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Abstract. Tsunamis induced by rock slides plunging into 1 Introduction

fiords constitute a severe threat to local coastal communi-

ties. The rock slide impact may give rise to highly non-linear

waves in the near field, and because the wave lengths are rel0ck slides and subaerial landslides are known triggers of
tively short, frequency dispersion comes into play. Fjord Sys_Iarge impulse generated tsunamis that may inundate coastal
tems are rugged with steep slopes, and modeling non-linediord communities. Although such tsunamis are rare, they
dispersive waves in this environment with simultaneous run-may resultin huge run-up in the vicinity of the landslide im-
up is demanding. We have run an operational BoussinesgPact in the excess of those caused by earthquake tsunamis.
type TVD (total variation diminishing) model using differ- Examples of rock slide induced tsunamis include the 1961
ent run-up formulations. Two different tests are considered Lituya Bay eventRfiller, 1960, the Lago YanahuinRlafker
inundation on steep slopes and propagation in a trapezoid@nd Eyzagiurre1979, the 1783 Scilla landslideT{nti and
channel. In addition, a set of Lagrangian models serves a§uidobonj 1988, and in 2007 a series of rock slides in the
reference models. Demanding test cases with solitary waveAisén fjord in southern Chile caused tsunamis that were doc-
with amplitudes ranging from 0.1 to 0.5 were applied, andUmented on videoSepilveda and Serey2009. In Norway,
slopes were ranging from 10 to &Mifferent run-up formu- three major tsunamis struck the communities in Loen (1904,
lations yielded clearly different accuracy and stability, and 1936) and Tafjord (1934), causing altogether 175 fatalities
only some provided similar accuracy as the reference mod{J2rstad1968 Harbitz et al, 1993. The tsunami hazard due
els. The test cases revealed that the model was prone to i rock slides is significant in many communities in the west-
stabilities for large non-linearity and fine resolution. Some €rn part of Norway Blikra et al, 2003. A site that is con-

of the instabilities were linked with false breaking during Sidered particularly hazardous, is the unstable rock slope at
the first positive inundation, which was not observed for the/Aknes in Storfjorden, where rock slide volumes of several
reference models. None of the models were able to handi@illion m® may impact the fiord. Théknes rock slope is
the bore forming during drawdown, however. The instabili- €xtensively monitored and displays relative movements of up
ties are linked to short-crested undulations on the grid scalel© 20 cm yr! (Oppikofer et al, 2009.

and appear on fine resolution during inundation. As a con- 1sunamis induced by rock slides may involve a high de-
sequence, convergence was not always obtained. It is reaséf€€ of non-linearity in the generation process, including

to believe that the instability may be a general problem forbreaking, cavitation and strong turbulence, as clearly seen
Boussinesg models in fiords. from scale experimentd=(itz et al, 2003 Seelevik et al.

2009 Mohammed and Frit2012. In the far-field however,

the dissipative terms are less important, and the wave pro-
pagation may be described by long-wave theory. Typically,
both frequency dispersion and non-linearity are found to be
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380 F. Lovholt et al.: Capabilities of Boussinesq models

important. A possible modeling strategy could therefore bemark problems for run-up on steep slopes. For this pur-
using a Navier—Stokes model in the generation area couplegose, we will test convergence properties for one opera-
to a depth averaged Boussinesq-type model for the wave praional Boussinesq model (COULWAVE, Cornell University
pagation in the fjord system. The fjords are narrow, and ard_ong and Intermediate Wave Modeling Package), which ex-
dominated by rugged steep slopes. Tsunamis inundate thieibits the above mentioned properties. The second objec-
coastlines as they propagate. At the same time the tsunantive is to scrutinize how different run-up formulations deal
may exhibit breaking. Both of the latter effects should be with the steep slopes, combined with the strong non-linearity
properly accounted for in the propagation model, which ob-and dispersion. To this end, different run-up formulations are
viously constitutes a challenge. tested within the Boussinesq modeling framework. In addi-

In the last decades we have seen a development on longion to COULWAVE, we utilize a set of Lagrangian models
wave expansions and their numerical formulations. Newthat serve as reference. The Lagrangian models include both
Boussinesqg-type formulations, such as those introduced by boundary integral (BIM) full potential model as well as
Madsen et al(1991), and Nwogu (1993, displayed im-  Boussinesg-type models. These models are mostly applica-
proved accuracy, as well as extended validity ranges irble to one direction of propagation, while some may be used
comparison to the standard formulationRéregring 1966 in simple geometries with two horizontal dimensions, only.
1967). Progress was made with respect to both dispersiorHence, they are not an option for operational use, but are well
properties, non-linearity, vorticity, and a variety of numeri- suited for comparison because their good convergence prop-
cal formulations were proposeWVgi et al, 1995 Chen and  erties are previously verified. The benchmark tests include
Liu, 1995 Madsen and Sdiffer, 1999 Gobbi et al, 2000 inundation of a solitary wave on a slope.

Madsen et a).2002 Hsiao et al.2002 Madsen et a).2003 The first part of this paper provides a review of run-up
Lynett, 2006 Chen 2006, Moreover, formulations including modeling using a depth-averaged framework, followed by a
run-up and breaking were developed (e.fennedy et al.  brief description the employed models. Sect®ipresents
200Q Lynett et al, 2002. To this end, the most recent de- a study of run-up on steep plane beaches using fully non-
velopment is approximate Riemann solvers in combinationdinear non-hydrostatic models. Emphasis is put on model
with TVD limiters (Erduran et aJ.2005 Kim et al, 2009 convergence and stability properties. This is followed by a
Kim and Lynetf 2012, Shi et al, 2012, which may provide  study of wave propagation in a trapezoidal channel, which
improved model stability. is presented in Secd. Finally, the modeling capabilities of

Due to the above mentioned capabilities, models such aan operational Boussinesg-type model for landslide induced
FUNWAVE (Shi et al, 2012, and COULWAVE Kim et al, tsunamis in fjords is discussed. The breaking model em-
2009 Kim and Lynett 2017 provide a state of the art mod- ployed in the operational model is presented in Apperdix
eling framework and have been popular for modeling dis-The Lagrangian reference models are described in references
persive tsunamis by landslides and volcanic flank collapsesgiven below. In addition, particulars relevant for the present
(e.g., Lynett et al, 2003 Grilli and Watts 2005 Geist et al. study are found in AppendiR.

2009 Abadie et al. 2012. On the other hand, such mod-

els were originally not developed for handling the violent 5 Numerical modeling framework

flows due to tsunamis induced by rock slides or volcanic

flank collapses involving strong non-linearity and simulta- 2.1 Run-up modeling with depth integrated equations
neous run-up along steep coastlinegvholt and Pedersen

(2009 found that several Boussinesq formulations are proneThe first theoretical treatment of non-linear run-up was pre-
to instability even in their linear formulation when subjected sented byCarrier and Greenspafl958 who transformed

to steep bathymetric slopes. Stability issues are likely to behe non-linear shallow water equations on an inclined plane
even more pronounced for highly non-linear waves in fjord into the corresponding linear equations. They used the trans-
systems where steep reliefs are present. Hence, there isfarmation to obtain a standing wave solution, as well as a
need to systematically test operational Boussinesq models toun-up following from an initial condition. This technique
address their capabilities for simulating tsunamis under dehas remained popular ever since and had a resurge after the
manding conditions. formula for solitary wave run-up was published Byno-

A fundamental requirement for any numerical model is lakis (1987. However, the technique is limited to hydrostatic
the accuracy and convergence of the method. Convergenceguations and, save for a few exceptiokariajlu and Syn-
may be analyzed by means of grid refinement tests, demandlakis 1998 Choi et al, 2008 Didenkulova and Pelinovsky
ing that the differences between the computed field vari-2009 to plane slopes as well. Moreover, non-linear specifi-
ables vanishes as the grid lengths approach zero. A nec:ations of initial conditions are cumbersome due to the trans-
essary and sufficient condition for convergence is stabil-formation technique, while the transformation back to the
ity (see e.g.L.eVeque 1992 Langtangen2003 for discus-  physical plane generally requires numerical integration. As
sions). The first objective of this paper is to analyze con-a consequence only a few truly analytic solutions have been
vergence of operational models for a set of simple bench-derived, and even the celebrated formula of Synolakis is an
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asymptotic approximation requiring a gentle slope comparedy applying Lagrangian coordinate&dto, 1979 Goto and
to the incident wave length and becomes otherwise inaccuShutq 1983 Pedersen and Gjevik983 Zelt and Raichlen
rate Pedersen2008a Pedersen et al2013. In the present  199Q Johnsgard1999 or a more flexible ALE (arbitrary
context, namely run-up of moderately short waves, we mustagrangian—Eulerian) descriptio®¢kan-Haller and Kirby
instead rely on carefully obtained numerical solutions for 1997 Prasad and Svendse2003. For such models rapid
comparison. convergence may often be obtained, but they are limited to

In Eulerian inundation models computational cells mustmoderately complex geometries and are thus not suitable
be redefined as wet or dry according to the shoreline motionfor tsunami run-up, for instance. On the other hand, since
This often requires a special treatment of near-shore pointthey are accurate and offer some freedom concerning ge-
and may involve extrapolation of field quantities to newly ometry and physical description they may serve excellently
flooded cells or fictitious grid pointsSielecki and Wurtele for benchmarking more general operational models. Unfor-
(1970 published the, maybe, first proper attempt on suchtunately this is not much exploited. Due to tradition, maybe,
modeling. LaterHibberd and Peregrind979 employed the  authors tend to validate their models by experiments, which
Lax—Wendroff method, combined with a multi-step schemeare hampered by scaling effects and often issues concerning
for advancing the shoreline for bores as well as non-breakinghe definition of the problem, or by the so-called analytical,
waves. Today, most standard models for tsunami applicationbut certainly limited, solutions obtained from the hodograph
or coastal engineering come with some form of inundationtechnique or the few other analytic solutions which do ex-
facility. The TUNAMI (Imamura 1996 model is based on ist, such as oscillations in parabolic basifi®idcker 1981
the NLSW equation and employs a stair-step procedure irand dam-breakStoker 1957. The widely used models of
the sense that the depth is regarded uniform in each cell antbday are generally tested on a set of such problems with
that a dry cell becomes flooded when its shelf is overtoppedjood results. However, as the range of the available analyt-
by the fluid elevation in a neighboring cell. MOSTitov and ical solutions is quite limited, this offers no guarantee for
Synolakis 1998 is another widespread NLSW solver invok- good performance for even moderately more complex prob-
ing a split step method with alternating directional applica- lems. This will be demonstrated in the present manuscript
tion of characteristics. The shoreline is traced by an auxiliarywhere we focus on a run-up problem, involving strong non-
grid point, while values in newly flooded cells are projected linearity, dispersion and steep slopes, and propagation in a
from the neighboring wet nodes. In NLSW models based onchannel of non-rectangular cross section. Herein, we do use
Riemann solvers, yielding TVD schemes, the shoreline mayLagrangian techniques for comparison. One set of models
be implemented as a special Riemann solution (propagatiors based on Boussinesg-type equations, with some diver-
into vacuum) combined with requirement on minimum flow sity with respect to non-linearity and dispersion properties
depth (see, for instanceeVeque and Georg2008. Bellotti (Jensen et gl2003 Pedersen2008h 2011 Pedersen et al.
and Brocchini200)) invoked the TVD scheme and the Rie- 2013. Since these models possess very accurate shoreline
mann shoreline technique in a Boussinesq framework. Thigracing, they easily yield numerical solutions very close to
has recently been adopted in the standard Boussinesq modenvergence. The diversity between the different Boussinesq
els, such as FUNWAVE and COULWAVE. The older ver- models yields a (generally narrow) range of run-up heights,
sions of the FUNWAVE Kennedy et al.2000 model for ~ which indicates what may be expected for Boussinesq so-
Boussinesqg-type equations come with a particular wet-slotutions in general. In addition we employ a boundary in-
treatment of the beach, which then displays properties akin taegral technique for full potential theoryédersen2008h
a porous medium. In recent descendants of the FUNWAVEPedersen et al2013, without any approximations with re-
models Ghi et al, 2012 the authors have resorted to more spect to wavelength or non-linearity. While the Lagrangian
standard technique3dnelli and Petti2012. Another stan-  long-wave models are mainly used for assessing the numeri-
dard Boussinesq modelynett et al, 2002 employed ex- cal performance of operational models, the boundary integral
tensive onshore extrapolation of field variables to reduce thanethod provides a check on the physical validity as well.
need for special treatment of shoreline points. Generally, in
Boussinesqg-type models with moving shorelines the disper2.2 Employed Boussinesq models
sion term is partly or fully deleted in the vicinity of the shore-
line. Herein, we employ a descendant of the COULWAVE We introduce a Cartesian coordinate system with horizontal
model Kim et al, 2009 Kim and Lynett 2017) referred  axes, ox and oy in the undisturbed water level and an oz axis
to as the operational model below, combined with differentpointing vertically upward. The equilibrium depth is denoted
techniques for run-up. Presumably, the obtained results wilby &, the surface elevation byand the velocity components
be relevant also for the application of these techniques withby u andv in the x andy directions, respectively. We iden-
other basic numerical models. tify a typical depthd, a typical wavelengthl., and an ampli-

A generally simple and robust way to deal with a mov- tude factorg, which corresponds to a characteristic value of
ing shoreline is to transform the basic equations to a coordi#/d. Different long-wave equations can be obtained through
nate system that deforms accordingly. This may be obtainegherturbation expansions in=d/L ande. They may then
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be classified according to which orders these parameters am@e not utilized here. With the change to the FV scheme, the
retained in the equations, when the equations are scaled suchoving boundary approach was also modified, discarding the
that the leading order is unity. The residual (error) termsearlier “extrapolation” technique.ynett et al, 2002. While
of the standard Boussinesq equations, such as solved in thtee extrapolation method proved generally stable and accu-
early Boussinesq modelBéregring1967), are O (e u?, u*). rate, it was unable to handle complex flow convergence and
The primary unknowns then were the surface elevation andlow re-entry.
the vertically averaged horizontal velocity. Several other for- Following existing FV moving shoreline approaches for
mulations with different choices of primary unknowns do ex- flux-form equations, the wet/dry boundary can be accom-
ist, of which that oNwogu (1993 has become widely used. modated numerically through special treatment of the fluxes
In this formulation the velocity at a chosen depihisusedas in the boundary cells. Consider a situation where cell
a primary unknown. With the optimal choieg = —0.531 is wet and celli +1 is dry; here, the fluxes at the inter-
improved linear dispersion properties are obtained (good forface,i + 1/2, require special calculation. The flux terms for
say, wavelengths down tg:2 Wei et al.(1995 presented a a one-horizontal-dimension configuration are the mass flux
fully non-linear version of Nwogu’s formulation, with resid- (HU);+1/2 and the momentum quQd’-IUZ),»H/z, whereH =
ual terms akin ta (|VA|u*, 18). These equations have later 7+# is the total water depth artd is the depth-averaged ve-
been corrected and generalized to include multiple layers antbcity. There will be three different approaches for estimating
turbulent shear effectdynett and Liy 2004 Kim et al, these terms presented in this paper, given below. Note that for
2009 Kim and Lynett 2011). all three run-up approaches, the boundary cell flux tekims
Herein we employ different varieties of an operational andU are handled independently, such that, for example, the
model (COULWAVE) and a set of reference models that havemass flux becomeH; 1/2U; 1/2.
Lagrangian shoreline tracking as common feature. The par- (a) Centered method. In this casH; 1/» = 0.5(H; +
ticulars of the models will be explained subsequently, but it H; 1) andU;1/2 = U;. Here, for all slope and flow depth
is convenient to introduce a brief definition with a numbering configurations,; information from the first dry cell is in-
already at this stage. The numbering will be used for refer-cluded in the boundary flux calculation, and conceptually the

ence later in the text and in figures: flow depth and depth profile vary linearly across the wet and
. ) dry cells.
1. Operational models: (b) Step method. For this approach, the conventional stair-
a. Centered method: stepped schematic of the bottom is used. For interface fluxes

to be non-zeroy; must be greater thanhi; 1. When this
condition is satisfiedH; 11,2 = n; + hit1 andU; 412 = U;.
c. Hybrid method. This is a low-order approach, and is the method described in
Lynett et al.(201Q with details on non-simple wet/dry cell
configurations and other details of the moving boundary ap-
a. weakly non-linear Boussinesq with standard disper-proach). The depth profile is imagined to step up (or down)
sion; vertically atx;1/> from ; to h; 1, and the free surface gra-
dient in this region is zero.
(c) Hybrid method. The concept here is very similar to
) N ) the stepped flux approach in (b), except that the depth pro-
c. domain decomposition model (lagrangian run-up fiie petween the center of celisandi + 1 is considered to

b. Step method;

2. Models with Lagrangian shoreline tracking:

b. fully non-linear Boussinesq with standard disper-
sion;

model); vary linearly, as in (a). For interface fluxes to be non-zeyo,
d. Boussinesg model, fully non-linear with optimized must be greater tharh;1/2. When this condition is satis-
dispersion, fied, Hi11/2 = n; + hiy1/2 andU; 172 = U;.

For all three approaches, cell velocities at non-boundary
dry cells are set to zero, and the free surface gradient at the
last wet cell is evaluated with a low-order directional differ-
2.2.1 Eulerian operational model ence away from the dry cell, i.€dn/9x); = (n; —n;—1)/dx.

All dispersive terms at the last wet cell are neglected.
The COULWAVE model was first developed as a means to
investigate waves generated by submarine landslides, an@.2.2 Lagrangian run-up models
was numerically very similar to the initial versions of the
FUNWAVE model. Recently, the numerical scheme has beerirhe Lagrangian models are particularly designed to deal with
changed to utilize a finite-volume (FV) method for the run-up on sloping beaches for simple geometries and enable
Boussinesq equations in conservative (flux) fokin{ et al,, a shoreline description of high accuracy. A fully non-linear
2009. Various turbulence and rotational effects have alsoextension of the standard formulatioRgdersen and Gje-
been included (e.gKim and Lynet 2011), but these features vik, 1983 Jensen et gl.2003 Pedersen2008h has been

e. boundary integral model based on full potential
theory.
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slightly diversified and amended to reduce the residual toputational data:

O(|Vh|u?, 18, which makes the equations comparable to

those ofWei et al.(1995. Different versions, valid to this A > C (tang)?, (1)
order, are obtained through a free parametekinear dis- d

persion properties are improved by adding @ti*) term  \yhere ¢ = 257 indicates clear overturning and = 16.9

to the momentum equation and then optimizing the lineary,q |oer |imit of an intermediate regime where very steep
d|sperS|on_propert|_es |n.the same mapnengu(1993. fronts were formed. Fo# = 10° Eq. (1) yields A/d > 0.52
More details are given in Appendi, including a precise o © — 16,9, while it predicts that no incident solitary wave

definition of the model variants 2a, 2b, and 2d (see above), aqks during run-up for angles larger thanst2Hence, ac-
For generality we also use a combined Boussinesg/NLSW,

] L cording to this criterion none of our solitary waves should
model, named 2c, as described®gderserf201]). Infinite  reak during run-up, even though they generally break dur-
depth this model employs standard Boussinesq equations d|§ﬁg drawdown.
cretized on an Eulerian grid, while a small Lagrangian grid is
used near shore. The different Lagrangian models are used 91 Model setup and incident waves
obtain converged numerical run-ups and, by means of their
diversity, to indicate a range for Boussinesq results. As aDifferent Boussinesq equations inherit different solitary
check on the accuracy of the long-wave approximation asvave solutions. Only some of the formulations described
such we also compare with the results of a boundary integraherein possess known closed form solitary wave solutions,
model for full potential theoryRederser2008, named 2e.  namely the non-linear Lagrangian forms, without optimized

dispersion (see AppendiR). For full potential theory we

have the numerical solution @anaka1986), while a pertur-
3 Plane wave run-up on steep slopes bation solution, namely the fourth-order solutionFnton

(1972, may be applied for small amplitudes (d < 0.1). A
The model's capabilities of reproducing run-up on steepnumerical solution is also employed for the standard Boussi-
slopes are investigated by examining solitary waves on innesq equation, employed in model 2c (faslersenl989.
clined planes. The incident waves are specified by the proThen, for Boussinesq models with improved dispersion prop-
cedures described below, while the bathymetry consists of @&rties we have only access to approximate analytic solitary
flat bottom joined smoothly to the inclined plane by means ofwave solutions. For the fully non-linear Lagrangian model
a spline function. More precisely, if the intersection betweenwith improved dispersion properties this solution is given in
the flat bottom and the inclined plane is located at x; the  Appendix B, while the approximate solution for the equa-
depth in the interval-¢ < x — x; < £ is given by a polyno-  tions of Wei et al.(1995 is found inWei and Kirby(19995.
mial of fifth degree which yields continuity fdr, dz/dx and For larger amplitudes the deviation between the approximate
d?h /dx2. The spline is invoked to avoid effects of a vertex in and the exact, undescribed, solution becomes significant.
the bottom profile. Even though such effects may be impor- When an approximate solitary wave solution is inserted
tant in their own right, our intention with the present test is in a model its height and shape will gradually adapt, while
to study model performance for run-up on steep slopes in a tiny wave train is shed at the rear of the leading pulse. If
context as simple as possible. the model is without damping the amplitude and shape may

We choosed as the equilibrium depth on the flat bot- approach a stationary state corresponding to an exact solution
tom, giving a dimensionless depth smaller than or equal taconsistent with the model (sé®dersenl99)). If there is a
unity. The employed slope inclinations afe=10°, 15°, weak damping the model will produce a slowly attenuated
2(,...,50° and¢ isd-cotf/10. A solitary wave is character- wave with properties that otherwise are very close to those
ized by A/d, its amplitude to depth ratio. Herein we employ of a solitary wave solution of the underlying equations.
solitary waves with amplitudes ranging froayd = 0.05 to For each model we employ initial conditions which repre-
A/d =0.5. sent the exact solitary wave solution for the amplitude given,
Synolakis(1987 combined a linear treatment of an inci- if such a solution is available. For the models which lack

dent solitary wave with a non-linear shallow water theory onan exact solution we insert the approximate solution, with
the slope to obtain a celebrated formula for the relative run-amplitude Ag, as initial conditions in a very fine grid, and
up height,R/ A, as function ofd /d andf, as well as a break- propagate the solution a distantgover constant depth. We
ing criterion. However, this approach is not accurate for steefthen obtain a wave with amplitudé; and a shape which is
slopes such as studied herein (see, for exanipdelersen  closer to a perfect solitary wave owing to the equation set
20083. Hence, we must rely on carefully performed simu- in use. When this procedure is repeated for a number of dif-
lations and comparison between mod@silli et al. (1997 ferentAg we obtain a table ofi; as function ofAg, which
used a boundary integral method for solitary waves incidentwve may invert through interpolation to obtadg(Ay). In the
on a plane. No maximum run-up heights were reported, butrun-up simulations we then employ initial conditions corre-
a criterion for breaking during run-up was fitted to the com- sponding to an approximate solution with amplitudlg(A)

www.nonlin-processes-geophys.net/20/379/2013/ Nonlin. Processes Geophys., 2039392013



384 F. Lovholt et al.: Capabilities of Boussinesq models

0.55(; : < 05
——Wei - la-c =
0.5{{—Fenton - la-c £
Fenton - 2d , K
045 —"""0 E
30
0.4F £
S A Jd=0.1
T 0
0.35¢ 3 - AJd=0.3
® 05 ~
30 03 8 ...A,/d=05
5 —h(x),6=10°
0.25F = —h(x),6=30°
£ h(x),8=50°
0.2 o 10 20 30 40 50 60
x/d
0.15F
Fig. 2. Examples of the model setup, for three different initial wave
0.1r configurations and bathymetric slopes, respectively.
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L

Fig. 1. Initial solitary wave amplitude as a function of the amplitude
after a propagation distance.ofd = 30. The very close agreement Numbers, respectively. The run-upis normalized by the
between two of the curves is presumably a coincidence. initial surface elevation at the slope staR/(A). For the La-
grangian models, results are displayed only for the finest
resolution. It is noted that convergence tests for the various
at a distance. in front of the start of the beach. When the Lagrangian models generally showed high accuracy; the re-
wave reaches the toe of the beach it is then close to a solitarported maximum run-up compared with those from simula-
wave of heightd. We have chosefic = 30d. Naturally, the ~ tions using 1-2 times lower grid resolution generally pro-
procedure is not exact and even though the amplitudes aréided errors of less than 0.1%, usually even 1-2 orders of
the same at the start of the shoaling process for all mode|gmagnitude smaller. Exceptions are the combinations of high
the wave shapes depend on the particulars of the individua&mplitude with 10 slope and some simulations at the steep-
models. est inclinations. From Fig3, we also observe that there is
The relation betweeRo/d andA; /d for arange of ampli- ~ apparently a very little spread in the run-up between the
tudes is depicted in Fid.. For the COULWAVE formulation  different Lagrangian reference models. For the operational
the solution ofWei et al.(1995 for the initial conditions is ~ Boussinesq model, there is significantly more scatter, and
employed. The grid resolutions range frax /d = 0.06 to for certain parameter combinations their results differ signifi-
Ax/d = 0.02, while the Courant number is 0.1 and 1 in the cantly from those of the reference models. The largest devia-
COULWAVE model and the Lagrangian model, respectively. tions are due to model instability before the maximum run-up
In the run-up simulations below, we use the inverse relationwas reached, observed for the largest amplitudes and for the
to provide a look-up table for the initiation of the wave field. Smallest slope angles in particular. A coarser spatial grid res-
Examples of different slopes and initial waves are found inolution (Fig.3), and smaller Courant number (F#).provide

Fig. 2. more stable results. The accuracy RfA using model 1la
relative to reference model 2d is displayed as a function of

3.2 Convergence tests using different run-up the different slopes and amplitudes in Fig Three different
formulations grid resolutions and a Courant number of 0.1 are employed.

The relative spread in the/A ratios for the reference mod-

Numerical simulations are made for a range of initial con- els are shown for comparison. Figubealso displays for
ditions at the base of the slope, ranging frotyid = 0.05 which parameter combinations instability is reached. Gen-
to A/d = 0.5, with steps ofAA/d = 0.05. We first present erally, the coarse resolution provides stable results but yields
results for model 1la. Grid resolutions o= 100, 200, and  much lower accuracy than the reference models. The opera-
400 points per wavelength, and Courant numbers of 0.ltional model is most accurate for small valuesioind large
and 0.5 were used for the spatial and temporal discretizaslope. Furthermore, the accuracy is improved with increas-
tion, respectively. The transport-based model outlined in Ap-ing grid resolution but here the model also becomes more
pendix A is used to invoke dissipation due to wave breaking.unstable. It is also more prone to instability for increasing
Corresponding simulations using different Lagrangian mod-and decreasing. It is noted that for the highest waves the
els are conducted for comparison. finest resolution was almost 40 grid points per depth. This

The maximum run-up were extracted from the simula- is considered extremely fine, and most likely not feasible to
tions, and are displayed as a function of the slope in Bgs. implement in a real application in 2HD (two horizontal di-
4, indexed by their different grid resolutions and Courant mensions).
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Fig. 3. Run-up ratio for solitary wave run-up using model 1a for
different slopes, initial amplitudes, and grid resolutions. Here, a
Courant number o€r= 0.1 is employed. Results with Lagrangian
models are included for comparison. Upper padeld = 0.1, mid
panelA/d = 0.3, lower panelA/d = 0.5. The drop in the run-up
ratio for the largest amplitudes in combination with gentlest slope
is due to model breakdown.

The results displayed in Fig8-5 are obtained from sim-
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Fig. 4. Run-up ratio for solitary wave run-up using model 1a at dif-

ulations using a flux limiter. However, limiters are mainly ferent slopes, initial amplitudes, and time steps. Here, a grid res-
employed to amend stability problems and may affect the acelution » = 200 points per wavelength is employed. Upper panel,

curacy. Figures, comparesR/A ratios both with and with-

A/d =0.1, mid paneld /d = 0.3, lower paneld /d = 0.5. The drop

out use of limiters. The simulations without limiter provide a in the run-up ratio for the largest amplitudes in combination with

few percent higher run-up on some occasions, but are morgentlest slope is due to model breakdown.
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Fig. 5. Upper panels and lower left panel, accuracy of Ry ratio for model 1a compared to reference model 2d as a function of the

slope and initial amplitude (upper left,= 100, upper righz = 200, and lower lefz = 400 points per wavelength respectively). A Courant

number of 0.1 is employed. Lower right, relative error of ®y&A ratio for reference models 2a, 2b, and 2d. The color bar gives the accuracy

in %. The white color indicates that maximum run-up is not reached in the reference models. The dashed lines indicate that instability is

reached before maximum run-up is reached, typically beyond a given initial amplitude or below a given slope.

often indistinguishable from the cases where the limiters are8.3 Wave evolution and spurious effects on the slope
used. Figures alone would indicate that the simulations are
not very sensitive to the use of limiters. For the run-up of
high waves on steep slopes examined here, the flux limite
did not improve the stability significantly. However, the use

of limiters provides more stable results in other situations, ) : L : )
for instancgduring drawdown method 1a is depicted in Fi§.for A/d = 0.3 with different

Further investigations using the operational Boussinesq?[bpes anofl gr;ﬂ resoI;JItlo?si we htav? c(Jjbservke):_d tr;at }tr;]stha}blrl]-
models 1b and 1c were undertaken to examine the effect’, 2ccUrs or the gentest siopes tested combined with hig

of the numerical run-up formulation. Simulations were con- grid resolutions. Instability before maximum run-up is dis-

L layed in the right panels in Fig, both for high spatial
ducted with different slope angles and valuesAgil. R/A P . - .
values for the finest grid resolutions are depicted in Fig. resolution Ax/d = 0.03 and gentle slopes) & 10—157).

: : Running the simulation at a coarser resolutionfof/d =
results using method la and the Lagrangian models are r 06 o at a steeper slopé & 20°) yielded instability dur-

tained. More stable results and closer agreement with th ; . AR
g ing withdrawal. We observe that the breaking facility is in-

reference model are obtained. The deviation from the ref-voked already during run-up. althouah the waves should be
erence solution increases with larger initial amplitutdi&d. y 9 P, 9

. . non-breaking (see discussion below and Eqg.Moreover,
Method 1c provided a particularly good match. However, rghe breaking facility is not effective during withdrawal in

one occasion, due to the shore-facing bore being stationary.
The withdrawal of highly non-linear waves is a demanding
test, and caused instability for all the different formulations

IFrom the convergence tests it was found that instability oc-
curred during the first positive inundation. The simulated sur-
face elevations prior to instability using COULWAVE using

la and 1b in 2HD with more complex geometries.
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Fig. 6. Run-up ratio for solitary wave run-up using model l1a at Fig. 7. Run-up ratio for solitary wave run-up in COULWAVE for
different slopes. Results both with and without use of limiters are different slopes and initial amplitudes. Upper padgld = 0.1, mid
displayed. The Courant number is 0.1 and the spatial resolutions repanel A/d = 0.3, lower panelA/d = 0.5. Three different run-up
semble those in figuréwith n = 200 points per wavelength. Upper methods are employed. Here, a Courant numb&ref 0.1 is em-
panel,A/d = 0.1, mid panelA/d = 0.3, lower panelA/d = 0.5. ployed. Dropout or underprediction of ti&/ A values for the gen-
The drop in the run-up ratio for the largest amplitudes in combina-tlest slopes indicate instability. Results with Lagrangian models are
tion with gentlest slope is due to model breakdown. included for comparison.

4 Evolution of solitary waves in a trapezoidal channel

Fjords resemble channels associated with steep reliefs but
tested. Trying other breaking facilitiekénnedy et a].2000 with a relatively flat deep part. The propagating tsunami is
caused instability to occur at coarser resolutions and at eamften a combination of a leading component propagating
lier stages of propagation. mainly along the fjord and a trailing wave system where
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Coulwave run, 6=10°, Ax=0.06, Cr=0.1 The trapezoidal channel constitutes a simplified fjord to-
pography, or half the topography of a symmetric fjdrghett
N = et al. (2002 studied solitary wave propagation in a trape-
0 \ zoidal channel with steep slopes using COULWAVE. Sim-
-0 \ ulated surface elevations and inundation compared favor-
-0 ¥ ably against laboratory experiments conductedPbyegrine
P >V (1969, although with a minor underprediction of the run-up.
0.3 T prior to blowup ’
ol e ot based breaking term In the experiments dPeregring1969 slopes were 11 and
as 2 w5 B WS 24 45 5 55 the width of the channel was restricted tbd. Moreover,
solitary wave amplitudes were restricted4dd < 0.2. In the
following, we investigate the solitary wave propagation in a
04 trapezoidal channel that resembles a typical fjord. The chan-
/ﬂﬁ{ﬁ\ nel has a maximum water depth of 150 m, the constant depth
P @ part a width of 2km, and the side slopes aré.Ihe chan-
nel is depicted in Fig9. Figure9 also shows the propagation
oA = incentwave of a solitary wave withA = 27 m at different time steps us-
—Depth _ ing model 1b. Due to symmetry, only one half of the channel
—Transport based breaking term| . . . . .
4] —x prior to blowup is included in the simulation. Furthermore, the figure shows
I N L U that even for this relatively simple configuration, the initial
Coutwave run. & <006, 0-20°, Cr=0.1 solitary wave shape is rapidly distorted. Along the sides, the
05 —Bore during drawdown waves are retarded and the wave is refracted, producing a sec-
e ort based breaking term ond wave. Hence, the run-up process affect the propagation
—n prior to blowup along the channel. This process repeats itself causing rather
L — complicated wave dynamics, which are elaboratedyimett
T et al.(2002.
// A grid refinement test was conducted for the geometry
— in Fig. 9. In these simulations, no bottom friction was as-
-0g L] sumed, but the breaking facility was invoked. Three differ-
1 21.2 21.4 21.6 218 22 22.2 22.4 22.6 22.8 23 . J
Distance [m] ent solitary wave amplituded /d =0.18, A/d = 0.3, and
Coulwave run, &x = 0.03, 6=15°, Cr=0.1 A/d = 0.5 were considered. Transects of the surface eleva-
:BE,ZE' o blowup tion were compared at the center of the channel, indicated by
06| Transport based breating term WF the white dashed line in Fi@. Stable results for model 1b
04 N I\w for non-linearitiesA/d = 0.18 andA/d = 0.3 are depicted
in Fig. 10 at different time steps and grid resolutions. Sim-
02 — ilar simulations conducted for model 1a provided stable re-
— sults for the same choice of model parameters, but the results
were much less accurate as also indicated by the run-up sim-
25 26 27 ulations above. For the finest grid resolutions, the deviation
of the maximum surface elevation is less than 5%. For this
Fig. 8. Model instabilities during run-up using COULWAVE with degree of non-linearity, the model seems to converge prop-
model 1a. The Courant numbeiGs= 0.1 andA/d = 0.3. Gridres-  erly and be well suited. For the largest non-linearity how-
olutions Ax are relative to the dept#h. The invoked breaking term  ever, the simulations broke down except for relatively coarse
is depicted in red, the bathymetry in blue, and the surface elevatiorgrid resolutions. Courant numbers of 0.25 and 0.1 were used,
at the time step before blowup in black. and the smallest time steps provided improved stability. This
was particularly important for the highest non-linearities. It
is expected that instabilities linked to the inundation are the
cause of the model break down. However, unstable wave
reflections and scattering may be more pronounced. Thehapes similar to those shown in F&were not found. It is
fiords are narrow, often only a few kilometers wide, and the stressed that an amplitude af/d = 0.3 is considered truly
wave propagation is expected to be heavily affected by the sinon-linear, and that the model seems to be able to deal prop-
multaneous run-up along the steep coastline. As these steeply with this in the present geometry.
parts of the fjords are often not inhabited, a precise simula-
tion of run-up itself is not our primary interest. Rather, we
are interested in the accuracy of the model for describing the
distant wave propagation.
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5 Concluding remarks 30 / \\\\
Instabilities are revealed for highly non-linear solitary waves EZG //
in steep slope geometries for an operational Boussinesq // \\

model. A consequence of the instability is that accurate mod- ~ *° // \
eling of run-up may not be feasible when the wave amplitude
is too large. Instabilities arise most easily during drawdown,
and for run-up under more demanding conditions. They are
triggered at fine spatial grid resolutions, and therefore the(c)
simulations fail to converge. Inclusion of breaking terms or a0
limiters, or reduction of the time steps, only delayed the 35
onset of the instability. The stationary bore formed during 0 //\\
drawdown becomes particularly challenging, as the break- ‘\
ing criterion is not effective. In other situations, false break-
ing occurs prior to instability. Replacing the centered run-up 2 7
method with either a stepped or a hybrid method provided 15 ’ .
much increased accuracy. It is noted that the hybrid approach |, // \ /]
is not a feasible strategy as this method is more prone to in- : \
stability in real geometries. ) /
Simulated wave propagation and simultaneous inundation =
along the steep side slopes of the trapezoidal channel show 85 oss 1 105 11 115 12 125 13
that the propagation is affected by the inundation, and that(d) . x10*
wave energy from the leading wave train is propagated backgig. 10. Transects of the simulated solitary wave propagation
wards and dissipated due to run-up. When the non-linearityin a trapezoidal channe{a) Initial condition and A/d = 0.18,
and grid resolutions exceed a certain level, instabilities argb) A/d = 0.18 andr = 201s. (c) Initial condition andA /d = 0.3,
triggered. ForA /d = 0.3 the model gives stable results, but (d) A/d = 0.3 andr = 200s.
instability is observed for /d = 0.5. For a tsunami induced
by a large subaerial landslide in a fjord/d will normally
exceed 0.3 in the near field. However, wave amplitudes willgation. The simulations conducted here indicate that primi-
attenuate relatively fast td /d < 0.3. A/d > 0.3 therefore tive free surface models based on the Navier—Stokes or Eule-
represents a relatively demanding test for the far-field proparian equations should be used in the near field where strong
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non-linearity occurs, to amend instabilities. Coupling of a mulation of the mixing terms is the same as that presented
primitive near-field model to a Boussinesq model for the far-in Kennedy et al(2000. The eddy viscosity is calculated
field propagation may be the best option. One example othrough a local transport equation:
such a coupling was demonstrated lbgvholt et al.(2008
for the modeling of a potential tsunami from the La Palma Is- 9V _ & _

. = (3vsource— V) » (A1)
land. As this model was one-way only, we suggest that futuredr  H

models for tsunamis induced by subaerial landslides should . L . N
be two-way coupled. wherev is the breaking-induced eddy viscosity, is the to-

The instabilities occur also in tests with similar mod- (@ Water depthe = /¢ H is the IOCj‘aI non-lnlnear long-wave
els other than COULWAVE (results not shown). This sug- _speegl,_ andsourcelS the addl_tlonal source qf eddy VISCOS-
gest that the instability is a general problem that may oc-'ty ansing f.rom local .breaklng.. Note that this equation is
cur in any operational Boussinesq model attempting to in-!Ocal eql_Jatlon, meaning there is no appare.nt transport of any
clude run-up. Still, the different run-up formulations investi- information. In fact the transport effects arise only from the

gated provide different stability properties and accuracy, put’sourcet€rm. This term is given by
none of them removed the instability altogether. It is further- am oy
more stressed that the reference models, which are based 08ource= BHE’ T >0, (A2)

a different mathematical formulation, provide more coher-

ent results. However, operational models cannot be based offhere B provides a dimensionless measure of the local
these formulations. So far the operational models have onlyhreaking intensity ang is the water surface elevation. The
been tested in idealized geometries, but experience tells ugansport of information in this model is through tBeterm

that instabilities are triggered more easily when subject toonly. A simple advection equation with added source and dif-
complex geometries. Here, instabilities may arise differentlyfysion term is used:

compared to the idealized cases. Hence it is important to fur-
i i i ; JdB JdB dB
ther simulate the tsunami propagation for a real fjord. 95 c +i(3p—B), (A3)
ot ax dy 4H

where thep provides theB source, and will be described

in a moment. In the above equation, the first two terms on
the right hand side are the transport terms, which are upwind
differenced using the local flow velocity to determine the up-

The primary motivation for developing another breaking Winding direction. The formulation of the source teynre-
scheme for the Boussinesq equations was an inadequacy folgS 1argely on existing breaking threshold studies, manipu-
wide range of simulations with the existing schemes. The pri-/2t€d slightly here to allow for smoother breaking initiation
mary detraction of these existing schemes is that the breaking"d cessation. While in existing models, breaking turns on
dissipation, provided through an eddy viscosity, is entirely @1d Off based on a binary threshold, here we use tanh func-
local; while the breaking event age is incorporated into vari-tions to control the “start” and “end” of a breaking event. For
ous schemes, there is no permitted advection or diffusion ofUr breaking parameter, we will use the temporal change in
breaking induced turbulence. This essentially means that th1€ free surface elevation:

viscous memory of the breaking dissipation is very weak. 19

This does not seem reasonable in the surf and swash zoné) = o (Ad)

and typically other dissipation mechanisms (e.g., subgrid or ¢

bottom friction) must be manipulated to provide good resultswhich is consistent with many previous studies. The breaking

Appendix A

The transport based breaking criterion

in these regions. threshold equation is given as:
Thus, here an attempt is made to model the breaking in-
duced turbulence with a set of transport equations. The readeR = 0.65— 0.25[1 + tanh(8z (B — 0.125))] . (A5)

should keep in mind that detailed small-scale breaking-

driven physics, which by definition are disregarded through This equation can be interpreted as follows. In a region

the fundamental assumptions of the Boussinesg-type derivavhere breaking has not yet starteB £ 0), the threshold

tion, should not be properly provided by this model. This for dissipation to growth will beQ = 0.65, while in regions

is, as are all other breaking models in depth-integrated equawhere breaking is ongoings(large), the threshold for break-

tions, a practical and ad hoc submodel added to the governinigng to end isQ = 0.40. In existing studies, this breaking-

equations for engineering purposes. event variation of the threshold is typically dependent on the
The transport-based breaking model aims to provide arbreaking age. While this is somewhat implicit in the formu-

eddy viscosity, and that eddy viscosity is added to the gov-ation used here, more precisely our breaking threshold is de-

erning momentum equations through mixing terms. The for-pendent on the intensity of the breaking dissipation. We have
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found this to provide more reasonable wave-shape predic-
tions across a range of different setups. Finally,Bhgource

. throughout this appendix we may omit theithout ambigu-
term, p, is formulated as g PP y 9

ity. Our Lagrangian Boussinesq set is most conveniently ob-
p=0.5[1+tanh(10(Q — R))] , (A6) tained from the'standard Eulerian formulation with the depth
averaged velocity;, as unknown. Definingd = h+¢n as the

which again uses the tanh functions to provide a smooth forcflow depth,% = % +eu§—x as an average material derivative

ing. We can see here that wheén< R, thenp goes to zero, and#’ = J as the depth gradient, the continuity equation

and there is no ongoing local breaking event, while whenreads

Q > R, then p goes to one, and the breaking event is on- _

going and strong. The above set of equations comprises th% - _Ha_”,

complete formulation for this scheme. Note that the various Dt dx

integer coefficients in the equations are all tuned parametersyhijle a fully non-linear momentum equation may be ex-
Included in this description are the comparisons for five pressed:

regular wave cases, as presentedennedy et al(2000

(B2)

(original data fronﬂan;en and Svendsetd79. Nu'merical D a2 5 [(D2H 9H D2H
results are shown in Figs. A.1-A.5. The comparisons are ag1+P;)) — = —— — — | H— vl PRy
good as or better than existing comparisons in the literature. Dt dx 3] ox\Dr dx Dr
Note the grid convergence tests for these trials, showing the +Py+yPs+0(u?).

model’s ability to stably run breaking simulations with ex- (B3)

tremely high resolution.
The implicit partsP; and P, are additional non-hydrostatic

terms
Appendix B

P = —%quh” — kep2n’

ax’

Py = ep? [h’H (3—2)2 — A=)l (j—g)z
In this appendix we adopt the standard scaling for evolution .
of long-wave equations. Dimensionless coordinates (marked +h" Hudk + (6 M p + %Hh’”) ﬁz] :
by ") are defined according to

Lagrangian long-wave model

Whenk is set to unity andP; omitted, the set2) and B3)

R=x/L, t=L/Jgd, h=h/d, (B1) equals the Boussinesq formulation d#nsen et al(2003.
i=n/(ed), i =u/(ey/3d) . Collection of thex terms on the left-hand side yields the net

contributionxuzh’g—’;(g—f + 3—2) which is 0 (u?) since the
where g is the acceleration of gravity andis as defined two terms within the parenthesis cancel outtou?) (lead-
in Sect.2.2 Since this scaling will be used systematically ing order balance of the momentum equation). Hence, the
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factor x may be chosen freely without violating the formal
order of the equations, but it may change the properties qual-
itatively for steep waves. For = 1 we experience a singu-
larity when the contact angle at the beach reachésv@ich
is consistent with full potential theory as explainedlénsen
et al.(2003, while no such singularity arises for= 0. How-
ever, this distinction is not relevant for the tests run herein
and we employ = 0 and« = 1 only to find a range of run-
up values for Boussinesg-type equations.

The termPs is

9 a2 DH D2H
Py=—p?>—|H* =S +2 =— )| -H—
3 M ax 9x2 + < Dt ) D2 :|
3 3 Du  an
2 4 4
=pu"—|H—{H|—+— o =0 .
M3x|: Bx{ (Dt+8x>”+ ) )

dhis is a non-linear counterpart to the correction term sug-
gested byMadsen and Sgrens€h992. For linear waves
over constant depth the choice= %Jr L 22752 repro-
duces the dispersion relation dfwogu (1993. The opti-
mal choicez, = —0.531 then corresponds to = —0.057.
Madsen and Sgrens€th992 proposed instead the choice
y = —1—15, which reproduces the first three terms of the Taylor
expansion of the dispersion relation.

The transformation to the Lagrangian coordinates then
defined according to an averaged particle, moving with

d
*a, 1) =u, x(a,0=a. (B4)
ot
The continuity equation is then integrated to
a
HZ — H(a,00= Hy, (B5)
da

which expresses volume conservation in a material fluid col-

Fig. A4. Computed and measured wave heights and setup for theymn. The momentum equation may be re-casted into the

Hansen and Svendsen case 061G7} & 0.791, H/ ho = 0.19).
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form

0 _ a (1 , ,
(1+P1)E(H0M)=—£ EH + Ho{h'}

2D?H 4 (B6)
(H W) + HoP>+yHoP3+ O(n™).

9

_u?

3 da
This equation is expressed partly in conservative form, which
is convenient rather than necessary for non-breaking waves.
The bottom pressure teriiip{k’'} must be given a represen-
tation that matches the preceding term on the right-hand side
at equilibrium. Some further details on the discretization are
found inJensen et a(2003.

The definition of models 2a—c in Se@&.2 may now be
expressed.

2a: Allep? termsinPy, P, omitted;y = 0.
2b:  All ep? termsinPy, P, retainedx =0,y = 0.
2d:  All eu? termsinPy, P, retainedx =0,y = —0.057.

Fig. A5. Computed and measured wave heights and setup for the A solitary wave is a wave of permanent shape and con-

Hansen and Svendsen case A110d (= 1.58, H/ ho = 0.19).
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stant wave celeritye. Identifying € as A/d (the maximum
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