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Abstract. In this paper a change-point detection method is
proposed by extending the singular spectrum transformation
(SST) developed as one of the capabilities of singular spec-
trum analysis (SSA). The method uncovers change points re-
lated with trends and periodicities. The potential of the pro-
posed method is demonstrated by analysing simple model
time series including linear functions and sine functions as
well as real world data (precipitation data in Kenya). A sta-
tistical test of the results is proposed based on a Monte Carlo
simulation with surrogate methods. As a result, the success-
ful estimation of change points as inherent properties in the
representative time series of both trend and harmonics is
shown. With regards to the application, we find change points
in the precipitation data of Kenyan towns (Nakuru, Naivasha,
Narok, and Kisumu) which coincide with the variability of
the Indian Ocean Dipole (IOD) suggesting its impact of ex-
treme climate in East Africa.

1 Introduction

Many processes in nature, engineering, or life can be stud-
ied by measuring quantities and analysing such time se-
ries (Bishop, 2007; Brockwell and Davis, 1991, 2002). Typ-
ically such a purpose is achieved by using statistical tools.
Following the development of computer performance, in par-
ticular, it allows us to analyse a large amount of data for a
number of different parameters. The climate data analysis
discussed in this paper is one typical case.

As one of the most typical climate phenomena, El Niño
and La Nĩna occurring in the Pacific Ocean by the dynam-
ics of the atmosphere–ocean interaction are known, which

are mostly studied as a problem of El Niño/Southern Oscil-
lation (ENSO). Recently, a coupled ocean–atmosphere phe-
nomenon called the Indian Ocean Dipole (IOD) similar to
the ENSO has been exposed (Saji et al., 1999). This phe-
nomenon is apparently as important as the intertropical con-
vergence zone (ITCZ) for the tropical and sub-tropical re-
gions. In particular, it is considered that IOD is influencing
rainfall in East Africa. However Saji et al. mentioned that the
IOD events occur independently of the ENSO events which
are observed in the Pacific region expressed by the NINO3
index (5◦ N–5◦ S, 150–90◦ W). Figure1 shows the compar-
ison between the monthly behaviours of IOD and NINO3
time series (Fig.1a) and the correlation coefficients of the
past ten years at every time point (Fig.1b). From the fig-
ure, the positive IOD in the Indian Ocean and the El Niño in
the Pacific Ocean often occur simultaneously, e.g. as in 1972
and 1997. The reason may be that the sea surface tempera-
tures in the western Indian Ocean and in the eastern Pacific
Ocean are higher than the opposite sides of these oceans that
are located around Indonesia. On the other hand, the posi-
tive IODs in 1961, 1967, and 1994 occurred with the ENSO
indices that express no El Niño, a La Nĩna, and a weak El
Niño, respectively, in which heavy rainfalls were provided in
East Africa in 1961 (Flohn, 1987). Saji et al.(1999) men-
tioned, therefore, that the correlation between the IOD and
ENSO is weak. In this study, as shown by the red rectangles
in Fig. 1, we focus on the significant uncorrelation time in
the 1960s. Since it is different from the correlation at other
times, the motivation in this study is to consider the IOD as a
complementary index of the climate variability in East Africa
in addition to the ENSO.
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The IOD shows that anomalies occurring between the east-
ern and western equatorial Indian Oceans (Fig.2) can be de-
composed into a positive and a negative modes. When the
Indian Ocean is in the normal state (i.e. the index is zero)
the sea surface temperature is relatively high in the east and
low in the west. The dipole mode depends on the strength of
the south-east trade winds. The positive dipole mode is illus-
trated in Fig.2a: if the wind on the Indian Ocean grows rel-
atively strongly, the hot sea water in the eastern side moves
to the western side and thus the sea surface temperature in
the western side increases according to this effect and the sea
surface temperature in the eastern side will drop by the up-
welling cold water coming from the deep sea. At this time,
since a atmospheric convective activity moves to the west,
then floods are often caused in East Africa as well as Indone-
sia is besieged by droughts. The negative dipole mode is il-
lustrated in Fig.2b: if the wind relatively weakens, the nor-
mal state will furthermore grow strongly, i.e. the sea surface
temperature in the east is warmer and the sea surface tem-
perature in the west is colder. At this time, in contrast to the
positive dipole mode, the convective activity happens in the
east, which causes droughts in East Africa and floods in In-
donesia. According to recent reports (Ashok et al., 2001; Be-
hera et al., 2005; Saji et al., 1999), such a “teeter-totter” phe-
nomenon alternately causes droughts/floods in East Africa
on the west side and in Indonesia on the east side of the In-
dian Ocean. According toNakamura et al.(2009), the pe-
riodicity of IOD in recent decades was quasi-biennial (1.5–
3 yr), which is shorter than at the beginning of the 20th cen-
tury. In the article, it was suggested that tropical convections
were encouraged due to a warming of the sea surface tem-
perature in the western Indian Ocean. Then an occurrence
of the positive IOD event, which brings in heavy rainfall in
East Africa, became more frequent. Furthermore,Nakamura
et al. (2009) mentioned that the ENSO effect weakened by
the warming tendency in the western Indian Ocean and al-
ternatively the IOD effect increased over the Indian Ocean
since 1960. Therefore, we focus on the 1960s and aim at the
characterisation of the change in the IOD dynamics by using
a change-point detection approach.

In this study, the monthly precipitations in Nakuru
(0◦17′ S, 36◦4′ E), Naivasha (0◦43′ S, 36◦25′ E), Narok
(1◦5′ S, 35◦52′ E), and Kisumu (0◦6′ S, 34◦45′ E) provided
from the GHCN v2 database (http://www.ncdc.noaa.gov/)
will be compared with the IOD. Figure3 shows the locations
of these stations. This region is located around the Equator.
Therefore since it is strongly affected according to a sea-
sonal movement of the ITCZ formed by a convergence of
Hadley circulation, there are two rainy seasons in spring (a
long term) and autumn (a short term). The obtained data have
different time length. However, as shown in Fig.4 the data
used in this study are overlapping at all the stations in the
time region between January 1950 and December 1985 (for
36 yr) corresponding to 432 data points.
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grows relatively strongly, the hot sea water in the eastern side
moves to the western side and thus the sea surface temper-
ature in the western side increases according to this effect
and the sea surface temperature in the eastern side will drop
by the upwelling cold water coming from the deep sea. At
this time, since a atmospheric convective activity moves to
the west, then floods are often caused in East Africa as well
as Indonesia is besieged by droughts. The negative dipole
mode is illustrated in Fig. 2 (b): If the wind relatively weak-
ens, the normal state will furthermore grow strongly, i.e., the
sea surface temperature in the east is warmer and the sea sur-
face temperature in the west is colder. At this time, in con-
trast to the positive dipole mode, the convective activity hap-
pens in the east, which causes droughts in East Africa and
floods in Indonesia. According to recent reports (Ashok, K.
et al. (2001); Behera, S. K. et al. (2005); Saji, N. H. et
al. (1999)), such a ”teeter-totter” phenomenon alternately
causes droughts/floods in East Africa on the west side and in
Indonesia on the east side of the Indian Ocean.According to
Nakamura, N. et al. (2009), the periodicity of IOD in recent
decades was quasi-biennial (1.5–3 years), which is shorter
than at the beginning of the 20th century. In the article, it was
suggested that tropical convections were encouraged due to
a warming of the sea surface temperature in the western In-
dian Ocean. Then an occurrence of the positive IOD event,
which brings in heavy rainfall in East Africa, became more
frequent.Furthermore, Nakamura et al. mentioned that the
ENSO effect weakened by the warming tendency in the west-
ern Indian Ocean and alternatively the IOD effect increased
over the Indian Ocean since 1960. Therefore, we focus on
the 1960’s and aim at the characterisation of the change in the
IOD dynamics by using a change-point detection approach.

In this study, the monthly precipitations in Nakuru (0o17
′

S, 36o4
′

E), Naivasha (0o43
′

S, 36o25
′

E), Narok (1o5
′

S,
35o52

′
E), and Kisumu (0o6

′
S,34o45

′
E) provided from the

GHCN v2 database (http://www.ncdc.noaa.gov/ )
will be compared with the IOD. Fig. 3 shows the locations
of these stations. This region is located around the equa-
tor. Therefore since it is strongly affected according to a
seasonal movement of the ITCZ formed by a convergence
of Hadley circulation, there are two rainy seasons in spring
(a long term) and autumn (a short term). The obtained data
have different time length. However, as shown in Fig. 4 the
data used in this study are overlapping at all the stations in
the time region between January 1950 and December 1985
(for 36 years) corresponding to 432 data points.

The SSA has provided a number of typical achievements
in many scientific fields, especially, it can be used for solv-
ing the following problems: Finding trends of different reso-
lution, smoothing, extraction of seasonality components, si-
multaneous extraction of cycles with small and large periods,
extraction of periodicities with varying amplitudes, simulta-
neous extraction of complex trends and periodicities, finding
structures in short time series, and even change-point detec-
tion (Hassani, H. (2007)). The basic concept of SSA derives

Fig. 1. (a) Normalized time series (mean zero and variance one)
of IOD (from Japan Agency for Marine Earth Science and Technol-
ogy (http://www.jamstec.go.jp )) and ENSO (from KNMI
Climate Explorer (http://climexp.knmi.nl )) from 1900 to
1997 (b) Running correlation coefficients between IOD and ENSO
for the past 10 years at all the time points. Both time series have
been smoothed by using a 3-month moving average. The ENSO is
represented by NINO3 sea temperature anomalies. By the red rect-
angles the 1960’s is emphasized, where the IOD index obviously
exhibits a behaviour different from that of ENSO in the 1960’s and
then the correlation between them is low (< 0.1) during this time.

(a) (b)

Fig. 2. Schematic of (a) positive IOD mode, (b) negative IOD
mode (from Japan Agency for Marine Earth Science and Technol-
ogy (http://www.jamstec.go.jp )).

from the principal component analysis (PCA) and the sin-
gular value decomposition (SVD) (Björnsson, H. and Vene-
gas, S. A. (1997)). A comprehensive discussion is described
in the papers and books by Elsner, J. B. and Tsonis, A. A.
(1996); Vautard, R. et al. (1992); Ghil, M. et al. (2002);
Golyandina, N. et al. (2001).

Change-point detection in time series can be performed
by different techniques. For example, Mudelsee, M. (2000)

Fig. 1. (a) Normalised time series (mean zero and variance one)
of IOD (from Japan Agency for Marine Earth Science and Tech-
nology;http://www.jamstec.go.jp) and ENSO (from KNMI Climate
Explorer;http://climexp.knmi.nl) from 1900 to 1997.(b) Running
correlation coefficients between IOD and ENSO for the past 10 yr at
all the time points. Both time series have been smoothed by using a
3-month moving average. The ENSO is represented by NINO3 sea
temperature anomalies. By the red rectangles the 1960s is empha-
sised, where the IOD index obviously exhibits a behaviour different
from that of ENSO in the 1960s and then the correlation between
them is low (< 0.1) during this time.

The SSA has provided a number of typical achievements
in many scientific fields, especially, it can be used for solv-
ing the following problems: finding trends of different reso-
lution, smoothing, extraction of seasonality components, si-
multaneous extraction of cycles with small and large peri-
ods, extraction of periodicities with varying amplitudes, si-
multaneous extraction of complex trends and periodicities,
finding structures in short time series, and even change-point
detection (Hassani, 2007). The basic concept of SSA derives
from the principal component analysis (PCA) and the sin-
gular value decomposition (SVD) (Björnsson and Venegas,
1997). A comprehensive discussion is described in the pa-
pers and books byElsner and Tsonis(1996); Vautard et al.
(1992); Ghil et al.(2002); Golyandina et al.(2001).

Change-point detection in time series can be performed
by different techniques. For example,Mudelsee(2000) sug-
gested detecting change points in palaeoclimate time series
by using a regression model called RAMPFIT. As a more re-
cent technique, a change-point detection by using a Bayesian
approach was applied to the annual flow volume of the Nile
River (Scḧutz and Holschneider, 2011). These methods as-
sume a change in the linear behaviour (trends) and require
a parametric or a distribution fit. In contrast, the change-
point technique based on SSA is nonparametric and it is
not necessary to estimate a statistical distribution or to fit a
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grows relatively strongly, the hot sea water in the eastern side
moves to the western side and thus the sea surface temper-
ature in the western side increases according to this effect
and the sea surface temperature in the eastern side will drop
by the upwelling cold water coming from the deep sea. At
this time, since a atmospheric convective activity moves to
the west, then floods are often caused in East Africa as well
as Indonesia is besieged by droughts. The negative dipole
mode is illustrated in Fig. 2 (b): If the wind relatively weak-
ens, the normal state will furthermore grow strongly, i.e., the
sea surface temperature in the east is warmer and the sea sur-
face temperature in the west is colder. At this time, in con-
trast to the positive dipole mode, the convective activity hap-
pens in the east, which causes droughts in East Africa and
floods in Indonesia. According to recent reports (Ashok, K.
et al. (2001); Behera, S. K. et al. (2005); Saji, N. H. et
al. (1999)), such a ”teeter-totter” phenomenon alternately
causes droughts/floods in East Africa on the west side and in
Indonesia on the east side of the Indian Ocean.According to
Nakamura, N. et al. (2009), the periodicity of IOD in recent
decades was quasi-biennial (1.5–3 years), which is shorter
than at the beginning of the 20th century. In the article, it was
suggested that tropical convections were encouraged due to
a warming of the sea surface temperature in the western In-
dian Ocean. Then an occurrence of the positive IOD event,
which brings in heavy rainfall in East Africa, became more
frequent.Furthermore, Nakamura et al. mentioned that the
ENSO effect weakened by the warming tendency in the west-
ern Indian Ocean and alternatively the IOD effect increased
over the Indian Ocean since 1960. Therefore, we focus on
the 1960’s and aim at the characterisation of the change in the
IOD dynamics by using a change-point detection approach.
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of these stations. This region is located around the equa-
tor. Therefore since it is strongly affected according to a
seasonal movement of the ITCZ formed by a convergence
of Hadley circulation, there are two rainy seasons in spring
(a long term) and autumn (a short term). The obtained data
have different time length. However, as shown in Fig. 4 the
data used in this study are overlapping at all the stations in
the time region between January 1950 and December 1985
(for 36 years) corresponding to 432 data points.

The SSA has provided a number of typical achievements
in many scientific fields, especially, it can be used for solv-
ing the following problems: Finding trends of different reso-
lution, smoothing, extraction of seasonality components, si-
multaneous extraction of cycles with small and large periods,
extraction of periodicities with varying amplitudes, simulta-
neous extraction of complex trends and periodicities, finding
structures in short time series, and even change-point detec-
tion (Hassani, H. (2007)). The basic concept of SSA derives

Fig. 1. (a) Normalized time series (mean zero and variance one)
of IOD (from Japan Agency for Marine Earth Science and Technol-
ogy (http://www.jamstec.go.jp )) and ENSO (from KNMI
Climate Explorer (http://climexp.knmi.nl )) from 1900 to
1997 (b) Running correlation coefficients between IOD and ENSO
for the past 10 years at all the time points. Both time series have
been smoothed by using a 3-month moving average. The ENSO is
represented by NINO3 sea temperature anomalies. By the red rect-
angles the 1960’s is emphasized, where the IOD index obviously
exhibits a behaviour different from that of ENSO in the 1960’s and
then the correlation between them is low (< 0.1) during this time.
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Fig. 2. Schematic of (a) positive IOD mode, (b) negative IOD
mode (from Japan Agency for Marine Earth Science and Technol-
ogy (http://www.jamstec.go.jp )).

from the principal component analysis (PCA) and the sin-
gular value decomposition (SVD) (Björnsson, H. and Vene-
gas, S. A. (1997)). A comprehensive discussion is described
in the papers and books by Elsner, J. B. and Tsonis, A. A.
(1996); Vautard, R. et al. (1992); Ghil, M. et al. (2002);
Golyandina, N. et al. (2001).

Change-point detection in time series can be performed
by different techniques. For example, Mudelsee, M. (2000)

Fig. 2. Schematic of(a) positive IOD mode,(b) negative IOD mode (from Japan Agency for Marine Earth Science and Technology,
http://www.jamstec.go.jp).
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Fig. 3. Location of the used weather stations in Kenya. Nakuru
(0o17

′
S,36o4

′
E), Naivasha (0o43

′
S,36o25

′
E), Narok (1o5

′
S,

35o52
′

E), and Kisumu (0o6
′

S,34o45
′

E)

Fig. 4. Observations of monthly precipitation between 1950 and
1985. (a) Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu.

suggested detecting change points in paleoclimate time series
by using a regression model called RAMPFIT. As a more re-
cent technique, a change-point detection by using a Bayesian
approach was applied to the annual flow volume of the Nile
River (Scḧutz, N., and Holschneider, M. (2011)).These
methods assume a change in the linear behaviour (trends)
and require a parametric or a distribution fit. In contrast, the
change-point technique based on SSA is nonparametric and
it is not necessary to estimate a statistical distribution or to
fit a linear trend (Id́e, T. and Inoue, K. (2004); Id́e, T., and
Inoue, K. (2005); Id́e, T. (2006); Itoh, N., and Kurths, J.
(2010); Mohammad, Y. and Nishida, T. (2009); Moskvina,
V. and Zhigljavsky, A. (2003)). This is an advantage because
it is difficult to reliably estimate parameters and distributions
for short observations.

A change-point is generally defined as any time point in
the evolution of a system in which an abrupt structural and
dynamical change occurs. Such a change may appear in time
series as discontinuities, gaps or changes in periodicities, am-
plitude or variance.The basic motivations for this investiga-
tion are explained by the following assumptions: The prop-
erties or parameters describing the data are either constant or
slowly time-varying. In practical problems, abrupt changes

occurring at certain times can help in modelling dynamical
processes (Basseville, M. and Nikiforov, I. (1993)). Focus-
ing on a climate application in this study, change-point detec-
tion may provide basic insights into abrupt climate changes
of a trend with a long term variability but also seasonal cy-
cle or quasiperiodicity. If such a change-point can clearly be
identified in a time series the result will suggest that there
exist substantially different properties or structures in the cli-
mate sense before and after the time instant.

In this study the SSA-based change-point detection pro-
posed by Id́e, T. and Inoue, K. (2004), has been applied,
which is called singular spectrum transformation (SST).
However, the conventional SST has considered only change
points for the most dominant component of data correspond-
ing to a change in a trend. Since the SSA can originally re-
veal several representative orthogonal components from data
we will extend the conventional SST to detect the change
points also for further components. In the next section we
explain the procedures of the SSA as well the SST and then
propose the extended version of SST.

2 Method

2.1 Singular Spectrum Analysis (SSA)

The SSA aims to extract spectral information from time se-
ries. As described in Section 1, the change-point detection is
one of the capabilities of the SSA. Basically, this is achieved
by mathematically decomposing and reconstructing a time
series (Elsner, J. B. and Tsonis, A. A. (1996); Golyandina,
N. et al. (2001)).

The first step is an embedding of a single time series
Y= (y1,···,yN ) into a multi dimensional vector space what
can be achieved by transforming the time series into the fol-
lowing trajectory matrix of sizeK×L, (K =N−L+1):

X= [X1 : ··· :XK ] = (xij)
L,K
i,j=1, (1)

whereXi = (yi,···,yi+L−1)
T, (1≤ i≤K). The matrix is

expressed as a Hankel matrix, in which elements on the anti
diagonals are equal (Phillips, J. L. (1971)).The dimension
or window lengthL is directly related to the fineness of the
decomposition of the original time series in order to charac-
terize essential aspects of the data.

In the second step, the trajectory matrix is decomposed
by the singular value decomposition (SVD) in the following
form:

X=USVT, (2)

where two unitary matrices of singular vectors,U andV con-
sist of orthonormal vectors regarded as basis vectors of the
trajectory matrix andS means a matrix of singular values in-
cluding nonnegative real numbers on the main diagonal and
zero in the remaining positions.Then the trajectory matrix
is represented by rank-one biorthogonal elementary matrices

Fig. 3. Location of the used weather stations in Kenya. Nakuru
(0◦17′ S, 36◦4′ E), Naivasha (0◦43′ S, 36◦25′ E), Narok (1◦5′ S,
35◦52′ E), and Kisumu (0◦6′ S, 34◦45′ E).

linear trend (Idé and Inoue, 2004, 2005; Idé, 2006; Itoh and
Kurths, 2010; Mohammad and Nishida, 2009; Moskvina and
Zhigljavsky, 2003). This is an advantage because it is diffi-
cult to reliably estimate parameters and distributions for short
observations.

A change point is generally defined as any time point in
the evolution of a system in which an abrupt structural and
dynamical change occurs. Such a change may appear in time
series as discontinuities, gaps or changes in periodicities, am-
plitude or variance. The basic motivations for this investiga-
tion are explained by the following assumptions: the proper-
ties or parameters describing the data are either constant or
slowly time-varying. In practical problems, abrupt changes
occurring at certain times can help in modelling dynami-
cal processes (Basseville and Nikiforov, 1993). Focusing on
a climate application in this study, change-point detection
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Fig. 4. Observations of monthly precipitation between 1950 and
1985. (a) Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu.

suggested detecting change points in paleoclimate time series
by using a regression model called RAMPFIT. As a more re-
cent technique, a change-point detection by using a Bayesian
approach was applied to the annual flow volume of the Nile
River (Scḧutz, N., and Holschneider, M. (2011)).These
methods assume a change in the linear behaviour (trends)
and require a parametric or a distribution fit. In contrast, the
change-point technique based on SSA is nonparametric and
it is not necessary to estimate a statistical distribution or to
fit a linear trend (Id́e, T. and Inoue, K. (2004); Id́e, T., and
Inoue, K. (2005); Id́e, T. (2006); Itoh, N., and Kurths, J.
(2010); Mohammad, Y. and Nishida, T. (2009); Moskvina,
V. and Zhigljavsky, A. (2003)). This is an advantage because
it is difficult to reliably estimate parameters and distributions
for short observations.

A change-point is generally defined as any time point in
the evolution of a system in which an abrupt structural and
dynamical change occurs. Such a change may appear in time
series as discontinuities, gaps or changes in periodicities, am-
plitude or variance.The basic motivations for this investiga-
tion are explained by the following assumptions: The prop-
erties or parameters describing the data are either constant or
slowly time-varying. In practical problems, abrupt changes

occurring at certain times can help in modelling dynamical
processes (Basseville, M. and Nikiforov, I. (1993)). Focus-
ing on a climate application in this study, change-point detec-
tion may provide basic insights into abrupt climate changes
of a trend with a long term variability but also seasonal cy-
cle or quasiperiodicity. If such a change-point can clearly be
identified in a time series the result will suggest that there
exist substantially different properties or structures in the cli-
mate sense before and after the time instant.

In this study the SSA-based change-point detection pro-
posed by Id́e, T. and Inoue, K. (2004), has been applied,
which is called singular spectrum transformation (SST).
However, the conventional SST has considered only change
points for the most dominant component of data correspond-
ing to a change in a trend. Since the SSA can originally re-
veal several representative orthogonal components from data
we will extend the conventional SST to detect the change
points also for further components. In the next section we
explain the procedures of the SSA as well the SST and then
propose the extended version of SST.

2 Method

2.1 Singular Spectrum Analysis (SSA)

The SSA aims to extract spectral information from time se-
ries. As described in Section 1, the change-point detection is
one of the capabilities of the SSA. Basically, this is achieved
by mathematically decomposing and reconstructing a time
series (Elsner, J. B. and Tsonis, A. A. (1996); Golyandina,
N. et al. (2001)).

The first step is an embedding of a single time series
Y= (y1,···,yN ) into a multi dimensional vector space what
can be achieved by transforming the time series into the fol-
lowing trajectory matrix of sizeK×L, (K =N−L+1):

X= [X1 : ··· :XK ] = (xij)
L,K
i,j=1, (1)

whereXi = (yi,···,yi+L−1)
T, (1≤ i≤K). The matrix is

expressed as a Hankel matrix, in which elements on the anti
diagonals are equal (Phillips, J. L. (1971)).The dimension
or window lengthL is directly related to the fineness of the
decomposition of the original time series in order to charac-
terize essential aspects of the data.

In the second step, the trajectory matrix is decomposed
by the singular value decomposition (SVD) in the following
form:

X=USVT, (2)

where two unitary matrices of singular vectors,U andV con-
sist of orthonormal vectors regarded as basis vectors of the
trajectory matrix andS means a matrix of singular values in-
cluding nonnegative real numbers on the main diagonal and
zero in the remaining positions.Then the trajectory matrix
is represented by rank-one biorthogonal elementary matrices

Fig. 4. Observations of monthly precipitation between 1950 and
1985.(a) Nakuru,(b) Naivasha,(c) Narok, and(d) Kisumu.

may provide basic insights into abrupt climate changes of
a trend with a long-term variability but also seasonal cycle or
quasiperiodicity. If such a change point can clearly be iden-
tified in a time series the result will suggest that there exist
substantially different properties or structures in the climate
sense before and after the time instant.

In this study the SSA-based change-point detection pro-
posed byIdé and Inoue(2004), has been applied, which is
called singular spectrum transformation (SST). However, the
conventional SST has considered only change points for the
most dominant component of data corresponding to a change
in a trend. Since the SSA can originally reveal several repre-
sentative orthogonal components from data we will extend
the conventional SST to detect the change points also for fur-
ther components. In the next section we explain the proce-
dures of the SSA as well the SST and then propose the ex-
tended version of SST.
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2 Method

2.1 Singular spectrum analysis (SSA)

The SSA aims to extract spectral information from time se-
ries. As described in Sect.1, the change-point detection is
one of the capabilities of the SSA. Basically, this is achieved
by mathematically decomposing and reconstructing a time
series (Elsner and Tsonis, 1996; Golyandina et al., 2001).

The first step is an embedding of a single time series
Y = (y1, · · · ,yN ) into a multidimensional vector space, what
can be achieved by transforming the time series into the fol-
lowing trajectory matrix of sizeK × L, (K = N − L + 1):

X = [X1 : · · · : XK ] =
(
xij

)L,K

i,j=1 , (1)

whereXi = (yi, . . . ,yi+L−1)
T , (1≤ i ≤ K). The matrix is

expressed as a Hankel matrix, in which elements on the anti
diagonals are equal (Phillips, 1971). The dimension or win-
dow lengthL is directly related to the fineness of the decom-
position of the original time series in order to characterise
essential aspects of the data.

In the second step, the trajectory matrix is decomposed by
the SVD in the following form:

X = U S VT , (2)

where two unitary matrices of singular vectors,U andV con-
sist of orthonormal vectors regarded as basis vectors of the
trajectory matrix andSmeans a matrix of singular values in-
cluding nonnegative real numbers on the main diagonal and
zero in the remaining positions. Then the trajectory matrix
is represented by rank-one biorthogonal elementary matrices
calculated according to the singular vectors and the singular
values. That is, the trajectory matrix can be written as

X = X1 + ·· ·+ Xd , Xj =
√

λjU jV
T
j = (x

[j ]

ik )
L,K
i,k=1, (3)

where j = 1, . . . ,d(≤ L) because the singular values
√

λj

are arranged in decreasing order of magnitudes asd =

max{j,such thatλj > 0} = rank X. Note that these singu-
lar vectors,U andV represent the orthogonal decomposed
properties of the time series and the singular values,S just
quantifies the magnitudes of the components. The collection
(λj ,U j ,V j ) is called thej -th “eigentriple” of the trajectory
matrix.

The third step is the reconstruction of new time series from
the elementary matrix. By taking the feature of the Hankel
matrix it is possible to suppose that the elements on the di-
agonal from a left bottom to a right upper (i.e. a secondary
diagonal line) in the matrix derive from the event occurred at
the same time. A mean value of such elements can, therefore,
be considered as a data point decomposed from the original
time series. This technique can be applied to all elementary
matrices and then it is called diagonal averaging reconstruc-

tion. The calculation can be expressed as follows:

ŷ
[j ]
n =


1
n

∑n
m=1x

[j ]

m,(n−m+1) (1 ≤ n < L)

1
L

∑L
m=1x

[j ]

m,(n−m+1) (L ≤ n < K)

1
N−n

∑N−K+1
m=n−K+2x

[j ]

m,(n−m+1) (K ≤ n < N)

, (4)

whereŷ
[j ]
n means an element computed from thej -th eigen-

triple. Then its reconstructed time series is defined asŶ [j ]
=

(ŷ
[j ]

1 , · · · , ŷ
[j ]

N ). Note that these reconstructed time series are
orthogonal with each other. Thus the original time series
can be expressed as the sum of these time series, that is,
Y ≈ Ŷ [1]

+ . . . + Ŷ [d].
In the fourth step, to group these components into several

representative time series, the singular values and weighted
(w) correlation may provide some hints for grouping. The
singular values have already been obtained by SVD. The
w correlation is calculated as follows:

ρ
(w)
ab =

(
Ŷ [a], Ŷ [b]

)
w

‖ Ŷ [a] ‖w‖ Ŷ [b] ‖w

, ‖ Ŷ [×]
‖w=

√(
Ŷ [×], Ŷ [×]

)
w
. (5)

The inner product is defined as follows:

(
Ŷ [a], Ŷ [b]

)
w

=

N∑
k=1

wkŷ
[a]

k ŷ
[b]

k , (a,b = 1, . . . ,d), (6)

wherewk = min{k,L,N−k−1}. Then based on these results
it allows to perform a classification according to their disjoint
relationship:

Y ≈ Ỹ I1 + . . . + Ỹ Im , (7)

where Il (l = 1, . . . ,m(≤ d)) is defined as an index after
grouping the reconstructed time series.

In change-point detection, by using the SSA, the recon-
struction process is of importance since a structural differ-
ence between the subspaces in the original time series is
qualitatively evaluated by the reconstructed time series. In
the next subsection the definition of the SST will be ex-
plained.

2.2 Singular spectrum transformation (SST)

When trying to detect change points, typically, a parametric
method such as the autoregressive model has often been ap-
plied (Di Bello et al., 1996). This kind of approach may not
lead to a good result when the data series are heterogeneous
and nonstationary because it is not sure whether it is appro-
priate to assume a certain stochastic model to such data. Thus
it is reasonable to use a nonparametric method rather than a
parametric one, as the first step of the data analysis. We sug-
gest to use the SST for a change-point detection as it allows
the nonparametric detection.
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Let us first put the reference timet in a time seriesY =

(y1, . . . ,yN ) in order to divide it into two subtime series,Y (p)

of a “past part” andY (f) of a “future part” which can be de-
fined as follows:

Y (p)
= (yt−b, . . . ,yt−1) , Y (f)

=
(
yt+γ , . . . ,yt+γ+b−1

)
, (8)

whereγ is a start point after the reference timet for the future
part andb is defined as a size of both subtime series (b < t),
which are additional parameters besides the window length
L in the SSA. Since we assess the difference between both
subtime series with the same length sitting next to each other
in this study letγ = 0. Then each trajectory matrix can be
expressed as

X(p)
=

[
Xt−M : . . . : Xt−1−L

]
, X(f)

=
[
Xt : . . . : Xt+M−1

]
, (9)

whereXk = {yk, . . . ,yk+L−1} (1 ≤ k ≤ M), L is defined as a
window length for both time series, which means the num-
ber of elements in each vector, and thenM = b − L + 1. As
expressed in Eqs. (2) and (3), both trajectory matrices are
mathematically decomposed by SVD:

X(p)
= U(p)S(p)V(p)T

=

d∑
j=1

√
λ

(p)

j U
(p)

j V
(p)T

j ,

X(f)
= U(f)S(f)V(f)T

=

d∑
j=1

√
λ

(f)
j U

(f)
j V

(f)T
j . (10)

According to the proposal by Idé and Inoue (2004, 2005),
the structural difference betweenX(p) andX(f) can be suf-
ficiently discussed by using the left singular vector,U(p)

=

[U
(p)

1 : . . . : U
(p)

L ] and U(f)
= [U

(f)
1 : . . . : U

(f)
L ] since the left

singular vectorU i of the eigentriple explains the represen-
tative pattern in the trajectory matrix (Idé and Inoue, 2004,
2005). Hence by these left singular vectors, a hyperplaneUl

and an eigenvectorβ are defined as follows:

Ul = span{U (p)

1 , . . . ,U
(p)

l }, β = U
(f)
1 , (11)

wherel is the number of spanning vectors. To estimate the
difference between the past and the future parts,β will be
projected ontoUl . Then a change-point (CP-) score is defined
as follows:

z = 1−

l∑
i=1

κ(i,β)2, κ(i,β) := βT U
(p)

i , (12)

where 0≤ z ≤ 1 andκ is the inner product of Eq. (11).

2.3 Extended SST

In the above conventional SST defined by Eqs. (11) and (12),
the structural comparison is performed only for the most
dominant representative pattern,β (mostly a trend term) of
the future part on an arbitrary dimensional hyperplane of the

past part,Ul . Although the result is actually enough to under-
stand the global behaviour of the change point in the data, the
change point in the harmonics component which is extracted
as another important property by the SSA, has not been con-
sidered so far. If the CP-score is calculated for further com-
ponents it can be expected to find out a transitional time of
the periodic term in the data. For that purpose we provide a
new definition of the change-point detection technique based
on the conventional SST and the multivariate SST (Tokunaga
et al., 2011).

At the beginning, the whole time series is decomposed by
the SSA into the reconstructed time series. Therefore, note
that two different window length parameters will be intro-
duced in this approach. One is used for the whole time series
and the other for the reconstructed time series, which we call
LSSA andLSST respectively. Then these reconstructed time
series have to be grouped according to the results from sin-
gular value spectra andw correlation as the representative
patterns such as a trend, harmonics and noise, which are re-
quired to extend Eq. (11) as follows:

ŨIl ,l = span{Û (p)

Il ,1
, . . . , Û

(p)

Il ,l
}, β̃Il

= Û
(f)
Il ,1

, (13)

whereIl is a grouping index (l = 1, . . . ,m(≤ d)), m means
the number of the groups,l is the number of spanning vec-
tors, andÛs mean the left singular vectors derived from the
representative time series. Then the newly defined CP-score
can be described by

z̃Il
= 1−

l∑
i=1

β̃T
Il
Û

(p)

Il ,i
. (14)

Grouping the reconstructed time series into representative
time series, it might be expected that the change points of
not only the trend component but also the harmonics’ com-
ponents included in the data can be detected.

2.4 Statistical test

As a statistical test for the results, we apply a Monte Carlo
simulation by random shuffle (RS) surrogate, phase ran-
domised (PR) surrogate, and iterative amplitude adjusted
Fourier transform (iAAFT) surrogate methods (Scheinkman
and LeBaron, 1989; Theiler et al., 1992; Schreiber and
Schmitz, 2000).

The null hypothesises of these surrogates methods are typ-
ically defined as follows: (1) the observed time series is a
sequence of independent and identically distributed (i.i.d.)
random variables (for the RS surrogates), (2) the time series
is stochastic data with a linear correlation (for the PR sur-
rogates), and (3) the time series is generated from a nonlin-
ear stochastic process. However, it is provided by performing
a static monotonic nonlinear transformation (for the iAAFT
surrogates). Table1 shows whether the statistics, such as
mean, variance, empirical distribution, and autocorrelation,
of the original time series are preserved in the time series
generated by these surrogate methods.
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Table 1. Comparison of the statistics of the original data with that
of the surrogate data.µ : mean,σ2

: variance.©: preserved,×: not
preserved.

Surrogates µ σ2 Empirical dist. Autocorrelation

RS © © © ×

PR © © × ©

iAAFT © © © ©

The significance test is performed by using the Monte
Carlo technique. Since this method does not necessitate as-
suming any statistical distribution, it is appropriate to apply
it to the result obtained by the nonparametric method such
as the SSA. First, we generate a sufficiently large number
of surrogate data. Next, we estimate the CP-scores of these
surrogate data. Then we calculate each upper 95 % quantile
in the empirical distributions of the CP-scores as a thresh-
old to validate the change point in this study. If the obtained
CP-score is higher than the threshold, we consider that each
null hypothesis is rejected and the result is statistically sig-
nificant.

2.5 Model analysis

In the following model we will assume that there exist
changes in trends and harmonics extracted by means of SSA
decomposition as the representative components. However,
this method might also be useful to analyse a component with
other kinds of dynamics like nonlinear changes. Although the
remaining part is considered to be “noise”, we suppose that
it might contain the deterministic dynamics of the above rep-
resentative components hidden in the noise part since the pa-
rameter choice of the number of the components is somehow
arbitrary.

We consider the following synthetic example with two
types of components which consist of linear and sine func-
tions added by Gaussian noiseεt .

Y (t) = αt + Asin

(
2π

T
t

)
+ εt , ε ∼N (0,1), (15)

where 1≤ t ≤ 1000,

α =


0.25 (1 ≤ t ≤ 200)

−0.15 (200< t ≤ 550)

0.35 (550< t ≤ 1000)

, (16)

T =

{
12 (1 ≤ t ≤ 700)

25 (700< t ≤ 1000)
,

andA = 10, which is illustrated in Fig.5.
The synthetic data series contains change points in both

linear and sine functions expressed in the first and the second
terms on the right hand side in Eq. (15), which are att = 200
and t = 550 for the linear functions and att = 700 for the
sine functions.
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Fig. 5. Time series composed of the linear functions and the sine
functions.

where1≤ t≤ 1000,

α =

 0.25 (1≤ t≤ 200)
−0.15 (200<t≤ 550)
0.35 (550<t≤ 1000)

, (16)

T =

{
12 (1≤ t≤ 700)
25 (700<t≤ 1000)

,

andA=10, which is illustrated in Fig. 5. The synthetic data
series contains change points in both linear and sine func-
tions expressed in the first and the second terms on the right
hand side in Eq.(15), which are att=200 andt=550 for the
linear functions and att=700 for the sine functions.

In the first step, let us orthogonally decompose the time
series. The window length parameterLSSA is reasonably
chosen between⌊N/10⌋ and⌊N/2⌋ (N is the length of time
series) if there is not much information about the data. Thus,
in this example, letLSSA be 100 (= ⌊N/10⌋).

The second step is to sort the decomposed time series into
groups of representative time series. Basically, by the SSA
decomposition, the first group corresponds to the trend com-
ponent. The next groups are often categorized as harmonics
term. And then the remaining components will be assumed
as noise. According to the right hand side of Eq.(15), it is
obvious that such groups correspond to their first term, sec-
ond term, and third term, respectively.The determination of
these groups from the results of the decomposition may be
achieved by the singular value spectra and the w-correlation,
Eq.(5). The first and the second mode differ in almost one
magnitude (Fig. 6), followed by two pairs (3rd and 4th) and
(5th and 6th), representing components with some periodic-
ity. The 1st mode contributes 78%, the 2nd mode 4.5%, fol-
lowed by rapidly decreasing contributions. Fig. 7 illustrate
the pattern of w-correlation to discuss a separability of com-
ponents. We separate the pattern into two parts consisting the
first 8 components and a residual part (9th and 100th compo-
nents), where the first part is assumed as an interpretable part
including trends and harmonics and the residual one is as-
sumed as noise.Reconstructed time series of these 8 modes
of the interpretable part are shown in Fig. 8. The panels (a),
(b), and (g) show the local maximum more or less att=200
and the local minimum more or less att= 550. Both pan-

Fig. 6. Logarithmic singular value spectra expressed on percentage
(a) forLSSA =100 and (b) for the first 8 modes.

Fig. 7. w-correlation, (a) for the whole components forLSSA =100
and (b) for the first 8 components.

els (c) and (d) show similar behaviours, which are drasti-
cally fluctuated until ca. t= 700. In contrast, the panels
(e) and (f) show oscillation fromt= 700. In the panel (h)
relatively large fluctuations occur aroundt= 700. Table 2
shows 6 groups of the first 3 strong correlated modes esti-
mated by the w-correlation between the 1st and the 8th eigen-
triples. According to the table, since there are overlapping
modes in these groups it allows to rearrangeÎi (i=1,···,6)
into the following new indices:I1 := Î1 = Î2 = {1,2,7},
I2 := Î3 = Î4 = {3,4,8}, andI3 := Î5 = Î6 = {5,6,8}. This
grouping implies to well extract the properties of the linear
functions and the sine functions from the original time series
defined in Eq.(15).

If it is assumed that the original time series consists of the
trend, harmonics, and noise, it allows us to describe it by the
following form:

Y=ỸI1 +Ỹ(I2∪I3)+ ϵ̃, (17)

where

ỸI1 =Ŷ1+Ŷ2+Ŷ7, (18)

Fig. 5. Time series composed of the linear functions and the sine
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0.35 (550<t≤ 1000)
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12 (1≤ t≤ 700)
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,

andA=10, which is illustrated in Fig. 5. The synthetic data
series contains change points in both linear and sine func-
tions expressed in the first and the second terms on the right
hand side in Eq.(15), which are att=200 andt=550 for the
linear functions and att=700 for the sine functions.

In the first step, let us orthogonally decompose the time
series. The window length parameterLSSA is reasonably
chosen between⌊N/10⌋ and⌊N/2⌋ (N is the length of time
series) if there is not much information about the data. Thus,
in this example, letLSSA be 100 (= ⌊N/10⌋).

The second step is to sort the decomposed time series into
groups of representative time series. Basically, by the SSA
decomposition, the first group corresponds to the trend com-
ponent. The next groups are often categorized as harmonics
term. And then the remaining components will be assumed
as noise. According to the right hand side of Eq.(15), it is
obvious that such groups correspond to their first term, sec-
ond term, and third term, respectively.The determination of
these groups from the results of the decomposition may be
achieved by the singular value spectra and the w-correlation,
Eq.(5). The first and the second mode differ in almost one
magnitude (Fig. 6), followed by two pairs (3rd and 4th) and
(5th and 6th), representing components with some periodic-
ity. The 1st mode contributes 78%, the 2nd mode 4.5%, fol-
lowed by rapidly decreasing contributions. Fig. 7 illustrate
the pattern of w-correlation to discuss a separability of com-
ponents. We separate the pattern into two parts consisting the
first 8 components and a residual part (9th and 100th compo-
nents), where the first part is assumed as an interpretable part
including trends and harmonics and the residual one is as-
sumed as noise.Reconstructed time series of these 8 modes
of the interpretable part are shown in Fig. 8. The panels (a),
(b), and (g) show the local maximum more or less att=200
and the local minimum more or less att= 550. Both pan-
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shows 6 groups of the first 3 strong correlated modes esti-
mated by the w-correlation between the 1st and the 8th eigen-
triples. According to the table, since there are overlapping
modes in these groups it allows to rearrangeÎi (i=1,···,6)
into the following new indices:I1 := Î1 = Î2 = {1,2,7},
I2 := Î3 = Î4 = {3,4,8}, andI3 := Î5 = Î6 = {5,6,8}. This
grouping implies to well extract the properties of the linear
functions and the sine functions from the original time series
defined in Eq.(15).

If it is assumed that the original time series consists of the
trend, harmonics, and noise, it allows us to describe it by the
following form:

Y=ỸI1 +Ỹ(I2∪I3)+ ϵ̃, (17)

where

ỸI1 =Ŷ1+Ŷ2+Ŷ7, (18)

Fig. 6. Logarithmic singular value spectra expressed on percentage
(a) for LSSA= 100 and(b) for the first 8 modes.

In the first step, let us orthogonally decompose the time se-
ries. The window length parameterLSSA is reasonably cho-
sen betweenbN/10c and bN/2c (N is the length of time
series) if there is not much information about the data. Thus,
in this example, letLSSA be 100 (= bN/10c).

The second step is to sort the decomposed time series into
groups of representative time series. Basically, by the SSA
decomposition, the first group corresponds to the trend com-
ponent. The next groups are often categorised as harmonics
term. And then the remaining components will be assumed
as noise. According to the right hand side of Eq. (15), it
is obvious that such groups correspond to their first term,
second term, and third term, respectively. The determination
of these groups from the results of the decomposition may
be achieved by the singular value spectra and thew corre-
lation, Eq. (5). The first and the second mode differ in al-
most one magnitude (Fig.6), followed by two pairs (3rd and
4th, and 5th and 6th), representing components with some
periodicity. The 1st mode contributes 78 %, the 2nd mode
4.5 %, followed by rapidly decreasing contributions. Figure7
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illustrates the pattern ofw correlation to discuss a separa-
bility of components. We separate the pattern into two parts
consisting of the first 8 components and a residual part (9th
and 100th components), where the first part is assumed as
an interpretable part including trends and harmonics and the
residual one is assumed as noise. Reconstructed time series
of these 8 modes of the interpretable part are shown in Fig.8.
Figure8a, b, and g show the local maximum more or less at
t = 200 and the local minimum more or less att = 550. Fig-
ure8c and d show similar behaviours, which are drastically
fluctuated until ca.t = 700. In contrast, Fig.8e and f show
oscillation from t = 700. In Fig.8h relatively large fluctu-
ations occur aroundt = 700. Table2 shows 6 groups of the
first 3 strong correlated modes estimated by thew correlation
between the 1st and the 8th eigentriples. According to the ta-
ble, since there are overlapping modes in these groups it al-
lows to rearrangêIi (i = 1, · · · ,6) into the following new in-
dices:I1 := Î1 = Î2 = {1,2,7}, I2 := Î3 = Î4 = {3,4,8}, and
I3 := Î5 = Î6 = {5,6,8}. This grouping implies to well ex-
tract the properties of the linear functions and the sine func-
tions from the original time series defined in Eq. (15).

If it is assumed that the original time series consists of the
trend, harmonics, and noise, it allows us to describe it by the
following form:

Y = Ỹ I1 + Ỹ (I2∪I3) + ε̃, (17)

where

Ỹ I1 = Ŷ 1 + Ŷ 2 + Ŷ 7, (18)

Ỹ (I2∪I3) = Ŷ 3 + Ŷ 4 + Ŷ 5 + Ŷ 6 + Ŷ 8,

and ε̃ is the residual. Let us here defineỸ I1 andỸ (I2∪I3) as
representative time series. Note thatỸ (I2∪I3) is, however, re-
constructed by using the unique values from bothI2 andI3
in order to avoid duplication of the component. Figure9 il-
lustrates the linear functions and the sine functions defined in
Eq. (15) in (a) and (b) and the representative time seriesỸ I1

andỸ (I2∪I3) in (c) and (d). These results show thatỸ I1 and
Ỹ (I2∪I3) well reconstruct both functions, which are defined
as the trend and the harmonics terms, respectively.

In the third step the CP-score will be computed by the SST.
For the SST technique there are the following four parame-
ters: (i) a time length of both past and future partsb, (ii) a
start position of the subtime series in the future partγ from
the reference timet , (iii) a window length for these subtime
seriesLSST(≤ b < LSSA), and (iv) the number of the left sin-
gular vectors of the past part to span a hyperplanel. Although
a proper rule of the parameter setting is not yet regulated,
as several reasonable values we chooseb1 = 50, b2 = 60,
b3 = 70, b4 = 80, b5 = 90, andb6 = 100 in this study. The
γ is fixed by zero since the structural difference of the neigh-
bourhood will be focused on in this study. TheLSST must be
determined by a value less than or equal tobb/2c. Here let

us choose thatLSST is a half of eachb. Then consider the
hyperplane for thel = 2,3 (Table3).
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Fig. 5. Time series composed of the linear functions and the sine
functions.

where1≤ t≤ 1000,

α =

 0.25 (1≤ t≤ 200)
−0.15 (200<t≤ 550)
0.35 (550<t≤ 1000)

, (16)

T =

{
12 (1≤ t≤ 700)
25 (700<t≤ 1000)

,

andA=10, which is illustrated in Fig. 5. The synthetic data
series contains change points in both linear and sine func-
tions expressed in the first and the second terms on the right
hand side in Eq.(15), which are att=200 andt=550 for the
linear functions and att=700 for the sine functions.

In the first step, let us orthogonally decompose the time
series. The window length parameterLSSA is reasonably
chosen between⌊N/10⌋ and⌊N/2⌋ (N is the length of time
series) if there is not much information about the data. Thus,
in this example, letLSSA be 100 (= ⌊N/10⌋).

The second step is to sort the decomposed time series into
groups of representative time series. Basically, by the SSA
decomposition, the first group corresponds to the trend com-
ponent. The next groups are often categorized as harmonics
term. And then the remaining components will be assumed
as noise. According to the right hand side of Eq.(15), it is
obvious that such groups correspond to their first term, sec-
ond term, and third term, respectively.The determination of
these groups from the results of the decomposition may be
achieved by the singular value spectra and the w-correlation,
Eq.(5). The first and the second mode differ in almost one
magnitude (Fig. 6), followed by two pairs (3rd and 4th) and
(5th and 6th), representing components with some periodic-
ity. The 1st mode contributes 78%, the 2nd mode 4.5%, fol-
lowed by rapidly decreasing contributions. Fig. 7 illustrate
the pattern of w-correlation to discuss a separability of com-
ponents. We separate the pattern into two parts consisting the
first 8 components and a residual part (9th and 100th compo-
nents), where the first part is assumed as an interpretable part
including trends and harmonics and the residual one is as-
sumed as noise.Reconstructed time series of these 8 modes
of the interpretable part are shown in Fig. 8. The panels (a),
(b), and (g) show the local maximum more or less att=200
and the local minimum more or less att= 550. Both pan-

Fig. 6. Logarithmic singular value spectra expressed on percentage
(a) forLSSA =100 and (b) for the first 8 modes.

Fig. 7. w-correlation, (a) for the whole components forLSSA =100
and (b) for the first 8 components.

els (c) and (d) show similar behaviours, which are drasti-
cally fluctuated until ca. t= 700. In contrast, the panels
(e) and (f) show oscillation fromt= 700. In the panel (h)
relatively large fluctuations occur aroundt= 700. Table 2
shows 6 groups of the first 3 strong correlated modes esti-
mated by the w-correlation between the 1st and the 8th eigen-
triples. According to the table, since there are overlapping
modes in these groups it allows to rearrangeÎi (i=1,···,6)
into the following new indices:I1 := Î1 = Î2 = {1,2,7},
I2 := Î3 = Î4 = {3,4,8}, andI3 := Î5 = Î6 = {5,6,8}. This
grouping implies to well extract the properties of the linear
functions and the sine functions from the original time series
defined in Eq.(15).

If it is assumed that the original time series consists of the
trend, harmonics, and noise, it allows us to describe it by the
following form:

Y=ỸI1 +Ỹ(I2∪I3)+ ϵ̃, (17)

where

ỸI1 =Ŷ1+Ŷ2+Ŷ7, (18)

Fig. 7.w correlation,(a) for the whole components forLSSA= 100
and(b) for the first 8 components.

Table 2.Relationship of modes between the 1st and 8th eigentriples
by w correlation.Îi (i = 1, · · · ,6): group indices.

Î1 Î2 Î3 Î4 Î5 Î6

1 2 3 4 5 6
mode 2 7 4 3 6 5

7 1 8 8 8 8

Table 3.Parameter combinations of the example for SST.b: a time
length of both past and future parts,γ : a start position of the subtime
series in the future part from the reference time,LSST: a window
length for these subtime series,l: the number of the left singular
vectors of the past part to span a hyperplane.

b γ LSST l

(a) 50 0 25 {2,3}

(b) 60 0 30 {2,3}

(c) 70 0 35 {2,3}

(d) 80 0 40 {2,3}

(e) 90 0 45 {2,3}

(f) 100 0 50 {2,3}

Figures10and11show the results of the CP-scores for the
trend and harmonics terms. The panels (a)–(f) in both figures
explain the results for each parameter combination in table3.

From these results we get thatỸ I1 andỸ (I2∪I3) are corre-
sponding to the trend term and the harmonics term, respec-
tively since the significant peaks in Fig.10are shown at time
200 and 500, and the significant peak in Fig.11 is shown at
time 700 as defined in Eqs. (15) and (16).

In the Monte Carlo significance test, we test the result for
the parameters,b = 60,LSST= 30, andl = 3. Figures12and
13 show the CP-scores and the thresholds estimated by the
above introduced surrogate data methods in (a), (b), and (c)
and then detecting the statistically significant change points
by the red bars in (d), (e), and (f). As a result, the significant
peaks of the CP-score for̃Y I1 andỸ (I2∪I3) can be detected at
around 200 and 550 (the linear functions) and at around 700
(the sine functions) with 95 % confidence, which coincide
very well with the points set up in Eq. (15).
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Fig. 8. Reconstructed time series. (a) for 1st mode, (b) for 2nd
mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g)
7th mode, and (h) 8th mode.

Table 2. Relationship of modes between the 1st and 8th eigentriples
by w-correlation.Îi (i=1,···,6): group indices.

Î1 Î2 Î3 Î4 Î5 Î6

1 2 3 4 5 6
mode 2 7 4 3 6 5

7 1 8 8 8 8

Ỹ(I2∪I3) =Ŷ3+Ŷ4+Ŷ5+Ŷ6+Ŷ8,

and ϵ̃ is the residual. Let us here definẽYI1 and Ỹ(I2∪I3)

as representative time series. Note thatỸ(I2∪I3) is, however,
reconstructed by using the unique values from bothI2 andI3
in order to avoid duplication of the component. Fig. 9 illus-
trates the linear functions and the sine functions defined in
Eq.(15) in (a) and (b) and the representative time seriesỸI1

andỸ(I2∪I3) in (c) and (d). These results show thatỸI1 and
Ỹ(I2∪I3) well reconstruct both functions, which are defined
as the trend and the harmonics terms, respectively.

In the third step the CP-score will be computed by the SST.
For the SST technique there are the following four parame-
ters: (i) a time length of both past and future partsb, (ii) a
start position of the subtime series in the future partγ from
the reference timet, (iii) a window length for these subtime
seriesLSST(≤ b <LSSA), (iv) the number of the left singu-
lar vectors of the past part to span a hyperplanel. Although
a proper rule of the parameter setting is not yet regulated,
as several reasonable values we chooseb1 = 50, b2 = 60,
b3 = 70, b4 = 80, b5 = 90, andb6 = 100 in this study. The
γ is fixed by zero since the structural difference of the neigh-
bourhood will be focused on in this study. TheLSST must
be determined by a value less than or equal to⌊b/2⌋. Here

Fig. 9. The realizations of (a)αt and (b)Asin( 2π
T
t) in Eq.(15), and

the representative time series of (c)ỸI1 and (d)ỸI2 .

Fig. 10. CP-scores of̃Y1. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

Fig. 11. CP-scores of̃Y2. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

let us choose thatLSST is a half of eachb. Then consider the
hyperplane for thel=2,3. (table 3)

Fig. 10 and Fig. 11 show the results of the CP-scores for
the trend and harmonics terms. The panels (a)–(f) in both
figures explain the results for each parameter combination
in table 3. From these results we get thatỸI1 andỸ(I2∪I3)

are corresponding to the trend term and the harmonics term,
respectively since the significant peaks in Fig. 10 are shown
at time 200 and 500, and the significant peak in Fig. 11 is
shown at time 700 as defined in Eq.(15) and Eq.(16).

In the Monte Carlo significance test, we test the result
for the parameters,b= 60, LSST = 30, and l= 3. Fig. 12
and Fig. 13 show the CP-scores and the thresholds estimated
by the above introduced surrogate data methods in (a), (b),
and (c) and then detecting the statistically significant change
points by the red bars in (d), (e), and (f). As a result, the sig-
nificant peaks of the CP-score for̃YI1 andỸ(I2∪I3) can be
detected at around 200 and 550 (the linear functions) and at
around 700 (the sine functions) with 95% confidence, which
coincide very well with the points setup in Eq.(15).

Fig. 8. Reconstructed time series.(a) for 1st mode,(b) for 2nd mode,(c) 3rd mode,(d) 4th mode,(e) 5th mode,(f) 6th mode,(g) 7th mode,
and(h) 8th mode.
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Fig. 8. Reconstructed time series. (a) for 1st mode, (b) for 2nd
mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g)
7th mode, and (h) 8th mode.

Table 2. Relationship of modes between the 1st and 8th eigentriples
by w-correlation.Îi (i=1,···,6): group indices.

Î1 Î2 Î3 Î4 Î5 Î6

1 2 3 4 5 6
mode 2 7 4 3 6 5

7 1 8 8 8 8

Ỹ(I2∪I3) =Ŷ3+Ŷ4+Ŷ5+Ŷ6+Ŷ8,

and ϵ̃ is the residual. Let us here definẽYI1 and Ỹ(I2∪I3)

as representative time series. Note thatỸ(I2∪I3) is, however,
reconstructed by using the unique values from bothI2 andI3
in order to avoid duplication of the component. Fig. 9 illus-
trates the linear functions and the sine functions defined in
Eq.(15) in (a) and (b) and the representative time seriesỸI1

andỸ(I2∪I3) in (c) and (d). These results show thatỸI1 and
Ỹ(I2∪I3) well reconstruct both functions, which are defined
as the trend and the harmonics terms, respectively.

In the third step the CP-score will be computed by the SST.
For the SST technique there are the following four parame-
ters: (i) a time length of both past and future partsb, (ii) a
start position of the subtime series in the future partγ from
the reference timet, (iii) a window length for these subtime
seriesLSST(≤ b <LSSA), (iv) the number of the left singu-
lar vectors of the past part to span a hyperplanel. Although
a proper rule of the parameter setting is not yet regulated,
as several reasonable values we chooseb1 = 50, b2 = 60,
b3 = 70, b4 = 80, b5 = 90, andb6 = 100 in this study. The
γ is fixed by zero since the structural difference of the neigh-
bourhood will be focused on in this study. TheLSST must
be determined by a value less than or equal to⌊b/2⌋. Here

Fig. 9. The realizations of (a)αt and (b)Asin( 2π
T
t) in Eq.(15), and

the representative time series of (c)ỸI1 and (d)ỸI2 .

Fig. 10. CP-scores of̃Y1. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

Fig. 11. CP-scores of̃Y2. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

let us choose thatLSST is a half of eachb. Then consider the
hyperplane for thel=2,3. (table 3)

Fig. 10 and Fig. 11 show the results of the CP-scores for
the trend and harmonics terms. The panels (a)–(f) in both
figures explain the results for each parameter combination
in table 3. From these results we get thatỸI1 andỸ(I2∪I3)

are corresponding to the trend term and the harmonics term,
respectively since the significant peaks in Fig. 10 are shown
at time 200 and 500, and the significant peak in Fig. 11 is
shown at time 700 as defined in Eq.(15) and Eq.(16).

In the Monte Carlo significance test, we test the result
for the parameters,b= 60, LSST = 30, and l= 3. Fig. 12
and Fig. 13 show the CP-scores and the thresholds estimated
by the above introduced surrogate data methods in (a), (b),
and (c) and then detecting the statistically significant change
points by the red bars in (d), (e), and (f). As a result, the sig-
nificant peaks of the CP-score for̃YI1 andỸ(I2∪I3) can be
detected at around 200 and 550 (the linear functions) and at
around 700 (the sine functions) with 95% confidence, which
coincide very well with the points setup in Eq.(15).

Fig. 9.The realisations of(a) αt and(b) Asin(2π
T

t) in Eq. (15), and the representative time series of(c) Ỹ I1 and(d) Ỹ I2.
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Fig. 8. Reconstructed time series. (a) for 1st mode, (b) for 2nd
mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g)
7th mode, and (h) 8th mode.

Table 2. Relationship of modes between the 1st and 8th eigentriples
by w-correlation.Îi (i=1,···,6): group indices.

Î1 Î2 Î3 Î4 Î5 Î6

1 2 3 4 5 6
mode 2 7 4 3 6 5

7 1 8 8 8 8

Ỹ(I2∪I3) =Ŷ3+Ŷ4+Ŷ5+Ŷ6+Ŷ8,

and ϵ̃ is the residual. Let us here definẽYI1 and Ỹ(I2∪I3)

as representative time series. Note thatỸ(I2∪I3) is, however,
reconstructed by using the unique values from bothI2 andI3
in order to avoid duplication of the component. Fig. 9 illus-
trates the linear functions and the sine functions defined in
Eq.(15) in (a) and (b) and the representative time seriesỸI1

andỸ(I2∪I3) in (c) and (d). These results show thatỸI1 and
Ỹ(I2∪I3) well reconstruct both functions, which are defined
as the trend and the harmonics terms, respectively.

In the third step the CP-score will be computed by the SST.
For the SST technique there are the following four parame-
ters: (i) a time length of both past and future partsb, (ii) a
start position of the subtime series in the future partγ from
the reference timet, (iii) a window length for these subtime
seriesLSST(≤ b <LSSA), (iv) the number of the left singu-
lar vectors of the past part to span a hyperplanel. Although
a proper rule of the parameter setting is not yet regulated,
as several reasonable values we chooseb1 = 50, b2 = 60,
b3 = 70, b4 = 80, b5 = 90, andb6 = 100 in this study. The
γ is fixed by zero since the structural difference of the neigh-
bourhood will be focused on in this study. TheLSST must
be determined by a value less than or equal to⌊b/2⌋. Here

Fig. 9. The realizations of (a)αt and (b)Asin( 2π
T
t) in Eq.(15), and

the representative time series of (c)ỸI1 and (d)ỸI2 .

Fig. 10. CP-scores of̃Y1. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

Fig. 11. CP-scores of̃Y2. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

let us choose thatLSST is a half of eachb. Then consider the
hyperplane for thel=2,3. (table 3)

Fig. 10 and Fig. 11 show the results of the CP-scores for
the trend and harmonics terms. The panels (a)–(f) in both
figures explain the results for each parameter combination
in table 3. From these results we get thatỸI1 andỸ(I2∪I3)

are corresponding to the trend term and the harmonics term,
respectively since the significant peaks in Fig. 10 are shown
at time 200 and 500, and the significant peak in Fig. 11 is
shown at time 700 as defined in Eq.(15) and Eq.(16).

In the Monte Carlo significance test, we test the result
for the parameters,b= 60, LSST = 30, and l= 3. Fig. 12
and Fig. 13 show the CP-scores and the thresholds estimated
by the above introduced surrogate data methods in (a), (b),
and (c) and then detecting the statistically significant change
points by the red bars in (d), (e), and (f). As a result, the sig-
nificant peaks of the CP-score for̃YI1 andỸ(I2∪I3) can be
detected at around 200 and 550 (the linear functions) and at
around 700 (the sine functions) with 95% confidence, which
coincide very well with the points setup in Eq.(15).

Fig. 10.CP-scores of̃Y1. (a) b = 50,LSST= 25,(b) b = 60,LSST= 30,(c) b = 70,LSST= 35,(d) b = 80,LSST= 40,(e)b = 90,LSST=

45, and(f) b = 100,LSST= 50, and then alwaysγ = 0 andl = 2 (blue line), 3 (red line).

N. Itoh and N. Marwan: An Extended SST for the Investigation of Kenyan Precipitation Data 7

(a)

(h)(g)

(f)(e)

(d)(c)

(b)

Fig. 8. Reconstructed time series. (a) for 1st mode, (b) for 2nd
mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode, (g)
7th mode, and (h) 8th mode.

Table 2. Relationship of modes between the 1st and 8th eigentriples
by w-correlation.Îi (i=1,···,6): group indices.

Î1 Î2 Î3 Î4 Î5 Î6

1 2 3 4 5 6
mode 2 7 4 3 6 5

7 1 8 8 8 8

Ỹ(I2∪I3) =Ŷ3+Ŷ4+Ŷ5+Ŷ6+Ŷ8,

and ϵ̃ is the residual. Let us here definẽYI1 and Ỹ(I2∪I3)

as representative time series. Note thatỸ(I2∪I3) is, however,
reconstructed by using the unique values from bothI2 andI3
in order to avoid duplication of the component. Fig. 9 illus-
trates the linear functions and the sine functions defined in
Eq.(15) in (a) and (b) and the representative time seriesỸI1

andỸ(I2∪I3) in (c) and (d). These results show thatỸI1 and
Ỹ(I2∪I3) well reconstruct both functions, which are defined
as the trend and the harmonics terms, respectively.

In the third step the CP-score will be computed by the SST.
For the SST technique there are the following four parame-
ters: (i) a time length of both past and future partsb, (ii) a
start position of the subtime series in the future partγ from
the reference timet, (iii) a window length for these subtime
seriesLSST(≤ b <LSSA), (iv) the number of the left singu-
lar vectors of the past part to span a hyperplanel. Although
a proper rule of the parameter setting is not yet regulated,
as several reasonable values we chooseb1 = 50, b2 = 60,
b3 = 70, b4 = 80, b5 = 90, andb6 = 100 in this study. The
γ is fixed by zero since the structural difference of the neigh-
bourhood will be focused on in this study. TheLSST must
be determined by a value less than or equal to⌊b/2⌋. Here

Fig. 9. The realizations of (a)αt and (b)Asin( 2π
T
t) in Eq.(15), and

the representative time series of (c)ỸI1 and (d)ỸI2 .

Fig. 10. CP-scores of̃Y1. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

Fig. 11. CP-scores of̃Y2. (a) b= 50, LSST = 25, (b) b= 60,
LSST = 30, (c) b= 70, LSST = 35, (d) b= 80, LSST = 40, (e)
b= 90, LSST = 45, and (f) b= 100, LSST = 50, and then always
γ=0 andl=2 (blue line),3 (red line).

let us choose thatLSST is a half of eachb. Then consider the
hyperplane for thel=2,3. (table 3)

Fig. 10 and Fig. 11 show the results of the CP-scores for
the trend and harmonics terms. The panels (a)–(f) in both
figures explain the results for each parameter combination
in table 3. From these results we get thatỸI1 andỸ(I2∪I3)

are corresponding to the trend term and the harmonics term,
respectively since the significant peaks in Fig. 10 are shown
at time 200 and 500, and the significant peak in Fig. 11 is
shown at time 700 as defined in Eq.(15) and Eq.(16).

In the Monte Carlo significance test, we test the result
for the parameters,b= 60, LSST = 30, and l= 3. Fig. 12
and Fig. 13 show the CP-scores and the thresholds estimated
by the above introduced surrogate data methods in (a), (b),
and (c) and then detecting the statistically significant change
points by the red bars in (d), (e), and (f). As a result, the sig-
nificant peaks of the CP-score for̃YI1 andỸ(I2∪I3) can be
detected at around 200 and 550 (the linear functions) and at
around 700 (the sine functions) with 95% confidence, which
coincide very well with the points setup in Eq.(15).

Fig. 11.CP-scores of̃Y2. (a) b = 50,LSST= 25,(b) b = 60,LSST= 30,(c) b = 70,LSST= 35,(d) b = 80,LSST= 40,(e)b = 90,LSST=

45, and(f) b = 100,LSST= 50, and then alwaysγ = 0 andl = 2 (blue line), 3 (red line).
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Table 3. Parameter combinations of the example for SST.b: a time
length of both past and future parts,γ: a start position of the subtime
series in the future part from the reference time,LSST: a window
length for these subtime series,l: the number of the left singular
vectors of the past part to span a hyperplane.

b γ LSST l

(a) 50 0 25 {2,3}
(b) 60 0 30 {2,3}
(c) 70 0 35 {2,3}
(d) 80 0 40 {2,3}
(e) 90 0 45 {2,3}
(f) 100 0 50 {2,3}

(a)

(f)(e)(d)

(c)(b)

Fig. 12. (a), (b), and (c) are the CP-scores of the trend term (the
red line) and the95% confidence intervals estimated in the Monte
Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT, respec-
tively (the blue line). (d), (e), and (f) are the time series of the trend
term (the blue line) and the change points which have the statistic
significances (the red bars).
(a)

(f)(e)(d)

(c)(b)

Fig. 13. (a), (b), and (c) are the CP-scores of the harmonics term
(the red line) and the95% confidence intervals estimated in the
Monte Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT,
respectively (the blue line). (d), (e), and (f) are the time series of the
harmonics term (the blue line) and the change points which have the
statistic significances (the red bars).

3 Change-point detection of precipitation in East Africa

This section will be devoted to the application of our method
to the monthly Kenyan precipitation illustrated in Fig. 3 and
4. First, the precipitation will be orthogonally-decomposed
by the SSA. We choose any number related to the annual cy-
cle (12-month) to the window length parameterLSSA since
the original time series include a seasonality. Thus, in this
studyLSSA =24 (for 2 years). When the grouping and sep-
arability of the reconstructed time series are discussed by
the parameter choice, the results of singular value spectra
and w-correlation will provide reasonable information in the
sense of climate cycles. For example, in Fig. 14 and Fig. 16,
which show the results of the singular value spectra and the

Fig. 14. Singular value spectra (in percentage) with the 24 modes.
(a) Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu. The 1st mode
of each result shows the highest rate which means the most domi-
nant mode.

Fig. 15. Singular value spectra (in percentage) between the 2nd
mode and the 6th mode magnified from Fig. 14. (a) Nakuru, (b)
Naivasha, (c) Narok, and (d) Kisumu. In all the stations, there are
two pairs between the 2nd and the 3rd modes and between the 4th
and the 5th modes (red ellipses).

w-correlation forLSSA = 24, the reconstructed time series
from the 1st to the 5th modes can basically be characterized
as representative time series. These reconstructed time series
are illustrated in Fig. 17. Then from these results, let us con-
sider the grouping of the reconstructed time series into the
representative time series.

First, all the results of the singular value spectra in Fig. 14
show the relatively high values for the 1st mode. From the re-
sults of w-correlations in Fig. 16, we consider that there is no
mode showing the high correlation with the 1st mode since
that of the closest mode to the 1st mode is at most less than
0.1 in all the stations. In addition, since the behaviours of the
reconstructed time series of the 1st mode shown in Fig. 17
(a)–(d) are slowly varying, we assume it as the representa-
tive time series of the trend components. Second, according
to the result in Fig. 15 modes appear pairwise, i.e. 2nd+
3rd, and 4th+ 5th. They indicate the harmonic behaviours
of these modes. In Fig. 16, w-correlations corresponding to
these pairs are both more than 0.9. The behaviours of the

Fig. 12. (a), (b), and(c) are the CP-scores of the trend term (the red line) and the 95 % confidence intervals estimated in the Monte Carlo
significance test by the(a) RS,(b) PR, and(c) iAAFT, respectively (the blue line).(d), (e), and(f) are the time series of the trend term (the
blue line) and the change points which have the statistic significance (the red bars).
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Table 3. Parameter combinations of the example for SST.b: a time
length of both past and future parts,γ: a start position of the subtime
series in the future part from the reference time,LSST: a window
length for these subtime series,l: the number of the left singular
vectors of the past part to span a hyperplane.

b γ LSST l

(a) 50 0 25 {2,3}
(b) 60 0 30 {2,3}
(c) 70 0 35 {2,3}
(d) 80 0 40 {2,3}
(e) 90 0 45 {2,3}
(f) 100 0 50 {2,3}
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Fig. 12. (a), (b), and (c) are the CP-scores of the trend term (the
red line) and the95% confidence intervals estimated in the Monte
Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT, respec-
tively (the blue line). (d), (e), and (f) are the time series of the trend
term (the blue line) and the change points which have the statistic
significances (the red bars).
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Fig. 13. (a), (b), and (c) are the CP-scores of the harmonics term
(the red line) and the95% confidence intervals estimated in the
Monte Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT,
respectively (the blue line). (d), (e), and (f) are the time series of the
harmonics term (the blue line) and the change points which have the
statistic significances (the red bars).
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by the SSA. We choose any number related to the annual cy-
cle (12-month) to the window length parameterLSSA since
the original time series include a seasonality. Thus, in this
studyLSSA =24 (for 2 years). When the grouping and sep-
arability of the reconstructed time series are discussed by
the parameter choice, the results of singular value spectra
and w-correlation will provide reasonable information in the
sense of climate cycles. For example, in Fig. 14 and Fig. 16,
which show the results of the singular value spectra and the
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from the 1st to the 5th modes can basically be characterized
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are illustrated in Fig. 17. Then from these results, let us con-
sider the grouping of the reconstructed time series into the
representative time series.

First, all the results of the singular value spectra in Fig. 14
show the relatively high values for the 1st mode. From the re-
sults of w-correlations in Fig. 16, we consider that there is no
mode showing the high correlation with the 1st mode since
that of the closest mode to the 1st mode is at most less than
0.1 in all the stations. In addition, since the behaviours of the
reconstructed time series of the 1st mode shown in Fig. 17
(a)–(d) are slowly varying, we assume it as the representa-
tive time series of the trend components. Second, according
to the result in Fig. 15 modes appear pairwise, i.e. 2nd+
3rd, and 4th+ 5th. They indicate the harmonic behaviours
of these modes. In Fig. 16, w-correlations corresponding to
these pairs are both more than 0.9. The behaviours of the
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4. First, the precipitation will be orthogonally-decomposed
by the SSA. We choose any number related to the annual cy-
cle (12-month) to the window length parameterLSSA since
the original time series include a seasonality. Thus, in this
studyLSSA =24 (for 2 years). When the grouping and sep-
arability of the reconstructed time series are discussed by
the parameter choice, the results of singular value spectra
and w-correlation will provide reasonable information in the
sense of climate cycles. For example, in Fig. 14 and Fig. 16,
which show the results of the singular value spectra and the
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from the 1st to the 5th modes can basically be characterized
as representative time series. These reconstructed time series
are illustrated in Fig. 17. Then from these results, let us con-
sider the grouping of the reconstructed time series into the
representative time series.

First, all the results of the singular value spectra in Fig. 14
show the relatively high values for the 1st mode. From the re-
sults of w-correlations in Fig. 16, we consider that there is no
mode showing the high correlation with the 1st mode since
that of the closest mode to the 1st mode is at most less than
0.1 in all the stations. In addition, since the behaviours of the
reconstructed time series of the 1st mode shown in Fig. 17
(a)–(d) are slowly varying, we assume it as the representa-
tive time series of the trend components. Second, according
to the result in Fig. 15 modes appear pairwise, i.e. 2nd+
3rd, and 4th+ 5th. They indicate the harmonic behaviours
of these modes. In Fig. 16, w-correlations corresponding to
these pairs are both more than 0.9. The behaviours of the

Fig. 14.Singular value spectra (in percentage) with the 24 modes.
(a) Nakuru,(b) Naivasha,(c) Narok, and(d) Kisumu. The 1st mode
of each result shows the highest rate which means the most domi-
nant mode.

8 N. Itoh and N. Marwan: An Extended SST for the Investigation of Kenyan Precipitation Data

Table 3. Parameter combinations of the example for SST.b: a time
length of both past and future parts,γ: a start position of the subtime
series in the future part from the reference time,LSST: a window
length for these subtime series,l: the number of the left singular
vectors of the past part to span a hyperplane.
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(a) 50 0 25 {2,3}
(b) 60 0 30 {2,3}
(c) 70 0 35 {2,3}
(d) 80 0 40 {2,3}
(e) 90 0 45 {2,3}
(f) 100 0 50 {2,3}

(a)

(f)(e)(d)

(c)(b)

Fig. 12. (a), (b), and (c) are the CP-scores of the trend term (the
red line) and the95% confidence intervals estimated in the Monte
Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT, respec-
tively (the blue line). (d), (e), and (f) are the time series of the trend
term (the blue line) and the change points which have the statistic
significances (the red bars).
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Fig. 13. (a), (b), and (c) are the CP-scores of the harmonics term
(the red line) and the95% confidence intervals estimated in the
Monte Carlo significance test by the (a) RS, (b) PR, and (c) iAAFT,
respectively (the blue line). (d), (e), and (f) are the time series of the
harmonics term (the blue line) and the change points which have the
statistic significances (the red bars).

3 Change-point detection of precipitation in East Africa

This section will be devoted to the application of our method
to the monthly Kenyan precipitation illustrated in Fig. 3 and
4. First, the precipitation will be orthogonally-decomposed
by the SSA. We choose any number related to the annual cy-
cle (12-month) to the window length parameterLSSA since
the original time series include a seasonality. Thus, in this
studyLSSA =24 (for 2 years). When the grouping and sep-
arability of the reconstructed time series are discussed by
the parameter choice, the results of singular value spectra
and w-correlation will provide reasonable information in the
sense of climate cycles. For example, in Fig. 14 and Fig. 16,
which show the results of the singular value spectra and the

Fig. 14. Singular value spectra (in percentage) with the 24 modes.
(a) Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu. The 1st mode
of each result shows the highest rate which means the most domi-
nant mode.

Fig. 15. Singular value spectra (in percentage) between the 2nd
mode and the 6th mode magnified from Fig. 14. (a) Nakuru, (b)
Naivasha, (c) Narok, and (d) Kisumu. In all the stations, there are
two pairs between the 2nd and the 3rd modes and between the 4th
and the 5th modes (red ellipses).

w-correlation forLSSA = 24, the reconstructed time series
from the 1st to the 5th modes can basically be characterized
as representative time series. These reconstructed time series
are illustrated in Fig. 17. Then from these results, let us con-
sider the grouping of the reconstructed time series into the
representative time series.

First, all the results of the singular value spectra in Fig. 14
show the relatively high values for the 1st mode. From the re-
sults of w-correlations in Fig. 16, we consider that there is no
mode showing the high correlation with the 1st mode since
that of the closest mode to the 1st mode is at most less than
0.1 in all the stations. In addition, since the behaviours of the
reconstructed time series of the 1st mode shown in Fig. 17
(a)–(d) are slowly varying, we assume it as the representa-
tive time series of the trend components. Second, according
to the result in Fig. 15 modes appear pairwise, i.e. 2nd+
3rd, and 4th+ 5th. They indicate the harmonic behaviours
of these modes. In Fig. 16, w-correlations corresponding to
these pairs are both more than 0.9. The behaviours of the

Fig. 15. Singular value spectra (in percentage) between the 2nd
mode and the 6th mode magnified from Fig.14. (a) Nakuru, (b)
Naivasha,(c) Narok, and(d) Kisumu. In all the stations, there are
two pairs between the 2nd and the 3rd modes and between the 4th
and the 5th modes (red ellipses).
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Fig. 16. w-correlation with the 24 reconstructed time series. (a)
Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu. When the mode
for the reconstructed time series is higher, the separability becomes
weaker because more different color cells indicating the correlation
with other modes are illustrated in the row and column directions of
each reconstructed time series in the results.

Table 4. Parameter combinations of the precipitations for SST.b: a
time length of both past and future parts,γ: a start position of the
subtime series in the future part from the reference time,LSST: a
window length for these subtime series,l: the number of the left
singular vectors of the past part to span a hyperplane.

b γ LSST l

(1) 12 0 6 2
(2) 24 0 12 2
(3) 36 0 18 2
(4) 48 0 24 2
(5) 60 0 30 2
(6) 72 0 36 2

reconstructed time series shown in Fig. 17 (e)–(t) are mod-
ulated oscillations, which almost indicate the annual cycle
and the semiannual cycle according to Fig. 18. Therefore,
we assume the sum of them as a representative time series
of harmonics components. To visually compare these two
representative time series with the IOD, Fig. 19 shows them
simultaneously.

Next, the extended SST will be applied to these representa-
tive time series. As with the parameter choice in the window
lengthLSSA, the other parametersb, γ, LSST, andl should
be determined based on the seasonality. In this studyLSSA

is fixed by24 (for two years), and the other parameter com-
binations are set as listed in table 4.We repeatedly apply the
Monte Carlo significance test to the change-point scores 100
times. These results are shown in Fig. A1 and A2. Further-
more, to discuss properties of the harmonics term,Fig. 20–23

show the transition of these periodicities since the change-
point in the representative time series of the harmonics is as-
sumed as a point where a periodicity changes. However, this
study focuses on the turn of events from the negative IOD to
the positive IOD, thus we estimate the periodicities around
1960 in each station ((a) [1950–1954], (b) [1955–1959], (c)
[1960–1964], and (d) [1965–1969]).

Fig. 19. IOD and the two representative time series (trend and har-
monics) of the monthly precipitations from 1950 to 1985. This
study focuses on the events of IOD around the early 1960’s show-
ing the change from the negative mode to the positive mode. At that
time, the precipitations in all the stations immediately increased ac-
cording to the trend time series and the periodicity is changed from
12-month cycle to 6-month cycle in Nakuru, Naivasha, and Kisumu
according to the harmonics time series (see table 5).

Table 5. Monthly periodicities every five years of the representative
harmonics time series [month] from 1950 to 1984. The main peri-
odicities in Nakuru, Naivasha, and Kisumu transiently change from
annual cycle to semiannual cycle in the 1960’s.

Time region Nakuru Naivasha Narok Kisumu

1950–1954 11.9 11.9 11.9 5.9
1955–1959 11.9 11.9 11.9 11.9
1960–1964 5.9 5.9 11.9 5.9
1965–1969 11.9 5.9 11.9 5.9
1970–1974 11.9 11.9 11.9 5.9
1975–1979 11.9 11.9 11.9 11.9
1980–1984 11.9 5.9 5.9 5.9

Fig. 16. w correlation with the 24 reconstructed time series.(a)
Nakuru,(b) Naivasha,(c) Narok, and(d) Kisumu. When the mode
for the reconstructed time series is higher, the separability becomes
weaker because more different colour cells indicating the correla-
tion with other modes are illustrated in the row and column direc-
tions of each reconstructed time series in the results.

3 Change-point detection of precipitation in East Africa

This section will be devoted to the application of our method
to the monthly Kenyan precipitation illustrated in Figs.3
and 4. First, the precipitation will be orthogonally decom-
posed by the SSA. We choose any number related to the an-
nual cycle (12-month) for the window length parameterLSSA
since the original time series include a seasonality. Thus,
in this studyLSSA = 24 (for 2 yr). When the grouping and
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Fig. 17. First 5 reconstructed time series by SSA. (a), (e), (i), (m), and (q) for Nakuru. (b), (f), (j), (n), and (r) for Naivasha. (c), (g), (k),
(o), and (s) for Narok. (d), (h), (l), (p), and (t) for Kisumu. (a)–(d) show the slowly varying trend components. (e)–(t) show the frequent
components. The red rectangles between 1960–1969 mean the interesting decade in this study.

Fig. 18.Periodicities of the extracted harmonics components shown in (e)–(t) of Fig. 17. (a), (e), (i), and (m) for Nakuru. (b), (f), (j), and (n)
for Naivasha. (c), (g), (k), and (o) for Narok. (d), (h), (l), and (p) for Kisumu. The two different periodicities are estimated, which are about
the annual cycle (12 months) and the semiannual cycle (6 months).

4 Discussion

We demonstrate that our method successfully detects the
change points in the representative time series extracted from
the synthetic data series of Eq.(15) and from the actual pre-
cipitation in Kenya as a climate data analysis of East Africa.
Since the relationship among these representative time series
reconstructed by SSA is orthogonal we can state that the re-
sults of change-point detection are the independent and dif-

ferent properties in the data.
In the synthetic data series, the representative time se-

ries of trend corresponds to the linear functions, where the
change points can be detected att= 200 and att= 550 as
shown in Fig. 12. Similarly, that of harmonics corresponds
to the sine functions, where the change point can be detected
at t=700 as shown in Fig. 13. They approximately coincide
with the definition of Eq.(16).

In the application to the actual precipitation in Kenya the

Fig. 17.First 5 reconstructed time series by SSA.(a, e, i, m, q)for Nakuru.(b, f, j, n, r) for Naivasha.(c, g, k, o, s)for Narok. (d, h, l, p,
t) for Kisumu.(a–d) show the slowly varying trend components.(e–t) show the frequent components. The red rectangles between 1960 and
1969 mean the interesting decade in this study.

t
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Fig. 17. First 5 reconstructed time series by SSA. (a), (e), (i), (m), and (q) for Nakuru. (b), (f), (j), (n), and (r) for Naivasha. (c), (g), (k),
(o), and (s) for Narok. (d), (h), (l), (p), and (t) for Kisumu. (a)–(d) show the slowly varying trend components. (e)–(t) show the frequent
components. The red rectangles between 1960–1969 mean the interesting decade in this study.

Fig. 18.Periodicities of the extracted harmonics components shown in (e)–(t) of Fig. 17. (a), (e), (i), and (m) for Nakuru. (b), (f), (j), and (n)
for Naivasha. (c), (g), (k), and (o) for Narok. (d), (h), (l), and (p) for Kisumu. The two different periodicities are estimated, which are about
the annual cycle (12 months) and the semiannual cycle (6 months).

4 Discussion

We demonstrate that our method successfully detects the
change points in the representative time series extracted from
the synthetic data series of Eq.(15) and from the actual pre-
cipitation in Kenya as a climate data analysis of East Africa.
Since the relationship among these representative time series
reconstructed by SSA is orthogonal we can state that the re-
sults of change-point detection are the independent and dif-

ferent properties in the data.
In the synthetic data series, the representative time se-

ries of trend corresponds to the linear functions, where the
change points can be detected att= 200 and att= 550 as
shown in Fig. 12. Similarly, that of harmonics corresponds
to the sine functions, where the change point can be detected
at t=700 as shown in Fig. 13. They approximately coincide
with the definition of Eq.(16).

In the application to the actual precipitation in Kenya the

Fig. 18.Periodicities of the extracted harmonics components shown in(e–t) in Fig. 17. (a, e, i, m)for Nakuru.(b, f, j,n) for Naivasha.(c, g,
k, and o) for Narok.(d, h, l, and p) for Kisumu. The two different periodicities are estimated, which are about the annual cycle (12 months)
and the semiannual cycle (6 months).

separability of the reconstructed time series are discussed
by the parameter choice, the results of singular value spec-
tra andw correlation will provide reasonable information in
the sense of climate cycles. For example, in Figs.14 and16,
which show the results of the singular value spectra and the
w correlation forLSSA = 24, the reconstructed time series
from the 1st to the 5th modes can basically be characterised
as representative time series. These reconstructed time series
are illustrated in Fig.17. Then from these results, let us con-
sider the grouping of the reconstructed time series into the
representative time series.

First, all the results of the singular value spectra in Fig.14
show the relatively high values for the 1st mode. From the
results ofw correlations in Fig.16, we consider that there
is no mode showing the high correlation with the 1st mode
since that of the closest mode to the 1st mode is at most less
than 0.1 in all the stations. In addition, since the behaviours
of the reconstructed time series of the 1st mode shown in
Fig. 17a–d are slowly varying, we assume it as the represen-
tative time series of the trend components. Second, accord-
ing to the result in Fig.15, modes appear pairwise, i.e. 2nd+

3rd, and 4th+ 5th; thus indicating the harmonic behaviours
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Fig. 16. w-correlation with the 24 reconstructed time series. (a)
Nakuru, (b) Naivasha, (c) Narok, and (d) Kisumu. When the mode
for the reconstructed time series is higher, the separability becomes
weaker because more different color cells indicating the correlation
with other modes are illustrated in the row and column directions of
each reconstructed time series in the results.

Table 4. Parameter combinations of the precipitations for SST.b: a
time length of both past and future parts,γ: a start position of the
subtime series in the future part from the reference time,LSST: a
window length for these subtime series,l: the number of the left
singular vectors of the past part to span a hyperplane.

b γ LSST l

(1) 12 0 6 2
(2) 24 0 12 2
(3) 36 0 18 2
(4) 48 0 24 2
(5) 60 0 30 2
(6) 72 0 36 2

reconstructed time series shown in Fig. 17 (e)–(t) are mod-
ulated oscillations, which almost indicate the annual cycle
and the semiannual cycle according to Fig. 18. Therefore,
we assume the sum of them as a representative time series
of harmonics components. To visually compare these two
representative time series with the IOD, Fig. 19 shows them
simultaneously.

Next, the extended SST will be applied to these representa-
tive time series. As with the parameter choice in the window
lengthLSSA, the other parametersb, γ, LSST, andl should
be determined based on the seasonality. In this studyLSSA

is fixed by24 (for two years), and the other parameter com-
binations are set as listed in table 4.We repeatedly apply the
Monte Carlo significance test to the change-point scores 100
times. These results are shown in Fig. A1 and A2. Further-
more, to discuss properties of the harmonics term,Fig. 20–23

show the transition of these periodicities since the change-
point in the representative time series of the harmonics is as-
sumed as a point where a periodicity changes. However, this
study focuses on the turn of events from the negative IOD to
the positive IOD, thus we estimate the periodicities around
1960 in each station ((a) [1950–1954], (b) [1955–1959], (c)
[1960–1964], and (d) [1965–1969]).

Fig. 19. IOD and the two representative time series (trend and har-
monics) of the monthly precipitations from 1950 to 1985. This
study focuses on the events of IOD around the early 1960’s show-
ing the change from the negative mode to the positive mode. At that
time, the precipitations in all the stations immediately increased ac-
cording to the trend time series and the periodicity is changed from
12-month cycle to 6-month cycle in Nakuru, Naivasha, and Kisumu
according to the harmonics time series (see table 5).

Table 5. Monthly periodicities every five years of the representative
harmonics time series [month] from 1950 to 1984. The main peri-
odicities in Nakuru, Naivasha, and Kisumu transiently change from
annual cycle to semiannual cycle in the 1960’s.

Time region Nakuru Naivasha Narok Kisumu

1950–1954 11.9 11.9 11.9 5.9
1955–1959 11.9 11.9 11.9 11.9
1960–1964 5.9 5.9 11.9 5.9
1965–1969 11.9 5.9 11.9 5.9
1970–1974 11.9 11.9 11.9 5.9
1975–1979 11.9 11.9 11.9 11.9
1980–1984 11.9 5.9 5.9 5.9

Fig. 19. IOD and the two representative time series (trend and har-
monics) of the monthly precipitations from 1950 to 1985. This
study focuses on the events of IOD around the early 1960s showing
the change from the negative mode to the positive mode. At that
time, the precipitations in all the stations immediately increased ac-
cording to the trend time series and the periodicity is changed from a
12-month cycle to 6-month cycle in Nakuru, Naivasha, and Kisumu
according to the harmonics time series (see Table5).

of these modes. In Fig.16, w correlations corresponding to
these pairs are both more than 0.9. The behaviours of the re-
constructed time series shown in Fig.17e–t are modulated
oscillations, which almost indicate the annual cycle and the
semiannual cycle according to Fig.18. Therefore, we assume
the sum of them as a representative time series of harmonics
components. To visually compare these two representative
time series with the IOD, Fig.19shows them simultaneously.

Next, the extended SST will be applied to these representa-
tive time series. As with the parameter choice in the window
lengthLSSA, the other parametersb, γ , LSST, andl should
be determined based on the seasonality. In this studyLSSA is
fixed by 24 (for 2 yr), and the other parameter combinations
are set as listed in Table4.

We repeatedly apply the Monte Carlo significance test to
the change-point scores 100 times. These results are shown
in Figs. A1 and A2. Furthermore, to discuss properties of
the harmonics term, Figs.20–23 show the transition of these
periodicities since the change point in the representative
time series of the harmonics is assumed as a point where
a periodicity changes. However, this study focuses on the

Table 4.Parameter combinations of the precipitations for SST.b: a
time length of both past and future parts,γ : a start position of the
subtime series in the future part from the reference time,LSST: a
window length for these subtime series,l: the number of the left
singular vectors of the past part to span a hyperplane.

b γ LSST l

(1) 12 0 6 2
(2) 24 0 12 2
(3) 36 0 18 2
(4) 48 0 24 2
(5) 60 0 30 2
(6) 72 0 36 2

Table 5.Monthly periodicities every five years of the representative
harmonics time series [month] from 1950 to 1984. The main peri-
odicities in Nakuru, Naivasha, and Kisumu transiently change from
annual cycle to semiannual cycle in the 1960s.

Time region Nakuru Naivasha Narok Kisumu

1950–1954 11.9 11.9 11.9 5.9
1955–1959 11.9 11.9 11.9 11.9
1960–1964 5.9 5.9 11.9 5.9
1965–1969 11.9 5.9 11.9 5.9
1970–1974 11.9 11.9 11.9 5.9
1975–1979 11.9 11.9 11.9 11.9
1980–1984 11.9 5.9 5.9 5.9

turn of events from the negative IOD to the positive IOD,
thus we estimate the periodicities around 1960 in each sta-
tion ((a) 1950–1954, (b) 1955–1959, (c) 1960–1964, and
(d) 1965–1969).

4 Discussion

We demonstrate that our method successfully detects the
change points in the representative time series extracted from
the synthetic data series of Eq. (15) and from the actual pre-
cipitation in Kenya as a climate data analysis of East Africa.
Since the relationship among these representative time series
reconstructed by SSA is orthogonal we can state that the re-
sults of change-point detection are the independent and dif-
ferent properties in the data.

In the synthetic data series, the representative time series
of trend corresponds to the linear functions, where the change
points can be detected att = 200 and att = 550 as shown in
Fig. 12. Similarly, that of harmonics corresponds to the sine
functions, where the change point can be detected att = 700
as shown in Fig.13. They approximately coincide with the
definition of Eq. (16).
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results of the trend terms show the significant variations of all
the data around 1960(see Fig. A1). However the result for
the parameter combination (6){b=72,γ=0,LSST =36,l=
2} listed in table 4 is different from the others. The reason
might be that the parameterb is too long to detect the change-
point at 1960.With regards to the harmonics terms, the sig-
nificant change points are often estimated also in 1960’s(see
Fig. A2). According to the periodograms of 10 years before
and after 1960 shown in Fig. 20–23, the strongest power of
periodicity changes from 12-month cycle to 6-month cycle in
Nakuru, Naivasha, and Kisumu. Although the strongest one
in Narok doesn’t change we can see, however, that the power
of 6-month cycle at least increases between [1955–1959] and
[1960–1964].

We discuss the interpretations of the results in climatolog-
ical context by linking them with IOD. We have found a sig-
nificant change-point occurring in the 1960’s. During this
period, the phenomenon of IOD has drastically changed be-
tween the negative mode and positive mode. According to
Fig. 19, especially, to the trend time series, we can see that
the heavy rainfalls are provided in the early 1960’s and af-
terwards the rainfalls are immediately decreasing for several
years. This result coincides with the record-breaking floods
in East Africa in 1961 (Behera, S. K. et al. (2005)). From the
result of the harmonics time series, the cycle of rainfalls in
Nakuru, Naivasha, and Kisumu decreased from 12-month to
6-month in the early 1960’s (see table 5). This corresponds
to increased rainfalls in the usually short rain season in au-
tumn, which was then comparable to the long rain season in
spring in 1961.

5 Conclusion

In this paper we proposed to extend the SST-based method of
change-point detection in order to consider nonlinear change
points and applied it to the precipitations in Kenya. The aim
of this study is to identify the change points in the repre-
sentative time series of the trend as well as the harmonics
extracted from the original time series. First, the change-
point detected in the time series of the trend suggested the
occurrence of drastic change in slope from a negative direc-
tion to a positive one and vice versa. Second, from the result
of change-point detection in the time series of the harmon-
ics the point where the major period in the time series of the
harmonics switched, could be estimated.

In the application of our method to the precipitations in
Kenya, we suggested the change points of all the data are
detected in the early 1960’s according to the results of their
scores, where the behaviour of IOD is similar to the represen-
tative time series of the trend extracted by our method. From
the harmonics time series we suggested that since the precip-
itation amount of the short rain season in Kenya immediately
increased by the positive IOD, the periodicity of rainfalls be-
came shorter in the early 1960’s and then it was detected as

Fig. 20. Periodicities around 1960 in Nakuru estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 21. Periodicities around 1960 in Naivasha estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 22.Periodicities around 1960 in Narok estimated from the rep-
resentative time series of the harmonics. (a) shows the periodicities
between 1950 and 1954, (b) between 1955 and 1959, (c) between
1960 and 1964, and (d) between 1965 and 1969. The red cross mark
means the major periodicity in each time region.

Fig. 20. Periodicities around 1960 in Nakuru estimated from the
representative time series of the harmonics.(a) shows the periodic-
ities between 1950 and 1954,(b) between 1955 and 1959,(c) be-
tween 1960 and 1964, and(d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.
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results of the trend terms show the significant variations of all
the data around 1960(see Fig. A1). However the result for
the parameter combination (6){b=72,γ=0,LSST =36,l=
2} listed in table 4 is different from the others. The reason
might be that the parameterb is too long to detect the change-
point at 1960.With regards to the harmonics terms, the sig-
nificant change points are often estimated also in 1960’s(see
Fig. A2). According to the periodograms of 10 years before
and after 1960 shown in Fig. 20–23, the strongest power of
periodicity changes from 12-month cycle to 6-month cycle in
Nakuru, Naivasha, and Kisumu. Although the strongest one
in Narok doesn’t change we can see, however, that the power
of 6-month cycle at least increases between [1955–1959] and
[1960–1964].

We discuss the interpretations of the results in climatolog-
ical context by linking them with IOD. We have found a sig-
nificant change-point occurring in the 1960’s. During this
period, the phenomenon of IOD has drastically changed be-
tween the negative mode and positive mode. According to
Fig. 19, especially, to the trend time series, we can see that
the heavy rainfalls are provided in the early 1960’s and af-
terwards the rainfalls are immediately decreasing for several
years. This result coincides with the record-breaking floods
in East Africa in 1961 (Behera, S. K. et al. (2005)). From the
result of the harmonics time series, the cycle of rainfalls in
Nakuru, Naivasha, and Kisumu decreased from 12-month to
6-month in the early 1960’s (see table 5). This corresponds
to increased rainfalls in the usually short rain season in au-
tumn, which was then comparable to the long rain season in
spring in 1961.

5 Conclusion

In this paper we proposed to extend the SST-based method of
change-point detection in order to consider nonlinear change
points and applied it to the precipitations in Kenya. The aim
of this study is to identify the change points in the repre-
sentative time series of the trend as well as the harmonics
extracted from the original time series. First, the change-
point detected in the time series of the trend suggested the
occurrence of drastic change in slope from a negative direc-
tion to a positive one and vice versa. Second, from the result
of change-point detection in the time series of the harmon-
ics the point where the major period in the time series of the
harmonics switched, could be estimated.

In the application of our method to the precipitations in
Kenya, we suggested the change points of all the data are
detected in the early 1960’s according to the results of their
scores, where the behaviour of IOD is similar to the represen-
tative time series of the trend extracted by our method. From
the harmonics time series we suggested that since the precip-
itation amount of the short rain season in Kenya immediately
increased by the positive IOD, the periodicity of rainfalls be-
came shorter in the early 1960’s and then it was detected as

Fig. 20. Periodicities around 1960 in Nakuru estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 21. Periodicities around 1960 in Naivasha estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 22.Periodicities around 1960 in Narok estimated from the rep-
resentative time series of the harmonics. (a) shows the periodicities
between 1950 and 1954, (b) between 1955 and 1959, (c) between
1960 and 1964, and (d) between 1965 and 1969. The red cross mark
means the major periodicity in each time region.

Fig. 21. Periodicities around 1960 in Naivasha estimated from the
representative time series of the harmonics.(a) shows the periodic-
ities between 1950 and 1954,(b) between 1955 and 1959,(c) be-
tween 1960 and 1964, and(d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

In the application to the actual precipitation in Kenya the
results of the trend terms show the significant variations of
all the data around 1960 (see Fig.A1). However the result
for the parameter combination (6){b = 72,γ = 0,LSST=

36, l = 2} listed in Table4 is different from the others. The
reason might be that the parameterb is too long to de-
tect the change point at 1960. With regards to the harmon-
ics terms, the significant change points are often estimated
also in 1960s (see Fig.A2). According to the periodograms
of 10 yr before and after 1960 shown in Figs.20–23, the
strongest power of periodicity changes from a 12-month cy-
cle to 6-month cycle in Nakuru, Naivasha, and Kisumu. Al-
though the strongest one in Narok does not change we can
see, however, that the power of a 6-month cycle at least in-
creases between 1955–1959 and 1960–1964.

We discuss the interpretations of the results in climato-
logical context by linking them with IOD. We have found a
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results of the trend terms show the significant variations of all
the data around 1960(see Fig. A1). However the result for
the parameter combination (6){b=72,γ=0,LSST =36,l=
2} listed in table 4 is different from the others. The reason
might be that the parameterb is too long to detect the change-
point at 1960.With regards to the harmonics terms, the sig-
nificant change points are often estimated also in 1960’s(see
Fig. A2). According to the periodograms of 10 years before
and after 1960 shown in Fig. 20–23, the strongest power of
periodicity changes from 12-month cycle to 6-month cycle in
Nakuru, Naivasha, and Kisumu. Although the strongest one
in Narok doesn’t change we can see, however, that the power
of 6-month cycle at least increases between [1955–1959] and
[1960–1964].

We discuss the interpretations of the results in climatolog-
ical context by linking them with IOD. We have found a sig-
nificant change-point occurring in the 1960’s. During this
period, the phenomenon of IOD has drastically changed be-
tween the negative mode and positive mode. According to
Fig. 19, especially, to the trend time series, we can see that
the heavy rainfalls are provided in the early 1960’s and af-
terwards the rainfalls are immediately decreasing for several
years. This result coincides with the record-breaking floods
in East Africa in 1961 (Behera, S. K. et al. (2005)). From the
result of the harmonics time series, the cycle of rainfalls in
Nakuru, Naivasha, and Kisumu decreased from 12-month to
6-month in the early 1960’s (see table 5). This corresponds
to increased rainfalls in the usually short rain season in au-
tumn, which was then comparable to the long rain season in
spring in 1961.

5 Conclusion

In this paper we proposed to extend the SST-based method of
change-point detection in order to consider nonlinear change
points and applied it to the precipitations in Kenya. The aim
of this study is to identify the change points in the repre-
sentative time series of the trend as well as the harmonics
extracted from the original time series. First, the change-
point detected in the time series of the trend suggested the
occurrence of drastic change in slope from a negative direc-
tion to a positive one and vice versa. Second, from the result
of change-point detection in the time series of the harmon-
ics the point where the major period in the time series of the
harmonics switched, could be estimated.

In the application of our method to the precipitations in
Kenya, we suggested the change points of all the data are
detected in the early 1960’s according to the results of their
scores, where the behaviour of IOD is similar to the represen-
tative time series of the trend extracted by our method. From
the harmonics time series we suggested that since the precip-
itation amount of the short rain season in Kenya immediately
increased by the positive IOD, the periodicity of rainfalls be-
came shorter in the early 1960’s and then it was detected as

Fig. 20. Periodicities around 1960 in Nakuru estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 21. Periodicities around 1960 in Naivasha estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

Fig. 22.Periodicities around 1960 in Narok estimated from the rep-
resentative time series of the harmonics. (a) shows the periodicities
between 1950 and 1954, (b) between 1955 and 1959, (c) between
1960 and 1964, and (d) between 1965 and 1969. The red cross mark
means the major periodicity in each time region.

Fig. 22.Periodicities around 1960 in Narok estimated from the rep-
resentative time series of the harmonics.(a) shows the periodicities
between 1950 and 1954,(b) between 1955 and 1959,(c) between
1960 and 1964, and(d) between 1965 and 1969. The red cross mark
means the major periodicity in each time region.
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Fig. 23. Periodicities around 1960 in Kisumu estimated from the
representative time series of the harmonics. (a) shows the period-
icities between 1950 and 1954, (b) between 1955 and 1959, (c) be-
tween 1960 and 1964, and (d) between 1965 and 1969. The red
cross mark means the major periodicity in each time region.

the change-point. The next challenge in this work is to en-
sure more accurate understanding of the climate change in
East Africa by applying our method to other data series re-
lated to this issue.

Appendix A

Histograms of the Significant Change Points

In the following we present the results of the significance
test for the detection of change points in the considered four
decades. Fig. A1 and A2 show the histograms of the de-
tected significant change points for the trend term and the
harmonics term, respectively, in the decades classified into
the 1950’s, 1960’s, 1970’s, and 1980’s: (a)–(c) for the pa-
rameter combination as given in table 4; (1), (d)–(f) for (2),
(g)–(i) for (3), (j)–(l) for (4), (m)–(o) for (5), and (p)–(r) for
(6), of the three surrogate methods (described by RS, PR, and
iAAFT).
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significant change point occurring in the 1960s. During this
period, the phenomenon of IOD has drastically changed be-
tween the negative mode and positive mode. According to
Fig. 19, especially, to the trend time series, we can see that
the heavy rainfalls are provided in the early 1960s and af-
terwards the rainfalls are immediately decreasing for several
years. This result coincides with the record-breaking floods
in East Africa in 1961 (Behera et al., 2005). From the re-
sult of the harmonics time series, the cycle of rainfalls in
Nakuru, Naivasha, and Kisumu decreased from 12-month to
6-month in the early 1960s (see Table5). This corresponds
to increased rainfalls in the usually short rainy season in au-
tumn, which was then comparable to the long rainy season in
spring in 1961.
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Fig. A1. Histogram, classified into the 1950’s, 1960’s, 1970’s, and 1980’s, of the significant change points of the trend estimated by using
the three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels). (a)–(c) forb=12, (d)–(f) for b=24,
(g)–(i) for b=36, (j)–(l) for b=48, (m)–(o) forb=60, and (p)–(r) forb=72. Blue bars mean Nakuru, light blue ones Naivasha, yellow
ones Narok, and red ones Kisumu.

Fig. A2. Histogram, classified into the 1950’s, 1960’s, 1970’s, and 1980’s, of the significant change points of the harmonics estimated by
using the three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels). (a)–(c) forb=12, (d)–(f) for
b=24, (g)–(i) for b=36, (j)–(l) for b=48, (m)–(o) forb=60, and (p)–(r) forb=72. Blue bars mean Nakuru, light blue ones Naivasha,
yellow ones Narok, and red ones Kisumu.

Fig. A1. Histogram, classified into the 1950s, 1960s, 1970s, and 1980s, of the significant change points of the trend estimated by using the
three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels).(a–c)for b = 12, (d–f) for b = 24, (g–i)
for b = 36, (j–l) for b = 48, (m–o) for b = 60, and(p–r) for b = 72. Blue bars mean Nakuru, light blue ones Naivasha, yellow ones Narok,
and red ones Kisumu.
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Fig. A1. Histogram, classified into the 1950’s, 1960’s, 1970’s, and 1980’s, of the significant change points of the trend estimated by using
the three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels). (a)–(c) forb=12, (d)–(f) for b=24,
(g)–(i) for b=36, (j)–(l) for b=48, (m)–(o) forb=60, and (p)–(r) forb=72. Blue bars mean Nakuru, light blue ones Naivasha, yellow
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Fig. A2. Histogram, classified into the 1950’s, 1960’s, 1970’s, and 1980’s, of the significant change points of the harmonics estimated by
using the three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels). (a)–(c) forb=12, (d)–(f) for
b=24, (g)–(i) for b=36, (j)–(l) for b=48, (m)–(o) forb=60, and (p)–(r) forb=72. Blue bars mean Nakuru, light blue ones Naivasha,
yellow ones Narok, and red ones Kisumu.

Fig. A2. Histogram, classified into the 1950s, 1960s, 1970s, and 1980s, of the significant change points of the harmonics estimated by using
the three kinds of surrogate methods: RS (left panels), PR (middle panels), and iAAFT (right panels).(a–c)for b = 12, (d–f) for b = 24,
(g–i) for b = 36, (j–l) for b = 48, (m–o) for b = 60, and(p–r) for b = 72. Blue bars mean Nakuru, light blue ones Naivasha, yellow ones
Narok, and red ones Kisumu.
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5 Conclusions

In this paper we proposed to extend the SST-based method of
change-point detection in order to consider nonlinear change
points and applied it to the precipitations in Kenya. The aim
of this study is to identify the change points in the representa-
tive time series of the trend as well as the harmonics extracted
from the original time series. First, the change point detected
in the time series of the trend suggested the occurrence of
drastic change in slope from a negative direction to a positive
one and vice versa. Second, from the result of change-point
detection in the time series of the harmonics the point where
the major period in the time series of the harmonics switched
could be estimated.

In the application of our method to the precipitations in
Kenya, we suggested the change points of all the data are
detected in the early 1960s according to the results of their
scores, where the behaviour of IOD is similar to the repre-
sentative time series of the trend extracted by our method.
From the harmonics time series we suggested that since the
precipitation amount of the short rainy season in Kenya im-
mediately increased by the positive IOD, the periodicity of
rainfalls became shorter in the early 1960s and therefore it
was detected as the change point. The next challenge in this
work is to ensure more accurate understanding of the climate
change in East Africa by applying our method to other data
series related to this issue.

Appendix A

Histograms of the significant change points

In the following we present the results of the significance
test for the detection of change points in the considered four
decades. Figures A1 and A2 show the histograms of the de-
tected significant change points for the trend term and the
harmonics term, respectively, in the decades classified into
the 1950s, 1960s, 1970s, and 1980s:(a–c) for the parameter
combination as given in Table4; (1), (d–f) for (2), (g–i) for
(3), (j–l) for (4), (m–o) for (5), and(p–r) for (6), of the three
surrogate methods (described by RS, PR, and iAAFT).
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Research Laboratory) for giving valuable comments and sugges-
tions.

Edited by: J. Kurths
Reviewed by: two anonymous referees

References

Ashok, K., Guan, Z., and Yamagata, T.: Impact of the Indian Ocean
Dipole on the relationship between the Indian Monsoon rainfall
and ENSO, Geophys. Res. Lett, 26, 4499–4502, 2001.

Basseville, M. and Nikiforov, I.: Detection of abrupt changes, the-
ory and application, Englewood Cliffs NJ, Prentice-Hall, 1993.

Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S.,
Navarra, A., and Yamagata, T.: Paramount impact of the Indian
Ocean Dipole on the East African short rains : a CGCM study, J.
Climate, 18, 4514–4530, 2005.

Bishop, C. M.: Pattern recognition and machine learning, Springer,
738 pp., 2007.

Björnsson, H. and Venegas, S. A.: A manual for EOF and SVD
analyses of climate data, Centre for Climate and Global Change
Research, Rep. 97, 53 pp., 1997.

Brockwell, P. J. and Davis, R. A.: Time series: theory and methods,
Springer, 584 pp., 1991.

Brockwell, P. J. and Davis, R. A.: Introduction to time series and
forecasting, Springer, 434 pp., 2002.

Di Bello, G., Lapenna, V., Macchiato, M., Satriano, C., Serio, C.
and Tramutoli, V.: Parametric time series analysis of geoelectri-
cal signals: an application to earthquake forecasting in Southern
Italy, Ann. Geofis., 39, 11–21, 1996.

Elsner, J. B. and Tsonis, A. A.: Singular Spectrum Analysis, A New
Tool in Time Series Analysis, Plenum Press, 164 pp., 1996.

Flohn, H.: Rainfall teleconnections in northern and northeastern
Africa, Theor. Appl. Climatol., 38, 191–197, 1987.

Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.,
Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F.,
and Yiou, P.: Advanced spectral methods for climatic time series,
Rev. Geophys., 40, 3.1–3.41, doi:10.1029/2000RG000092, 2002.

Golyandina, N., Nekrutkin, V., and Zhigljavsky, A.: Analysis of
time series structure, SSA and related techniques, Chapman &
Hall/CRC, Boca Raton, London, New York, and Washington DC,
305 pp., 2001.

Hassani, H.: Singular spectrum analysis: methodology and compar-
ison, J. Data Sci., 5, 239–257, 2007.

Idé, T.: Speeding up change-point detection using matrix compres-
sion, 2006 Workshop on Information-Based Induction Science,
Osaka, Japan, October–November 2006, 31, 2006.
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