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Abstract. We are interested in the modelling of wave-current cal model that can predict the onset of wave breaking at the
interactions around surf zones at beaches. Any model thabreaker line will need to capture both the nonlinearity of the
aims to predict the onset of wave breaking at the breaker linavaves and their dispersion. Moreover the model has to in-
needs to capture both the nonlinearity of the wave and its diselude vorticity effects to simulate wave—current interactions.
persion. We have therefore formulated the Hamiltonian dy- Various mathematical models are used to describe water
namics of a new water wave model, incorporating both thewaves. A popular model for smooth waves in deep water is
shallow water and pure potential flow water wave models aghe potential flow model, but its velocity field does not in-
limiting systems. It is based on a Hamiltonian reformulation clude vorticity. In the near-shore region, vorticity effects are,
of the variational principle derived b@otter and Bokhove however, important. When obliquely incident waves shoal
(2010 by using more convenient variables. Our new modelin shallow water, steepen and break, a horizontal shear or
has a three-dimensional velocity field consisting of the full vertical vorticity is generated. On semi-enclosed or enclosed
three-dimensional potential velocity field plus extra horizon- beaches, this leads to an overall circulation induced by wave
tal velocity components. This implies that only the vertical breaking. A classical hydraulic model for the surf zone is
vorticity component is nonzero. Variational Boussinesq mod-the shallow water model. The complicated, turbulent three-
els and Green—Naghdi equations, and extensions thereof, fodimensional wave breaking is approximated in this model by
low directly from the new Hamiltonian formulation after us- discontinuities or so-called bores. These are special relations
ing simplifications of the vertical flow profile. Since the full holding across the jumps connecting the right and left states
water wave dispersion is retained in the new model, wave®f the flow. Mass and momentum are conserved across the
can break. We therefore explore a variational approach to dediscontinuity, while energy is not, as can be expected from
rive jump conditions for the new model and its Boussinesgobserving the white capping zone of fine-scale splashes and
simplifications. sprays in the broken wavéMhitham 1974). Shallow wa-
ter waves are not dispersive, and these waves tend to break
too early in comparison with real, dispersive waves. Boussi-
) nesq models include internal wave dispersion to a higher de-
1 Introduction gree of accuracy, but dispersion always seems to beat nonlin-
earity. Therefore wave overturning tends to be prevented in

The beach surf zone is defined as the region of wave breakthese models. The variational Boussinesq model proposed by

ing and white capping between the moving shore line EfdeIopman et al(2010 could be a notable exception, but it is
the (generally ime-dependent) breaker line. Let us COnSIOIeE)ased on the ansatz of potential flow. In three dimensions, a

wave propagation from deeper water to shallow water re- urely potential-flow model cannot be extended by inclusion
gions. The start of the surf zone on the offshore side is a f bores and hydraulic jumps as a simple model to repre-
the breaker line where sustained wave breaking begins. It de,

tes th ints where th i itv of th b sent wave breaking. The reason is that at least some vorti-
marcates the points where the nonlinearity of the waves e(':ity has to be generated by bores that have non-uniformities

comes strong enough to outweigh dispersion. The waves thugIong their jump line as was shown Byatt(1983, Peregrine
start to overturn. From the point of breaking till the shore, (1998, andPeregrine and Bokhoy@ 999 ’

the waves lose energy and generate vorticity. A mathemati-
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484 E. Gagarina et al.: Horizontal circulation and jumps in Hamiltonian wave models

We therefore seek to develop a more advanced model th&2 New water wave model
includes both the shallow water approximation of breaking
waves as bores and the accurate dispersion of the poter?-1 Variational principle
tial flow model. Such a model was obtained Ggtter and ) ) ) ) o
Bokhove (2010 from a parent Eulerian variational princi- Consider an incompressible fluid at timein a three-

ple with extended Clebsch variables, in which the vortical dimensional domain bounded by solid surfaces and a free

parts only depended on the horizontal coordinates. This reSurface, with horizontal coordinates y, and vertical co-

stricts the vorticity to have a vertical component only. Ex- ordinatez. The water depth is denoted by=h(x,y,7).
tended Clebsch variables may, however, be less conveniert1€r€ €xists a parent Eulerian variational principle for in-
algebraically and also yield a larger phase space of Varipomp_res§|ble flow with a free surface. Ith th.ree-d|men5|onal
ables. We therefore reformulate this system in terms of sur-VeITOCIty fieldU =Ul(x, y,z,1) = (u,v,w)", with transpose
face velocity, velocity potential and water depth, and derive(")" » contains both potential and rotational parts and is rep-
the Hamiltonian structure including its Poisson bracket. This'eseénted as
new water wave model can be reduced to the shallovy Way — v+ VI, 1)
ter equations, the potential flow model, and the Boussinesq
model ofKlopman et al(2010 under corresponding restric- through extended Clebsch variables: the velocity potential
tions. The Green—Naghdi equations emerge from the variag$ = ¢ (x, y, z, t), the three-dimensional fluid parcel lalde:
tional Boussinesq model by introducing a parabolic potentiall (x, v, z, t) and the corresponding Lagrange multiplier vec-
flow profile in the Poisson bracket, as well as another, colum+or = = m (x, y, z, ). Such a representation describes a velo-
nar approximation of the velocity in the Hamiltonian. city field containing all three components of vorticRyx U .
Finally, a new variational approach to derive jump con- In order to avoid confusion, indices are also introduced in
ditions across bores is also explored. It is inspired by theEq. (1) and the Einstein convention for repeated indices is
work of Wakelin (1993 for stationary shock or jump con- used. This velocity representation is similar to the expres-
ditions for the shallow water equations. These results havesion (3.9) bySalmon(1988. AlsoLin (1963 used two three-
been extended to moving shocks in shallow water based odimensional vector Clebsch variables to introduce a vorticity
the variational principles for the relevant Clebsch variables.for superfluids. As inYoshida(2009, we see that a pair of
Naturally, this approach allows us to obtain jump conditions extended Clebsch vectors suffices for the generalized form to
for the new water wave model as well. The jump relationsbe complete.
can be implemented in any system with a variational and When only the potential velocity fiel& ¢ (x, y, z,t) is
Hamiltonian structure, but not every system with a Hamil- used, there is no vorticity. In contrast, a shallow water velo-
tonian structure allows shocks or discontinuities to persist incity field includes the vertical component of vorticity. Simi-
time. For example, it was shown I} et al. (2006 that the larly, in an Eulerian variational principle with planar Clebsch
Green—Naghdi system has an unsteady undular bore, i.e. arariables that only depend on the horizontal coordinates the
initial discontinuity in the free surface and velocity expands vertical component of vorticity is retained. This component is
instantly into smooth undulations. It is therefore necessaryconstant throughout the whole water column and flows with
to analyse the energy loss across jumps, and juxtapose thiselicy (Kuznetsov and Mikhailoy1980 are thus excluded
analysis between the original and our new extended Greenby construction.
Naghdi system. Cotter and Bokhov¢2010 derived novel water wave dy-
The outline of the paper is as follows. First, a systematicnamics from the parent Eulerian variational principle which
derivation of the new Hamiltonian formulation will be given includes two limits: Luke’s variational principle giving the
starting from a slightly adapted formulation of the variational classical potential water wave model and a principle for
principle of Cotter and Bokhov&€2010 in Sect.2. Subse-  depth-averaged shallow water flows based on planar Cleb-
guently, we show in SecB how it can be reduced to limiting sch variables. At least conceptually, the novel variational
systems, such as the shallow water equations, the potentiglrinciple follows readily from the parent principle with two-
flow model, the Boussinesq modell§fopman et al(2010 dimensional label and multiplier fieldsand = depending
and an extended version of the Green—Naghdi equations. lonly on the two-dimensional horizontal coordinates and time.
Sect.5, a variational approach to derive jump conditions is Hence, they no longer depend on the vertical coordipate
given, starting from the well-known Rankine—Hugoniot or his prominent papet,uke (1967 mentioned about the possi-
jump conditions for the shallow water equations. We endbility of the introduction of Clebsch potentials into the vari-
with conclusions in Secé. ational principle for the rotational case. In contrast, we do
not use Clebsch scalar variables, but extended vector Cleb-
sch variables.
Extended Clebsch variables are, however, not convenient
to work with. We therefore reduce the model to a more
compact and conventional form. This reduction from six
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variables{¢,h,l,x} to four more conventional variables with Hamiltonian variations equal to
{¢,h,u*} is undertaken in a Hamiltonian setting. The lat-

ter yanables mv_olve a new velocity*, which is a suitable S Vs + V24 g(h+b—Ho) —V-i
horizontal velocity. Sh 2
The variational principle ofCotter and Bokhov&2010 1 2 2
has the following form: = 5@:0)s(1+ V(R + D)%), (7a)
SH
T sg, = (PPsLEVu(h +b)%)
S
0=8/£ l,m, ¢, h]dr
, Ih.x.9.4] — (VHos+V) - Vi (h + D), (7b)
SH
=u-VIl;, 7
T  bth S u (7c)
= 8// / 9 ¢+ - 3,;1dzdxdy + Hdr, @) SH
— = —V.-(han,). (7d)
0Qn b 8l;
where the horizontal part of the domain$y; the single-  In the above expressions, we used the depth-averaged hori-
valued free surface boundary lieszat h(x, y,t) +b(x,y), zontal velocity:
with i (x, y,t) the water depth anbl(x, y) a given, fixed to-
pography; and; is time, its derivative isy,, and T a final 1
time. The component of the velocity with vortical parts is u(x,y,t) = 7 / Undz, 8
contained in A
v(x,y,t) =mj(x,y,0)Vij(x,y,1), with j=1,2 (3) WhereUy = (u, v)T is the horizontal component of the ve-

locity U, and surface velocity potential,

and three-dimensional gradieRt. Thus, the entire three-

dimensional velocity field is represented by Ps=¢s(x, 7, ) =@ (x,y, 2=h+b.1). ©)

Here the subscript)s denotes evaluation at the free surface.

Ulx,y,2,t) =Vo(x,y,z,1) +V(x,y,1), (4) To obtain these results, we also employed the relation
combining the potential velocity ¢ (x, y, z, ) and the pla-  8(¢s) = (5¢)s+ (0:9)séh, (10)
nar velocityv (x, y, t). The relevant Hamiltonian, the sum of o
kinetic and potential energies, equals and a similar one fod; (¢s).
The pairs(l, k) and(¢s, h) at the free surface are canon-
bth ically conjugated. Thus the Hamiltonian dynamics arising

from Egs. @)—(6) is canonical and takes the form

1
H=H[z,n,¢,h1=//§|V¢>+v|2dz
b dF

. - = (11)
+ Eg((h +b)? — b?) — ghHodxdy, (5) / SF H  8F 8H N OF 8H _OF M
h 5ps  S¢s Oh | Shm) Sl Sl Sthm)

with g the acceleration of the Earth’s gravity, afld a still 21

water reference level. This Hamiltonian is the available po-Subse uent substitution of one of these variahlas , b or
tential energy, due to the additional subtraction of the resth q . . ; B, P
— rewritten as a functional in EqL{) — in turn yields 6).

level contribution, cfShepherd1993.
As is shown inCotter and Bokhové2010), the variational
formulation of the new system is similar to Hamiltonian clas- 2.2 Reduction of Hamiltonian dynamics
sical mechanics, and becomes
The aim is to reduce the number of variables in the Hamil-

8p: V2p+V.v=0, (6a)  tonian formulation from the sefip, ¢s, 1,1, hm} to the set
SH SH {p = ¢ — ¢s, h,u*}. Doing so removes the reference to the
Sh: 0ps=——, S¢ps:  Oth=—, (6b) label fields and their conjugates and yields a reduction by
Sh S¢s two fields. This transformation is achieved via variational
Sthm): ol= __SH . 8l d(hm) = ﬁ (6c)  techniques. The surface velocisy is now split into a po-
§(hm) l tential and rotational part, which allows us to reformulate the
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Hamiltonian dynamics. The key observation is that the velo-

city field (4) can be rewritten as

U=u"+V(p—¢s)=u"+Vo, (12)
by introducing a surface velocity
u*(x,y,0) =Ves(x,y,0) +V(x,y,1). (13)

Upon using this in Eq.5), the resulting Hamiltonian be-
comes

b+-h

1
H[¢,¢s,h,u*]=f / Sl @ — g9 Pdz

1 2 2
+§g<(h+b) —b )dxdy. (14)

Consequently, instead of the seven fields used in Bgwe
can use five fields. The question is whether a similar reduc-

tion can be achieved from the Poisson bracket, thus clos;

ing the Hamiltonian formulation in the new variables. The
subsequent derivation has a technical character and read

stated.

We relate the two sets of variational derivatives by taking
variations of a functionaf in terms of the prognostic vari-
ables:

SF SF
SF=[ —§ +— Sh+ ——-§(hm +— sldxd
/a¢s b Sy ) y
SF Val
— .S(hu* —38hdxd 15
/S(hu*) (he®) + = Sheledy, (15)

QH

which connects variations with respect to the different sets of

variables. After using1(3) with (3) in the above, an integra-
tion by parts and using Gauss’ law, we obtain

SF SF

0= (150h ) (o
- (4750 ): (16b)
i ¢ =% Vst 2 - (16¢)
a(i;,) Za(ii*) Vi (16d)

where also index notation with j,k=1,2 and V1= a,,
V2 = 9, is used for clarity’s sake. Boundary contributions in

the above calculation vanish because at solid vertical bound-

ariesny -8F /8 (hu*) = 0 with the horizontal outward normal
ny, or becausé = 0 at the water line. Substitution oi)

Nonlin. Processes Geophys., 20, 48330, 2013
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into (11) yields the transformed Hamiltonian formulation in
momentum variables:

dF /8Hvi i 8F _Evi i SH
dr o o 8(huz) )  oh 8 (huy)
SH SF 8F SH

h * V,‘ — i

* ”k<5(hu;§) 8 (hu*) 8 (huy) 8(hu§“)>
SF  8H

————— | V; (hu}) — Vi (hu?) )dxdy, 17

a(huj)a(huz)< () = Vi u’)> v W
where we employed the chain rule, the relation
VihVips—VihVigps=Vi(hVips) — Vi (hVips) (18)

andV;Vips=VV;ps.
2.3 Hamiltonian dynamics of new water wave model

We complete the derivation by stating the Hamiltonian dy-
namics of the new water wave model. In the next two sec-
tions, two limiting systems and Boussinesq approximations
will be based directly on this new Hamiltonian formulation.

'®fHe final step is to transform the Hamiltonian formulation
can safely jump to the next subsection, in which the result i 1S(17) with respect to the sdt, hu

*} into one with respect to
{h,u*}, using the relations

16F SF u* §F
hdu*

S(hu*) Sh |y Oh|,. h sur
By substitution of 19) into (17), we obtain the desired
Hamiltonian formulation in the new variables:

and

(19)

hu*

d]-‘_/ 8F SH*
de Tsur " sur
QH
SF_ 6H 8 8
_SFG M OHy OF 20)
Sh -~ Su* ' Sh  Su*

with (-)* the rotated vector as i+ = (—u3, uj)T, and note
that the gradient¥ are effectively two dimensional as they
operate on functions independentofhe potential vorticity
is defined as

—Oyu)/h =(0xV2 —
:(axuz -

g = (0yv dyV1)/ h

dyut)/h. (21)

No integration by parts was required in the previous trans-
formation. Since only the difference of variabl¢sand ¢s
appears, we introduce a modified potengiat ¢ — ¢s, zero

at the free surface. Hence, we can slightly simplify Bdf) (

to

b+h

Hlg.h,u* //—Iu + Vo|?dz

QH

S8 ((h+5)2 = b?) dxdly. (22)

www.nonlin-processes-geophys.net/20/483/2013/
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Specification ofF in (20), in turn, and use o0f22), yields
the equations of motion:

SH

8lh=—V'%, (23a)
ou* v o 8K (23b)
u =-— YR )
’ sh 1 our
using Hamiltonian variations:
)
sh: B, (24a)
8h
)
Su*: i = hu (24b)
Su*
)
8¢ : —8—H:V-u*+V2<p:O, (24c)
@

with the depth-weighted horizontal velocity vector B) (e-
defined as

b+h

u(x,vy,t) :% /(u*—i—VHgo)dz, (25)
b

and the Bernoulli function:
1 1
B=2 w2+ (h+b) = 5 (0:9)3 (1+ Vu(h + b)) . (26)

Note thatsH /8¢ = 0 acts here as a constraint, since it does

tonian wave models 487

and horizontal gradients, thus introducing surface and bot-
tom boundary contributions. The next step is to rewrite the
continuity equationZ4q9, or V - U =0, by integrating over
depth, to obtain

dh = ws— usdy (b +h) — vsdy (b +h), (30)

in which we use the full velocity evaluated at the free sur-
face and we note thabs = (d,¢)s. Hence, we can evalu-
ate each term in2Q) further. Substitution of30) into (29)
leads to terms like-u2d, (b + h) — usvsdy (b + k), which can
be rewritten in terms of depth-integrated fluxes of the three-
dimensional velocity. For examplegax (b+h) can be deter-
mined from
b+ b+h
y f u’dz = / 2udyudz + ud, (b +h) — udd.b
b b
in which subscript(-)p in up denotes that horizontal velocity

u is evaluated at the bottom= b. For gradients at the free
surface, we extensively use relations like

(Vo)s= (Vps) = (3:0)sV(h+b) = —wsV(h+b),  (32)

since by definitionps = 0. In addition, we use the condition
that the velocity normal to the bottom boundary is zero.

Without going through further details, the reformulated
equations of motion resulting after some calculations become
as follows:

(31)

not play a role in the prognostics. h_ 7o 0
The final system of equations in the new free surface varidr | b | £V 7] = S (33)
ables equals hv F2 S2
_ with the flux tensor
dh+V - (hu) =0, (27a) _ _
. . Fo hu hv
u™ + VB +q(hu)— =0, (27b) Fl = A fbh+b uvdz |, (34)
h-+b
with the elliptic equation fop in the interior: 72 Jy " uvdz ¢
V29 = -V .u*. (28) whereu = (i, 0)7,
htb 2 (2 2
The boundary conditions far in (28) aren - (u* + V) =0, _ / W2 |U| " L o0 ) de+ gh*
at solid walls, withn the exterior normal vector, and= 0 at 2 2 ! 2
the free surface. b
We can also formulate the new system in a (conservative) h 5 2
form, which will become relevant for the derivation of jump 2Ws (1+ IV +b)l ) ’ (353)
conditions later. Using definition2%) and (L2), the key step h+b U 1 12
is to notice that C = f (1)2——| 2' + |u2| —8;@) dz+g—
b+h b
o (hu) = 0; / Undz h
J —§w§<1+|V(h+b)|2), (35b)

b+h
= (us, vs)! O h + hd,u* + / VHO,pdz.
b

(29)

The termhd,u* can now be obtained fron2{b). The inte-
gral term is rewritten by interchanging the order of integral

www.nonlin-processes-geophys.net/20/483/2013/
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1
(51, ST = (—gh T Ewg (1+ IV (h +b)|2)

1 1
+(at¢+§|v|2—§|u*|2) )(axlm a,b)" . (36)
b
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3 Shallow water and potential flow limits directions and time. It is unclear whether such a secondary
discretization instead of one directly applied to the original
The shallow water and potential flow models emerge as lim-model in three dimensions is more advantageous, or not. The
iting systems of the new water wave model, as will be shownadvantage of first discretizing the vertical direction may be
next. The new water wave model reduces to the potential flowthat these reduced Boussinesq models are more amenable to

equations when we také = V¢ in the Hamiltoniang) and  mathematical analysis. The analysis of jump conditions, ex-
only use the terms with andgs in the Poisson brackel(). plored later, perhaps illustrates this point.

The Hamiltonian of the system then takes the form
4.1 Variational Boussinesq model

H="Hl¢p,h]= (37)
bth In the Ritz method, the velocity potential is approximated as
1 1 . o . .
/ / SIVeIPdz + S g((h +b)* = b%) — gh Hodxdy. a linear combination oM basis functions, such that
Qy b M
Oy, 2,00 = Y fn (@R b k) Y (x, 3,1, (40)
The shallow water limit is obtained when we restrict= m=1

¢(x,y,z,t) to be the surface potentigk = ¢s(x, y, t) in the ) ) )

extended Luke’s variational principl@)(such thatp — 0.  With shape functionsf,, and variables};, (x,y, 7). By de-

The velocity field then reduces B (x, y, 1) = u*(x, y, 1) = finition, the shape functions are chosen such ffjat=0 at

Vs(x, v, 1) +V(x, y,1). This change yields = u*(x, y,r),  he free surface = +5 in a strong sense. The functions

and the Hamiltonian dynamics remair0) but with the  %m(x,y) may be used as optional shape parameters, but we

Hamiltonian: assume them to be known and fixed a priori. Note that due to
the direct substitution of4Q) into Eq. £2), the Hamiltonian

H = H[i, h] = (38) remains by default positive. The expansid@)(implies that

1 1 the conditionsH /8¢ = 0 is replaced by

f Eh|a|2+ Eg((h +b)? — b?)dxdy,

SH
QH mzo, m=1,...,M. (41)
cf. (Salmon 1988. In this case Eg. (27b) is transformed to . S
the depth-averaged shallow water momentum equation: ;Ii-gr? &mfli)s_t model of practical interest has one shape func-
it + VB +qhut =0, 39
! 1 (39) @, y,z,t) = f(z; b, )Y (x,y,1), (42)

. _ _ _ — — — 2
With gh = 8x0 — dyit and B = (1/2)||"+ g (h +b). and the following expression for the flow velocity is ob-

tained:
4 Hamiltonian Boussinesq reductions of new model
q Vug = [VRY + @)Y Vrb+ @)U Vuh,  (432)
The idea to approximate the vertical structure of the flow ve- 5. ¢ = (3. f) v . (43b)

locity beneath the free surface was first appliedBoussi-

nesq(1871) for the description of fairly long surface waves In principle it seems that a substitution of E43] into the

in shallow water. Such Boussinesg-type water wave modeléiamiltonian 22) combined with the Hamiltonian dynamics
are widely used in coastal and maritime engineering. Alter-(20) suffices to define a reduced Boussinesq model. The chal-
natively, these models can be viewed as a Galerkin or Ritdenge, however, is to satisfy the bottom boundary condition:
discretization of the velocity potential in the vertical coor-

dinatez only. When such an expansion of the velocity po-

tential in terms of vertical profiles is substituted directly into W = ¥d:f = (" + Vu(f¥)) - Vub at z=b (44)

the variational principle, a so-called variational Boussinesq, ¢ Satisfacti f this bottom bound
model results. It depends on only the horizontal coordinates" & Sfong sense. Satisiaction ot this bottom boundary con-

and time. An example is the variational Boussinesq mode(dition in a weak sense, as in numerical approaches, appears
of Klopman et al(2010. These authors also sketched how to bg less well explored (in Boussinesq water wave models).
to add a vorticity term to the potential flow model, butinan  't1S Lhe;)efgrel commog (cﬂﬁlgpmar;] g a'"EOOlQ t; a33-

ad hoc fashion. In contrast, we apply the Galerkin or Ritz sumgt € be §ope3 to be mild, such ta ~ 0 and @3)
method directly to the Hamiltonian formulation of our new ¢2n P€ approximated as

water wave model, and thus systematically maintain the vers
. ’ 7 . Vo =fV \%

tical component of the vorticity. A Boussinesg-type wave He =/ VRY + (0 /)Y Viah, (453)
model can subsequently also be discretized in the horizontal %% =3 /) ¥ (45b)
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Consequently,44) reduces td, f = 0, which is more easily
imposed on the vertical profil¢ (z; b, k) in a strong sense.
After introducing @5) into the Hamiltonian22), the result is

h+b

1
H=[ / S+ VY + @0 )Y Vih|?
Qy b

1 1
+ 5 W )2de+ 5 g ((h+ )~ b?)dxdy
1 *)2 1 2 *
=/§h|u P+ SFIVYI+ PV
QH

1
+ sz(K + G|Vh|®>) + Qvu* - Vh+ RyVy - Vh

+ %g((h +b)? — b?)dxdy, (46)

where F, K, G, P, Q, R are functions ofz, provided in
AppendixA. Variations of ¢6) with respect to:, u* remain
as in @43 and @4b), but the elliptic equation249), here
resulting from the variation o, is reduced to

5y - (K n GIVh|2) v+ Qu* - Vh+RVY - Vh
— V- (FVy + Pu* + RY'Vh) =0, (47)

Perhaps, it is a matter of taste wheth&¥)(is simpler than

489

is zero or becausk = 0 at the water line. Note that the ap-
proximated system of equations again takes the f&m (
augmented with the elliptic equatioa®) for .

When, for example, we consider a parabolic vertical pro-
file

1(z—b)2—h?

2 h ’ 1)

f:f(P) —
then the Hamiltonian becomes
1 2 1 1
= | Zhiu* = ZyVh—ZhVy )2+ Zg ((h+b)% — b2
H/z'” 3V 3w|+2g((+) )
QH
1 2,1, 5
+9—0h|1//Vh—hV1p| +éhx// dxdy, (52)

which is positive-definite, since the water deptl- 0. The
integralsF, K, G, P, Q, andR are readily calculated ex-
plicitly, see AppendixA. Consequently, one finds that the
relevant expressions become

1 2
hit =hu™* — §h2v1p — §h1pVh, (53a)

1
B=§|u*|2+g(h+b)+72*, (53b)

1 1 7
R ==h2|Vy 2+ = (14 =|Vh|?) 2
5 |WI+6<+5I ) ¥

(28). The reduction in dimensionality, however, is clear, as
(28) is an elliptic equation in a three-dimensional domain,
while (47) holds in the corresponding horizontal domain de-
fined by the (single-valued) free surface. These variations,
combined with Hamiltonian dynamic2@), again yield the
system 23). The expressions for the depth-averaged horizon-

- g(hvw +YVh) - u* + %th Y Vh

_ 1 2 _g * }2
\% (15h¢ Vh— Shyu+ ch wvw), (53c)

tal velocity and the Bernoulli function are, however, modified

as follows:

b+h

hit = / W + FVHY + O ) Vieh)dz
b

=hu*+ PVy + QY Vh, (48)
1
B=su' P +g(h+b)+R", (49)
with R* defined as
R* =3F’|V¢|2 + 1 (K/ + G’|Vh|2) w2
2 2
+(P'Vy+ Q'Y Vh)-u*+RYyVy-Vh
—V-(Gszh+ Qwu*+RwV¢), (50)

and primed variables deno® = dP/dh, etc. In the varia-
tions of @6) with respect ta andh, boundary contributions

1 7 2 1
W=+ —|\Vh]2) = Zhu* — Zh2Vy ) - Vi
1/’<3+15' ') (3” 5 w)
2 3 1,,.1,
— . J— [ — V = U.
v (15hV1p ShPu + gy h> 0
(53d)

In summary, we derived and extended the variational
Boussinesq model within a Hamiltonian framework, by a
Ritz and mild-slope approximation of the vertical poten-
tial flow profile, while systematically including the verti-
cal component of the vorticity. The difference between our
model and Klopman’s model is in the velocity field, which in
our case includes the vertical vorticity. The surface velocity
representatiom™(x, y,t) = Vos(x, v, 1) +V(x, y, t) namely
replaces the representation used by Klopmaétx, y,1) =
V¢s(x, y,t) from the onset.

4.2 Green—Naghdi limit

The Green—Naghdi equations are obtained from a variational
principle under the assumption that the fluid moves in verti-

cancel either because the velocity normal to vertical wallscal columns, as was shown Miles and Salmoi{1985. The
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490 E. Gagarina et al.: Horizontal circulation and jumps in Hamiltonian wave models

model is sufficiently dispersive that shocks cannot be main- The Green—Naghdi system arises by keeping the relation

tained as an initial discontinuity disperses into smooth undu+(56) betweenz andu* and the Hamiltonian dynamicg3),

lations instantly, as was shown &} et al. (2006. We will but simplifying the Hamiltonian §7) to one with 8 =0.

show that the Green—Naghdi equations can be derived fronience, the variations with respecticandy, and the equa-

the variational Boussinesq model with a parabolic potentialtions 68) simplify to

flow profile via an additional approximation to the Hamilto-

nian. v =V-u, (59a)
Instead of $1), the shape function is taken to be

(h? — (z—b)?) /2. Hence, the modified velocity potential

becomes

Bt 12w a4 eth+b) - 2h2%-v(V @)
2 2 & 3

—(hV -@)@-Vh). (59b)
h? — (z — b)?
P, y.2. 1) = ————Yx.y.0). (54)  This simplification of the Hamiltonian is equivalent to the

o ) ) ) substitution of yet another three-dimensional velocity
Of course, this is equivalent tat?) with (51), i.e. (P =

((z—b)?>—h?)yP)/(2n), provided we redefiney” =  w=ia= (i, —z¢)" (60)
—hyr. With the mild-slope approximation, the velocity field
then becomes into the original Hamiltonian42). Consequently,599 is a
1 continuity equation given a columnar horizontal velodity
uy =u* + SVH ((h2 - zz)w) , (55a)  and thatw = —zy. Due to this approximation, the velocity
field given by 60) has nonzero horizontal vorticity compo-
w=¢; =~y (55b)  pents:

The expressions5@) and 63) are now immediately valid
given this substitution ofy?) in terms ofx and y. The
depth-averaged velocity thus follows frols3g as

0=V x (ii,0,w)" = (dw, —dyw, T — dyit), (61)

in contrast to the original system with= 1.

h+b ) The explicit expressiofr = V -u in Eq. (699 allows us to
il = 1 / udz = u* +hyVh+ h—VI//. (56) reformulate the system to the standard Green—Naghdi model,
h J 3 as follows:
Likewise, the Hamiltoniang2) becomes dh + V- (hu) =0, (62a)

i+ (-V)u+gV(h+b)
=th(V-8,ﬁ+(ﬁ-V)(V-12)—(V~ﬁ)2)

5 2 2
h 'ZOW dxdy, (57) + %V <V i+ @-V) (Vi) — (V- 12)2) ,
where we added a “switch” parameige= {0, 1} to be used  cf. Eq. (1) inBonneton et al(2010. In summary, we have re-
later, and rephrased the formulation in terma dflote, how-  covered the original Green—Naghdi system from a reformula-
ever, thatz is defined in terms of, ¢ andu™ in (56). tion and approximation of the variational Boussinesq model.
The Hamiltonian dynamic2@) combined with variations  This approximation is Hamiltonian, but consists of using an-

of (57) with respect to: andu* (using Eq.56) again lead to  other, columnar approximation of the three-dimensional ve-
the dynamicsZ7). Either via @7) or more directly by taking  |ocity in the Hamiltonian rather than employing the parabolic

variations with respect tgr for fixed 2 andu* in (57), one  potential profile that is still used in the Poisson bracket.
obtains

1 . 1 1
H[h,u*,I//]:/§h|u|2+éh3w2+§g ((h +b)2—b2)
Q

+ 8

(62b)

V=Vt %V : (h5V1p) . (58a) 5 Jump conditions for bores
This is an elliptic equation fogr once one use$6) to reex-  The most widely used model to describe wave propagation
pressu. The Bernoulli function follows either by rearranging and breaking near the shore — the shallow water equations —

(49) or from the variation of§7) with respect tdz, and takes ~ does not contain dispersion. Nevertheless, dispersive effects

the form during wave propagation in coastal zones can be important.
1 5, 1,, 1, We illustrate the subtle interplay between dispersion and dis-
B =§|f4| + Eh Ve+gh+b)— éh u-vVy sipation with the bore-soliton-splash experimeBbkhove

5 5 et al, 2017). This experiment is conducted in a wave chan-
hzh V| (58b) nel with a sluice at the beginning and a constriction at the

—h2yV i —hyi-Vh .
VV-u=hju +h 18 end. The sluice gate locks in a higher water level than in the
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E. Gagarina et al.: Horizontal circulation and jumps in Hamiltonian wave models 491

main part of the channel. At some point this gate is opened
instantly and a soliton is formed (see Fig, which breaks
quickly because its amplitude is too high and propagates fur-
ther as a hydraulic jump or bore (see Ry.During its prop-
agation the bore loses energy and amplitude, such that jus
before the constriction, it turns into the smooth soliton again
(see Fig3). The first reflected soliton draws a through at the
contraction in which the lower second soliton crashes and
splashes up (see Fig). We mention that there were three
“nearly” similar reruns of the experiment, and we used the
best images from any of these thr@wgeers 2010. The dis-
cussion concerns runs 3, 6, and 8 (performed at the openin
of the education plaza at the University of Twente in 2010).
The propagation of a smooth, broken and rejuvenated soli-
ton is an illustration of the balance and imbalance between
nonlinearity and dispersion. Therefore, a theoretical and nu-_. . i , L
merical model to describe such a phenomena has to includglg' 1 Bore-sollton-splash experiment: a smooth soliton is gener-

. . . ) . .__dted just after the sluice gate has been opened. Run c@secérs
dispersion and has to deal with breaking waves, in Whlchzom_
nonlinearity dominates.

Following ideas ofWakelin (1993, we further develop a %

technique to derive jump conditions from variational princi- &%
ples. To illustrate the intricate details of this approach, the ™
well-known jump conditions for bores are derived first for
the depth-averaged shallow water equations in one dimen-.
sion. Subsequently, the jump conditions for the new water §
wave model in two horizontal dimensions are obtained and i
its limitation to the well-known 2-D shallow water jump con-
ditions is shown. The jump conditions for the closely re- =~ «
lated variational Boussinesq and the Green—Naghdi models
are especially interesting as far as it is known that the Green— b
Naghdi model cannot maintain discontinuities since disper- 7,
sion is too strongH| et al, 2006. The situation for the varia-
tional Boussinesq model is unknown, while we know that the

full water wave model with its potential flow water waves can Fig. 2. Bore-soliton-splash experiment: after the soliton breaks it
lead to overturning and breaking waves. propagates as a bore through the channel. Run case 8. Photo: Uni-
versity of Twente Bokhove et al.2011).

5.1 1-D jump conditions for shallow water equations

Consider a bore propagating in a chanfelThe domaint2
is split into two parts2; lying behind the bore an, lying
in front of the bore, as shown in Fi§. Between these do-
mains there is a vertical moving boundary, correspond-
ing to the instant bore position at= x(7). The key point
is to consider the two domains separately and couple them,
atxp. If we consider one subdomain, then the moving bore §
interface is akin to a piston wave maker. It will be shown that
variational techniques are a natural way to obtain the bore re-
lations. The coupling establishes that there is an energy Ios@
at the interior bore boundary. ‘ ‘
_Let us assume that the domahhas solid wall bound— s N TNT | |53
aries and a flat bottom. The state to the left from the inte-
rior bore boundary(?) is given by the deptth~ and hor-
izontal velocityu~, and the one to the right by™ andu. Fig. 3. Bore-soliton-splash experiment: the broken wave has dis-
The bore speefl = i}, = dx,/dz. The shallow water velocity sipated enough energy near the end of the channel such that it

potential considered at the free surfacéis ¢s(x, 1), with is smoothed back to a soliton of lower amplitude. Run case 8
(Bokhove et al.2011).
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492 E. Gagarina et al.: Horizontal circulation and jumps in Hamiltonian wave models

corresponding depth-averaged horizontal velogity ¢, =
9,¢. The analog of the extended Luke’s variational principle
(2)—(5) for the depth-averaged shallow water system is

T
0=8/£[¢,h,t]dt
0

T [ %
=6/ /(—hqﬁt—%h(¢x)2—%gh2+tho>dx
0 0
; 1 1
+ / (—hqs,—§h<¢x>2—§gh2+tho>dx dr,  (63)
xy

in which we used the more compact notatian= 9, ¢, etc.,
andx, =lim._,o- (xp+€) andx,” =lim _, o+ (xp+€).
Taking variations of§3) we get

T
0:5/£[¢,h,t]dt
0

T [ *b L 1
=f /+f <<_¢t—§(¢x)2_gh +gHo> Sh
0 \0

_h&»bt - h¢x5¢x) dx

1 21 .2
| —hod = Sh($x)" = 58h"+ghHo | 6xp

1 1 +
— (—ha,¢> - éh (q&x)2 — Egh2 + tho) (be) d:.  (64)
Fig. 4. Bore-soliton-splash experiment: the final splash in the con-
striction of the channel. Run caseBxfeers 2010).

When we work out some terms in detail, we obtain

- z=h" — Tf% L
=S / / + / hé et =
: | REh = =i 0 \0o
00, 0Q,(1) 00, T Yy L
2,0 X f f + / ((h56), — hs¢) e |
20 00, 0 o \\o
Xp L X,

T L
x d
Fig. 5. Domain sketch for a breaking wave. Vertical cut with axes 0 0 o 0

*p
(x.2). —Xph™ (8¢)” +dph™ (8¢)T) dr, (65)

Nonlin. Processes Geophys., 20, 48330, 2013 www.nonlin-processes-geophys.net/20/483/2013/



E. Gagarina et al.:

and
Xp

T L
/ /+/ ho g, dx | dr
0 0

fl
X

T Y L
:/ /+/ ((h¢x5¢)x — (hox)y ‘Sd))dx dr
0 0 x;'

T Xy L
=f _ /+f (hhy) Sepclx
0 0

+ (h89) ™ — (hx5p) ") dr. (66)

Using the endpoint conditions(8¢);—o = (§¢);=T,
(8h)¢=0 = (8h);=T, the resulting variations become

T

:6/£[¢,h,t]dt

0

T X, L 1
=/ f+/ <<_¢1_§(¢x)2_gh+gH0> sh
0 0 xf

+ (hs + (hepy) ) 8¢) dx
1 2 1 2
+ h¢t+§h(¢x) +§gh —ghHo |dxp

+Sh™ (8¢)” — ST (89)* — (hepx8¢)~
+ (h¢8) T dt, (67)
where we defined the jumjpf]= f*

potential at the interfacg, = ¢ (xp) =

— f~ for an arbitrary
quantity f. Under the assumption that the velocity field can d_’H
at most contain discontinuities, it follows that the velocity ¢

¢ (x) = ¢ (x ) must

Horizontal circulation and jumps in Hamiltonian wave models 493

The final step is to use the equation §rfollowing from the
arbitrary variatiors to combine the terms witbwy,.

Subsequently, variations with respectgtph, xp, ¢p pro-
duce the following system of equations

8¢ : dh+ (hey), =0,at[0,x,) U (x; . L], (69a)
1
Oh: B+ (#x)*+g (h— Ho) =0,
at[0,x,) U (x7, L], (69b)
3pp: [A(S—¢x)] =0, atx=xp, (69c)
Sxp : |:hq§x2 —hS¢, + %gh2i| =0, atx=xp. (69d)

Equations §98—(69b) are the well-known shallow water
equations. Using = ¢, they can be represented as

oh+ (hu), =0 and o;u+uu,+gh, =0, (70)

in [0, x,)U (x;, L], and the jump condition$0c) and 69d)
are reformulated as

Spp:  [A(S—w)]=0,

1
Sxb : [h(S —u)’+ éghz] =0.

(71a)

(71b)

These are the well-known Rankine—Hugoniot conditions for
a moving bore in the shallow water equations.

An important property of hydraulic jumps in shallow water
is the loss of energy similar to the rise of entropy for shocks
in compressible fluid dynamics. It corresponds to the obser-
vation that breaking waves spray into many droplets losing
mechanical energy in the turbulent processes. The energy
of the system is given by the Hamiltonian. Taking the time
derivative of the Hamiltonian and usingd), we obtain

//(Mgh)dx

be continuous. For variations over the interface variables we

use the relatioid (¢p) = (8¢)b + (¢x)bdxp, and then obtain

=8/£[¢,h,t]dt
0

T Xy L 1
=/ /+/ <<_¢t_§(¢x)2_gh+gH0) sh
0 0

+ (hi + (hy), ) 8¢p) dx
1 2 1 2
+ h¢t+§h(¢x) —|—§gh —ghHg | éxp

—[Sh — hep] Sbp + [Shq&x - hqsf] 8xb) d. (68)

www.nonlin-processes-geophys.net/20/483/2013/
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which equals expression (13.86) Whitham (1974). Us-
ing the jump conditions7l), the expression7@Q) takes the
known form

dH gt —n)°h (S —u)

dr 4h—h+ ’ (73)

which means that ik™ > 2~ andS —u™ <0 orht <h~
andS—u™ > 0 energy is lost in73). These cases can also be
clarified by taking the velocityy~ = 0, keeping the left do-
main at rest, when the bore comes. When> 4 ~, the bore > X

then must come from the right, and therefére: 0, whence

the condition is satisfied. Vice versa wheh = 0, the right  Fig. 6. Domain sketch for a breaking wave. Horizontal cut with axes
domain is at rest. Wheh' < 4~, then the bore must come (x, y). The bore boundar§<y, is a vertical sheet with bore ling,.
from the left andS > O.

5.2 2-D jump conditions for new water wave model water wave model has the form

T
The jump conditions for the new water wave model in two 0= 5/£[l,n,¢,¢s, h]dt
horizontal dimensions (2DH) can be obtained in a similar 0
way. The three dimensional domainis split into two parts: , i
Q3 lying on one side of the bore aifeb is lying on the other 1,
side, see Figh. Viewed from above, the maximum horizontal ~ 5/ / (3r¢ +m- 0+ EIUI +g(z— Ho)> dzdxdy
extents of these two domains at the free surface are denoted 0 \aw 0
by Q1 and Q2n, respectively. Between the domains there n
?s a vertical and curved moyi_ng interfaé@b, corre;pond— n / /<3t¢+n-8tl+}\U|2+g(z—Ho)> dededy | dr.  (76)
ing to the unknown bore positiaixy, yp)(¢) in the horizontal 2
plane. The domaif is taken to have solid wall boundaries
and a flat bottom. The free surfage= & is denoted a8 Qs. First, we have to identify the independent variables, with re-
Assume that:~ > »* with »~ andh™ along the interface  spect to which we take the variations. Clearly, these include
9Qp in Q1 and 2, respectively. Hence, the bore moves to- ¢ in the interior, and:, ¢s, I andr at the free surface. Again,
wards$, with speeds = (ip, yp)” - n. We usen for the out-  we impose the following continuity assumptions on the
ward normal of the domai®; at the pointxp = (xp, yo)” velocity potential, gp = ¢ (xp, yb,2.1) = ¢ (xy . yp -2, 1) =
along the moving boundary<2,. At the same poink, the ¢ (x", v, z.1), and the particle labeldy = I(xp, yp, ) =
outward normalez in €2, has the opposite sigmz = —n.  (x.",y;,1) =I(x{, ¥ ,1), at the bore boundary<p. It
In the expressions that follow, we generally omit the third turns out later thal, and ¢, emerge as independent vari-
zero component of this normal at the vertical boundi®y.  ations as well. The interior boundary is evolving in time,
The velocity field in the new water wave model has the implying thatxy(g,7) and yo(q, 7) are part of the dynamics
form for some parameterization involving along 9Q2p. It turns
out to be more convenient to work in a coordinate system
alongdQ2p that is aligned with the normal vectarand tan-
gential vectorr tangential to it, such that-t = 0. By de-
finition this normal coincides with the direction of the jump
with i = 1, 2. The depth-averaged horizontal velocity is de- with speedS. Instead ofsx, we will use (6np, §1,)7, con-
fined as cerning the variations of a bore position in theand r di-
rections. The projection of the vectéry on the normal
iS8np = (8xp, 8yp)! -n. Similarly, §tp = (8xp, 8yp)” - T, with

Qon O

U(x,y,z,) =Vop+r;Vl; =Vop+Vv=u"+ Vo, (74)

h

) 1 n=(n1,n2)" andt = (r1, )7 the unit vectors of the new
ux,y, 0= / Undz. (75) " coordinate system. Hence, we find
0
8xp =n18np+ 118 1H, (77a)
As before in Eq. 2), the variational principle for the new 9Yb = n23np + 7287 (77b)
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Using (77), we relate variations af at the boundary,, as  here becomes

follows:
8/Fdxdydz=/F8hdxdy
8 (d) = 3)p + (D )pdxb + (dy), 8¥b @ I's
h
- 8 + X + ) 8 + X + y 8
00+ (madh -+ nady)ydno + (rad + 123) 570 + / / F8xp - npdlpdz + / 5 Fbxdydz (82)
= (3¢)p+ (Vo m)pdnp + (V- 1)p57b. (78) 55 3

with dI'y an infinitesimal line element along the bore lifg
Reynolds’ transport theorem for time derivatives has a
similar form as 82) provided we change the variational

Similar formulas can be obtained, as follows:

8 (h+) ="+ (Vh)" -ndnp+ (VA - 787, (79a) derivatives by time derivatives, giving
dn* + + d
F:(h,) + (Vh)" -nS, (79b) Edexdydz:/FZ),hdxdy
d¢b i s
o = @+ (V)p-nS. (79¢) @ r
h

The subdomaing?; with i =1,2 are time-dependent, +//FSdedz+/8thxdydz. (83)

since the interface between these subdomains moves intime. 0 Iy Qi

We therefore have to use a variational analogue of Reynolds’ Application of 82) to the variations in76) yields
transport theorem (see eBaniljuk, 1976 Flanders 1973

and Appendix8), as follows: 1,
O=/ / (8,¢+n-8tl+§|U| +gh— Ho)> Shdxdy
S

0 Q1,21

Sdexdydzz / F5Xr~nrdri+/5Fdxdde, (80)

h
Q FYe Q 1.5 gh?
! ‘ ! — 8t¢+n3,l—|—§|U| dZ+7—th0 Snbde

with the time-dependent part of the bounddty, nr the fo 0
three dimensional normal to the boundary, aéxi- =
(8xr,8yr,8zr)T the variations of the coordinates of that + / /8¢,+U~8(V¢)+n,~U«8(Vli)
boundary. Given{6), the expression foF is complicated
and depends on the independent variables in the variational
principle. It may in principle also contain given functions of ~ +U - VIidmidz +hl; - 67 + hm - 81 dxdydr, (84)
space, such as the bottom topography b(x, y) (here set  \ith the jump notation{ F] = F* — F~ for some arbitrary
to zero for simplicity). There are two time-dependent partsquantity F across the bore.

of the subdomaing; in (76): the 2-D free surfac€s and the We illustrate the derivation by working out one of the vari-
bore boundary <2y, which extends from € [0, h] along the  ations in detail. Using Reynolds’ transport theore8®) and
horizontal 1-D bore lind"p. The outward normal at the free (83), the variation of the integrals involving, in (76) (see
surface isng= (—hy,—hy, DT/ /14 (h)?2 + (hy)2. The also Eq.84) becomes

chosen parameterization is— i(x,y,t) =0 for a single- T h

valued free surface, in which and y are the coordinates. 8/ / /¢,dzdxdydt

In addition, s = \/1+ (hy)2 + (h,)2dxdy. Hence, 0 Qom0

h

Q1H,Q21 0

T h

8%s - nsdl's = (8xs8ys, 825) - (—hx, —hy, 1) drdy = / / (¢)s8hdxdy + f f [—¢¢] 8npdzdIy

= Shdxdy, (81) 0 Ts Tb 0

h

since dxs=38x =0, §ys=38y =0 and dzs=3h. The bore d
boundary is vertical and a line when viewed from above * g; _/ /Mddedy_/hf (8¢)sdrdy
with parameterization(g,¢) and yp(g,t) with parameter Q11,221 0 Ts
g along this line. The tangential vecter= (x4, y4, 0)7 with h
xq = d4xp andy, = 9, yp. Hence the three-dimensional nor-
mal isn = (—yq,xq,O)T in the direction of bore propaga- S (8¢)pdz | dlpdr. (85)
tion. Consequently, Reynolds’ theorem for variations used I'b 0
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In the last step, we use the end-point conditioss),—o = jump condition 88¢) shows that the tangential component of

(8¢)=7 =0, expression18) for (8¢)p, and a similar ex-  velocity contains no jump.

pression for(§¢)s = 8(¢s) — (¢p,)sdh, in order to determine The expected loss of energy can be found via a similar

the variations with respect to the independent variables. Th@rocedure as for the shallow water equations. Taking the time

variations in the last two terms i8%) thus become derivative of the Hamiltonian, invoking Reynolds’ theorem
(83), and using 87) extensively, we find

T
= f —~ / hi(8(¢s) — (¢)s8h)dxdly dH d (1 1
0 T dr / /2|U| Gt g8h” |y

Q1,221 \O

h
—/[S/(S((j)b) —Vé - ndnp —V¢>~18tb)dz]dr‘bdt. (86)

h
1 1
B -/ (/§|U|2dz+5gh2) dxdly
t

Analysing the variations of8d) in a similar way, while e Sizn (:l
integrating by parts, using the endpoint conditios);—o = 1, 1,
(8¢)s—7, (81),—0 = (81),—7, and the definition of the velocity —/S /§|U| dZJFEgh dl'
(74), we first obtain the following system of equations Th 0
S¢: V2p+V.v=0 in Q\9Q, (87a) "
1 =—/ /U.n¢,dz+(ha-n)(v.ﬁ) dl'p
Oh: s+ 5|Vigs+VI2+g(h—Ho) =V @ £ Lo
1(3 $)2(L+|Vhh|®>) =0 in Ts\T f1 1
2 s H N s\hb —fS /—|U|2dz+—gh2 drp. (89)
(87b) 4 / 2 2
b

Ss: dh— (3:0)s(L+|Vuh|?) y . .
Additionally, we used a rewritten form of the continuity

+(VH¢s+V)-Vuh =0 in Ts\Th,  (87C)  equatiom,h+V-(hit) = 0 andd,v+ii-Vv+vVii = 0. Using
S(hm): 9l+u-VI=0 in Ts\Tp, (87d)  jump conditions 88), expressiong9) finally takes the form
8l: 8, (hm)+V-(hum)=0 in Ts\Tp, (87¢e)

dH f
— = | QdI'y
similar to @) and (7). It can also be reformulated t@7) and dr E
(29). °
Second, the variations with respect to the interior bound- h
ary variables ab 2y arise with the help of relationg8) and Ef / S—=U-n)(¢p;+SWU-n)—vVv-u)dz | dl'y
0

(79), and equations3(): o

Spp: [h(i-n—S)]=0, (88a) (90)
with rate of energy los® along the bore boundary.

h
1.5

Snp : U-n)(U-n—S)dz — —gh ) .. .
/ 2 5.3 2-D jump conditions for shallow water equations

h The variational approach can be implemented for the 2-D
_/ <¢t + }|U|2> dz+hv-ii | =0 (88b)  Shallow water equations. Nevertheless, the final result for the
2 jump conditions coincides with the jump conditions derived

0 from (88) under the simplification of the velocity potential.
- When we assume the velocity potential to pe-= ¢s, the
/(U-t)(U-n—S)dz =0,

8ty : (88c)  shallow water velocity field emerges as
0 o, B
Slp: [ (@-n—S)] =0. (8sd) UCny-D=u=wilny ) =Vestoy H vy 1)
=Vos+m; VI, (91)

Together with 889, condition 88d) expresses continuity of

the Lagrange multipliera. The jump conditions&8g and  with i, j =1,2. For the surface velocity potential, = O,
(88b) coincide with the jump conditions resulting from the which allows us to compute the integral i880) explic-
conservative form33) of the new water wave model, and the itly and to simplify equation&7h). We substitute&7b) into
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(88b), which leads to the Rankine—Hugoniot conditions for
the shallow water equations BEg:

S¢pp: [h(@m-n—S8)]=0, (92a)
Snp [h (@-n)@-n—S)+ %ghz} =0, (92b)
8tp:  [h(@-T)(@-n—S)]=0, (92¢)
Slp: [hx(m-n—S)] =0, (92d)

yielding again continuity of the Lagrange multipliets
Under the assumption that= ¢s, while using the simpli-

fied version of 87b), the energy loss expressid®0j reduces

to the shallow water energy loss expression as follows:

Q=|:(ﬁ~n)<%h|12|2+gh2>]—S[%h|ﬁ|2+%gh2] (93)

Using jump conditions923 and ©2b) expression43) takes
the well-known form Peregrine1999

ght —n )3t (S —n-ut)
Ah—ht
which means that in the cask$ > h~ and(S—n-at) <0

orht <h™ and(§S—n-ut) > 0 the energy is lost. It is a
natural 2-D generalization of relatio3).

5.4 1-D jump conditions for new water wave model

In one horizontal dimension the velocity field reduces to po-
tential flow U = V¢ with v = 0. We again split the domain
Q into two parts,©27 and Q2; and in each of them the free
surface profile is assumed single valued.

The jump conditions88g and @88h) in 1-D are reformu-
lated as

|: | (
0
with vertical velocity component = ¢,.

It is worthwhile to mention that the jump conditions could

also be obtained from3@). In 1-D the depth-averaged mo-
mentum equation in3@) takes the form

)dz—;ghz) =0, (96)

X

[h(S—i@)]=0, (95a)

1 1
“u?— Zw?— 8¢

_ 1,
> 5 )dz —husS — égh :| =0, (95b)

1
7u2—§w2—a[¢

[+) (/¢

2

which relates to the jump conditio@%h).
The energy loss relation can be reduced fr@f) (o a
form

h
ij_?t-[: |:/(S—u)(¢,+Su)dz:|.
0
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It is not clear what the sign offd/dr is in the previous ex-
pression. The integral expressions can be simplified when we
use the Ritz method to approximate the velocity potential,
which is illustrated next.

5.5 1-D jump conditions for variational Boussinesq and
Green—Naghdi equations

When we substitute the Green—Naghdi ansatz

¢=¢s+%<h2—z2)1ﬂ (98)

into jump condition §5b), we obtain
hﬁz—hSﬁ—l—}ghz—h—s(w —w2+ﬁ¢)+ﬁh—5w2 =0 (99)
2 3\ AT

after using thato,u* = 9, (¢s) = —B, such that we can
used,; (¢s) = —B with B given in G8b). To reconstruct the
Green—Naghdi system we tale=0 and following 699
takeyr = u,. Then jump conditions9bg and Q9) are sim-
plified as

[h(S—i)] =0, (100a)

2 .3
_ _ ghc h
hia2—nsa+
WUty

(ﬁxf— (ﬁx)2+ﬁﬁ“)] —0.  (100b)
Considering 97) with the velocity potential simplified as
(98) and for 8 = 0, we reformulate the entropy expression
for energy loss as follows:

)} (101)

oo

In order to check whether energy is lost in the jump we need
to determine the sign oL01). The analysis ol et al.(2006
shows that due to the strong influence of dispersion in the
Green—Naghdi model a discontinuity cannot be maintained.
In that case,X01) reduces to #/dt = 0 as there is no dis-
continuity. It is unclear at the moment whether the variational
Boussinesq model for the cage=1 can maintain bores.
This can in principle be checked in a numerical model with a
shock fitting approach, such that numerical dissipation at the
discontinuity is at least avoided. Such an investigation is left
to future work possibly using results frofli and Kalisch
(2010.

h2i
2

2
X

2

(—9)2 [
-3 (txr+ityy)

2

dr

+gh+

6 Conclusions

A systematic derivation of a new Hamiltonian formulation
for water waves was given starting from the variational prin-
ciple (2). The new water wave model includes both water-
wave dispersion and the vertical component of the vorticity
by construction. It was pointed out iBridges and Needham
(2011 that the shallow water equations, or any Boussinesq
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system without proper circulation in the vertical plane, miss Appendix B

an instability they found in Benney’s shallow water equa-

tions. It remains an open question to what extent this omisVariational Reynolds’ transport theorem

sion of horizontal vorticity components matters in the shal-

low water flows investigated here. To take the variations of an integral with boundaries depend-
Subsequently, we showed how the new Hamiltonian for-ing on dynamic variables, we have to obtain a variational

mulation reduces to the classical shallow water and potentia@nalogue of Reynolds’ transport theorem. Consider a do-

flow models. The new system could be simplified further to Main<2(xr, yr, zr, #) in which (part of) the boundaryr is

an extension of the variational Boussinesq modelKlop- evolving in time. We need to find the variations of the integral
man et al.(2010, now including potential vorticity. For a

parabolic potential flow profile, these Hamiltonian Boussi- / [F. Xr] = / F(x,y,z,1)dxdydz, (B1)
nesq models were shown to contain the Green—Naghdi sys- Q(xr)

tem provided the velocity in the Hamiltonian was approxi- . . L . .
P d PP in which F can depend implicitly on spatial coordinates and

mated further to be columnar. i 2 oth bl int | th ¢ asiB
Finally, a new variational approach to analyse systemsIme via other variables, or an integral thereof, as 16)(

with discontinuities was explored. It resulted into known or explicitly on x, y, z and_t. Th_e variation h_as o be taken
jump conditions for the shallow water system and novel con-WIth respect to the functlon}j” (in short, as in our cas@l .
ditions for our new system. Moreover, it provides an appa-InCIUdes furtheerepeqdenC|es) and the bound_gry positions
ratus to analyse the stability of shocks or jumps for system&T = (- yr.zr)” . Taking a short-cut, the definition of the
with the Hamiltonian structure. We were, however, unable fovarationis

determine yet whether the jumps derived for the new syster%l — lim }(I[F 4 €8F, Xp + €8xr] — I [F, xr]) (B2)
and its Boussinesq simplifications could be sustained via lo- =~ e-0¢ ' ' '

cal dissipation of energy in the bore. Future plans therefore We introduce a transformatiom = x (£,7,¢) (in short

w;cl;de thhe nErpe.ncal ev";\]lustpn of these]umﬁ coi?dmons.m- x) from reference space to physical space with coordinates
cluding shock-fitting methods, in contrast to shoc -capturlngEl — &, & = n andés = ¢ in the reference space. We assume

metlholds :;1 which artrl]fl(:l_al, nufn;le rical ci_lipg_rsmn may INCOr™ that such a transformation (or compound of transformations)
rectly lead to smoothening of flows with discontinuities or x : 2 Q exists. The evaluation df in the reference space

bores. is denoted byF o x = F(x = x(§,7,¢),t), which includes

the complicated dependence on the variables, as discussed.
Appendix A The inverse ofy is denoted byy ~! and is assumed to exist.

It transforms the physical domafa into a reference domain
Integrals 2. The key simplification used is that the reference domain

is fixed in time. We denote the Jacobian matrix of this trans-
In this Appendix, we define the integrals in expressieig{ formation by
(50), as follows:

X& Xp Xg

b+h , b+h , J = Ve ¥y Ve (83)
Foub = [ fa con = [ @i, % 2

b b and its determinant ag/|. Clearly, this Jacobian and the

b+h b+h transformed coordinates will depend on the coordinates
K(h,b) = / (3Zf)2dz’ P(h,b) = / fdz, along the boundar§Qr.

; J The integral over the domaif is calculated to be

bth bih / F(x,y,z,1)dxdydz = / F o x|J|d&1d&0E3. (B4)
Q(h,b) = / (0nf)dz, R(h,b)= / f@nfdz. (A1) Q &

b b

The variations are easier in reference space, given that the

When f(z: b, h) equals the parabolic vertical profil&), reference domain is fixed in time. We thus obtain

these integrals reduce to

2 4 7 1 5/F0X|J|d§1d§2d$3=/3(FOX|J|)d$1d§2d§3
F=—h® G=—h K=2zh,
15 15 3 ) )
1, 2 1,
P=—3h% Q=-zh, R=gh" (A2) =/|J|8(Fox)+(FoX)8|J| di1deades. (B5)
a

Nonlin. Processes Geophys., 20, 48330, 2013 www.nonlin-processes-geophys.net/20/483/2013/



E. Gagarina et al.: Horizontal circulation and jumps in Hamiltonian wave models 499

We consider the terms irBg) consecutively. The first one The last term of B8) is evaluated by using
becomes o1
VF=(J")""Ve(Foy), (B10)

O Q

Ve(Foy)-(171(J7)~tw)derded
To evaluate the second term iBY), we have to take varia- /5( X (| I )él F2s

tions of the Jacobian, as follows: Q
- = [ VF.sxdxdydz. (B11)
8171 =Ve - (171677 Mw), (87) /
Q
with the *“variational wind” w=dXo x denoting varia- After all, we combine the results iB7) and @11) into
tions éx projected to the reference space, aNd =
(8/0¢€,0/0n,0/0¢)T. This leads to 5/F(x,y,z,r)dxdydzZ/Fax-ndr
Q Q2
F 8|J| dérdéad
/( ° 06| dackatks +/6(Fox)ox_1—VF-8xdxdydz. (B12)
@ Q
= (FOX)V$'<|J|(JT)_1W> dé1dg2dé3 Using the chain rule for variations, one can derive that

L /S(Fox)ox_ldxdydz= /VF-5X+(8F)dxdydz, (B13)
Ve ((Fo0l 101 Mw) J J

O O

such that we can combine the last two terms3ifZ). Hence,
—Ve(Fox)- <|]|(JT)_lw>dgld§2d§3. (B8) we finally derived the required Reynolds’ transport theorem
for variations 80) used in the main text:
It is worthwhile noting that we use the general vectar
because it depends through the transformagioim a gene-  § / Fdxdydz = / Féxp -ndl’ + / 3 Fdxdydz, (B14)
rally complicated manner, o¥xr. The dependency does not
need to be found explicitly as will become clear shortly. Only
at the moving parts of the bounda@r is §x = 8xr, incon-  where we usedx = §xr, aséx = 0 on the fixed part of the
trast to the situation at the other boundaries. boundaries.
In (B8), we consider the terms separately. The first one can
be evaluated using Gauss’ theorem as follows:

Q AQr Q

[ ¥ ((F o017y w)derdacs
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