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Abstract. This paper presents a new procedure to map
time series of air temperature (Ta) at fine spatial resolu-
tion using time series analysis of satellite-derived land sur-
face temperature (LST) observations. The method assumes
that air temperature is known at a single (reference) loca-
tion such as in gridded climate data with grid size of the
order of 35 km× 35 km. The LST spatial and temporal pat-
tern within a grid cell has been modelled by the pixel-wise
ratios r(x,y, t) of the LST at any location to the LST at a
reference location. A preliminary analysis of these patterns
over a decade has demonstrated that their intra-annual vari-
ability is not negligible, with significant seasonality, even if
it is stable throughout the years. The intra-annual variability
has been modeled using Fourier series. We have evaluated
the intra-annual variability by theoretically calculating the
yearly evolution of LST (t) for a range of cases as a function
of terrain, land cover and hydrological conditions. These cal-
culations are used to interpret the observed LST(x,y, t) and
r(x,y, t). The inter-annual variability has been evaluated by
modeling each year of observations using Fourier series and
evaluating the interannual variability of Fourier coefficients.
Because of the negligible interannual variability ofr(x,y, t),
LST (x,y, t) can be reconstructed in periods of time differ-
ent from the ones when LST observations are available. Time
series ofTa are generated using the ratior(x,y, t) and a lin-
ear regression between LST andTa. Such linear regression is
applied in two ways: (a) to estimate LST at any time from ob-
servations or forecasts ofTa at the reference location; (b) to
estimateTa from LST at any location. The results presented
in this paper are based on the analysis of daily MODIS LST
observations over the period 2001–2010. TheTa at the refer-
ence location was gridded data at a node of a 35 km× 35 km
grid. Only one node was close to our study area and was used

for the work presented here. The regression ofTa on LST
was determined using concurrent observations ofTa at the
four available weather stations in the Valle Telesina (Italy),
our study area.

The accuracy of our estimates is consistent with literature
and with the combined accuracy of LST andTa. We obtained
comparable error statistics when applying our method to LST
data during periods different but adjacent to the periods used
to model ofr(x,y, t). The method has also been evaluated
againstTa observations for earlier periods of time (1984–
1988), although available data are rather sparse in space and
time. Slightly larger deviation were obtained. In all cases five
days of averages from estimated and observedTa were com-
pared, giving a better accuracy.

1 Introduction

Air temperature (Ta) is an important variable in control-
ling land–atmosphere interaction and is a key input element
for hydrology and land surface models. Modelling of crop
growth and evapotranspiration requires climate data input.
When dealing with studies of complex landscapes the knowl-
edge of spatial fields ofTa is crucial. To give an example,
differences of the order of 1 to 2 K in meanTa may be deter-
minant for the optimal growth of a certain crop (Vogt et al.,
1997). In the case of complex terrains, local spatial variabil-
ity of climate is not negligible and depends on several fac-
tors, among them topography, soil humidity and land use. As
a consequence of spatial variability, local climatic conditions
may or may not be suitable for the optimal growth of a spe-
cific crop. This leads to the need for detailed spatial patterns
of Ta. Insufficient attention, however, has been paid so far to
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the characterization ofTa fields within complex landscapes
(Dobrowski et al., 2009).
Ta is observed at meteorological ground stations which

provide data at specific locations. The sparse distribution of
stations as well as the frequently insufficient temporal cover-
age severely constrain the study of climate-related processes
in complex landscapes. Sparseness of stations and the fre-
quent gaps in observations severely hamper the reconstruc-
tion of Ta spatial patterns by means of conventional interpo-
lation techniques, e.g. inverse distance weighting or Kriging.

In contrast, large datasets on land surface temperature
(LST) are actually available thanks to numerous Earth obser-
vation missions, e.g. the Moderate Resolution Imaging Spec-
troradiometer (MODIS), the Advanced Very High Resolu-
tion Radiometer (AVHRR), and the Advanced Along Track
Scanning Radiometer (AATSR). These data are available at
high temporal and spatial resolution over extended regions.

The impact of gaps in time series of LST satellite data can
be mitigated by specific algorithms which identify and re-
move cloud-contaminated observations and fill the resulting
gaps (Menenti et al., 1993; Gao et al., 2008).

Many authors estimatedTa using LST observations.
In some studies the temperature-vegetation index method
(TVX) has been used, based on the correlation between the
vegetation index NDVI and LST (Prihodko and Goward,
1997; Nemani and Running, 1997; Stitsen et al., 2007; Nieto
et al., 2011; Gallo et al., 2011). The TVX method is based on
the assumption that LST is equal toTa (with uniform atmo-
spheric forcing and soil moisture conditions) when NDVI is
higher than 0.65 (i.e. at full vegetation cover). Prihodko et al.
(1997) estimated daily maximumTa in Kansas with an abso-
lute mean error (AME) of 3◦C. Similar results were found
in Oregon by Goward et al. (1994) (root mean square er-
ror RMSE= 5.4◦C), in Canada by Czajkowski et al. (1997)
(RMSE= 4.2◦C), in Oklahoma by Czajkowski et al. (2000)
(RMSE= 2.08◦C) and in Mediterranean climate by Nieto et
al. (2011) (AME of 2.8◦C and RMSE of 3.7◦C).

The limited applicability of this method to estimate maxi-
mum Ta was demonstrated by Vacutsem et al. (2010), who
found a scarce correlation between (maxTa – LST) and
NDVI. These authors estimated minimumTa with RMSE
varying between 2.86 and 3.02◦C and observed that theTa
estimated by the TVX method could be inaccurate or biased,
depending on the study area.

Hengl et al. (2012) used MODIS LST images as an auxil-
iary predictor ofTa. Temperature was modeled as a function
of the MODIS LST as well as of latitude, longitude, distance
from the sea, elevation, time and insolation. They obtained
an average error of±2.4◦C onTa.

The strong correlation betweenTa and LST has been
demonstrated in previous works (i.e. Kawashima et al., 2000;
Jones et al., 2004; Park et al., 2005; Mostovoy et al., 2006).
These authors used a linear regression betweenTa and LST
to increase spatial resolution ofTa fields. Kawashima et
al. (2000) and Jones et al. (2004) observed a good correlation

between LST observed by satellite and minimumTa mea-
sured at different meteorological stations on specific winter
days.

Mostovoy et al. (2006) estimated daily maximum and min-
imumTa with linear regression on LST over the state of Mis-
sissippi for the period 2000–2004. They documented that the
linear regression between LST andTa resulted in very high
correlation coefficientsR. Furthermore the authors demon-
strated thatR increases with decreasing pixel size of the LST
image data and thatR depends on the season and land cover.

It is hard to assess the scale dependence of theTa vs. LST
regression, since adequate time series of LST are only avail-
able at a spatial resolution of 1 km× 1 km or lower (imag-
ing radiometers on-board geo-stationary satellites). At higher
spatial resolution, the temporal sampling is not sufficient to
determine the relationship betweenTa and LST. For larger
areas, spatially variable regression coefficients must be used
as documented by the literature reviewed (e.g. Mostovoy et
al., 2006; Shen and Leptoukh, 2011).

Shen and Leptoukh (2011) found that the AME of the es-
timated maximumTa varies from 2.4◦C over closed scrub-
lands to 3.2◦C over grasslands. AME of the estimated min-
imum Ta was about 3.0◦C. MaximumTa was estimated by
Younghui and Baiping (2012) in the Tibetan Plateau using
linear regression ofTa on LST with a standard error be-
tween 2.25 and 3.23◦C. Yan et al. (2009) performed vali-
dation of estimatedTa with measuredTa a using 335 syn-
optic weather stations in China for 2006 to show that the
algorithm performs well with overall statistics ofR = 0.96
and RMSE= 3.23◦C. Xu et al. (2012) achieved an AME of
1.98◦C and anR2

= 0.9215.
The studies reviewed above are relatively few and they

cover only limited periods of time ranging from several days
to a season. No previous work is known to the authors on the
determination of the relationship between LST andTa over
several years at daily temporal resolution, except a few cases
e.g. Mostovoy et al. (2006). The review above demonstrates
the increasing interest of the research community during the
last decade in the use of satellite observed LST to estimate
Ta.

The relation betweenTa and LST is especially strong dur-
ing early afternoon hours when the radiative heating of the
surface increases sensible heat flux under limited water avail-
ability (Oke, 1987). The latter led us to assume that obser-
vations of the spatial variability of maximum LST (in our
case at the time of the daily overpass of TERRA/MODIS)
could be used to characterize the spatial fields of maximum
Ta over time. Increasing the temporal coverage of the ana-
lyzed LST images to several years could also help to identify
any non-linearity in the relation between the spatial variation
of radiative forcing and of LST. The latter is influenced by
several land properties. Slope and elevation determine actual
irradiance at a given location (Allen et al., 2006). In topo-
graphically complex areas, altitude as well as the structure of
the boundary layer above the surface influence temperature,
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humidity and wind fields (Bertoldi et al., 2010). The parti-
tioning of sensible and latent heat fluxes is influenced by the
soil water content so that it has implicit control on LST (Gu
et al., 2006; Mahmood et al., 2006). Further, vegetation in-
directly influences LST changes by modulating the land sur-
face response to weather and climate through turbulent trans-
fer, transpiration and divergence of radiation.

The aim of this work was to develop a new procedure to
retrieve spatial patterns ofTa over a certain area and period
of time, starting from a very limited areal density ofTa data
and from LST time series observed by satellite. Specifically,
we want to estimateTa at the spatial resolution of LST im-
age data givenTa at a single reference location, e.g. at any
node where gridded climate (either past or future) data are
available (as explained in detail in Sect. 3).

To achieve this objective we need to characterize the
spatio-temporal pattern of LST and to demonstrate the inter-
annual stability of such pattern. This makes it possible to re-
construct the spatial patterns ofTa in different climate pe-
riods, particularly when no detailed spatial information is
available (e.g. no satellite data available).

In synthesis we address the following questions: are spa-
tial and temporal patterns of LST stable? Can we use time
series of LST spatial data to capture and characterize such
patterns? Can we characterize the coupling of near-surface
Ta with LST using a limited areal density of meteorological
stations?

The final result of this procedure should also be applica-
ble, over a certain area, in time periods different from that
analyzed, once the temporal stability of the LST spatial pat-
tern has been demonstrated. This is the important innovation
of our method compared with the ones generally used to re-
trieveTa spatial patterns.

The Stable INvariant air and land surface TEmperature
areal patterns by Fourier analySIs (SINTESI) approach will
be described in detail in Sect. 2. Section 3 contains a brief
description of the study area and of the data used in test-
ing our method. Results from the spatio-temporal analysis
of MODIS LST observations over the period 2001–2010 are
presented in Sect. 4.1 while Sect. 4.2 describes the linear re-
gression analysis performed to establish theTa vs. LST re-
lationship at the available ground stations. Comparison of
Ta estimates with observations is discussed in Sect. 4.3. In
Sect. 5.1 we compare the observed spatio-temporal patterns
of LST with a theoretical calculation, taking into account the
impact of terrain and land cover on solar irradiance and land
surface energy budget. In Sect. 5.2 we evaluate our method
against observations ofTa collected in the period of time pre-
ceding the launch of TERRA/MODIS.

2 Methods

2.1 The SINTESI approach

Our SINTESI approach is a procedure developed to mapTa at
fine spatial resolution combining the LST observed by satel-
lite andTa data at a reference location. SINTESI is structured
in several steps including preprocessing of the LST time se-
ries image data to identify missing data and outliers and to
fill the resulting gaps. The procedure includes the following
steps:

– normalization of spatial variability to a reference loca-
tion, and construction of the time series of the ratio of
LST (x,y, t) to the LST at the reference location LST
(x0,y0, t), with x and y the coordinates, respectively,
along the east and north andt the time;

– modeling by Fourier series the ratio
[LST(x,y, t)/LST(x0,y0, t)] pixel-wise using multi-
annual observations by satellite thermal infrared
measurements;

– evaluating the temporal stability of the Fourier coeffi-
cients;

– using mean values of the Fourier coefficients to obtain
an estimated LST(x,y, t) at a given location as a func-
tion of LST (x0,y0, t);

– determining the relationships between near-surfaceTa
and LST;

– combine the model of the time series of normalized LST
with the regressionTa vs. LST to obtainTa (x,y, t) as a
function of LST (x0,y0, t).

Figure 1 shows the work flow of the SINTESI procedure and
the methodologies used to implement each steps. In the fol-
lowing paragraphs, a detailed description of each step is pre-
sented.

2.2 Preprocessing of LST time series

Satellite time series of optical data are often affected by cloud
cover, haze or large viewing angles. The screening and re-
moval of the contaminated observations as well as the tempo-
ral interpolation of the remaining observations to reconstruct
gapless images has been performed by Harmonic ANalysis
of Time Series (HANTS) algorithm (Menenti et al., 1993;
Verhoef et al., 1996). The software was developed by The
National Aerospace Laboratory of the Netherlands (NLR) in-
stitute and is freely available at the following internet site:
http://gdsc.nlr.nl/gdsc/en/tools/hants.

Despite the fact that HANTS was designed specifically for
the processing of NDVI images, it has been applied success-
fully to the LST time series (Julien et al., 2006).

www.nonlin-processes-geophys.net/20/513/2013/ Nonlin. Processes Geophys., 20, 513–527, 2013
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Fig. 1.Schematization of the SINTESI procedure.

The algorithm combines harmonic analysis with curve fit-
ting in iterative steps. At each pixel, the signal is modelled
using a Fourier series:

y (t)= a0 +

[
nf∑
1

ai cos(2πfi ty)+ bi sin(2πfi ty)

]
(1)

wherenf is the number of frequencies,a0 is the average of the
series andty the time of observation. The coefficientsa and
b are the coefficients of trigonometric components functions
at the frequencyi.

At each step the harmonic components are calculated on
the data points after leaving out the outliers (i.e. cloud-
contaminated observations). Outliers are identified at each
step as observations deviating by more than a pre-defined
threshold value (FET: the fit error tolerance) from the curve
fitted at the previous step, and are weighted as zero in the sub-
sequent curve-fitting iteration. The iterations continue until
all the data in a time series are within the prescribed FET or
when the number of data points is less than the minimum
number of valid observations (DOD: degree of overdeter-
minedness). DOD and FET have to be specified by the user
every time the HANTS algorithm is used. DOD must always
be greater than or equal to the number of parameters that
describe the curve but the user can decide to use more data
points than the necessary minimum to improve the accuracy
of thea andb coefficients.

The curve-fitting process is controlled, in addition to DOD
and FET, by other three parameters as well (Roerink and

Menenti, 2000): the base period (BP), the number of fre-
quencies (NOF) and Hi/Lo suppression lag (SF). BP indi-
cates the number of time samples corresponding to the base
frequency of the harmonic analysis. Also the time sampling
of each observation is specified by the user in arbitrary units
(in an input file listing the images to process). For example,
the time unit is the hour the base period has been set to one
day, i.e. BP= 24 units (hours in this example). The NOF is
the number of frequencies to be used in the curve fitting and
determines the degree of detail by which a curve/signal is
described. Setting a low NOF produces a smooth curve with
little details. A larger NOF leads to a less smooth curve with
much more detail. SF indicates the direction of outliers with
respect to the current curve. For example, clouds as well as
mist or large view angle always have a negative effect (lower
values) on LST so that the SF should always be set to “low”.
The same is for other variables, i.e. NDVI, while in other
cases the direction could be positive due to higher values of
the affected variable (e.g. cloud albedo) or more in general to
errors caused by incorrect retrieval.

2.3 Modelling the spatial patterns of LST

The spatial pattern of LST is modeled by normalizing the
pixel-wise LST time series at any location to the LST mea-
sured at the reference location (x0,y0). The result is the

Nonlin. Processes Geophys., 20, 513–527, 2013 www.nonlin-processes-geophys.net/20/513/2013/
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pixel-wise ratior:

r(x,y, t)=
LST(x,y, t)

LST(x0,y0, t).
(2)

The choice of the reference location is arbitrary provided
r(x,y, t) is stationary and can be modeled by maps of the
Fourier coefficients. The choice of the reference location
changes the value of the ratior(x,y, t) but does not change
the value of LST (x,y, t).

The temporal stability of the pixel-wise ratio is evaluated
using harmonic analysis. We used Fourier analysis to decom-
pose the ratior(x,y, t) in three periodic signals with periods
respectively 365, 180 and 120 days. Ther time series are
processed by a Fourier analysis on a yearly basis. For each
frequency the amplitude and phase of the sine and cosine
functions are determined. The inter-annual stability of the
spatial pattern is evaluated on the basis of the inter-annual
variability of the Fourier coefficients (amplitudes).

2.4 Correlation analysis ofTa and LST

We have established the relationship between theTa mea-
sured at the available stations within our study area and LST
by linear regression analysis:

Ta = LST ·mi + ni, (3)

where subscripti refers to a ground (meteorological) station.
In this study we have used a single regression equation with
coefficientsm andn for the entire area, estimated by aver-
agingmi andni . When aiming at the estimation ofTa over
a period of time when no satellite observation of LST are
available, the inverse regression is required at the reference
location:

LST(x0,y0, t)=
1

m0
· Ta(x0,y0, t)− n0, (4)

where subscript0 indicates the reference location. The result
of this analysis are the parametersm, n, 1/m0 and−n0.

2.5 Ta calculation

Daily maximumTa at each pixel location is estimated by

Ta(x,y, t)= (5)

[(Ta(x0,y0, t) · 1/m0 − n0) · r(x,y, t)] ·m+ n,

with Ta (x0,y0, t) the air temperature at the reference loca-
tion.

The ratior is calculated as

r(x,y, t)= a0 +

i=3∑
i=1

ai cos(2πfi ty)+ bi sin(2πfi ty), (6)

where

ai = Ai · cos(ψi ·
π

180
);bi = Ai · sin

(
ψ i ·

π

180

)
(7)

Fig. 2.Valle Telesina: location map showing the position of the node
1221 and of the ground meteorological stations.

with Ai and ψi being, respectively, the amplitude and
phase of thei-th harmonic component averaged over the
years, spanning the analyzed LST time series once the inter-
annual stability of the ratior has been verified.

3 Materials

We implemented and evaluated the SINTESI algorithm on
data collected in the Valle Telesina area (Southern Italy) to
obtain temporal maps of daily maximumTa at 1 km× 1 km
resolution. We used three datasets:

– we have constructed the modelr(x,y, t) using
TERRA/MODIS LST data, spanning the period be-
tween 1 January 2001 to 31 December 2010;

– we used asTa at the reference location (x0,y0) the Ta
available at node 1221 of a gridded dataset available on
the entire Italian territory at 35 km× 35 km resolution.
This dataset is available from 1950 onward (Esposito,
2010). Further, scenarios on future climate have been
generated for the same grid (Tomozeiu et al., 2007), pro-
duced within the Italian project “Agroscenari” (Fig. 2);

– to establish the relationship betweenTa and LST we
have used the observations ofTa at four ground stations
within the 35 km× 35 km grid spanning the period be-
tween 2001 and 2010 (Fig. 2).

3.1 Study area

The Valle Telesina area is a 20 000 ha complex landscape
located in the west-central area of the Benevento province
(Campania region, Southern Italy). The dominant morpho-
logical structure is agraben,where the Calore river flows. It
is bounded on the north by the calcareous horst of Matese-
Monte Maggiore and on the south by the mountain group

www.nonlin-processes-geophys.net/20/513/2013/ Nonlin. Processes Geophys., 20, 513–527, 2013
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Table 1. Meteorological ground stations in the study area and be-
longing to the Rete Agrometeorologica Regionale (Campania Re-
gion).

Station Latitude Longitude Altitude
N (◦) E (◦) (◦)

Telese 41.20 14.53 66 m
Castelvenere 41.23 14.54 125 m
Guardia Sanframondi 41.25 14.60 335 m
Solopaca 41.19 14.55 220 m

of Taburno Camposauro. The latter extend from north-east
(Croce, Ciesco and Montesella mountains) to north-west
(Monaco di Gioia mountain). Because of the complex mor-
phological setting, the elevation over the area spans a wide
range. The leading high ground is the Camposauro mountain
(1349 m a.s.l.). The minimum altitude is found at the con-
fluence of the Calore with Volturno river (34 m a.s.l.). Mean
annual rainfall over the area is about 1000 mm and spatial
variability over the area is significant. About 70 % of the to-
tal precipitation is concentrated between autumn and winter
while the summer is almost dry. Annual mean temperature is
about 15.9◦C.

3.2 Data

3.2.1 MODIS data

Daily LST time series acquired between 1 January 2001
and 31 December 2010 by MODIS on the Terra satellite
(MOD11A1 product) were used in our analysis, after down-
loading from the NASA ftp server (ftp://e4ft101.cr.usgs.
gov). We processed the latest product level MOD11A1-V05,
whose accuracy and stability of data are significantly im-
proved compared to the previous versions (Wan et al., 2008).
The most important refinement with respect to the version 04
consists in keeping to a minimum any cloud-contaminated
LST observations while maintaining a good level of accu-
racy.

The V5 MOD11A1 products are projected in a Sinusoidal
grid by mapping the level-2 LST product (MOD11L2) on
a 0.928 km× 0.928 km grid. This product contains LST as
well as band 31 and 32 emissivity (ε), clear sky coverage,
quality control assessment, view zenith angle and time of ob-
servation.

The LST retrieval is based on the split-window method
(Wan and Dozier, 1996). In this approach, the surfaceε in
band 31 and 32 are supposed to be known on the basis of the
land cover type (MOD12C1). The accuracy of LST retrieval
depends on theε values set in the two split-window channels.
In the case of high heterogeneity over the pixel, errors might
occur in specifyingε from land cover type, especially in arid
and semi-arid areas, where overestimates ofε are often ob-
served (Wan et al., 2004). Also, the variation ofε with the

Table 2.HANTS parameter settings used in this study.

Parameter Value

Valid range (VR) 250–350 K
Outliers direction (OD) “Low”
Fit error tolerance (FET) 5 K
Degree of overdeterminedness (DOD) 50
Number of frequencies (NOF) 3
Base period (BP) 365

instrument view angle might cause additional uncertainties.
The LST accuracy is better than 1 K over heterogeneous sur-
faces, as demonstrated in field experiments over water, crop
and grassland. On the other hand, the uncertainty in land sur-
face temperature can be very large if the measurements are
affected by clouds or heavy aerosol.

In this work we aim to determine the maximum daily value
of land surface temperature and therefore used LST observa-
tions at the daily overpass of the Terra satellite.

Time of LST data sampling is about 11:30 Local Solar
Time, which is close to the time of maximumTa. Moreover,
Mostovoy et al. (2006) showed that the effect of the differ-
ence between the satellite overpass time and the time when
maximumTa is observed at ground station does not alter the
correlation coefficients of the linear regression ofTa vs. LST.
This result suggests that the difference in MODIS overpass
time with respect to the time of maximumTa observations
does not produce significant errors in estimating maximum
air temperature.

3.2.2 Meteorological data

We have used two sets of meteorological data:

a. Meteorological measurements at the ground stations
(Fig. 2) have been provided by the Regional Agro-
meteorological network of the Campania region. Ta-
ble 1 lists the stations and data available in the period
2001–2010 over Valle Telesina.

b. Ta gridded data at the reference location (Fig. 2) has
been produced within the project Agroscenari, apply-
ing kriging with an external drift method (Wackernagel,
1998; Hengl et al., 2003) to the meteorological data
included in the National Agro-metereological database
(Ministry of Agriculture, Food and Forestry Policies,
1990). Daily meteorological data have been gridded at
35 km× 35 km resolution for the period from 1950 on-
wards (Esposito, 2010). This gridded dataset is the ref-
erence data on Italian climate and climate scenarios are
constructed using the same grid. Our method down-
scales these gridded data onTa to a finer 1 km× 1 km
grid.

Nonlin. Processes Geophys., 20, 513–527, 2013 www.nonlin-processes-geophys.net/20/513/2013/
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Fig. 3. Daily trend of areal average (green line) and areal standard
deviation (blue line) ofr ratio from 2001 to 2010.

4 Results

4.1 Spatio-temporal variation of LST

LST image data were processed using the HANTS algorithm
to remove invalid observations and to fill the resulting gaps in
the time series (Menenti et al., 1993, 2010). HANTS identi-
fies and removes cloud-affected observations in all the pixels
of all images in the time series and fills the resulting gaps
using Fourier series to model the time series. The applica-
tion of HANTS required a preliminary analysis of the data to
identify the best set of input parameters. In Table 2 the input
parameters values that we set in our analysis are listed.

The target error (FET) and the number of frequencies are
the main parameters playing a role in the successful appli-
cation of the HANTS algorithm. We evaluated the recon-
struction with FET= 3, 5 and 8 K and concluded that cloud-
affected observations were assessed as valid when using
FET= 3 and FET= 8. We therefore decided to use FET= 5.
This FET value was also suggested by Julien et al. (2006) for
cloud removal in the LST time series.

We evaluated different options to choose the NOF param-
eter, concluding that a more realistic reconstruction of LST
time series is obtained using three frequencies. An increasing
number of frequencies yields artefacts in the reconstructed
time series, e.g. a sharp increase or decrease of LST over
a short period of time. These are especially evident when
gaps are present in combination with inaccurate measure-
ments (Alfieri et al., 2012). Therefore, a value of 3 was set
for NOF, i.e. we used three frequencies with periods 365, 180
and 120 days.

The spatial pattern of LST on any given day was charac-
terized by the ratior of the LST image to the LST at the
position of the node 1221, using reconstructed surface tem-
perature values. The ratior showed a periodical trend, re-
flecting the seasonality of the factors involved in the surface

energy balance (see green line in Fig. 3). The lowerr values
during the winter season are the combination of two effects.
The higher precipitation in winter affects soil humidity over
the area, thus changing the energy partitioning between latent
and heat fluxes. In addition, the seasonality of solar radiation
(lower values in winter) also causes LST ratios to be lower
in winter than in summer. The amount of solar radiation re-
ceived by a certain surface is in fact controlled by the relative
position of the sun as well as by the local orientation of the
land surface.

The lower radiative forcing in winter is also evident in
the smaller spatial variability ofr than during the summer
(Fig. 4). LST spatial variability on local scale depends on fac-
tors primarily linked to local morphology like slope, aspect
and elevation. They have a direct influence on the amount of
radiation received by the surface. In addition, soil use and
soil water content also have a significant role in energy par-
titioning, and therefore on LST. The spatial pattern ofr is
related to the combination of all these factors. The matter
will be discussed more in detail in Sect. 5.1.

A first evaluation of the area-averaged ratior shown in
Fig. 3 points out that, although the intra-annual variability is
significant, it seems to be stable through the decade 2001–
2010. The exception is the year 2003 where a sharp decrease
of meanr is observed around the end of summer. Areal stan-
dard deviation of the ratior shows the same trend, suggesting
that the spatial pattern of the ratio is also quite stable in time
(blue line in Fig. 3) with the exception of 2003. Standard de-
viation values vary between 0.005 and 0.016, depending on
the season with exception of the maximum value during the
summer of 2003 (0.024).

Intra-annual variability cannot be neglected although its
inter-annual trend seems to be stable. The observed yearly
mean seasonal patterns provide further support to this state-
ment. Here we only show the summer and winter patterns of
a representative year (2007) compared with the anomalous
year 2003 (Fig. 4). Summer and winter spatial fields of the
ratio r calculated over the remaining years presents similar
patterns.

We applied harmonic analysis to each year separately in
order to obtain a quantitative estimation of the inter-annual
variability of the yearly, half-yearly and seasonal periodic
components of ther signal. The inter-annual variability of
the pixel-wise ratior has been evaluated by statistics of the
yearly mean valueA0 and of the amplitudesA1, A2, A3 of
components with periods of 365, 180 and 120 days obtained
by Fourier analysis (Table 3). We then evaluated the contribu-
tionsδri to the total error onr (x,y, t) due to assuming con-
stant values ofA0, A1, A2 andA3. We tookδr0 = σA0/A0
andδri = σAi/(Ā0 + Āi)(A0 is the yearly average ofr and
Ai is the amplitude of thei-th component of the Fourier se-
ries with i 6= 0). This gives an estimation of the contribution
to the total relative error we introduced when assuming inter-
annual stability of the ratior, i.e. assuming constant values
of A0, A1, A2 andA3.
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Fig. 4.Spatial pattern of the winter and summer average of the daily ratior in 2003 and 2007.

Fig. 5.EstimatedTa on 1 January 2006 (left) and on 1 July 2006 (right).

Table 3 shows area average values ofA0, A1, A2, A3 for
each year from 2001 to 2010. Anomalous behavior of 2003
year is also evident in the values of the amplitudes we ob-
tained. The total relative error has been calculated asδr =
i=3∑
i=0
δri using the statistics over the period 2001–2010 and

then over the same period but leaving out 2003. In the for-
mer case we obtainedδr = 1.1 % and in the latterδr = 0.3 %.
On the basis of these findings we considered negligible the

inter-annual variability of the annual evolution of the ratio
r. Then we can construct a yearly time series of the ratior,
describing the spatial and intra-annual variability in any pe-
riod of time, using the mean values ofr and of the harmonic
components over the period from 2001 to 2010.
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Table 3.Yearly area-averaged mean ratio r and amplitudes derived by Fourier analysis (values multiplied by 102).

Period in days Period in days

Year A0 365 (A1) 180 (A2) 120 (A3) Year A0 365 (A1) 180 (A2) 120 (A3)

2001 99.0 0.6 0.5 0.4 2006 99.0 0.7 0.4 0.3
2002 99.1 0.6 0.4 0.2 2007 99.1 0.6 0.4 0.2
2003 98.1 1.7 1.5 0.7 2008 99.0 0.6 0.5 0.3
2004 99.2 0.6 0.3 0.4 2009 99.0 0.7 0.3 0.4
2005 99.1 0.8 0.4 0.5 2010 98.9 0.4 0.3 0.3

4.2 Relationship air temperature vs. surface
temperature

The relationship betweenTa data at the stations within the
Valle Telesina area (Table 1 and Fig. 2) and LST MODIS ob-
servations has been determined by linear regression analysis.
Daily values of maximumTa and daytime MODIS LST were
correlated for each year from 2001 to 2010.

Linear regression coefficients (slopem and offsetn) as
well asR2 were calculated for each of the available stations
and for each year. The same statistics were produced by de-
termining a single relationship for the whole area (using data
from all the stations). Table 5 shows the mean and the stan-
dard deviation of them, n andR2 over the entire period
(2001–2010). The coefficientsR2 are always greater than
0.83. The correlation coefficients do not vary significantly
across the stations. The largest variation has been observed
at Guardia Sanframondi that is located at an higher altitude
than the other stations. Considering these results, as well as
the impossibility to define a detailed spatial pattern of regres-
sion coefficients (because of the scarce availability of ground
stations), we decided to use a single relationship valid for the
whole area under study. This conclusion is based on the com-
parison of estimates ofTa obtained with the station-specific
relationship with the estimates obtained with the relationship
applicable to the entire area. The difference between the two
Ta estimations was rather small as shown by the RMSE and
AME statistics (Table 6). The RMSE increment, using the
same linear regression all over the area, is between 1.24 and
3.92 %, while the AME increment vary between 1.24 and
6.45 % (Table 6).

The inverse relationship (LST vs.Ta) was evaluated at the
reference location giving the regression coefficients 1/m0 =

0.87 and−n0 = 38.81.

4.3 Time series of daily air temperature maps

The annual evolution of the ratior was modelled with a
Fourier series using amplitude and phase of the three terms in
the series averaged over the period 2001–2010. Time series
of Ta maps were calculated over Valle Telesina for the period
from 2001 to 2010 using the ratior(x,y, t). Figure 5 shows

Fig. 6. Daily values of estimated against observedTa at Guardia
Sanframondi station (2001–2010).

the estimatedTa on 1 January and on 1 July 2006: the range
of variability over the area is 14 K, respectively 20 K.

We then evaluated theTa (x,y, t) estimates (Table 7)
against available observations in the same period. We calcu-
lated the following statistics: RMSE, AME, mean and stan-
dard deviation of the differences between estimated and mea-
suredTa (MR and STDR) andR2.

RMSE values vary in a range between 2.47 K and 3.23 K.
We observed a strong correlation of our estimates with ob-
served maximum temperatures (R2 > r0.90). MR values in-
dicate thatTa estimates at Solopaca and Guardia Sanfra-
mondi are on average close to the observedTa (Fig. 6
shows the temporal trend of observed against estimatedTa
at Guardia Sanframondi station).

5 Discussion

5.1 Land surface processes determining the
spatio-temporal variation of LST

Several factors determine the LST variation in space and
time and the coupling betweenTa and LST. Solar irradi-
ance forces the surface energy balance, and the residual heat
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Table 4.Comparison of the statistics (mean (Āi), standard deviation (σ) and coefficient of variationδri) of the mean ratior and harmonic
amplitudes calculated over the period 2001–2010.

Statistics over 2001–2010 Statistics leaving out 2003

Period in days Period in days

A0 365 (A1) 180 (A2) 120 (A3) A0 365 (A1) 180 (A2) 120 (A3)

Āi(×102) 98.96 0.72 0.49 0.36 99.06 0.62 0.37 0.32
σ(×102) 0.31 0.32 0.35 0.14 0.09 0.10 0.07 0.09
δri (%) 0.31 0.32 0.35 0.14 0.10 0.10 0.07 0.09

Table 5. Statistics over the period 2001–2010 of the linear regression parameters and correlation coefficientR2 calculated at the available
stations in Valle Telesina.

m1 (mean± std) n1 (mean± std) R2 (mean± std)

Solopaca 0.78± 0.04 67.17± 11.64 0.84± 0.05
Castelvenere 0.82± 0.03 53.93± 8.24 0.84± 0.03
Guardia Sanframondi 0.88± 0.02 38.05± 6.66 0.87± 0.03
Telese 0.79± 0.04 62.83± 11.37 0.84± 0.05
All stations 0.81± 0.01 59.41± 4.02 0.83± 0.00

forces the soil heat balance and surface temperature, which in
turn forces air temperature. Solar irradiance on a tilted sur-
face depends on date and latitude as well as slope and ex-
posure angles. Then, over complex landscapes, morphology
is crucial in determining the LST pattern. Other factors act
to reduce surface temperature by decreasing the residual soil
heat flux at given irradiance. Land cover and soil water con-
tent play such a role in determining soil heat flux and surface
temperature.

To illustrate the combined effect of such factors on LST
and to evaluate whether ourr(x,y, t) can be explained by
these processes, we constructed a number of synthetic time
series of LST for a range of terrain and land cover conditions.
The daily amplitude of a periodic oscillation of LST can
be described by its explicit relationship with heat flux into
the soilG (W m−2) and thermal admittanceY (W m−2 K−1)
(Menenti, 1984):

A(LST)= A(G)/Y, (8)

where

Y =
√

2 ·π · λ · ρ · c/P (9)

with λ being the thermal conductivity (W m−1 K−1) , ρ
the soil density (kg cm−1), c the specific heat (J kg K−1) and
P is the period (s).

The ratio of soil heat flux to net radiationG/Rn (W m−2)
is approximately related to land cover type (Kustas et al.,
1993), so thatA(G) can be easily estimated from the daily
amplitude of net radiationA(Rn):

A(G)= (G/Rn) ·A(Rn). (10)

Net radiation (W m−2) can be calculated in a simplified
way by neglecting the longwave net radiation

Rn = (1−α) ·Rglob · cos(i) . (11)

Rglob is the mean daily solar irradiance over the day,α the
albedo andi the incidence angle of the sun (π). The latter is

cos(i)= cosφs · cosφa+ sinφs · sinα · cos(φs−φn , ) (12)

whereφa is the slope angle,φs the solar azimuth angle and
φn the slope aspect angle.

Replacing Eqs. (9) and (10) into Eq. (8) we obtain the am-
plitude of LST (K) over the period (day). Daily maximum
LST is given by

LST(t)= LSTm(t)+A(LST, ) (13)

where LSTm(t) is the daily mean LST which we took equal
for all cases. We calculated 24 sets of the annual evolution
of daily LST over the year 2006 (as an example) combining
the parameters values in Table 8 with actual measurements of
Rglob. The lowest values of LST are given by the combina-
tion of parameters corresponding to a forested area, wet soil,
northern exposure and 0.35 rad slope angle (case B in Fig. 7).
Instead the highest values correspond to a dry area, bare soil,
southern exposure and 0.35 rad slope (case A in Fig. 7).

We can now use the theoretical calculation described
above to interpret the observedr(x,y, t) patterns derived
from the analysis of MODIS LST time series.

Let’s now take as reference the case with the highest daily
LST in summer (case A in Fig. 7). Then let us take the case
with the lowest daily LST in summer (case B in Fig. 7) and a
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Table 6.RMSE and AME errors and their relative increment ofTa estimation (2001–2010) using station-specific linear regressions respec-
tively a single linear regression.

Station specific All station Increment of error %

RMSE AME RMSE AME RMSE AME

Solopaca 3.37 2.64 3.51 2.78 3.92 5.40
Castelvenere 3.45 2.71 3.63 2.85 5.28 5.24
Guardia Sanframondi 3.38 2.63 3.59 2.80 6.43 6.45
Telese 3.28 2.58 3.32 2.61 1.24 1.24

Table 7. Error statistics ofTa estimates against observations at the
available stations.

Validation 2001–2010

RMSE AME MR STDR R2

Castelvenere 3.23 2.70 2.21 2.37 0.95
Telese 2.47 1.91 0.99 2.26 0.95
Guardia Sanframondi 3.12 2.58−0.15 3.12 0.92
Solopaca 2.63 1.99 −0.26 2.62 0.94

Fig. 7.Maximum (black diamonds; case A), minimum (black trian-
gles; case B) and an arbitrary case (black circles; case C) selected
out of the 24 yearly time series of LST estimated by Eqs. (8)–(13)
applying the parameters in Table 8.

third arbitrary case (case C in Fig. 7). Case C applies to dry
bare soil facing south with a 0.35 rad slope angle. Radiative
forcing (Rn) is smallest for case B because it is north-facing
and the combination of albedo and the ratioG/Rn. More-
over, the thermal admittance (Y ) is very large because of the
wet soil. The combination of low Rn and largeY gives a
small daily amplitude of LST. Conversely, radiative forcing
is largest for the south facing case B with smallY because of
the dry soil. This gives a large daily amplitude of LST.

If we now calculate the ratior(t) of case C to case A we
obtain ther(t) “case warm” in Fig. 8. Conversely, if we take

Fig. 8. Black circles: ratiosr of LST case C to LST case A. Black
triangles: ratiosr of LST case C to LST case B. LST for cases A, B
and C shown in Fig. 6.

as reference case B and calculate the ratio of cases C to case
B we obtain ther(t) “case cold” in Fig. 8. We can now es-
timate the LST(t) of case C using either case A as reference
and ther(t) “case warm” or case B as reference and ther(t)

“case cold”, obtaining in both cases exactly the same LST(t)
of case C. As an example let us take DoY 200 when LST
is 43.64◦C for case A and 26.90◦C for case B. The cor-
responding values ofr are 0.8891 with A as reference and
1.4424 with B as reference. The estimated value of LST for
case C is 38.80◦C in both cases. This shows that the choice
of the reference case is arbitrary and different choices lead
to different values ofr(t), but all choices lead to the same
LST(t).

Such relation between the shape ofr(t) and known prop-
erties can be used for the interpretation of the observedr(t)
obtained from the analysis of the MODIS LST time series,
as shown below using the entire set of the 24 case.

We calculated first the ratior (Fig. 8) by choosing as ref-
erence the warmest one of our 24 cases, since our reference
location (see Fig. 2) had higher LST in the study area. When
using all combinations of the parameters values in Table 8
(Fig. 9: all cases) the estimated range of variability for all
24 cases is much larger than the observed variability ofr
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Table 8. Values of the parameters applied to construct a synthetic
sample of LST time series by using Eqs. (8)–(13).

Variable Values Unit

φa 0.09; 0.35 rad
φn 0; π rad
α forest= 0.15; pasture= 0.25; bare soil= 0.35 Dimensionless
G/Rn forest= 0.1; pasture= 0.2; bare soil= 0.3 Dimensionless
λ dry sand= 0.2; wet sand= 1.7 W m−1 K−1

ρ·C dry sand= 0.96× 10∧6; wet sand= 3× 10∧7 J K−1 m−3

Fig. 9. Daily values of the range of variability of the ratior for all
cases (open triangles) calculated using equation 8 and the parameter
values in Table 8, respectively, leaving out the 12 cases calculated
with the dry soil thermal admittance (open circles).

(Fig. 4) both in summer and winter. Conversely when leav-
ing out all cases for the perfectly dry soil (Fig. 9: no dry soil),
the observed and estimated variability (over the remaining
12 cases) are comparable. This suggests that no location in
the study area corresponds with the “perfectly dry soil” case.

5.2 Accuracy of estimated air temperature

To determine the accuracy and, possibly, to identify the
weaknesses of our method we proceeded in two different
ways:

Test 1: We used the ratior(x,y, t) calculated from the
mean values of Fourier coefficients from 2000 to 2006
to calculate the air temperature in the successive years
(2007–2009), whenTa data at the four stations (Telese,
Solopaca, Castelvenere and Guardia Sanframondi) were
available.

Test 2: We used a set of data collected during the pre-
MODIS period of time at ground stations within the
MODIS image frame. Some of these stations are located
outside the Valle Telesina area, although in the same
physiographic region. These data were rather sparse
both in time and in space because of the irregular op-
eration of the stations.

Table 9. Statistics of the test 1 (values in K). Error statistics ofTa
estimates over 2007 to 2009 using the mean of the Fourier coeffi-
cients from 2000 to 2006 againstTa observations.

TEST 1

RMSE AME MR STDR R2

Castelvenere 3.33 2.81 2.25 2.45 0.94
Telese 2.41 1.88 0.80 2.27 0.95
Guardia Sanframondi 3.30 2.78−0.25 3.29 0.90
Solopaca 1.98 1.55 −0.20 1.97 0.95

In each test we compared estimated maximum dailyTa with
the one measured at the available ground stations.

Table 9 shows the statistics of the test 1. RMSE values
range between 1.98 and 3.33 K. Higher values were found for
the Castelvenere and Guardia Sanframondi stations, although
the mean deviation for Guardia is rather small, i.e.−0.25 K.
The RMSE values for all the stations are consistent with the
literature reviewed in the Introduction (e.g. Yan et al., 2009;
Shen and Leptoukh, 2011). The results of Test 2 (Table 10)
are less clear-cut: overall we have overestimatedTa, particu-
larly during the winter, but the available observations span a
very short period of time. For all stations shown in Table 10
observations are available for just about one year, even in
different years. Larger errors were observed for stations lo-
cated at higher altitude, i.e. 523 m at Piedimonte Matese and
865 m at Piedimonte Matese Muto (see Fig. 2). The RMSE
values found when using the same linear regression relation-
ship for the entire area were slightly larger than when us-
ing station specific relationships (Table 6). We have observed
that both slope and intercept depend on elevation but it was
not possible to parameterize such dependence on elevation
with sufficient accuracy given the limited number of stations
at higher elevation and the short record of observations. To
some extent the difference between estimated and observed
daily Ta is due to the quality of observations. We have evalu-
ated the data records for all available stations and noted in
several cases that the observations are affected by signifi-
cant noise, i.e. large and sudden deviations from the trend
over a short period of time. To assess this effect we have
applied a five-day moving average filter to observedTa and
evaluated the standard deviation over the five-day window
(Fig. 10). We also noted in some cases large and inconsis-
tent differences between stations (not shown here), suggest-
ing significant impact of changes in the instruments used. We
conclude that the RMSE values we obtained for our daily
Ta estimates is due to a significant extent to noisy daily sta-
tion data and we have, therefore, evaluated five-day averages
of our estimates against five-day averages ofTa observations
(Table 11). The accuracy of our estimates is significantly bet-
ter, while a systematic assessment of observedTa will require
a separate study.
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Table 10.Statistics of the Test 2 (values in K). Error statistics ofTa
estimates in different periods of time using the mean of the Fourier
coefficients from 2001 to 2011.

TEST 2

RMSE AME MR STDR R2

Castelvenere (1999–2000) 2.86 2.27 1.48 2.45 0.94
Solopaca (1999) 2.74 2.13 0.09 2.74 0.90
Bucciano (1984) 3.11 2.57 2.31 2.09 0.95
Piedimonte Matese (1984–1985) 4.9 3.93 3.03 3.85 0.92
Piedimonte Matese M. (1984–1985) 4.64 3.72 2.84 3.67 0.95

Fig. 10.Five-day moving average standard deviation of observedTa
at Guardia Sanframondi station.

6 Conclusions

We presented a new approach to map air temperature at high
resolution. The innovation is in the use of time series of land
surface temperature (LST) observed by a spaceborne imag-
ing radiometer to construct a stable model of the spatial and
annual pattern of LST and, subsequently, to estimate time
series of air temperatureTa maps using such model. The spa-
tial and annual pattern of LST is constructed by normaliz-
ing the LST (x,y, t) at any location to the LST (x0,y0, t)
at a reference location (x0,y0). In our study the latter is a
node where gridded climate data are available for both past
and future climate. Once the modelr(x,y, t) has been con-
structed we estimateTa(x,y, t) using only theTa(x0,y0, t) at
the reference location. The relationship betweenTa and LST
has been constructed using a limited number (just four in this
study) of meteorological stations. This is inherently different
from approaches reported in literature where air temperature
is estimated from concurrent observations of LST or LST and
NDVI. The advantage of our method is that it can be applied
to periods of time, including predicted future climate, when
no LST observations are available. The accuracy of our esti-
mates dailyTa is comparable, e.g. RMSE∼= 3 K, with other
studies, which are based on using concurrent satellite data.

Table 11.Test 1 and Test 2 RMSE and AME statististics using five-
day meanTa (values in K).

TEST 1 TEST 2

RMSE AME RMSE AME

Castelvenere 2.87 2.31 2.36 1.37
Telese 2.03 1.58
Guardia Sanframondi 3.02 2.67
Solopaca 1.58 1.27 1.96 1.52
Bucciano 2.66 2.29
Piedimonte Matese 4.5 3.53
Piedimonte Matese M. 4.41 3.49

We obtained comparable error statistics when applying our
method to LST data during periods different but adjacent to
the periods used to construct the model of spatio-temporal
variability of LST i.e. using only theTa(x0,y0, t) at the ref-
erence location. When applying the same model to periods
of time in the past (1984–1988) when someTa observations
were available for very short periods of time at a few mete-
orological stations, we obtained in some cases slightly larger
error of estimates. The larger deviations were observed for
two stations located at higher elevation where just two years
of observations were available. Although this may suggest
a dependence of the regression coefficients on elevation, the
number and distribution of stations is not sufficient to de-
termine a relationship between regression coefficients and
elevation. There might be other multiple causes for such
larger errors, including changes in the location of the con-
cerned meteorological stations (documented by different co-
ordinates available on record for such stations) and changes
in land cover, which would lead to a different relationship
between LST andTa. We have observed that the variability
of Ta at the available meteo-stations over a five-day window
suggests a significant random noise in the station data. This
has a significant impact on the error statistics for daily esti-
mates and we have obtained a smaller RMSE when evaluat-
ing five-day averages of estimated vs. observedTa. We have
also shown that the spatial annual pattern of LST has a rather
limited inter-annual variability, i.e. the pattern is mainly de-
termined by the combination of the yearly evolution of solar
irradiance with rather stable landscape properties such ter-
rain, land cover (albedo, aerodynamic roughness) and soil
thermal properties.
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