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Abstract. Measurements of the earth’s gravity field are
widely used in geophysical exploration programs. The ge-
ological interpretation process often involves the identifica-
tion of the boundaries, or edges, of different regions. This
can be achieved through a variety of techniques. This paper
examines the statistical distribution of the size of the edges
produced by a synthetic gravity model, and compares the re-
sults with those obtained from a gravity dataset from South
Africa.

1 Introduction

The identification of the boundaries between different geo-
logical units is often performed using potential field data,
which can be obtained quickly and relatively inexpensively
by a variety of airborne platforms. Techniques such as direc-
tional derivatives or sun shading (Horn, 1982) can be used to
emphasise edges with particular orientations. Alternatively
edges with any orientation can be enhanced using the gra-
dient amplitude (or total horizontal derivative, TDX) of the
field, f (Jahne, 2005, p. 339):

TDX =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

. (1)

The regions of the data with the largest gradients will ob-
viously produce the greatest values of the TDX. The zero
contours of the second horizontal derivative can also be used
to locate edges within geophysical datasets, and they have
the additional property of being able to track edges with any
value of TDX. For map datasets the second horizontal deriva-
tive can be computed in different ways, such as the Laplacian
L (Jahne, 2005, p. 345):

L =

(
∂2f

∂x2

)
+

(
∂2f

∂y2

)
. (2)

2 The statistical distribution of edges produced by an
ensemble of point sources

The gravity response of a buried sphere is given by;

gz =
Gmz

(x2 + y2 + z2)3/2
(3)

whereG is the gravitational constant andm is the mass of
the sphere. Its second horizontal derivative is given by

d2gz

dx2
=

Gm(12r2z − 3z3)(
r2 + z2

)7/2
, (4)

wherer2
= (x2

+ y2). Hence the zero contour of the Lapla-
cian L of the anomaly from a sphere will have a radius of
z/2. Figure 1a shows a synthetic gravity dataset produced by
a set of spheres. Their masses and depths are identical, and
their locations are random. Their edges, as determined by
the zero contour of the Laplacian, are plotted in Fig. 1b, and
Fig. 1g shows the histogram of the edge contour lengths. Fig-
ure 1 c, d, e, f show the plots obtained when different num-
bers of spheres were used. The contour locations were deter-
mined by linearly interpolating the Laplacian values of the
data. When the spheres are few and relatively shallow then
the overlap of anomalies is infrequent and the histogram has
a prominent peak at a contour length ofπ.z, wherez is the
depth of the spheres. However, as the number of spheres in-
creases, their anomalies will interact more often and the his-
togram shape becomes a power law. The presence of a power
law in the behaviour of a system is a measure of its self-
similarity, i.e. portions of an object look similar to the object
itself, when suitably magnified. In this case, small contours
have a similar appearance to large contours. Many objects
in nature, such as clouds and trees, display fractal charac-
teristics (Mandelbrot, 1982). This type of scale invariant be-
haviour is exhibited by many geoscientific phemonema, such
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Fig. 1a.The gravity response from 100 000 point sources, each with
a mass of 1011kg and a depth of 5 m.

Fig. 1b. Edge contours of the data shown in Fig. 1a. The contours
are coloured according to their length.

as seismicity (Turcotte, 1997, p. 56), coastlines (Richardson,
1961), topography (Gagnon et al., 2006), faulting (Bohnen-
stiehl and Kleinrock, 1999), and non-linear least-squares in-
verse theory (Cooper, 2000). Fractal analysis has also been
used to determine an optimum grid size in the interpolation
of geophysical data (Dimri et al., 2005).

The fractal behaviour of a system is characterised by its
fractal dimension, which is determined from the exponent of
the power law that describes its behaviour in some manner.
Customarily this is performed by taking logarithms of some
measure of the data (in this case, the number of edge contours
within a range of lengths is plotted against the mean value of
those lengths) and then a straight line is fitted to the result.
The (negative of the) gradient of the line then gives the frac-

Fig. 1c, d. Histogram and log-log histogram of the lengths
of the edge contours obtained from the gravity response from
10 000 sources at a depth of 5 m. A fitted power–law distribution
is shown as a solid line.

tal dimension of the object or system. Figure 1i shows a plot
of the fractal dimension obtained as a function of the number
of spheres used. As more spheres are added their responses
overlap more and hence the degree of spatial averaging of the
gravity field gradually increases, the result eventually being
a small number of relatively large contours. Boundary effects
then become important as most contours intersect the spatial
limits of the dataset. The statistics on the lengths of the con-
tours then become unreliable and the power–law relationship
breaks down. The shallower the sources are, the smaller their
interaction and the greater the number of spheres required be-
fore the breakdown occurs; conversely, the deeper they are,
the lower the fractal dimension obtained and the smaller the
number of spheres required to produce a breakdown in the
power–law relationship.

All calculations were performed in Matlab (under Win-
dows 7 32 bit) on an Intel Core i7 processor running at
3.33 GHz . It was found initially that computing the grav-
ity of 100 000 sources over a 1000× 1000 point grid would
take approximately 75 min, so the process had to be speeded
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Fig. 1e, f. Histogram and log-log histogram of the lengths
of the edge contours obtained from the gravity response from
50 000 sources at a depth of 5 m. A fitted power–law distribution
is shown as a solid line.

up. Firstly, since each computation is essentially the same,
one prior computation of the anomaly of a single source
centred in a grid 2000× 2000 points in size was made. In
all, 1000× 1000 point portions of this grid were then used
when its centre was located randomly within the desired
1000× 1000 point grid. Hence no repeated computations of
the anomaly were made. Secondly, the computations were
moved from the CPU to the GPU (nVidia GeForce GTX295)
using the CUDA architecture. The time of computation was
then reduced to a more reasonable 90 s.

Figure 1j shows the result of allowing the sphere masses to
vary (randomly) as well as their location. The result is similar
to that shown in Fig. 1i, although a higher fractal dimension
is obtained. If the sphere depths are varied instead of their
mass a similar behaviour was also observed.

Fig. 1g, h.Histogram and log-log histogram of the lengths of the
edge contours in Fig. 1b. A fitted power–law distribution is shown
as a solid line.

Fig. 1i. Fractal dimension obtained as a function of the number of
randomly located buried sphere sources of mass 1011kg, at a depth
of 5 m. Because the fractal dimension depended on the locations of
the spheres and these were determined randomly, the calculations
were repeated five times and the mean value and the standard devi-
ation determined.
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Fig. 1j. Fractal dimension obtained as a function of the number of
randomly located buried sphere sources, at a depth of 5 m. The mass
of each sphere was generated randomly between 0 and 1011kg. Be-
cause the fractal dimension depended on the locations of the spheres
and these were calculated randomly, the experiment was repeated
five times and the mean value and the standard deviation deter-
mined.

3 The statistical distribution of the edges of a gravity
dataset from South Africa

Figure 2a shows a Bouguer gravity dataset from South
Africa. The image is 650 km×700 km in size, and the orig-
inal approximately 90 000 gravity measurements (made by
the Council for Geoscience, Pretoria) were gridded to a cell
size of 1 km. The prominent circular anomaly on the middle
right side is the Trompsburg high (Buchmann, 1960), and the
Vredefort dome impact structure is just visible in the upper
right corner of the figure. This portion of the South African
gravity dataset was chosen because it is the largest rectangu-
lar area that does not intersect South Africa’s borders, beyond
which no data were available.

Figure 2b overlays the zero contours of the Laplacian on
the gravity data, and Fig. 2c and d show the histogram of the
edge contour lengths and a power-law fit. As suggested by
the theoretical framework in the previous section, the scaling
behaviour of the edges of the gravity data followed a power
law, which had a fractal dimension of 1.87 for this particular
area.

Fig. 2a.Gravity data over a portion of South Africa. The grid spac-
ing is 1 km.

Fig. 2b. The gravity dataset from Fig. 2a is overlain by the zero
contour of the Laplacian function. The contours are colour coded
by their length.

4 Conclusions

The scaling behaviour of the edges of ensembles of point
gravity sources were studied, and the distribution of the
lengths was found to depend upon the number of sources
in the map. A power law could be reliably fit to the length
distribution once sufficient sources were present (the number
was dependant on the source depth). This suggested that the
scaling behaviour of the edges of a real gravity dataset would
show similar power-law behaviour, and this was found to be
the case.
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Fig. 2c, d. Histogram and log-log histogram of the lengths of the
edge contours in Fig. 2b. A fitted power–law distribution is shown
as a solid line.
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