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1Faculty of Civil Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
2Grupo de Sistemas Complejos, Departamento de Fı́sica, Universidad Politécnica de Madrid, 28040 Madrid, Spain
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Abstract. This paper describes an investigation into the
properties of spatially embedded complex networks repre-
senting the porous architecture of soil systems. We suggest
an approach to quantify the complexity of soil pore structure
based on the node-node link correlation properties of the net-
works. We show that the complexity depends on the strength
of spatial embedding of the network and that this is related
to the transition from a non-compact to compact phase of the
network.

1 Introduction

One of great challenges in soil science today (Lal, 2007) is
to understand how soils behave as a complex system (Craw-
ford, 2010). Over the last decade, network theory has become
a much discussed cross-disciplinary research field contribut-
ing to social, biological and information sciences (Barabasi,
2009, 2012), demonstrating that quite diverse systems might
share similar topological organization. Whilst soil scientists
have studied the complexity of soil pore space for decades
(Berkowitz and Ewing, 1998), it is only recently that soil
pore networks have been considered as complex systems.
Specifically two approaches to describe soil pore structure
as complex networks of pores have recently been proposed
(Mooney and Korǒsak, 2009; Ćardenas et al., 2010), both
emphasizing the role of the spatial embedding of the net-
work. Soil pore structure was described as a complex net-
work of pores using a spatially embedded varying fitness

network model (Mooney and Korošak, 2009) or heteroge-
neous preferential attachment scheme (Santiago et al., 2008).
Both approaches reveal the apparent scale-free topology of
soils with a power-law distributionP(k) ∝ k−γ of the de-
greesk of nodes as a consequence of a heterogeneous soil
pore size distribution.

2 Methodology

Soil pore networks are spatial networks (Barthelemy, 2011),
i.e. complex networks with nodes (pores) embedded in space.
Often the interactionTij between distant nodesi and j is
modelled using a gravity model:

Tij = sisjf (dij ) (1)

wheref describes the effect of spatial embedding of the
network. In the threshold soil pore network (Mooney and
Korošak, 2009) model,f = d−m

ij and the nodes are linked if
Tij > θ . Here, the non-dimensional parameterm measures
the importance of the distance, and the threshold valueθ con-
trols the number of links in the network. In the growing net-
work mechanism with extended preferential attachment rule
(Santiago et al., 2008), the probability to connect depends on
the pore sizesi and the distance between the poresi andj to
the power ofm.

In the threshold model the scaling exponent is for strong
enough embedding withm > D/(α − 1) given byγ = 1+

m(α − 1)/D (Masuda et al., 2005; Yakubo and Korošak,
2011), whereD is the embedding or fractal dimension, while
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in the growing network model multiscaling (Bianconi and
Barabasi, 2001) was found withγ = 1+ 2/w (Cárdenas et
al., 2010), wherew is the normalized fitness of the nodes.
The analysis of the scale-free network embedded in fractal
space (Yakubo and Korošak, 2011) has shown that we can
distinguish three phases of embedded network: (i) noncom-
pact phase form < mc0 = D/(α − 1) with y = 2, (ii) inter-
mediate phase formc0 < m < mc1 = (D + 1)/(α − 1), and
(iii) compact phase form > mc1.

Here, we first show using soil pore space structure data
from 2-D X-CT soil image that both methods of network
construction, in which we can tune the network heterogene-
ity, predict topologically similar networks of soil pore struc-
tures. Furthermore, we calculate the assortativityr (New-
man, 2002) as a function of network heterogeneity and find
that the crossover from disassortative to assortative network
configuration might depend on soil fractal properties (Rieu
and Sposito, 1991; Dimri, 2000) obtained from multifractal
analysis of soil structural images derived from X-ray com-
puted tomography (Mooney and Morris, 2008).

Finally, we use the entropy of node-node link correlations
(Claussen, 2007) to quantify the complexity of soil porous
architecture allowing us to relate the scaling exponent of the
pore size distribution and the complexity of the network of
soil porous structure. This is a computationally simple net-
work complexity measure that is sensitive to the network
structure. The complexity measure is defined as the entropy
of node-node link correlations that are given with the matrix
elementsck,k′ counting the number of links between nodes
with degreesk andk’ in the network:

ck,k′ =


N∑

i,j=1
aij δkikδkj k′ k 6= k′

1
2

N∑
i,j=1

aij δkikδkj k′ k = k′

, (2)

whereaij are the elements of the adjacency matrix. The prob-
ability that a randomly chosen edge links two nodes with the
degree difference1k, b1k is then constructed from the node-
node link correlation matrixck,k′ :

b1k =

∑kmax−1k
k=1 ck,k+1k∑kmax−1

1k=0

∑kmax−1k
k=1 ck,k+1k

. (3)

Here the denominator is equal toM (total number of
edges) and the numerator gives the number of edges con-
necting node pairs with the degree difference1k for any two
k, k′. Finally, the complexity is defined as an entropy mea-
sure ofb1k and measures how widely the degree differences
of connected node pairs in the network are distributed:

h = −

kmax−1∑
1k=0

b1k logb1k. (4)

   1	  

2	  

 3	  

Figure  1: Network representation of soil pore structure obtained by the evolving network 4	  

(EN) model (top) and static network (SN) model (bottom) from the same set of data derived 5	  

from images of soil structure and with equal model parameters: equal number of links and m 6	  

≈ 1. The area of node corresponds to the node degree, i.e. the number of links attached. The 7	  

data for the network construction included sizes and positions of the pores detected from 2D 8	  

X-CT scanned and analysed soil images. Though here rendered differently, with positions of 9	  

the nodes not corresponding to actual positions of the pores in the analysed images (for a 10	  

networks overlayed over soil images see (Mooney and Korošak, 2009)), both networks 11	  

actually show similar topology with the well connected nodes (larger dots) not directly 12	  

linked, but preferably linked through nodes with small degrees (smaller dots). This type of 13	  

network structure indicates that both networks are correlated.  14	  

Fig. 1. Network representation of soil pore structure obtained by
the evolving network (EN) model (top) and static network (SN)
model (bottom) from the same set of data derived from images of
soil structure and with equal model parameters: equal number of
links andm ≈ 1. The area of node corresponds to the node degree,
i.e. the number of links attached. The data for the network con-
struction included sizes and positions of the pores detected from
2-D X-CT scanned and analysed soil images. Though here ren-
dered differently, with positions of the nodes not corresponding to
actual positions of the pores in the analysed images (for networks
overlayed over soil images, see Mooney and Korošak, 2009), both
networks actually show similar topology with the well-connected
nodes (larger dots) not directly linked, but preferably linked through
nodes with small degrees (smaller dots). This type of network struc-
ture indicates that both networks are correlated.

3 Results and discussion

In Fig. 1 we display examples of networks representing the
soil pore structure. The input data for both network mod-
els were the geometric centres of pore positions (nodes of
the network) and pore sizes (measured as pore area) ob-
tained from 2-D X-CT soil image. The number of pores ob-
tained from image analysis was of the order ofN ≈ 103.
The upper network in Fig. 1 is obtained using the grow-
ing network mechanism with extended preferential attach-
ment rule (Santiago et al., 2008), while the lower network
in Fig. 1 results from the threshold model (Mooney and
Korošak, 2009). In all analysed samples the pore size distri-
butions were found to follow a power lawW(s) ∝ s−α with
the scaling exponent 1<α<2. Both methods lead to scale-
free organization of pore networks for small enoughm (of
the order of 1 or less, in non-compact phase) with the degree
distributionP(k) ∝ k−γ , and to more compact, homogenous
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Table 1.Complexityh of several soil pore structures with different scaling exponents of their pore size distributions atm = mc/2. Pore space
is black.
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Figure 2: Cumulative degree distributions of evolving network (EN) model (left) and static 2	  

network (SN) model (right) models for small and large values of the parameter m. The 3	  

scaling exponent of the scale-free degree distribution obtained for small m (straight line in 4	  

plots) is ! = 2. The fits are power-laws (straight lines) and cumulative Poisson distributions. 5	  
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Fig. 2. Cumulative degree distributions of evolving network (EN)
model (left) and static network (SN) model (right) for small and
large values of the parameterm. The scaling exponent of the scale-
free degree distribution obtained for smallm (straight line in plots)
is γ = 2. The fits are power laws (straight lines) and cumulative
Poisson distributions.

organization for largem as shown in Fig. 2 by the cumulative
degree distributions form ≈ 1 andm � 1.

Multifractal analysis of the same 2-D soil images (Stan-
ley and Meakin, 1988; Perrier et al., 2006) was performed,
which yieldedD = Dq(q = 0) ≈ 1.74 shown in Fig. 3. In an
attempt to correlate the properties of the threshold network
structure with the porous structure as obtained from 2-D soil
image, we considered the assortativityr (Newman, 2002),
which is the Pearson’s correlation coefficient of the degrees
of adjacent nodes, of the threshold network as a function of
the parameterm.

From the result displayed in Fig. 4, we see that there is
a crossover from disassortative (r < 0) to assortative (r > 0)

network structure at approximatelymc ≈ 4.3. This change
is a consequence of progressively more homogeneous net-
work structure with increasingm. In geographical scale-free
networks this crossover was found to occur when the de-
gree scaling exponent wasγ = 3 (Morita, 2006). Equating

 1	  

Figure 3: Results of the multifractal analysis of the binary soil image. Fractal dimension as a 2	  

function of scale parameter q is shown.  3	  
Fig. 3. Results of the multifractal analysis of the binary soil image.
Fractal dimension as a function of scale parameterq is shown.

the scaling coefficients for the growing network and thresh-
old network models gives the crossover parametermc =

2D/(α−1) = 2mc0 > mc1 indicating that the crossover from
disassortative to assortative network occurs well within in the
compact phase of the soil network. The degree scaling ex-
ponent in the growing network model exhibits multiscaling
γ = 1+2/w, so a homogenous network with normalized fit-
ness sharply distributed aroundw = 1 will haveγ = 3.

To further explore the effect of the network parameterm

on node correlations, we calculated the node-node link corre-
lationscij (Claussen, 2007) defined as links from node with
degreeki to node with degreekj .

We expect a soil pore network with a largeh to have many
links that connect nodes of various degrees, while networks
with low h will have mostly links connecting node pairs of
almost the same degree resembling a lattice-like network or
a network close to a complete graph.

The correlation matrices for a smaller geographical thresh-
old network are shown in Fig. 5 form � 1 (a),m = 1 (b) and
m � 1 (c). Again, we illustrate that, with the increasing value
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 1	  

Figure 4: Pearson's coefficient r applied to the links in the network as a measure of degree-2	  

degree correlations. r is shown as a function of parameter m in the static network model. We 3	  

observe a crossover from disassortative (! < 0) to assortative (! > 0) network structure at 4	  

!!   =   4.3 .  5	  

Fig. 4. Pearson’s coefficientr applied to the links in the network as
a measure of degree–degree correlations.r is shown as a function
of parameterm in the static network model. We observe a crossover
from disassortative (r < 0) to assortative (r > 0) network structure
atmc = 4.3.

of the parameterm, the network changes from disassortative
(nodes with different degrees preferably connected) to assor-
tative type.

To quantify the complexityh of the soil pore structure rep-
resented with the network, we computed the entropy of the
normalized diagonal sums of the correlation matrixcij . Fi-
nally, we have calculated the complexity of several soil pore
structures with different scaling exponents of their pore size
distributions atm = mc/2 (Table 1).

In the following we discuss two possible geophysical im-
plications of our findings that may help to elucidate the role
of the threshold network model parameterm: the scaling of
fractures in rocks (Berkowitz et al., 2000) and the influence
of the pore network properties on biological invasion in soil
(Perez-Reche et al., 2009, 2012).

The study of fracture networks in rocks (Berkowitz et al.,
2000) showed that the length distribution of fractures in rocks
scales asn(l) ∝ l−a . Herea is the fracture length distribution
exponent. Fora > D + 1 the scaling properties are indepen-
dent of system size; fora < D + 1 they depend on the sys-
tem size, anda = D + 1 signals the connectivity threshold
(D is here the fractal dimension of the problem). In experi-
ments they find that the range ofa is 1< a < 3. If we com-
parea to the scaling exponent of length distribution function
for scale-free networks embedded in fractal space (Yakubo
and Korǒsak, 2011), a model we used to describe soil pore
networks above, we havea = 1− D + m(α − 1). Immedi-
ately we get that the connectivity thresholda =1+D corre-
sponds exactly tomc = 2D/(α −1), the suspected crossover
from disassortative to assortative organization of the net-
work. Furthermore, we have the lower bounda =1 occurring
at mc0 = D/(α − 1), i.e. at the boundary between the non-
compact and the intermediate phase of the network structure.

a) ! ≪ 1 1	  

 2	  

b) ! = 1 3	  

 4	  

c) ! ≫ 1 5	  

 6	  

Figure 5: Correlation matrices for a smaller geographical threshold network. 7	  
Fig. 5. Correlation matrices for a smaller geographical threshold
network.
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The embedding parameterm of the threshold soil pore
network model controls the compactness of the network or-
ganization. For valuesm < m1 (non-compact and interme-
diate phase) the soil pore network exhibits long range con-
nections between pores, while in the compact phasem > m1
the pores in the network are mostly connected to spatially
nearest neighbours. Recently, the impact of the structural het-
erogeneity of soil pore networks on microbial spread in soils
has been investigated using soil pore network models (Perez-
Reche et al., 2009, 2012), and the idea of long range bridges
that link distance pores has been introduced to explain the
strong effect of the pore channel size heterogeneity on mi-
crobial invasion in soils. The pore channel size was found to
be correlated with the arc length of the pore channel between
two poresi andj asRij ∝ L

−β
ij (Perez-Reche et al., 2009). It

was also suggested that the pore channel size depends on the
radii of poresi andj : Rij ∝ RiRj (Li et al., 1986). Bring-
ing these observations together gives the expression for the
pore channel sizeRij ∝ RiRjL

−β
ij that is similar in structure

to the interactionTij (see Eq. 1) used to construct the soil
pore network model. However, the implications of the pos-
sible connection between the spatial embedding of the soil
pore network and the invasion of microorganisms in soils re-
main to be further investigated.

In conclusion, soil pore networks obtained from two dif-
ferent models demonstrate their scale-free structure, but with
characteristics such as assortativity or node-node link cor-
relations that depend on the strength of spatial embedding
of the network. For the evolving soil network model (Santi-
ago et al., 2008, Ćardenas et al., 2010, 2012), it was shown
that the scaling exponent of the asymptotic degree distribu-
tion is within the interval 1< γ ≤ 3. Comparing the two net-
work models, this finding sets the upper limit to the strength
of embedding in the threshold network modelm ≤ mc =

2D/(α − 1) indicating that soil pore networks are predom-
inantly disassortative. We have used an entropic measure for
the complexity of the soil pore network and showed that this
quantity is sensitive to differences in soil pore structure as
obtained from 2-D images of soil structure.
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