Nowadays, micropenetrometers are increasingly used irory of the studied variable. The rangg2l< H < 1 is usu-
laboratory conditions. This is because of the wide acceptancally associated with persistence (positive autocorrelation) or
of a quality index based on three main soil physical proper-long-range dependencies, whereas the rangef0< 1/2
ties: soil strength, matric potential and aeration. This indexrepresents anti-persistent behaviour (negative autocorrela-
was defined by Letey (1985) as “the range of moisture contion) and short-range dependencies (e.g. Feder, 1988). More
tent at which plant water uptake is neither limited by soil re- recently, it has been also recognized that a large class of mul-
sistance when dry, nor by poor aeration when too wet”, and idifractal processes could be approximated by the multifractal
now referred to as “least limiting water range” (LLWR), fol- Brownian motion £2Bm) models, based on the fact that the
lowing Da Silva et al. (1994). Soil strength data required for power law behaviour of second-order statistics allows esti-
LLWR evaluation are readily provided by PR measurementsmation of a generalized Hurst scaling function (e.g. Leland
Soils are highly variable and heterogeneous over severadt al., 1994; San JésMarfinez et al., 2010). It is worth noth-
spatial scales. Over the past few decades scaling analysifg that, similar to the Hurst exponent, the generalized Hurst
such as fractal and multifractal analysis have been appliedcaling function can be categorized into three types, i.e. per-
to characterize soil properties and processes, and many studistent, entirely random distribution and anti-persistent.
ies have revealed scale-dependent patterns of soil variability Several studies also have reported self-affine scale-
from very short distances (e.g. Pachepsky et al., 1996; Pazependent patterns and singularity of the spatial variation of
Ferreiro et al., 2010) to geomorphologic landscapes unitsoil PR itself in horizontal layers (e.g. Usowicz and Lipiec,
(Biswas et al., 2012), or even continents and the whole plane2009; Ferez et al., 2010). Furthermore, multifractal analysis
tary scale (Caniego et al., 2006). Both fractal and multifractalhas been used to assess patterns of spatial variation of pen-
scaling assume a hierarchical distribution of mass in spacetrometric data sets measured along transects (Folorunso et
so that the whole results from the union of similar subsets.al., 1994) or on planes (Roisin, 2007), providing valuable in-
While in the fractal approach subsets are considered similaformation to better understand the inner structure of PR for
to the whole, multifractal distributions hypothesize that sub- horizontal soil layers. However, to the best of our knowledge,
sets are related to the whole through varying scaling factorsuntil now multifractal analysis has not been applied to char-
(e.g. Tarquis et al., 2003). As a consequence, in monofracacterize the spatial heterogeneity of depth-dependent, verti-
tal scaling, one single exponent is sufficient to characterizecal resistance profiles obtained by penetrometer. Therefore,
the scaling behaviour, whereas multifractal scaling involves ahe objectives of this work were (a) to characterize the in-
continuous spectrum of scale exponents, which are related ttrinsic variability and scaling of PR vertical profiles using
different intensity levels of complex processes (Everstz andnultifractal models and (b) to assess compaction at the field
Mandelbrot, 1992; Falconer, 1997). scale by mapping classical descriptive statistics and multi-
Fractal geometry showed ability to address the complexfractal parameters.
relations between a range of soil properties and soil-forming
factors and processes that do not operate disconnectedly but
as an ensemble of interacting forces driving complex and
nested effects, intuitively related to fractal or multifractal be- 2 Material and methods
haviour. For example, heterogeneity, tortuosity and connec-
tivity of the soil pore/solid space have been quantified us-2.1 Description of the experimental site
ing fractal (e.g. Pachespsky et al., 1996) or multifractal tech-
niques (e.g. Tarquis et al., 2003; Paz-Ferreiro et al., 2010The field experiment was conducted at an agricultural
San Jos Martinez et al., 2010). Likewise, soil surface mi- research site located in Goiania municipality, Pernam-
crorelief has been described using fractal models (e.g. Huanfuco State, northeast Brazil (latitude°@#4'25” S, longitude
and Bradford, 1992; Vidal ¥zquez et al., 2005, 2007) and 34°5539’ W) (Fig. 1a). The studied field, located 10 km in-
multifractal models (e.g. Vidal &zquez et al., 2008; Gdec  land from the Atlantic Ocean, is 6.5 ha in surface, and has a
Moreno et al., 2010). mean altitude of 8.5ma.s.l. This field is representative of a
Early attempts to model the spatial variation of soil proper- regional lowlands landscape, whose soils are affected by sea-
ties using fractal theory rely on the fractional Brownian mo- water salinity, with plantations of sugarcar&agtcharum of-
tion, i.e. afBm model (Burrough, 1983; Armstrong, 1986). ficinarumsp.) as the main economic activity. Sugarcane has
A fBm is an expansion of the random walk or Brownian mo- been cropped as a monoculture during the last 24 yr, and it
tion model (Bm) which is characterized by the Hurst expo- was managed by burning the straw each year after harvest-
nentH = 0.5, and was first proposed by Mandelbrot and vaning. The plantation was renewed every seven years.
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Pernambuco State (Goiana City*) Table 1. Texture, bulk density and water content at the sampling
date.
__Brazil Depth Texture Bulk density ~ Water content
R (m) (gkg™) (kgdm~3) (m3m~3)
clay silt sand
0.0-0.3 44 26 930 1.52 34.50
E 0.3-06 43 25 932 1.54 36.80
0.6-1 44 26 930 1.60 42.60
>1 32 40 928 1.66 47.20
Fig. 1la.Location of the experimental site.
9162450

According to Koppen the local climate, characterized by z 91624001
constant high temperatures and a rainfall regime with con->
trasting wet and a dry seasons, was defined as tropicalg #1623
(As type, also referred to as “pseudo-tropical”). Mean an- |
nual temperature is about 2@ and mean yearly precipi-
tation reaches approximately 1800 mm, from which about  g42250-
1250 mm correspond to the rainy season, lasting from Oc-
tober to March during austral summer. 9162200

Soil was classified as an Orthic Podzol (Soil Survey Staff,

2010), which is equivalent to an “Espodossolo Humito

ortico” following the Brazilian Soil Classification System Fig. 1b. Sampling scheme for penetration resistance measurements.
(EMBRAPA, 2006). Soil parent material consists of highly

weathered sediments from continental origin, dating from the

Tgtngirgsg and belonging to the Barreiras group (Brasil, - ¢4 55 . (ASAE, 1986) to 60cm depth was manually
: j determined. At each point, PR data sets were obtained at in-

Soil properties were analysed following methods de- . .
scribed in Camargo et al. (1986). As shown in Table 1, thetl\iglzljn?tfsl cm as described by Stolf (1991) and expressed in

soil exhibited a sandy texture with a sand content of about
930gkg! and the bulk density increased with depth from , ) .
1.52kgdnT3 at the topsoil (0-20cm) to 1.66 kgdrh at 2.3 Multifractal analysis and generalized Hurst
> 1.00 m depth. exponent

Distan:

9162300+

T T T T T
287300 287400 287500
Distance X (m)

T T
287100 287200

2.2  Penetrometer resistance data set Multifractal analysis was implemented following the mo-
ment method. In addition, the traditional Hurst exponent,

Soil penetration resistance data were collected at 50 pointsriginally developed for monofractal series, has been gener-

randomly located across the experimental field (Fig. 1b).alized and used to parameterize scaling heterogeneity (mul-

Penetrometer measurements were done on 27 January 201#ractality).

Cumulative rainfall in the period from 9 to 25 January was To implement multifractal analysis, suppoggS) repre-

386.5mm. Even though on 27 January 0.5mm rain wassents a measure (field) defined on a set S associated with a

recorded, this figure can be considered as negligible becausgeometrical support. To assess the heterogeneity of the mea-

of the high evaporation. Thus, data collection was performedsure,u;, the spacer” can be split into: boxes of the same

two days after important rainfall had ceased, which corre-linear sizes (equal intervals inR') by sequential divisions

sponds to the field capacity condition. Mean soil water con-(e.g. Evertsz and Mandelbrot, 1992; Caniego et al., 2006).

tent increased with depth from 34.3m=23 at 0.0-0.3m  Considering a one-dimensional profile of lengththis in-

depth to 47.2 Mm—2 at depths higher than 1 m (Table 1), volves successive partitioning infostages X = 1,2, 3...).

showing the effect of the subsurface water table. Hence, at each scal®, a number of segments/ () = 2,
Penetration resistance was measured with a dynamic harare obtained with characteristic size lengthks L x27%, cov-

mer penetrometer (model IAA/Planalsucar; Stolf, 1991) atering the whole extent of the suppott, In this study the

all the points marked over the field. This meant the verticalinterval of depths [1, 60] was taken as the support (in cm).

stress of a steel cone with an angle of 3d basal diame- Thus, the total profile depth was subdivided into subintervals
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of equal length,§ (e.g. Miranda et al., 2006; San #os Table 2. Algorithms used for computing mass exponent function,

Martinez et al., 2010), obtained with<k < 5.

14, singularity spectrunyf («) versusx, and generalized dimension,

Then, the distribution of the studied data series was norDq, by the moment method.

malized by introducing a new variable, the probability mass
function, u; (§). This variable describes the portion of total
mass contained in each segment, and was estimated as

i (8) = Ni(8) /My,

whereN; (8) is the value of the measure in théh segment of
sized, andN; represents the total mass in the whole transect.

Mass exponent functiony,

2(g) = lim logx(q.8)

§—0 log(1/8) (3)

Singularity strengthg,, and multifractal spectruny, («)

For each box or segment, the probability mass function, ZlN_(i) 1i(q,8)l0g[1; ()]

;i (8), scales with the box or interval siz&,as a(q) l09() (29)
i (8) o< 8%,
N()
. . . . . i—1 Mi(g,d)log|ui(q,d)
whereq; is the singularity or Lipschitz—#lder or Hlder ex- fa(g)) o izt b qlo (S)Q[Ml 0.9 (2b)
ponent characterizing density in theh box (Halsey et al., g
1986). The Hlder exponent, given by; = logu; (8)/logé,
may be interpreted as a crowding index for the degree of con-  Generalized dimensiom),
centration of the measurg,. It is, in fact, the logarithmic
density of thei-th box of the partition of characteristic size Dg=t(@)/tq =1 (32)
8.
Also, for multifractal distributed measures, the number 11 5
Njs(a) of cells of sizes, having a singularity or BEider ex- Dy = lim 7M (3b)
ponent equal tar, increases for decreasidgand obeys a 5>0g—1  logs
power law:
) n(é)
N(a) x 8~ /@), xi(1.8)log[x;i (1.8)]
=1
b1= a@o logs (3¢)

where the exponenf («) is a continuous function af de-
noted as singularity spectrum.

Based on the scaling properties of the normalized vari-
ableu; () different scaling functions can be estimated using

either the moment or the direct method. The box—countmg— The scaling functions denoted as singularity spectrum,
based moment method (Evertsz and Mandelbrot, 1992) rehe§(a)’ and local scaling indexy,, also might be estimated

on the so-called partition function defined as from the mass exponent function,, through a Legendre

() transformation. However, in this work these functions have
x(q,8) = Zuq ), been obtained by the direct method (Chhabra and Jensen,
) ' 1989). This method relies on the quantitiesyg, §) that cor-

respond to contributions of individual segments of the parti-

wheregq is a real number-{oo < g < —o0) andn(é) is the tjon function, defined as

number of cells of sizé.
Alog—log plot of the quantity (¢, §) versuss for different

) _q n(8) q
values ofg yields wi(g,8)=ul /) " ul©).

Then, using a set of real numberspo < g < oo, the func-
tionsa, and f (o), can be estimated by Egs. (2a) and (2b),
wherer, is the mass scaling function of ordgrThe method  respectively, presented in Table 2.

of moments is only justified if the plots ¢f(q, §) versuss The graph off (@) versusx, called the multifractal spec-
are straight lines (Hasley et al., 1986). The mass exponertrum, typically has a parabolic concave downward shape,
function 7, was estimated from the partition function with with the range ofx values increasing with the increase in
Eq. (1) (Table 2). The function, controls how the moment the heterogeneity of the measure. The minimum scaling ex-
of measureu; scales withg. In general, multifractal mea- ponent §,) corresponds to the most concentrated region of
sures yield a nonlinear function of, whereas a monofractal the measure, whereas the maximum exponent X corre-
corresponds to linear, . sponds to the rarefied regions of the measure.

x(q,8) 877D,

Nonlin. Processes Geophys., 20, 52841, 2013 www.nonlin-processes-geophys.net/20/529/2013/



G. M. Siqueira et al.: Multifractal analysis of soil PR 533

Additionally, the scaling functions denoted as mass expo-etal., 2010). Thus, the scaling exponent provides information
nent functiong,, and generalized dimensiol,, are alsore-  about long-term memory of the spatial or temporal series of
lated (Hentschel and Procaccia, 1983), as defined by Eq. (3ahterest.

(Table 2). In fact, the concept of generalized dimensiop, On the other hand, the correlation dimensidpy, ap-
corresponds to the scaling exponent for ghth moment of  praises the average fluctuation of the spatial series. Hence,
the measure. Based on the work @i (1955) generalized both D, and the Hurst exponeri account for the scaling
dimensions can be also defined by Eq. (3b) (Table 2). How-property of second-order stationary data sets. Therefore, as
ever, using Egs. (3a) or (3bl; becomes indeterminate be- proposed by Riedi et al. (1999) in multifractal stochastic pro-
cause the value of the denominator is zero. Therefore, for theesses the Hurst exponent is related to the correlation dimen-
particular case that = 1, an equivalent equation is obtained, sion by

using L'Hopital’'s rule (Eq. 3c, Table 2). Do — 28 —1

For a monofractal D, is a constant function of; thus 2= ’
no additional information is obtained by examining higher Consequently, multifractal analysis also allows parameteri-
moments. However, for multifractal measures, the relation-zation of the log-range dependencies by the Hurst exponent,
ship betweerD, andg is not constant. In this case, the most 7.
frequently used generalized dimensions@gdor g = 0, D1
for g = 1 andD; for ¢ = 2, which are referred to as capacity, 2.4 Statistical analysis and spatial representation over
information (Shannon entropy) and correlation dimension, the experimental field
respectively. o o ] . ] ]

The capacity or box-counting dimensiaBg, is indepen- Prellmmary statistical anaIyS|s_ - mvolvmg _calculatlor_l c_Jf
dent of the quantity of mass in each box; it is the scaling™Méan, variance, standard de_zwatlon, coefficient of vz_irlatlon
exponent of the number of non-empty boxes and takes intdCV), skewness and kurtosis — was performed using the
account the fact that the boxes are occupied or not. The inforS TAT code described in Vieira et al. (2002). Correlation anal-
mation dimensionD1, gives the probability of occupation of YS€S between statistical paramgters a_nd multifractal indices
thei-th box of sizes, without taking into account the way in Were made by Spearman ranking using the SAS package,
which the measure is distributed within each box. Thins, ~ Version 8.0 (SAS Institute, 1999). o
provides a physical characterization, indicating how hetero- BOth PR variables and multifractal indices evaluated for
geneity changes across a certain range of scales, and it is al§ae 50 positions marked over the experimental field were sub-
related to the Shannon entropy index (Grassberger, 1983;¢cted to semivariogram analysis (e.g. Pa; et. al., 1996; Vieira
The correlation dimension,, describes the uniformity of ej[ al., 2002). Nevertheless, plots of semivariance versus lag
the measure values among intervals. The generalized dimeflistance were nearly flat, and as such overall the pattern of
sion, D,, may be more useful for the comprehensive study ofSpatial dependence was described by the pure nugget effect
multifractals. Differences betweeh, allow comparison of model. The lack of spatial dependence prevented the kriging

the complexity of the measure. In homogeneous structured® be used for mapping purposes. Therefore, maps to visual-

D, is close, whereas in a monofractal they are equal. ize spatial distribution of PR, statistical and multifractal in-
Now we consider a stationary stochastic process definedicés were made by means of the inverse distance method,
by X = (X; :i =0,1,2,...), with constant meap and finite described elsewhere (e.g. Burrough and Mc Donnell, 1998;

variances2. The autocorrelation function at ldg p(k), ofa  Caridad-Cancela et al., 2005).
stochastic data series is defined as

o(k)=E [(Xi — ) (Xjx — M)]/E [(Xi _ M)z], 3 Results and discussion
where E stands for the mathematical expectation and de—3'1 Statistical analysis of penetration resistance
pends only onk. Moreover, if the seriesX;, has a long-

range dependency, the autocorrelation functio), scales
following the power law

Mean and standard deviation of the PR measured over the
50 positions from surface 0 cm to 60 cm depth are shown in
Fig. 2. On average, PR over the entire field increased from
(k) o k@, O0MPa at the surface to 2MPa at about 40cm depth. Be-
cause standard deviation also increased with depth, CVs of
where i(g) is the generalized Hurst scaling function. For the mean PR involved rather uniform, moderate values (be-
simplicity, next will be assume that the stochastic procesdow 40 %) for the successive depths, except for the first 7cm
of interest is a second-order stationary process (i.e. a zeraear the soil surface, which exhibited higher CV values. Saoill
mean and first and second moments that do not change oveomposition (i.e. texture, organic matter content), water con-
position). In this particular case the Hurst exponent mea-tent and bulk density largely influence soil PR (e.g. Da Silva
sures the power law behaviour of the autocorrelation func-et al., 1994; Dexter et al., 2007; Vaz et al., 2011). Soil sam-
tion: p(k) o< k% =2 (Leland et al., 1994; San JodMarinez ples collected at successive depths were coarse textured and
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Fig. 2. Mean and standard deviation of 50 depth-dependent PR pro- PR (Mpa)
files recorded over the 6.5 ha experimental field. (a) Type A

on average had a similar sand percent (Table 1), and soil wa-
ter content was near field capacity conditions, as previously
stated; therefore the trend of increasing mean PR values with
depth might be mainly related to increasing bulk density. In
spite of the relatively moderate CV values of mean PR over
the entire field, for successive depths, both the vertical vari-
ability within each PR profile and the between profile vari-
ability (Fig. 3) were strong enough to suggest wide vertical
and lateral discontinuities in texture and soil water content
over the experimental field. Depth-dependent and horizontal
PR variability of individual profiles will be next addressed.

Mean PR for each of the 50 profiles measured ranged from
0.817 to 2.396 MPa, whereas maximum PR was between PR (Mpa)
1.193 and 5.201 MPa. For 36 out of 50 profiles, PR was (b) TypeB
higher than 2.0 Mpa in some layer within 0 and 60 cm depth.
There is broad evidence indicating that plant root growth may
be limited above the 2.0 Mpa PR thresholds (e.gk&hsson
et al., 1988; Soane and Van Ouwerkerk, 1994). Our PR mea-
surements have been performed with a relatively high water
content, near field capacity. Therefore, the coarse-textured g
soil of the experimental field can be considered as prone to I::
compaction and limitations induced by compaction are ex- &
pected to increase as the soil water content decreases, during°
dry periods.

Coefficients of variation for individual PR profiles varied
from 24.1 to 74.2 %. The skewness of the PR frequency dis-

Depth (m)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

tributions was in the range from —2.673 to 0.862, which indi- 0.0 05 1.0 15 20 25 3.0
cates, in general, a lack of symmetry. Most of the PR data sets

(with 4 exceptions in 60 datasets) were negatively skewed. PR (Mpa)

Negative skewness is associated to a long left tail, which in- (¢) TypeC

dicates relatively few low values and that the bulk of the val-

ues are on the right of the mean. Kurtosis ranged from —1.59Fig. 3. Selected types of single depth-dependent PR profiles.

to 7.229, with a similar number of profiles (i.e. 25) with pos-

itive and negative values; three of the profiles exhibit a very

flat histogram, matching values for kurtosis higher than 2.5. #43) shows PR gradually increases with depth until a more-
Different patterns of depth-dependent PR profiles haveor-less constant value is reached; CVs ranged from 24.5 to

beenrecorded, as illustrated in Fig. 3, where three main type87.9 %. In contrast, Fig. 3b (profiles #1, #45, #47, and #48)

can be observed. Thus, Fig. 3a (profiles #7, #15, #29, andlustrates a pattern of PR variation in depth, with successive
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“ridges” and “plains”; three maxima and three minima can be 30
recognized at the top, middle and bottom of the profile,andin 25 - o<:----- - *-8
this sense this depth-dependent pattern is multimodal. CVsol 20 +------x2---- gz r e a6
profiles in Fig. 3b were very much alike, varying from 30.7to 2 15 1 o4
31.8%. Profiles in Fig. 3¢ (#21, #26, #34, and #41) appear toi':< 10 1 :02
be less ordered, showing increasing PR with increased deptt 2 57 2
near the soil surface, and then one or two “ridges” irregularly = 0] " lea
placed at greater depths so that they do not exhibitacommor ~ ° [ a—At—"> a6
pattern of depth-dependent PR variation; accordingly, these 12 I o8
profiles were characterized by CVs higher than 40 %. 18 15 A2 09 06 03 0
3.2 Multifractal analysis of depth-dependent soil log 3

penetration resistance @) Profile # 34
Plots of the normalized measuxéq, §) versus the measure-
ment scale§, were examined, for all the statistical moments =8
of interestyg, to find out whether or not depth-dependent PR a6
obeyed power law scaling. All the partition functions were = ‘“2‘
constructed for successive box sizes in steps‘ofk2= 0 % :O
to k =5. For all statistical moments;, in the range [-8, > %2
8], the logarithm ofx (¢, 8), versus the logarithm of fit- - o4
ted a linear model€ > 0.977) in the imposed range of box ) N
sizes, O< k < 5. Figure 4 shows two selected log—log plots 45 | | | | | o8

of x(q,é8) versuss, which correspond to the worst (profile
#34) and the best (profile #45) linear fits obtained for the
50 PR profiles studied.

Next, singularity spectrum and generalized dimension () Profile # 45
spectrum were estimated using Eqs. (2) and (3) listed in Ta-
ble 2, respectively. In both cases parameteras chosen in  Fig. 4. Examples of log—log plots of the partition function(g, é),
the interval [-8, 8], and calculations were performed in in- versus depthdependent resolutiénPlots with the worst (profile
crements of 0.5. To obtain the singularity spectrum, a min-#34) and the best (profile #45) linear correlations are shown.
imum value of R2 = 0.90 for coefficients of determination
of the straight lines relating numerator versus denominator
in Eg. (2) was taken up; thus, pairs of valugéx) versus The width or amplitude of the singularity spectrum, de-
a below this threshold were not accepted in thex) — « noted either aso;— — y4) Or @s @max— @min), i an indi-
plots. Following this rule, all the positive moments in the in- cator of multifractality because it provides information on
terval Ag+ = [0, 8] were used to construct th§w) —« plots  the diversity of he scaling exponents of the measure. Thus,
of the 50 PR profiles, whereas the interval of negative mo-the wider thef (o) — « spectrum, the higher the heterogene-
ments in these plots varied frotxg = [0, —2.5] t0 Agy = ity in the scaling indices and in the distribution of the PR
[0, —8]. Selected examples of singularity spectra are showrprofiles. The narrowest spectra (Fig. 5b), indicating a lower
in Fig. 5, matching the PR patterns previously depicted inscaling heterogeneity or multifractality of the measure, were
Fig. 3. These spectra were concave down parabolic curvefound for PR profiles typified by three successive “ridges”
with an asymmetrically long right part for all the studied PR more or less regularly spaced from top to bottom depicted in
depth-dependent profiles, but there were various degrees dfig. 3b. The PR profile types depicted in Fig. 3a and ¢ were
asymmetry. The Blder exponents of order zergg, i.e. the  translated into wider distributions of the singularity spectra,
scaling exponent corresponding to the maximyitw), var- shown in Fig. 5a and b, respectively, which are indicative of
ied between 1.020 and 1.112; determination coefficients ira higher inhomogeneity or multifractality. These results are
estimatingeg were R? > 0.998. Parameter8may and amin compatible with a high regularity in the intermittent high and
were calculated with determination coefficied®$ > 0.957 low values of the PR profiles in Fig. 3b, which contrast with
and R? > 0.979, respectively. It is worth remembering that Fig. 3¢ with more changes and unevenness in the successive
in a homogeneous fractal system the singularity spectrunPR maxima and minima values.
would be reduced to a single point; therefore, shape, asym- Shape and asymmetry of thféa) —a curves may also pro-
metry and goodness of fit statistics of thiéx) —« curves  vide much information about the inner structure of the mea-
obtained support the hypothesis of the singular behaviour oure and can also be employed to assess its heterogeneity. For
PR profiles. example, symmetry of the— f («) plots has been frequently

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0.0
log &
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1.2 Therefore, in terms of the studied variable, the right skewed
spectrum is the result of a higher scaling heterogeneity in the
distribution of lower PR data values. Again, the relative de-

——7 . .

o5 gree of asymmetry was lower for PR profiles described by a
29 multimodal pattern of variation in depth. Notice also that the
43 general shape of the singularity spectra in Fig. 5 is compati-

ble with the negative skewness of most of the corresponding

experimental PR profiles.

On the other hand, low («) values correspond to rare
events, whereas the highest valuefdfx) matches the ca-
pacity dimension. In general, the right-hand sige<(0) of
the o — f(a) plots was also longer than the left-hand side
(g > 0), revealing that the geometrical size of points with the
1.2 largest exponentsy, was smaller. Therefore, the narrower

and shorter left-hand side of the singularity spectrum suggest
et dominance of highest PR values and that these were quite

o045 similar to each other, as compared to the lowest PR values

—a—47 that were less frequent and showed more differences between

—x—48 one another along the profile.

0.2 1 Next PR singularity spectra will be typified by parame-

0.0 ‘ ‘ ‘ ‘ ‘ ter (wo — amin) = (@o — ag) as well as the BElder exponent

0.60 0.80 1.00 1.20 1.40 1.60 1.80 of order zero,xg. This is becausermax values of all the

f(a) —a plots were computed for a similar statistical mo-

ment (A¢g+ = 8.0) and had smaller statistical errors, while

) Type B amin values correspond to diverse momemntsB(< Ag_ <

—2.5) and showed larger statistical errors. Large statistical
errors for momentg « 0 are known to be prevailing in mul-
tifractal analysis (e.g. Macek and Wawrzasek, 2009; Paz-

——21 Ferreiro et al., 2010).

—o—26 Generalized dimensiom),, was estimated in the interval

——34 of ¢ momentsAg = [—8, 8] with Eq. (3b), except fog =1,

—x—41 where Eq. (3c) was used. As expected, coefficients of deter-

0.2 mination were highest fay = 0 (R? = 1.00) and decreased
0.0 : : : : : with increased ¢ | for the 50 PR profiles studied. Thus, the
060 080 100 120 140 160 180 values ofR? were higher than 0.998, 0.994, 0.984 and 0.962
o forg =1,q = 2,9 =8 andg = —8, respectively. Examples
of Rényi dimension spectrd),, calculated for 0. steps in
(© Type C the range of moments fromp = —8 to g = 8 together with
) ) ] o their standard error bars are shown in Fig. @nig spec-

Fig. 5. Selected examples of singularity spectra (types as in Fig. 4)yr5 fo[10w a typical monotonically decreasing trend with in-
creasingy values, which can be described by a sigma-shaped
curve. TheD, function crosses through 1.0 at=0 and

quantified using several indices relying on the widths of theapproaches minimum and maximum valuesgas 1 and

respective right (R) and the left (L) branches, such as the rag « —1, respectively. The absolute differencddy(- D,)

tio L/R= (xo—amin)/ (@max—a0) in Macek and Wawrzaszek notably increase as the absolute valug @frows in the two

(2009) or the difference R—& ((amax— @0) — (@0 — amin)) branches of the sigma-shaped curves. On the other hand, the

in San Joé Marfnez et al. (2010). Also, the presence of ex- curvature of theD, functions was always much higher for

tremely high and extremely low data values and dominancenegative than for positive values @fwhich is in accordance

of either low or high data are related to the left>% 1) with the fact that the singularity spectra had a wider right

and right ¢ <« 1) parts of thef («) spectrum, respectively. branch that corresponds to the smallest concentrations of the

Overall, the right branch of the singularity spectrum, R, wasmeasure.

wider than the left branch, L, and accordingly the ratjdrL The difference AD, = (D_g— Dg) between the most

was below the unity (KR < 1). Asymmetry towards the right negative § = —8) and the most positiveg(= 8) moments

indicates dominance of the highest singularity exponentshas been also employed as a measure of heterogeneity

«, which correspond to low concentrations of the measure(e.g. Caniego et al., 2006; Paz-Ferreiro et al., 2010). Various

0.0 T T T T T
060 080 100 120 140 160 1.80

a

(a) Type A

fla)

1.2
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2.2 and the Hurst exponent/, the lower the lblder exponent
of order zeropg, and the degree of multifractality given by
indices, such asafnax— amin) or (D_g — Dg). The entropy

1.8 -
dimension,D4, describes the diversity of the measure (e.g.
- = Caniego et al., 2006; Paz-Ferreiro et al., 2010), so i»w
S L4 ! values reflect the fact that most of the measure concentrates
—a—21
in a small size domain, whereas high valuegxafindicate
1.0 that the measure is more evenly distributed. The Hurst ex-
ponent,H, identifies persistence or long-range autocorrela-
0.6 - tion (e.g. Rerez et al., 2010; San Jm#larfinez et al., 2010),

so low H means a weak persistence and vice versa. Great
ap values and widelp_g — Dg) spectra are characteristic of
q a high heterogeneous measure. Therefore, in terms of soil
PR, the lower the entropy dimensiaB;, the more clustered
(i.e. less evenly distributed), the weaker the persistence, the
smaller the autocorrelation and the large the heterogeneity
and anisotropy of the depth-dependent penetrometer read-
degrees of heterogeneity are shown in the selecteayiR ings.
spectra (Fig. 6), which correspond to CV values of 24.5% Scaling heterogeneity or multifractality in soil properties
(profile# 43), 30.7 % (profile #1) and 60.0 % (profile #21). It result from the interaction of various underlying soil forming
is worth noting, however, that the width of the generalizedfactors and processes. In agricultural soils, the complexity
dimension, P_g— Dg), had a different rank than CV. Thisis due to natural factors may be modified by man-made factors
because multifractal parameters reflect major aspects of thée.g. Biswas et al., 2012). Depth-dependent PR profiles vary
spatial organization hidden in the PR data series, while CV iswith soil properties that may show great spatial heterogene-
a simple measure of data variability, which does not accountty (Vaz et al., 2011), which, in turn, may be either relatively
for the spatial structure of the points measured along a profileonstant over time (i.e. particle size distribution, soil miner-
(Everstz and Mandelbrot, 1992). alogy, organic matter content, etc.) or highly dynamic (i.e.
The capacity dimensio)g, was not significantly differ-  water content, bulk density, porosity, etc.). The joint action
ent from 1 in all of the 50 data series. The entropy or in- of various sources of spatial variability, operating at different
formation dimensionpD;, of PR varied between 0.927 and scales, showed specific effects for PR profiles measured at
0.984.Dg and D1 would take the same value for a monofrac- each point.
tal scaling type. Again the multifractal behaviour of depth-  Thus, the scaling property is driven by the number, type
dependent PR data series is very clearly expressed in thand spatial extent of factors and processes that control the dy-
shape and parameters derived from the generalized dimemamics of each soil PR profile. It is well established that PR
sion, supporting the hypothesis of the singular behaviour ofmostly depend on soil texture, bulk density and water content
depth-dependent PR data series. (e.g. Dexter et al., 2007; Vaz et al., 2011). In turn, soil wa-
The Hurst exponentH, estimated from the correlation ter content near the soil surface is highly variable (Biswas et
dimension,D5, ranged from 0.944 to 0.988. ThuK, was  al., 2012) because of the influence of external factors such as
rather close to 1 and not very different in magnitude from onerainfall and evaporation. Therefore, soil PR may be also in-
PR profile to another. The relatively high figures reflected  directly influenced by environmental factors, and soil surface
the presence of strong persistence, i.e. positive autocorreldayers are more responsive to these factors than deep soil lay-
tion, related to long-range dependencies. The strong correleers. Bulk density at the surface soil layers is also strongly in-
tion dependencies with depth for PR profiles are consistenfluenced by tillage operations. Therefore, due to the dynam-
with results reported by San #Martinez et al. (2010) for ics of soil water content and soil structure, strength properties
macroporosity data series. In spite of all the Hurst exponennear the soil surface are highly variable in nature, which will
values obtained being rather close to 1, this parameter wabe also reflected in the scaling property of depth-dependent
sensitive to differentiation of main PR patterns of vertical PR profiles. To summarize, scale heterogeneity in the vertical
variation; for example, profiles of type A (Fig. 3a) exhibited distribution of soil PR could be driven by various local and
meanH values significantly lower® < 0.05) than those of non local agents or sources of variation, including soil tex-
profiles of type B with a multimodal depth-dependent distri- ture, organic matter content, bulk density, water content and
bution (Fig. 3b), indicative of a relatively smaller autocorre- water dynamics, rainfall, evaporation and tillage operations.
lation of the former. The multifractality observed in the PR profiles can be
Indeed, several of the selected multifractal parametersviewed as the result of differences in autocorrelation for
showed strong positive or negative correlations betweerthe smallest and large fluctuations of the experimental data
them. For example, the higher the entropy dimensiog, series. At our experimental scale, PR peaks are most likely

Fig. 6. Selected examples of generalized dimension spectra.
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Fig. 7. Maps at the field scale of maximum and mean PR, paramager {g), and Hurst exponen/ .

associated to the physical obstruction found by the steel consion, D;, was also correlated to these descriptive statisti-
to enter or to push aside small soil structural units, whereagal indices, but coefficients of correlation were somewhat
drops in PR should correspond to voids or layers with looselower. ParameteDg, cropped from the right branch ab,
density. The higher the packing density of a soil layer, thespectra, showed the highest negative relationship with CV
greater the resistance encountered by the penetrometer tify, = —0.891) and it is worth nothing thabg was even bet-
which results in increasing maximum and mean PR. More-ter correlated to skewnessg £ —0.851) and kurtosisH(=
over, soil texture and soil water content along a vertical PR0.612) than the Hurst exponent,. However,D—g, derived
profile may be far from homogeneous. The above-mentionedrom the left branch ofD, spectra showed either no cor-
factors operate and interact at closely related scales to giveelation or low positive correlations with statistical indices
rise to the observed PR features. The different PR types analr = 0.321 to standard deviation amd= 0.319 to CV). Pa-
ysed showed in general a strong multifractality, althoughrameter &o—asg), in contrast, was positively correlated to CV
there were differences in the degree of multifractality and(r = 0.947), standard deviationr & 0.782), skewness (=
also in the degree of symmetry. Since multifractal structure).761) and maximum PR-(= 0.680), exhibiting a negative
are the outcome of chaotic phenomena, our results may beorrelation to kurtosisr(= —0.620). The above-mentioned
interpreted as a positive test on the suitability of nonlinearstatistical indices were also significantly correlated to the

dynamics to analyse PR profiles. Holder exponent of order zerap, but the sign of the cor-
relation was opposite to that &f andD;.
3.3 Linear and spatial relationship between In summary, parameters gathered from the central part of

the generalized dimension (i.&1, H) or the singularity
spectrum (i.e. the Blder exponent of order zerayp), and
those obtained for positive moments of these curyes, 1,

ﬂ.e. Ds, ag and o — ag)) showed strong correlations to sta-
tistical indices. In contrast, parameters obtained for negative

multifractal and statistical parameters

Table 3 shows Pearson product moment correlation betwee
selected parameters derived from multifractal analysis, i.e
D_g, D, (D_g, Dg), D1, H, (cto —g) andag, and vari- momentsg < 1, i.e., D_g, o_g, showed no or less signifi-
ous commonly L_Jsed PR statistical indices (ma>_<|mum, mean,.. -+ correlation to statistical indices.

standard deviation, CV, skewness anq kurtosis). The quSt The strong correlation between statistical indices and mul-
exponent,H, and CV showed a negative dependence W'thtifractal parameters foy > 1, such asDg o (ag — ag),

the h'.ghESt correlation c;oefﬂmem(: —0.978). H was also . can be attributed to the fact that these parameters repre
;lgn|f|cantly and negat.|vely correlated to standard deV'a'sent high or extremely high values of PR that are amplified
tion (- =—0.858), maximum PR#(=—0.733), skewness by positiveq values. Again, this is also consistent with the

(r = —0.729) and mean PR & 0.316), but showed a posi- tivelv sk f istributi f t of th
tive correlation to kurtosisr(= 0.557). The entropy dimen- negatively skewed frequency distributions for most of the
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Table 3. Correlation between selected statistical and multifractal parameters.

D_g Dg D1 H og —og %)
Maximum ns -0.720 -0.684 -0.733% 0.680° 0.516
Mean ns ns -0.310 -0.316 ns 0.290*
Std 0.321* -0.75F% -0.779 -0.858 0.78% 0.699
CcVv 0.319* -0.89F% -0.968 -0.978& 0.947 0.81F
Skewness ns -0.851 -0.620°0 -0.729 0.76 0.369*
Kurtosis ns 0.612  0.55% 0.596 -0.620° -0.423*

* denotesP > 0.01, ** denotesP > 0.05, and ns stands for not significant.

std is standard deviation; CV, coefficient of variatidh; g, Dg and D1, generalized dimension for
moments; = —8, 8 and 1, respectively, Hurst exponent; andg andag, singularity strength fog = 8
and 0, respectively.

depth-dependent PR profiles, with the bulk of its values onthe left part of the graph shows that thg value (associated
the right of the mean, and a few small values originating fromto the impact of low penetration resistance data) was much
the relatively long left tail. Moreover, PR profiles with posi- more important for profile #43 than for profile #1.

tive skewness exhibited the lowest valuesmaf- ag), which Summarizing, multifractal analysis provides a powerful
also is in agreement with the longer right tail of its corre- method to amplify differences between depth-dependent PR
sponding frequency distribution. profiles as well as to distinguish themselves in more de-

Maximum PR values were also negatively correlated to pa+ail. Clearly, this study shows that multifractal methods go
rameters of the central part of tfi®, spectra such aB; and beyond statistical methods, allowing a more consistent and
H, suggesting that layers with the highest strength are asbetter suited description of the inner structure of PR depth-
sociated to decreasing evenness and persistence of the datependent profiles that complete the information provided by
sets. A few layers with high PR values increase mean PR andescriptive statistics.
its corresponding CV, and therefore the negative correlation Figure 7 shows the spatial distribution maps for mean and
between these statistical parameter®toand H is also an  maximum PR at the 0-60 cm depth, as well as the Hurst ex-
expected result. ponent,H, and parameterg — ag), constructed by the in-

Until now, multifractal analysis had not been used to de-verse distance method. In spite of the relatively high water
scribe the depth-dependent patterns of penetrometer meaontent at the date of measurement several small patches of
sures. Multifractal theory takes advantage of the indepenthe experimental field exhibited mean PR resistance higher
dence of multifractal parameters over a range of scales anthan the 2.0 MPa threshold. Accordingly, maximum PR maps
the assumption of a non-specific distribution of the measureshowed that in most of the field surface, PR values higher
Assuming a non-specific distribution of PR allows for char- than 2.0 MPa occurred at least in one layer within the 0—
acterization of features such as heterogeneity of high and lov60 cm depth.
values of soil resistance and the presence of rare events over At the field scale, in general, areas with high mean or
the measured depth. maximum PR values correspond to areas with lgwal-

Subsequently, multifractal analysis provides insight relat-ues. Therefore, areas with highest levels or with highest risk
ing to the higher positive and negative statistical momentsof soil compaction are expected to exhibit PR profiles rela-
g, and how the higher moments change with scale. Hencetjvely less persistent, thus with a lower autocorrelation and
not only parameters associated to high PR values Qige. less evenly distributed than areas with lowest risk of soil
and o —«g)), but also those related low PR values (e.g compaction. Likewise, areas with high mean or maximum
or (e_g — ap)) are required to fully characterize the depth- PR values, associated to compaction problems, correspond to
dependent behaviour of data sets taken by penetrometer. lareas with the highest§ — ag) values resulting from more
other words, description of soil PR relies not only on the heterogeneity in the distribution of the higher PR data values.
distribution of the highest resistance values but also on the The above results also suggest that adequate assessment of
distribution of the lowest ones (e.g. Vaz et al., 2011). PR variability would need a greater sampling intensity in ar-

It follows that multifractal parameters, based on the globaleas exhibiting a relatively weak depth-dependent persistence
statistical properties of the depth-dependent data series, r@r autocorrelation and vice versa. In other words, this means
flect many of the major aspects of the vertical arrangemenhigher sampling intensity is required in areas with the highest
of PR readings, while statistical parameters are basic meascaling heterogeneity.
sures that do not account for a thorough description of such The location of areas with PR levels that can be lim-
aspects. As an example, in Fig. 6, thg value of profile #43  iting for root development and plant growth is practical
is smaller than that of profile #1. However, examination of information of interest for safe soil and crop management,
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