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Abstract. The Earth’s magnetosphere exhibits a complex be-
havior in response to the solar wind conditions. This be-
havior, which is described in terms of mutifractional Brow-
nian motions, could be the consequence of the occurrence
of dynamical phase transitions. On the other hand, it has
been shown that the dynamics of the geomagnetic signals is
also characterized by intermittency at the smallest temporal
scales. Here, we focus on the existence of a possible rela-
tionship in the geomagnetic time series between the multi-
fractional Brownian motion character and the occurrence of
intermittency. In detail, we investigate the multifractional na-
ture of two long time series of the horizontal intensity of the
Earth’s magnetic field as measured at L’Aquila Geomagnetic
Observatory during two years (2001 and 2008), which cor-
respond to different conditions of solar activity. We propose
a possible double origin of the intermittent character of the
small-scale magnetic field fluctuations, which is related to
both the multifractional nature of the geomagnetic field and
the intermittent character of the disturbance level. Our results
suggest a more complex nature of the geomagnetic response
to solar wind changes than previously thought.

1 Introduction

The Earth’s magnetosphere, which is the region of space
where the geomagnetic field is confined by the solar wind,
can be described as a nonequilibrium nonlinear complex sys-
tem. Its complex dynamics, which results from the superpo-
sition of the internal dynamics and the external driving due
to the changes of solar wind conditions, has been widely in-
vestigated during the past two decades. Several studies have
been devoted to examine the occurrence of chaos, turbulence

and criticality during geomagnetic storms and substorms,
which are the most important manifestations of the magne-
tospheric activity (e.g.,Klimas et al., 1996, 2000; Consolini
and Chang, 2001; Dobias and Wanliss, 2009). These studies
have clearly evidenced that the magnetospheric evolution is
characterized by a near-criticality dynamics, which manifests
both in the scale-invariant nature of magnetotail relaxation
events and fractal properties of geomagnetic time series.

It has been found that the fractal character of several geo-
magnetic time series, for example those relative to the geo-
magnetic indices AE, Dst and SYM-H, changes during mag-
netic storms and substorms (Uritsky and Pudovkin, 1998;
Wanliss, 2005; Balasis et al., 2006; Wanliss and Dobias,
2007; Dobias and Wanliss, 2009). In particular, it has been
noticed that the self-similarity properties of these time series
change when an intense magnetospheric/geomagnetic activ-
ity event approaches. For instance,Balasis et al.(2006) have
shown the occurrence of an interesting transition from the
anti-persistent to the persistent character in the fluctuations
of Dst index, which closely corresponds to a transition from a
regime of quiet to one of high magnetospheric activity, char-
acterized by the occurrence of intense geomagnetic storms.
A similar behavior has been also documented in the case of
the auroral electrojet (AE) index (e.g.,Uritsky and Pudovkin,
1998). This result suggests that the magnetospheric dynam-
ics may arise from a combination of solar wind changes
and internal magnetospheric activity. However, variations of
the self-similarity features of geomagnetic indices have also
been observed in the distribution functions of the small-
scale increments (Consolini and De Michelis, 1998). These
changes, which usually arise from nonequilibrium dynami-
cal phase transitions occurring commonly at the onset of and
during magnetic storms and substorms, have been interpreted
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and discussed in a more general scenario, involving a near
forced and/or self-organized criticality (FSOC) dynamics
(Consolini, 1997; Uritsky and Pudovkin, 1998; Chang, 1999;
Chang et al., 2003; Consolini and Chang, 2001; Consolini
and De Michelis, 2002; Wanliss and Weygand, 2007; Wanliss
and Uritsky, 2010).

Another observable property of the magnetospheric dy-
namics, which is documented in literature, is the intermit-
tent character of geomagnetic time series, i.e., the anoma-
lous scaling of small-scale increments (fluctuations) and the
presence of a multifractal character (see, e.g.,Consolini et
al., 1996; Consolini and De Michelis, 1998; Kovács et al.,
2001; Wanliss et al., 2005; Consolini and De Michelis, 2011,
etc.). This intermittent character seems to be a common prop-
erty of magnetospheric dynamics that is generally observed
in both the time series of geomagnetic indices and in situ
magnetospheric and ground-based magnetic field measure-
ments. The origin of this intermittent and multifractal char-
acter has been interpreted as a direct consequence of dy-
namical changes and turbulent dynamics. In this framework,
Dobias and Wanliss(2009) recently noticed that the inter-
mittent character observed during magnetic substorms and
storms displays similar features when it is investigated in
terms of fractal processes. This observation suggests that dur-
ing magnetic storms and substorms there are common dy-
namical processes at the basis of the critical behavior of the
Earth’s magnetospheric dynamics in response to solar wind
changes (Dobias and Wanliss, 2009).

The aforementioned different features seem reasonably to
suggest that the nature of the geomagnetic time series, and in
particular of the geomagnetic indices, may be similar to those
of multifractional Brownian motion (mBm) (Muniandy and
Lim, 2001), where the scaling features change in time. In this
case, we can legitimately ask what the link is between the ob-
served intermittent and multifractal character of geomagnetic
signal and its possible multifractional Brownian nature.

This paper is organized as follows. At first, a brief sum-
mary of the main properties of fractional and multifractional
Brownian motions are described. Following this, the relation-
ship between intermittency and mBm in geomagnetic time
series is analyzed. Finally, the obtained results are summa-
rized and the implications of the findings are discussed.

2 Fractional and multifractional Brownian motion:
some general features

Fractional Brownian motion (fBm), also called fractal Brow-
nian motion, was introduced byMandelbrot and Van Ness
(1968) as a natural extension of ordinary Brownian motion.
A fBm has the property of being statistically self-similar,
which means that any portion of it can be viewed, from a
statistical point of view, as a scaled version of a larger part
of the same process. Unlike the classical (also known as or-
dinary or standard) Brownian motion, which is characterized

by independent increments, the fBm has a non-Markovian
character, which is manifested in the correlation between past
and future increments leading to persistent or anti-persistent
behavior.

According toMandelbrot and Van Ness(1968) the sim-
plest way of defining a fBmBH (t) is based on a modified
fractional Weyl integral,

BH (t) =
1

0
(
H+

1
2

) {∫ 0
−∞

[
(t − s)H−

1
2 − (−s)H−

1
2

]
×dB(s) +

∫ t

0(t − s)H−
1
2 dB(s)

}
,

(1)

where0(x) is the Euler Gamma function, andH is the Hurst
exponent (sometimes also called Hölder exponent), which
varies in the interval(0,1). The main features of the fBms
are (i) a zero mean displacement,

〈BH (t)〉 = 0, (2)

where 〈 〉 denotes the ensemble average and (ii) a time-
increasing variance of increments,

〈[δBH (s)]2〉 ∝| s |
2H , (3)

whereδBH (s) = BH (t + s) − BH (t) is the increment at the
timescales. Classical Brownian motion, which is charac-
terized by time-independent increments, is recovered for
H =

1
2. Conversely, the increments are negatively corre-

lated (i.e., to a positive/negative fluctuation it follows a neg-
ative/positive fluctuation with a higher probability) when
0 < H < 1/2, and they are positively correlated when 1/2 <

H < 1. Moreover, the increments of fBm are stationary and
self-similar with the parameterH :

{δBH (s)}
1
=

{
λ−H δBH (λs)

}
, (4)

where{X}
1
= {Y } denotes thatX andY have the same finite

distribution functions.
The fBms, being self-similar processes, allow us to con-

veniently describe irregular signals, which arise from several
real situations. However, the pointwise regularity of a fBm is
the same along its path, and this property is sometimes un-
desired, restricting the application field. For this reason, in
the second half of the 1990s the definition of fBm, character-
ized by a global value ofH , was generalized about the case
in which H is no longer independent of time, but a func-
tion of it. Consequently, in the generalization of fBm, i.e.,
mBm (Peltier and Ĺevy-Vehel, 1995; Benassi et al., 1997),
the Hurst exponentH depends on time, and all the features of
fBms are valid only locally. Among the different definitions
of mBms one of them, based on the fractional Weyl integral
representation, is easily obtained from Eq. (1) considering,
contrary to what happens for fBm, a time-dependent Hurst
exponentH(t). Thus, the increments of a mBm are no longer
stationary and the process is no longer globally self-similar. It
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Fig. 1. Three samples of fBm characterized by different values of the Hurst exponent H . The fBm samples are

generatedfrom the algorithm described in Benassi et al. (1997) with the same sequence of random numbers, so

as to emphasize the differences in terms of fluctuations.
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Fig. 1. Three samples of fBm characterized by different values of
the Hurst exponentH . The fBm samples are generated from the
algorithm described inBenassi et al.(1997) with the same sequence
of random numbers, so as to emphasize the differences in terms of
fluctuations.

is possible to use a simpler representation of a mBmXH(t)(t)

based on a Riemann–Liouville fractional integral (RLMBM)
(Muniandy and Lim, 2001),

XH(t)(t) =
1

0
(
H(t) +

1
2

) t∫
0

(t − s)H(t)− 1
2 dB(s), (5)

where we use the notationXH(t)(t), instead ofBH (t), to in-
dicate a multifractional Brownian motion.

Starting from this definition, a direct scheme to generate a
mBm has been implemented (Benassi et al., 1997; Muniandy
and Lim, 2001). This scheme uses uncorrelated unit variance
noise, i.e.,

XH(tj )(tj ) =

j∑
i=1

(
ηi

√
1t

)
wj−i+11t, (6)

where1t = 1/(N − 1), N equals the length of the series,ηi

is a unit variance Gaussian white noise with zero mean, and
wi is a weight function (seeMuniandy and Lim, 2001 for
more details) defined as

wi =
1

0(H +
1
2)

[
t2H
i − (ti − 1t)2H

2H1t

]1/2

. (7)

We emphasize that synthetic mBm generated by means of
RLMBM approximation (Eq.6) results from the addition of
weighted random values.
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Fig. 2. A sample of mBm (lower panel), generated according to the procedure described in Muniandy and Lim
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respectively. Data refer to magnetic field measurements recorded at L’Aquila Geomagnetic Obser-

vatory, which is part of INTERMAGNET program, whose objective is to establish a global

6

Fig. 2. A sample of mBm (lower panel), generated according to
the procedure described inMuniandy and Lim(2001) with a time-
varying Hurst/Ḧolder exponentH(t) (upper panel). Note the non-
stationary character of the fluctuations.

Figure1 shows some samples of fBms, characterized by
different values of the Hurst exponent, while Fig.2 displays
a sample of mBm. These samples are generated from algo-
rithms described inBenassi et al.(1997) andMuniandy and
Lim (2001), respectively. As it can be seen from the plots, the
fBm and mBm fluctuations have a different character. Indeed,
while the fBm fluctuations are stationary in amplitude, the
mBm fluctuations exhibit a clearly nonstationary character,
and become highly relevant during those time intervals which
are characterized by very low Hurst/Hölder exponent values.
These two properties (nonstationarity and dependence onH

values) of the mBm fluctuations are confirmed by looking at
the trend of the local varianceσ 2

loc(t) (computed on a mov-
ing window of 101 points in the case of a mBm synthetic
signal) as a function of the local Hurst exponent (Fig.3) and
analyzing simultaneously the shape of the probability den-
sity functions (PDFs) of fBm and mBm increments,δBH (τ )

andδXH(t)(τ ), respectively. Indeed, Fig.3 clearly shows a
decrease of the local signal varianceσ 2

loc(t) with the local
Hurst/Hölder exponent values, while Fig.4 shows the non-
Gaussian shape of the PDFs for the set of fBms and mBm,
reported in Figs.1 and 2. More exactly, Fig.4 reports the
PDFs for the smallest scale (τ = 1) incrementsδBH (τ ) and
δXH(t)(τ ), computed using synthetic signals of more than
5× 105 points. The increments have been rescaled to unit
variance for comparison. The nonstationary nature of the
mBm increments (fluctuations) manifests itself by a signifi-
cant departure of its PDF from the Gaussian shape. The mBm
PDF is clearly leptokurtotic and its shape depends on the in-
crement timescaleτ , as clearly demonstrated by the depen-
dence of the kurtosisκ of the mBm incrementsδXH(t)(τ )

on the timescaleτ (see Fig.5). This means that we are not
capable of constructing a master scale-invariant shape of the
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Fig. 3. Plot of the local varianceσ2
loc(t) versus the local

Hurst/Hölder exponentH(t).
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Fig. 4. Comparison among the PDFs of variance-normalized incre-
ments,δBH (τ ) andδXH(t)(τ ), of the mBm and fBms reported in
previous figures. The shape of the function for the fBms is the same
for all H values.

increment PDFs at different timescalesτ , using a single scal-
ing exponent. This is the evidence of the intermittent charac-
ter of mBm, which is the counterpart of the nonstationarity
of H(t).

3 Data description and analysis

To investigate the link between the intermittent character of
geomagnetic time series and their multifractional nature, we
consider two sets of data relative to the geomagnetic mea-
surements of the horizontal intensity (H) of the Earth’s mag-
netic field recorded during two distinct years: the year 2001
and the year 2008, which correspond to periods of maxi-
mum and minimum solar activity, respectively. Data refer
to magnetic field measurements recorded at L’Aquila Ge-
omagnetic Observatory, which is part of INTERMAGNET
program, whose objective is to establish a global network
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obtained from a geomagnetic observatory at mid latitude (Lat. 42◦ 23’ N, Long. 13◦ 19’ E)

8

Fig. 5.Dependence of the kurtosis of the synthetic mBm increments
δXH(t)(τ ) on the timescaleτ .

of co-operating high-quality digital magnetic observatories.
Therefore, we make use of magnetic field recordings ob-
tained by a permanent observatory fulfilling the same inter-
national standard of those used for constructing most of the
commonly used geomagnetic indices. In particular, the data
used in this standard are characterized by a sampling rate of
1 min and a resolution of 0.1 nT, which is higher than the
usual resolution of geomagnetic indices, allowing a better
investigation of small-scale fluctuations. Furthermore, these
data, which are obtained from a geomagnetic observatory at
mid-latitude (Lat. 42◦23′ N, Long. 13◦19′ E) located in the
center of Italy, well represent the characteristic scenario in
the evolution of geomagnetic field, and the selected magnetic
field component is reflective of the Earth’s space environ-
ment providing important information about the state of ge-
omagnetic activity. Indeed, the competing balance between
the Earth’s intrinsic magnetic field and solar wind dynamical
changes drives much of the variations of the Earth’s space
environment that are observed as magnetic field fluctuations
at short timescales at ground level in our time series. Thus,
our dataset can be considered to contain information on low-
latitude geomagnetic disturbances.

Figure6 reports the two datasets of geomagnetic measure-
ments during the two activity periods. At first glance, we im-
mediately notice the different character and amplitude of the
magnetic field fluctuations, which is due to the different so-
lar activity level. From a statistical point of view, the fluc-
tuations (δH=H− 〈H〉) of these two datasets are charac-
terized by a large ratio of the variances,σ 2

2001/σ
2
2008∼ 5.3,

and non-Gaussian distribution functions (here not shown),
which show a more skewed (γ 1

2001' −2.8 andγ 1
2008' −0.9,

whereγ 1 is the sample skewness) and kurtotic (κ2001' 18
andκ2008' 6, whereκ is the sample kurtosis) character in
the case of the 2001 dataset. Furthermore, there is a slight
difference in the mean value of the horizontal intensityH of
the Earth’s magnetic field (1〈H〉 ∼ 90 nT), which is due to
the secular variation of the field.

Nonlin. Processes Geophys., 20, 455–466, 2013 www.nonlin-processes-geophys.net/20/455/2013/
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To analyze the multifractional character of the geomag-
netic time series, the first step of our analysis is to compute
the power spectral densityS(f ) of the magnetic field fluctua-
tions by applying the standard Fourier spectral analysis. Fig-
ure7 shows the PSDs obtained for the two selected time in-
tervals. Both PSDs exhibit the same behavior at low and high
frequencies displaying characteristic frequencies in corre-
spondence with the daily variation (f ∼ 0.69×10−3 min−1)
and its first harmonics. In addition, the PSDs at low frequen-
cies (typically belowf ∼ 0.006 min−1) are consistent with a
power law spectrum (S(f ) ∼ f −α) characterized by a spec-
tral exponentα ∼ 1.0/1.3, while at the highest frequencies
(abovef ∼ 0.006 min−1) we observe a steeper power law
spectrum, with a spectral exponent equal toα ∼ 2.3. This re-
sult suggests that the character of large- and small-scale fluc-
tuations may be due to different physical processes. Further-
more, taking account of the relationship existing in the case
of fBm between the Hurst exponentH and the slopeα of the
PSD (α = 2H + 1) existing for a fBm, we can estimate the
value of the averageH exponent for the two datasets. In both
cases we obtain a value ofH ∼ 0.65, which suggests that
overall character of the signals is consistent with persistent
motions. The observedH value, the 1/f nature of the spec-
tra and the persistent character at these timescales may be the
counterpart of a possible critical dynamics (Woodard et al.,
2007) in the magnetospheric response to solar wind changes
as discussed in several works (see, e.g.,Consolini and Chang,
2001). Nevertheless, at the present stage on the basis of our
analysis this has to be considered only as a speculation; other
possible explanations exist for the observed persistent char-
acter, for instance the contribution of regular variations (e.g.,
the daily variationSq ) to magnetic field measurements.

To fully characterize the differences among the fluctua-
tions in the two datasets, we evaluate the kurtosisκ of the
magnetic field increments,δH(τ ) =H(t + τ)−H(t), at dif-
ferent timescalesτ . Kurtosis is indeed a measure of whether
the data-fluctuation PDFs are peaked or flat relative to a nor-
mal distribution. That is, datasets with high kurtosis have
PDFs of fluctuations (or increments) that are characterized by
a distinct peak near the most probable value and heavy tails in
comparison with the Gaussian distribution. Conversely, low
kurtosis datasets show flat top PDFs. In our case (see Fig.8),
we get high values of kurtosis, which depend on the timescale
τ in both the selected periods. This dependence is more evi-
dent in 2001 than 2008. It is also interesting to observe that
the highest values of kurtosis associated with short timescale
increments are concentrated in the year 2001. This suggests
that they are related to the higher solar activity level, which
causes the occurrence of large geomagnetic storms.

The second step of our analysis to investigate the multi-
fractional character of our magnetic field time series is to
evaluate the local Hurst/Ḧolder exponentHloc(t). The eval-
uation of local Hurst exponent is a nontrivial target, and for
this reason different approaches have been proposed in the
past years (e.g.,Peng et al., 1994; Peltier and Ĺevy-Vehel,
1995; Muniandy and Lim, 2001; Chen et al., 2002; Alessio
et al., 2002; Carbone et al., 2004; Keylock, 2010). One of
the most accurate, fast and simple methods for nonstandard
Gaussian multifractional Brownian motions is the detrend-
ing moving average (DMA) technique introduced byAlessio
et al.(2002) andCarbone et al.(2004). This method, which
is based on the analysis of the scaling features of the lo-
cal standard deviation around a moving average, is quite
simple and seems to be more accurate than other methods

www.nonlin-processes-geophys.net/20/455/2013/ Nonlin. Processes Geophys., 20, 455–466, 2013
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Fig. 9. A comparison between the actual local Hurst exponent
(black line) andHloc(t) estimated using the DMA technique
(green line). The average discrepancy between the true and DMA-
estimated local Hurst exponent is about 10 %.

is done using a moving window of 801 points and studying
the scaling features forn ∈ [2,100]. The choice of a time
window of 801 points has been done to ensure an optimal
noise/signal ratio in determining the local exponent. Figure9
shows the comparison between the actualH(t) and the esti-
matedHloc(t) using the DMA technique for a short interval.
The average precision in estimation of theHloc(t) is about
10% (i.e.,〈| Hloc(t) − H(t) | /H(t)〉 ' 0.1).

Furthermore, focusing our present study on the possi-
ble relationship between the multifractionality and inter-
mittency, we analyze the fluctuations in the high-frequency
domain, i.e., above the spectral break at aboutf = 6×

10−3 min−1, which corresponds to a temporal scale lower
than 100/200 min.

Figures10 and 11 show the results of the local Hurst
exponentHloc(t), obtained using the DMA technique on
a moving window of 801 points, in the case of the two
selected time intervals. We notice that the average value
〈Hloc(t)〉 of local Hurst exponents is always higher than 0.5
(〈Hloc(t)〉2001= [0.75± 0.16] and 〈Hloc(t)〉2008= [0.80±

0.16]), suggesting that the mean character of geomagnetic
time series is well in agreement with that of a persistent
mBm, as already observed in geomagnetic index studies
(e.g.,Dobias and Wanliss, 2009), and with what is found in
the case of a near-criticality dynamics (Woodard et al., 2007).
However, we emphasize that the structure of the fluctuation
field is sometimes not in agreement with a simple mBm being
the value of the local Hurst exponent higher than 1. Further-
more, during periods characterized by intense disturbances
(see, e.g., the period near the end of March 2001) the charac-
ter of the fluctuation field seems to display a less persistent
character. We underline that this behavior refers to fluctu-
ations characterized by timescales below 100 min, and that
a possible origin of such less persistent character may be
related to the rapid and impulsive variations of a web-like
structure of filamentary currents flowing in the ionosphere.
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Clearly, this point requires a different and more accurate
analysis, which is outside the aim of this work.

As the third step in the analysis of the mBm character of
geomagnetic time series, we compute the probability distri-
bution functions of the local Hurst exponentsHloc(t). These
PDFs are reported in Fig.12 for both the selected time pe-
riods. The two PDFs are completely equivalent and consis-
tent with a Gaussian shape, showing only a small difference
in the central value,〈Hloc〉, which is shifted towards lower

values ofHloc for 2001. The observed difference (δ〈Hloc〉 =

〈Hloc〉2008− 〈Hloc〉2001) is δ〈Hloc〉 = 0.05 in central value.
This point towards a less persistent character of the fluctu-
ations during the period of solar maximum, as a result of the
more frequent occurrence of perturbed periods.

To better clarify the link between the intermittency and
the multifractional nature of geomagnetic small-scale fluc-
tuations, we investigate the relationship between the local
Hurst exponentHloc(t) and the local variance of the signal
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small-scale increments δH(τ) (here τ = 1 min) of the geomagnetic field measurements, conditioned
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σ 2
loc(t) for the two different datasets. The local variance is

evaluated using a moving window of the same number of
points as that used in DMA analysis, i.e.,Npoints= 801. In
addition, to reduce the effect of local trend at scales larger
than the investigated ones, before evaluating the local vari-
ance, we detrend the signal in each window by a moving
average technique on a scale larger than 101 points, i.e., on
timescales larger than the maximum timescale investigated.

Figure 13 shows the occurrence plot of the dependence
of the local Hurst exponentHloc, computed by the DMA
technique, on the corresponding local varianceσ 2

loc for the
two time intervals here considered.Hloc shows a tendency
to increase with the increasing ofσ 2

loc, although this positive
correlation is more pronounced in 2008 (Pearson coefficient
r ∼ 0.57) than in 2001 (Pearson coefficientr ∼ 0.21). How-
ever, this trend is different and opposite to that observed in
the synthetic mBm signal generated using the algorithm de-
scribed in Sect.2, and displayed in Fig.14 (Pearson coeffi-
cientr ∼ −0.88).

The substantial discrepancy, observed between actual ge-
omagnetic time series and synthetic mBms, suggests that the
intermittency of geomagnetic time series cannot be simply
described as a consequence of their mutifractional nature.
This different correlation character betweenσ 2

loc and Hloc
suggests the existence of a double origin of intermittency,
which is related to both their multifractional feature and fluc-
tuation amplitudes.

To clarify this possible different origin of the intermit-
tency, we can investigate the PDFs of the small-scale incre-
mentsδH(τ ) (hereτ = 1 min) of the geomagnetic field mea-
surements, conditioned to the local Hurst exponentHloc, and
compare them with the corresponding conditioned PDFs of
the small-scale increments of synthetic mBm. In what fol-
lows, we identify these small-scale increments asδX, and the
corresponding standard-deviation-normalized increments as
y = δX/σ for convenience. Furthermore, because the accu-
racy of the local Hurst index estimated using the DMA tech-
nique is within 10 %, to properly evaluate the PDFs of the
small-scale increments for each choice ofHloc we consider

a window, characterized by a width of the same magnitude
of the estimated precision, i.e.,1Hloc/Hloc ∼ 0.1. In addi-
tion, for eachHloc-conditioned set of increments we evaluate
the standard variationσ(δX | Hloc) of the selected dataset.
In this way we can study the dependence ofσ(δX | Hloc) on
Hloc.

Figure 15 shows the conditioned PDFsP(y | Hloc) of
the standard-deviation-normalized small-scale (1 min) incre-
ments for the two selected time periods. A clearly different
dependence of the shape of conditioned PDFs is observable
in the two datasets. In detail, while for the year 2008 the
shape of the conditioned PDFs looks quasi-independent of
the value ofHloc, for the year 2001 a clear dependence is
recovered. Indeed, the conditioned PDFs relative to the year
2001 increase their leptokurtotic character with the decrease
of Hloc. This result is the signature of a different physical na-
ture of small-scale increments relative to periods character-
ized by a lower value ofHloc. A possible explanation of this
different character of 2001/2008 conditioned PDFs could be
the different level of solar activity and geomagnetic distur-
bances. Indeed, the more leptokurtotic character of the con-
ditioned PDFs at lowH values in the year 2001 has to be
related to the less persistent nature of very large fluctuations
occurring during disturbed periods.

In Fig. 16we report the conditioned PDFsP(y | Hloc) ob-
tained in the case of a synthetic mBm with a time-dependent
local Hurst exponentHloc(t) ∈ [0.1,0.9]. The PDFs do not
exhibit any substantial dependence of the shape on the value
of Hloc. Furthermore, the shape of the conditioned PDFs
is remarkably similar to that obtained evaluating the condi-
tioned PDFs for the year 2008, which is characterized by a
very low level of geomagnetic disturbance. Figure17 pro-
vides a direct confirmation of this last point. In this figure we
report the conditioned PDFsP(y | Hloc) with Hloc = 0.5 in
the case of the two selected geomagnetic time series and the
synthetic mBm.

In the framework of fully developed fluid turbulence the
departure from the Gaussian shape of the PDFs of small-
scale velocity longitudinal increments is sometimes modeled
by means of a superposition of Gaussian distribution char-
acterized by variances distributed according to a log-normal
distribution (Castaing et al., 1990). Analogously, we may
think that the non-Gaussian shape of the small-timescale in-
crements for fixed value ofH of the geomagnetic time series
may be modeled using a similar approach. For instance, we
can write

P(δB | H) =

∫
p(σ 2

| H)
1

√
2πσ 2

exp

(
−

δB2

2σ 2

)
dσ 2, (9)

wherep(σ 2
| H) is the probability distribution function of

the variances conditioned to the Hurst exponent. Conse-
quently, the PDFs of the increments of the actual geomag-
netic field measurements can be written as follows:
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P(δB) =

∫
P(δB | H)p(H)dH, (10)

p(H) being the distribution function of the local Hurst expo-
nents.

Last but not least, the more leptokurtotic character of the
conditioned PDFs of increments of the geomagnetic field
during high solar activity periods could reflect the different
nature of the physical processes responsible for the geomag-
netic disturbances. In detail, we can imagine that during these
periods the nature of the geomagnetic perturbations and fluc-
tuations may acquire a multiplicative character, which mani-
fests in a significant departure of the conditioned PDFs from
the shape obtained in the case of standard multifractional
Brownian motions. This point could be a consequence of the
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i.e., ∆Hloc/Hloc ∼ 0.1. In addition, for each Hloc-conditioned set of increments we evaluate the

standard variation σ(δX |Hloc) of the selected dataset. In this way we can study the dependence of285
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leptokurtotic character with the decrease of Hloc. This result is the signature of a different physical
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level of solar activity and geomagnetic disturbances. Indeed, the more leptokurtotic character of295
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avalanching nature of magnetospheric dynamics (Consolini
and Chang, 2001; Chang et al., 2003) during periods char-
acterized by the occurrence of geomagnetic substorms and
storms.
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the conditioned PDFs at low H values in the year 2001 has to be related to the less persistent

nature of very large fluctuations occurring during disturbed periods.

In Figure 16 we report the conditioned PDFs P (y |Hloc) obtained in the case of a synthetic

mBm with a time dependent local Hurst exponent Hloc(t)∈ [0.1,0.9]. The PDFs do not exhibit any

substantial dependence of the shape on the value of Hloc. Furthermore, the shape of the conditioned300

PDFs is remarkably similar to that obtained evaluating the conditioned PDFs for the year 2008,

which is characterized by a very low level of geomagnetic disturbance. Figure 17 provides a direct

confirmation to this last point. In this figure we report the conditioned PDFs P (y |Hloc) withHloc =

0.5 in the case of the two selected geomagnetic time series and the synthetic mBm.
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To conclude the characterization of the small-scale incre-
ments of conditioned PDFs, Fig.18 shows the dependence
of the standard deviationσ(δX | Hloc) on Hloc for the stud-
ied cases. A different behavior is recovered from the different
cases here investigated. In particular, we detect a small pos-
itive correlation betweenσ(δX | Hloc) andHloc for the year
2008, while in the other two cases (year 2001 and synthetic
mBm signal) we find that the standard deviationσ(δX | Hloc)

andHloc are clearly anti-correlated. The observed different
behavior may suggest that the origin of intermittency in geo-
magnetic time series could be due to a more complex nature
resulting from different competing processes, which are both
of an internal magnetospheric origin and directly driven by
solar wind disturbances. We will return to this point in the
next section.
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study has been carried on comparing actual recorded signals relative to different solar activity levels

with synthetic mBms. The main results of our analysis can be summarized as follows:

1. the intermittent character of geomagnetic time series cannot be simply related to their multi-340

fractional features;

2. the high variability of solar wind activity level affects the multifractional character by chang-

ing the spectrum of local Hurst exponents. When the geomagnetic activity level increases, a

decrease in the persistent character of geomagnetic fluctuations (increments) is observed;

3. the Hloc-conditioned PDFs of the geomagnetic small-time scale increments show a clear345

dependence on the geomagnetic activity level. Indeed, the shape of conditioned PDFs

is independent on the Hloc during solar minimum, while a clear dependence of the

conditioned-PDF shape on the Hloc is found during solar maximum. This point is a

direct consequence of the previous point as discussed in the previous Section;

4. the observed shape of conditioned-PDF during solar minimum resembles that of mBm,350

while a considerable difference is observed in the case of solar maximum. This behavior

is evident for the conditioned-PDFs with Hloc = 0.5, which are strongly affected by the

geomagnetic disturbance level.

To outline some possible implications of our findings we briefly discuss the scenario emerg-

ing from our analysis on the multifractional character of geomagnetic fluctuations. It is known355

that the Earth’s magnetospheric dynamics is characterized by a persistent dynamic correla-

tions (e.g. Dobias and Wanliss, 2009) and near-criticality dynamics (e.g. Consolini, 2002; Wan-
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to that corresponding toHloc = 0.5 for convenience. Dashed lines
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4 Summary and conclusions

We have focused our present work on the possible link
between the intermittent character and the multifractional
nature of the Earth’s magnetic field fluctuations on small
timescales. This study has been carried out by comparing ac-
tual recorded signals relative to different solar activity levels
with synthetic mBms. The main results of our analysis can
be summarized as follows:

1. The intermittent character of geomagnetic time series
cannot be simply related to their multifractional fea-
tures.

2. The high variability of solar wind activity level affects
the multifractional character by changing the spectrum
of local Hurst exponents. When the geomagnetic activ-
ity level increases, a decrease in the persistent character
of geomagnetic fluctuations (increments) is observed.

3. The Hloc-conditioned PDFs of the geomagnetic small-
timescale increments show a clear dependence on the
geomagnetic activity level. Indeed, the shape of con-
ditioned PDFs is independent of theHloc during solar
minimum, while a clear dependence of the conditioned
PDF shape on theHloc is found during solar maximum.
This point is a direct consequence of the previous point
as discussed in the previous section.

4. The observed shape of conditioned PDF during solar
minimum resembles that of mBm, while a considerable
difference is observed in the case of solar maximum.
This behavior is evident for the conditioned PDFs with
Hloc = 0.5, which are strongly affected by the geomag-
netic disturbance level.

To outline some possible implications of our findings, we
briefly discuss the scenario emerging from our analysis on
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the multifractional character of geomagnetic fluctuations. It
is known that the Earth’s magnetospheric dynamics is char-
acterized by persistent dynamic correlations (e.g.,Dobias
and Wanliss, 2009) and near-criticality dynamics (e.g.,Con-
solini, 2002; Wanliss and Uritsky, 2010), which are corre-
lated features in self-organized critical systems in stationary
conditions also away from the critical point (Woodard et al.,
2007). Furthermore, the persistent character of the magne-
tospheric dynamics has been shown to undergo dynamical
changes during magnetic storms and substorms (e.g.,Wan-
liss, 2005; Balasis et al., 2006; Wanliss and Dobias, 2007).
These points suggest that the more complex observed rela-
tion between the multifractional nature and the intermittent
character of the geomagnetic fluctuations (see, e.g., Figs.12,
13 and 14) may be the consequence of the nonstationarity
conditions of the solar wind driving. This idea is corrobo-
rated by the high temporal variability of the increment vari-
ance, which has to be related to the variation in the solar
wind magnetosphere coupling due to the changes of the solar
wind conditions. In contrast, it seems to be very difficult to
relate the nonstationary character of the solar wind driving
to the less persistent character of geomagnetic field fluctu-
ations during disturbed periods, which seems to be a pecu-
liar property of ground-based magnetic field measurements
with respect to geomagnetic indices, which show an increase
of persistent dynamical correlations during disturbed periods
(e.g.,Dobias and Wanliss, 2009). A possible explanation of
this different nature could be found in an inherent stochastic
nature of the current patterns at the ionospheric level. Indeed,
the less persistent nature of the geomagnetic fluctuations ob-
served during magnetic storms could be due to the superpo-
sition of temporal and spatial fluctuations. The ground-based
magnetic field measurements are the result of measurements
that occur in different places on Earth; for this reason, they
feel the effect of the local spatial structure of the ionospheric
current system patterns. This is the main difference between
the ground-based magnetic field measurements and the geo-
magnetic indices which differently provide global informa-
tion on magnetospheric dynamics. Thus, we propose that the
turbulent nature of the solar wind driving and the complex
ionospheric current spatial pattern could be responsible for
the more complex multifractional character of the geomag-
netic fluctuations observed in our work, especially regarding
the different dependence of signal variance on Hurst expo-
nent with respect to simple synthetic mBms. Clearly, the rela-
tion between these two different sources of the ground-based
magnetic field disturbances is something that needs to be bet-
ter investigated and clarified using much longer datasets and
numerical simulations.
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