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Abstract. The existing 20-member ensemble of 50 yr
ECHAM5/MPI-OM simulations provides a reasonably real-
istic Monte Carlo sample of the El Niño–Southern Oscilla-
tion (ENSO). Localized observations of sea surface temper-
ature (SST), zonal wind speed and thermocline depth are as-
similated in the ensemble using sequential importance sam-
pling to adjust the weight of ensemble members. We deter-
mine optimal observation locations, for which assimilation
yields the minimal ensemble spread. Efficient observation
locations for SST lie in the ENSO pattern, with the opti-
mum located in the eastern and western Pacific for mini-
mizing uncertainty in the NINO3 and NINO4 index, respec-
tively. After the assimilation of the observations, we investi-
gate how the weighted ensemble performs as a nine-month
probabilistic forecast of the ENSO. Here, we focus on the
spring predictability barrier with observation in the January–
March (March–May) period and assess the remaining pre-
dictive power in June (August) for NINO3 (NINO4). For the
ECHAM5/MPI-OM ensemble, this yields that SST observa-
tions around 110◦ W and 140◦ W provide the best predictive
skill for the NINO3 and NINO4 index, respectively. Fore-
casts can be improved by additionally measuring the thermo-
cline depth at 150◦ W.

1 Introduction

The El Niño–Southern Oscillation (ENSO) is the most im-
portant coupled ocean–atmosphere phenomenon on interan-
nual time scales in the equatorial Pacific. Prediction of the
El Niño phase, characterized by warm sea surface tempera-
tures (SSTs), and the cold La Niña phase is of great impor-
tance as they cause extreme weather events, like droughts and

floods, in many parts of the world. Moreover, the changes
in sea water temperature are important for fisheries as the
temperature changes are predominantly caused by upwelling
changes, and hence the water contains less nutrients.

In this paper we mainly focus on the onset of the warm
El Niño phase. The pattern of the SST anomalies grows in
amplitude and zonal extent by a number of positive feedback
mechanisms: the thermocline, the zonal advection and the
upwelling feedback (Neelin, 1991). A normal El Nĩno event
typically lasts 12 to 18 months with the peak in December.
The decline of an El Nĩno event is related to the coupled wave
dynamics of the eastward travelling equatorial Kelvin waves
and the westward propagating Rossby waves. The succes-
sive reflections of these planetary waves in the Pacific Basin
determine an intrinsic time scale for interannual variability
(Battisti and Hirst, 1989). An El Niño event typically occurs
roughly once in four years.

The problem in predicting El Niño events is that they do
not have a regular period. The ENSO is thought to be an in-
ternal ocean mode, which is excited by random wind bursts
(Federov et al., 2003). The impact of these random wind
bursts strongly depends on the current phase of the ENSO.
For instance a westerly wind burst during a developing El
Niño can amplify the event, while one after the peak can
prolong its duration (Federov, 2002). During boreal spring
the coupled ocean–atmosphere system is thought to be at
its frailest state (Webster and Yang, 1992). Then the sys-
tem is most susceptible to perturbations, which can be in-
ternal small-scale stochastic events (random wind bursts) or
random external influences (like the monsoon) (Webster and
Yang, 1992; Webster, 1995). This leads to a predictability
barrier in April/May independent of when the forecast is
started (Latif et al., 1994). Federov et al.(2003) argued that,
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due to the random nature of the wind burst, a probabilistic
forecast for El Nĩno is required.

This predictability barrier is often referred to as the “spring
barrier” as it occurs during this particular phase of the an-
nual cycle.Moore and Kleeman(1996) find that the ENSO
is least predictable during its growth phase, whileChen et al.
(1997) locate the maximum growth rate of perturbations dur-
ing the transitions between a cold phase and a warm phase.
Samelson and Tziperman(2001) argue that the predictabil-
ity is also related to the particular phase of the ENSO cycle
and a growth-phase predictability barrier arises, because the
growth mechanism of perturbations is nearly identical to the
growth mechanism of El Niño itself. Finally, the role of ini-
tial error pattern has been emphasized and in particular its in-
teraction with the annual cycle and ENSO cycle; some initial
error patterns cause a significant spring predictability barrier
while others do not (Mu et al., 2007; Duan et al., 2009; Yu
et al., 2012).

Much of the present-day knowledge about the ENSO
comes from the TAO/TRITON array (McPhaden et al.,
1998). The array consists of approximately 70 moorings
in the tropical Pacific Ocean (within 10◦ of the Equator),
telemetering oceanographic and meteorological data. From
these data NINO indices can be calculated which clearly in-
dicate the current state of the ENSO. Maintaining the full
collection of moorings is costly. When replacing or servic-
ing moorings, one wants to prioritize the ones which provide
the most useful information, and one may move redundant
moorings to other locations. Determination of locations that
contribute significant information to the monitoring and the
forecasting of the ENSO is an important objective.

Many predictability studies for the ENSO are based on the
intermediate coupled model ofZebiak and Cane(1987). In
this work we use the available climate model data from the
ESSENCE project (Sterl et al., 2008) to study the impact
of localized observations on monitoring and predicting the
ENSO. The ESSENCE data consist of simulations with the
fully coupled ECHAM5/MPI-OM climate model. In Sect.2
we first investigate how well the model results capture the
dynamics and statistics of the ENSO. Then in the following
section (Sect.3), we discuss how sequential importance sam-
pling can be applied to make an optimal observation study
with existing ensemble model data. In Sect.4 we present re-
sults of assimilating SST, zonal wind speed and thermocline
depth and a combination thereof. In Sect.5 we end with a
discussion on the implications of the results.

2 ENSO in the ESSENCE ensemble

For the optimal observation study, we use an ensemble run
of the ECHAM5/MPI-OM climate model, which was per-
formed as a part of the ESSENCE project (Sterl et al., 2008).
The ECHAM5/MPI-OM is a coupled model developed at the
Max Plank Institute for Meteorology (Hamburg, Germany).

The two components of the model are the ECHAM5 atmo-
sphere model (Roeckner et al., 2003, 2006) and the MPI-
OM ocean model (Jungclaus et al., 2006). The purpose of
the ESSENCE project was to study an ensemble simulation
of climate change under the IPCC SRES A1b emission sce-
nario. However, we use the 20-member ensemble of 50 yr
simulations with the CO2 levels in the atmosphere fixed at
the 1989 level (about 350 ppmv), which was also run as a
part of the ESSENCE project.

2.1 Statistics of the ENSO variability

In an inter-model comparison study, the ECHAM5/MPI-OM
model was one of the climate models that showed realis-
tic temporal and spatial ENSO characteristics (van Olden-
borgh et al., 2005). There are, however, still shortcomings
regarding ENSO variability in particular regarding higher or-
der statistics. For this purpose we compare monthly averaged
model results with the HadiSST data set (Rayner et al., 2003)
and Reynolds SST analysis (Reynolds and Smith, 1994). The
SST anomalies (SSTAs) are calculated by subtracting the
seasonal cycle determined over the full data record for the
data sets and over all ensemble members for the ESSENCE
model data.

In Fig. 1a we present the first empirical orthogonal func-
tion (EOF) of the SST anomalies in the equatorial Pacific
from the ESSENCE ensemble. The first mode contains 72 %
of the variability, and its principal component has a broad
spectral peak ranging between 2.5 and 8 yr periods (Fig. 1b).
This is in good agreement with the typical 3 and 6 yr period
obtained for the first EOF in the HadiSST data set (van Old-
enborgh et al., 2005). The amplitude of the first EOF is how-
ever too strong, and the westerly extension of cold tongue is
too large (see alsovan Oldenborgh et al.(2005); Jungclaus
et al. (2006)). These issues also appear in the NINO3 and
NINO4 indices, as their standard deviations are, respectively,
0.6 and 0.8◦C higher than those retrieved from the Reynolds
optimal interpolation (see Table1). The NINO3 and NINO4
indices are constructed by calculating the average SST
anomaly in the region [150◦ W–90◦ W] × [5◦ S–5◦ N] and
[160◦ E–150◦ W] × [5◦ S–5◦ N], respectively (Trenberth and
Hoar, 1997).

It is well known that the eastern Pacific NINO3 index is
skewed to warm values and the western Pacific NINO4 index
is skewed to cold values (Trenberth and Hoar, 1997; Burg-
ers and Stephenson, 1999). Capturing the rights statistics is
not easily assured in climate models, as was shown byvan
Oldenborgh et al.(2005). Although the ECHAM5/MPI-OM
model gives a correct sign of the skewness for NINO3 and
NINO4, the statistics do not strongly deviate from a Gaus-
sian distribution. The cold La Niña events are as strong and
frequent as the warm El Niño events (Roeckner et al., 2003).
This is most prominent in the NINO3 index, for which the
skewness is too small (Table1).
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Fig. 1. a) The first EOF of the SST anomalies in the equatorial Pacific. b) Power spectrum

of the first principle component (PC1), which is normalized to have unit variance.
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Fig. 1. (a)The first EOF of the SST anomalies in the equatorial Pacific.(b) Power spectrum of the first principle component (PC1), which is
normalized to have unit variance.

Table 1. Statistical moments of the NINO3 and NINO4 indices from the ESSENCE ensemble simulation and the HadiSST (Rayner et al.,
2003) andReynolds and Smith(1994) SST data analysis; N is the number of data points.

NINO3 NINO4

ESSENCE HadiSST Reynolds ESSENCE HadiSST Reynolds
variance 1.5435 0.6196 0.9682 1.2983 0.3177 0.5162
skewness 0.0235 0.7417 0.9412 −0.1581 −0.1408 −0.5655
kurtosis −0.1374 1.1542 1.5794 −0.3873 −0.3524 −0.5658
N 12 440 1680 348 12 440 1680 348

One of the drawbacks of looking at the statistical moments
of the NINO indices is that the deviations can be caused
by the shift of the ENSO pattern. For this purpose we per-
formed a pointwise calculation of the skewness and kurtosis
in the SSTA. A scatter plot of these quantities is presented
in Fig. 2. A general statistical lower bound for the kurto-
sis can be formulated in terms of the skewness, i.e. kurto-
sis≥ skewness2−2. Sura and Sardeshmukh(2008) derived a
more strict lower bound: kurtosis≥ 3/2 skewness2 under the
assumption that the gustiness of the sea surface winds leads
to a weak multiplicative-noise forcing of the sea-surface tem-
perature anomalies.Sura and Sardeshmukh(2008) found that
daily global SSTA data from the Reynolds optimal interpo-
lation showed a surprising conformity to the stricter lower
bound (see also Fig. 2). In this benchmark the ESSENCE
model compares more favourably to the observational data
than for the statistical moments of the NINO indices. Overall,
the spread in the scatter plot is surprisingly similar. A closer
inspection reveals that the ESSENCE data points in the equa-
torial band (15◦ S–15◦ N) are more negatively skewed than
those calculated from the Reynolds data set.

2.2 The cold tongue and warm pool El Nĩno events

As the ECHAM5/MPI-OM is one of the better models for
ENSO variability, it is interesting whether it also contains

both the classical cold tongue (CT) El Niño and the warm
pool (WP) El Nĩno events. For classifying all El Niño events
in the ESSENCE ensemble, we use a method similar to the
one used byKug et al.(2010) on data from a 500 yr prein-
dustrial (1860 levels) simulation with the GFDL 2.1 coupled
GCM. As this model also produces a too westerly El Niño
SST pattern, they shifted the regions for determining the
NINO3 and NINO4 indices 20◦ westward. All years with
at least one of the modified indices, NINO3m or NINO4m,
exceeding 0.5◦C in ND(0)J(1) (November, December and
January in the next year) are classified as El Niño events.
They find that, out of these 205 events, the 121 events with
NINO3m> NINO4m are considered to be the canonical cold
tongue events and 84 with NINO4m> NINO3m are counted
as warm pool events.

Applying the same criteria to the ESSENCE data yields
306 cold tongue and 55 warm pool El Niño events in
1000 yr (20 runs of 50 yr). Under these conditions we find
WP El Niño events are less frequent than inKug et al.
(2010). If we add the additional constraint that in the previ-
ous year (YEAR(-1)) there were no El Niño conditions, then
we retrieve 194 CT events and only 15 WP events. This in-
dicates that, in the ESSENCE ensemble, WP-like conditions
are more likely in the year following El Niño conditions than
after neutral or La Nĩna conditions.

www.nonlin-processes-geophys.net/20/221/2013/ Nonlin. Processes Geophys., 20, 221–230, 2013
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Fig. 2. Skewness kurtosis scatter plot for SST from the Reynolds analysis and the ESSENCE data set. The data points relate to fixed
locations, which are collected in latitudinal bands. Points cannot be situated in the grey area as the general statistical bound requires that
kurtosis≥ skewness2 − 2. The drawn curve relates to the lower parabolic bound kurtosis≥ 3/2 skewness2 (Sura and Sardeshmukh, 2008).

The Hovm̈oller diagram of the composite SST anomalies
on the Equator for the isolated CT (194) and the WP (15)
events, presented in Fig. 3, compares well to Fig. 7 inKug
et al. (2010). For both type of events, there is a warming in
the eastern Pacific in late boreal spring/early boreal summer.
For the cold tongue events, the region with elevated SST lev-
els persists during the year and extends to the western Pa-
cific; the location of maximum SST remains in the east. Dur-
ing warm pool events there is a cooling of the eastern Pacific
after the warming in boreal spring. In boreal winter a strong
warming occurs west of the dateline. Including the prolonged
2 yr (YEAR(-1) and YEAR(0)) El Nĩno events gives elevated
SSTs ranging from boreal winter to summer for WP events
over the whole equatorial Pacific in YEAR(0), but does not
significantly change the picture of a warming centred in the
western Pacific in boreal winter.

3 Methodology

We intend to use the control ESSENCE ensemble to de-
termine how observations improve the predictability of the
ENSO events. Assimilating real observations would lead to a
poor analysis as there is no one-to-one mapping between ob-
servations and model data. For this reason we opt to perform
an identical twin experiment, where one model realization
is used as a synthetic truth. Observations are then produced
by adding a normal-distributed observation error to specific
model variables.

The ESSENCE data set provides a Monte Carlo sample
of the climatological probability distributionq(x). Working
with the probability density function (pdf) of the full state
vectorx of the climate model is bothersome and unneces-
sary. We are only interested in predicting El Niño; as such
we want the univariate probability distributionq(s) where
s is one of the NINO indices. The 20 ensemble members,
each 50 yr long, are cut into one-year segments yielding a
total number ofN = 1000 segments. These segments are as-
sumed to be independent although there certainly is a corre-
lation between one year and the next year. The samples are
also not identically distributed as some belong to the same
ensemble member, and others belong to different ensemble
members. The choice to be made is between a larger sam-
ple size or a better sample independence. We have repeated
the experiments with leaving the odd years out, and this does
not significantly change the results. These segments not only
sample the equilibrium probability distribution, but also con-
tain the time evolution. The El Niño variability typically has
a period of 3–5 yr. The absence of longer time scales in the
SST variability yields a better sampling density. Taking seg-
ments shorter than one year is not viable as ENSO dynamics
are strongly season dependent. Without any up-to-date data
or observations, the equilibrium distribution is the best pre-
diction/description for the current state of the equatorial Pa-
cific.

The assimilation method described in the following para-
graphs was also used to determine the impact of observations

Nonlin. Processes Geophys., 20, 221–230, 2013 www.nonlin-processes-geophys.net/20/221/2013/
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Fig. 3. Hovmöller plot of the composite SST anomalies on the Equator for(a) years satisfying the cold tongue conditions, and(b) years
satisfying the warm pool conditions. The contour spacing is .25◦C, and temperatures over 0.5◦C are coloured grey.

on the predictability of the Kuroshio Extension (Kramer
et al., 2012). The purpose of assimilating observations is to
decrease the spread in the ensemble. A measure (Schneider
and Griffies, 1999) for the gained skill of the analysis pdf, in-
dicated below byp(s), is the predictive power (PP) defined
by

PP= 1−
σ 2

p

σ 2
q

, (1)

whereσ 2
p and σ 2

q are the analysis variance and the clima-
tology variance ofs, respectively. The predictive power is
zero for an ensemble which does not provide additional in-
formation over the climatology distribution. When the anal-
ysis improves, the PP goes asymptotically towards one, the
value related to a fully deterministic state. As discussed by
Schneider and Griffies(1999), Eq. (1) is a simplification of
the more general entropy-based formulation for the predic-
tive power. Equation (1) results from assuming a Gaussian
distribution for bothp(s) andq(s). In the previous section
we found that the NINO3 index is only weakly non-Gaussian
in the ESSENCE data set. As such we can use the definition
in Eq. (1) for predictive power based on the variance of the
analysis.

The basic idea is that an observation changes, the weight
wi of a one-year segment, which is defined by its state vec-
tor xi(t). We then obtain a better estimation of the current
state from the weighted ensemble, from which we can cal-
culate statistics like the mean and variance. Sequential im-
portance sampling (SIS) is used for changing the weights
with the information from a number of discrete observa-
tions. When an observationyk becomes available att = tk
the weight change (at each point in the domain) follows from

Bayes’ theorem, yielding

wi
k =

p(yk|x
i
k)

p(yk)
wi

k−1 for i = 1. . .N. (2)

Here,p(yk|x
i
k) is the probability density function of the ob-

servations given the model statexi
k, andp(yk) is the prob-

ability density function of the observation. The latter can
be considered as a normalization factor, which assures that
the total weight is equal to one. From the measurement er-
ror statistics, the shape of the functionp(yk|x) is known,
wherex now refers to the true state. When using a prior
ensemble, we change the true state with the model state
xi
k from the ensemble. Assuming that the error distribu-

tion of the measurement is a multivariate normal distribu-
tion,f (yk) ∼ exp[−(yk −yk)

T 6−1(yk −yk)] with 6 the er-
ror covariance matrix, and, for a Gaussian distributed prior,
p(yk|x

i
k) is given by

p(yk|x
i
k) ∼ exp[−

1

2
(yk −H(xi

k))
T(6+B)−1(yk −H(xi

k))],

(3)

whereH(xi
k) is the mean of the prior andB its covariance. In

our set-up the observed quantities are explicitly available in
the model, and the observation operatorH is simply selecting
the model equivalents from the full state vector.

Choosing the magnitude of the error covariance is partly
determined by the number of ensemble members that are
available. An accurate measurement effectively discards a
large number of particles, and only particles that are close to
observation remain. A strongly degenerated ensemble, how-
ever, does not yield an accurate estimate forσp. When one

www.nonlin-processes-geophys.net/20/221/2013/ Nonlin. Processes Geophys., 20, 221–230, 2013
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Fig. 4. Composite over 20 CT El Niño events of the predictive power, PP(NINO3), gained

by assimilating observations in JFM(0) for a given location (left panels); and the composite

predictive power remaining in June (right panels). Assimilated quantities are a) the SST, b)

the zonal wind speed or c) the thermocline depth.
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Fig. 4. Composite over 20:00 CT El Niño events of the predictive power, PP(NINO3), gained by assimilating observations in JFM(0) for a
given location (left panels); and the composite predictive power remaining in June (right panels). Assimilated quantities are(a) the SST,(b)
the zonal wind speed and(c) the thermocline depth.

particle has all the weight,σp vanishes and the predictive
power goes to unity. When observing one quantity, say the
SST, we set the observational error to 0.2σSST(x) of the cli-
matology. This guarantees that in regions with low variabil-
ity we can still detect whether there is a useful signal, as the
signal-to-noise ratio is constant. When two kinds of observa-
tions are assimilated simultaneously, say SST and zonal wind
speed, the error is set to 0.2

√
2σSST(x) and 0.2

√
2σwind(x).

As the focus of this study is on the impact of observation lo-
cation on ENSO predictability, and not on simulating a real
operational observation system, this is a legitimate choice.

In the following section we assimilate monthly averaged
data over three months. These three observations are gener-
ated by adding a random observational error to the synthetic
truth. We are not interested in these specific three realiza-
tions of the synthetic observations, but would like to incor-
porate the error statistics. This is done by using a bootstrap-
ping algorithm to determinep(s) andσp(s), where the data
assimilation is repeated for 100 realizations of the stochastic
observations.

4 The impact of observations for monitoring ENSO

4.1 Optimal observation locations for sea surface tem-
perature, zonal wind speed and thermocline depth

The first question we want to answer is where to optimally
measure SST, zonal wind speed and thermocline depth to de-
termine the state of the ENSO as measured by the NINO in-
dices and its future development. There are two important
metrics involved for determining efficient observations. The
first is the predictive power, indicated by PP0, of the ensem-
ble after the observation period of three months. The second
is the predictive power, indicated by PP3 m, after the ensem-
ble has been able to develop freely for another three months.
So, we if measure in JFM(0), PP0 relates to March and PP3 m
to June.

PP0 is a measure of how efficient the observations are in
decreasing the variance of the ensemble. This quantity av-
eraged over 20 synthetic truths is shown in the left panels
of Fig. 4. All synthetic truths are years when a CT El Niño
event occurs. The plot shows the PP related to the location
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a) sea surface temperature

b) zonal wind speed

c) thermocline depth

Fig. 5. Composite over 20 CT El Niño events of the predictive power, PP(NINO4), gained

by assimilating observations in MAM(0) for a given location (left panels); and the compos-

ite predictive power remaining in August (right panels). Assimilated quantities are a) the

SST, b) the zonal wind speed or c) the thermocline depth.
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Fig. 5.Composite over 20:00 CT El Niño events of the predictive power, PP(NINO4), gained by assimilating observations in MAM(0) for a
given location (left panels); and the composite predictive power remaining in August (right panels). Assimilated quantities are(a) the SST,
(b) the zonal wind speed and(c) the thermocline depth.

of the assimilated observations. In regions with a high pre-
dictive power, there is significant signal which is correlated
to the NINO3 index. If for a given location there is no cor-
related signal component or this component is exceeded by
the observation error, the predictive power remains low. The
pattern with large predictive power increase conforms with
the ENSO pattern (Fig. 1) with the largest values of PP0 lo-
calized inside the NINO3 box. Observations of zonal wind
speed are less efficient in reducing the ensemble spread; the
main correlated region is here east of New Guinea along the
Equator. Observing the thermocline depth between 120◦ W
and 90◦ W is more efficient for retrieving the NINO3 index.
The depth of the 15◦C isotherm is used as a proxy for the
thermocline depth.

After the assimilation stage, the weighted ensemble
evolves freely (providing a probabilistic forecast), and over
time the ensemble spread increases due the chaotic ENSO
dynamics. Essentially, this phase is a predictability study of
the first kind. The uncertainty in the initial conditions, i.e. the
state at the end of the assimilation stage, is reduced with

information from one specific location. If we focus on the
spring predictability barrier, the important metric is the pre-
dictive power that remains in June. This predictive power
PP3 m is plotted in the right panels of Fig. 4. For this case the
predictability barrier is clearly visible, as the PP of the en-
semble strongly reduces over the total Pacific. Observations
of SST and thermocline depth in the region around 120◦ W
seem to provide the most useful information for predicting
the NINO3 index. If the second, freely evolving stage is out-
side the April/May period, PP3 m remains high (not shown).
The pattern of high PP values does not significantly change
when the experiment is initiated in other months.

The NINO4 index is strongly correlated with NINO3 in-
dex with a lag of two months. This correlation is related to
the westward propagation of SST anomalies by equatorial
Kelvin waves. This becomes clear if we look at the ensem-
ble analysis for NINO4, as is illustrated by PP(NINO4) in
Fig. 5. Here, the observations in MAM(0) are assimilated,
and the predictive power is analysed in March and August.
SST observations at the Equator between 150◦ E and 120◦ W
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a) zonal wind speed b) thermocline depth

c) zonal wind speed d) thermocline depth

Fig. 6. Composite over 20 CT El Niño events of the predictive power, PP of NINO3 remain-

ing in June after assimilating SST from 110°W in JFM(0) and (at a given location) either

a) zonal wind speed or b) the thermocline depth. The same for the lower panels but now

for the PP of NINO4 remaining in August after assimilating SST at 140°W in MAM(0) and

either c) zonal wind speed or d) the thermocline depth.
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Fig. 6.Composite over 20:00 CT El Niño events of the predictive power, PP of NINO3 remaining in June after assimilating SST from 110◦ W
in JFM(0) and (at a given location) either(a) zonal wind speed and(b) the thermocline depth. The same for the lower panels but now for
the PP of NINO4 remaining in August after assimilating SST at 140◦ W in MAM(0) and either(c) zonal wind speed and(d) the thermocline
depth.

are best for monitoring the NINO4 index. Note that the PP
pattern in Fig. 5 also corresponds to the ENSO pattern, but
high PP is also located in the western part. SST data from the
region from 150◦ W to 120◦ W contain better information for
predicting the NINO4 index three months in advance. Useful
locations for measuring zonal wind speeds are more concen-
trated in the western Pacific, directly bordering New Guinea
island. The areas where the thermocline depth provides use-
ful information for the NINO4 index are in the western Pa-
cific (related to pattern of the wind bursts) and in the eastern
part of the Pacific. The latter area relates to the optimal pat-
tern for the NINO3 index (Fig. 4c), and hence this is just
another manifestation of the correlation between the NINO3
and NINO4 regions.

The predictive power for the NINO4 index does not drop
as much in boreal spring as for the NINO3 index. This in-
dicates that the instability, which is the cause of the spring
predictability barrier, starts in the eastern Pacific. The better
predictability for NINO4 lasts till July, when the strongest
drop of PP3 m occurs. The predictability barrier we find in
the April/May period in principle can be either related to the
spring barrier or the growth-phase barrier. In the results pre-
sented here, the synthetic truth always relates to a year with a
CT El Niño event. However, if we select only La Niña years
or only neutral years, results do not change. Hence, there is
an apparent predictability barrier in spring for all years, and
no indications appear for a growth-phase barrier.

4.2 Combining SST observations with thermocline or
zonal wind speed data

The SST observations are best for monitoring the NINO in-
dices. They essentially already fix the phase of the ENSO
during the three-month observation period. The optimal lo-
cation for reconstructing the NINO3 index is on the Equator
at 110◦ W, while for NINO4 it is at 140◦ W. Predictability
can be improved by assimilating additional data. In Fig. 6 we
combine SST data from (110◦ W, 0◦ N) with observations of
the thermocline depth or zonal wind speed. The green back-
ground gives the PP3 m resulting from the SST observations.
Measuring the thermocline depth between 180 and 120◦ W
gives a significant increase of PP3m over the one obtained by
assimilating only SST. It is most likely that these additional
observations capture the eastward travelling Kelvin wave.
No increase of PP3 m is found in the region (110◦ W–90◦ W)
with a strong correlation between the thermocline depth and
NINO3 index (see Fig. 4c). Information from this region is
already provided by the SST observations. Assimilation of
zonal wind speed observations in addition to the SST data
does not seem to improve predictability of the NINO3 index.

In the previous section we already observed the NINO4 in-
dex is better predictable than NINO3. The background value
of PP3 m in Fig. 6c and d resulting from the SST observa-
tions is higher than those in Fig. 6a and b. Again we gain a
significant increase of PP by observing the thermocline depth
in addition to SST.
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5 Conclusions

The 20-member control ensemble from the ESSENCE
project with a fixed CO2 level provides us a large Monte
Carlo sample of the ENSO climatology. The data contain
reasonably realistic ENSO variability on a 2.5 to 8 yr time
scale. Important shortcomings of the ECHAM5/MPI-OM are
the overly large SST variability and the too westerly extent
of the ENSO pattern. A pointwise view of the SST skew-
ness and kurtosis provides a good comparison to values ob-
tained from the Reynolds optimal interpolation (Reynolds
and Smith, 1994). Moreover, this result confirms the pic-
ture that random wind gustiness leads to weak multiplicative-
noise forcing of the sea-surface temperature anomalies (Sura
and Sardeshmukh, 2008). The skewness in the equatorial re-
gions seems to be more negatively skewed for the ESSENCE
data. For the NINO indices, the statistics are too Gaussian
with relatively small skewness and kurtosis values compared
to observations.

Localized monthly averaged observations of SST, zonal
wind speed and thermocline depth were assimilated using
sequential importance sampling. The effective skill of these
observations in reducing the ensemble spread is measured
by the predictive power (Schneider and Griffies, 1999). This
allows us to determine optimal locations for monitoring the
NINO indices. After the assimilation of the observations, we
investigated how the weighted ensemble performs as a nine-
month probabilistic forecast of the ENSO. The predictive
power remaining after three months reveals optimal obser-
vation locations for enhancing predictability.

The data from the ESSENCE ensemble clearly exhibit
the spring predictability barrier as a large drop in predictive
power is observed during April/May. This drop is indepen-
dent of the phase of the ENSO. As such we do not observe the
growth-phase predictability barrier. The predictability barrier
first becomes apparent for the NINO3 index. During this time
the NINO4 index is much better predictable. The largest drop
in PP for NINO4 occurs in July.

We focus on the spring predictability barrier when search-
ing for optimal locations for predicting the ENSO through
two NINO3 indices. Efficient SST observations for moni-
toring are localized in the ENSO pattern: in the eastern Pa-
cific for the NINO3 index and in the western Pacific for the
NINO4 index. For a three-month forecast, however, a more
easterly location (140◦ W) yields better predictive power for
the NINO4 index. It is well known that the NINO4 index
is lagging the NINO3 index by two months. SST observa-
tions at a single location already give much information on
the phase of the ENSO as SST is spatially correlated with the
ENSO pattern.

Observations of the thermocline depth in addition to SST
observations yield an increase in predictive power over the
predictability barrier. An improved forecast of NINO3 up
to June results from thermocline observations in the JFM
time frame at 150◦ W, which seem to capture a Kelvin wave.

Zonal wind speed observations, mainly localized in western
Pacific, provide information for reconstructing the NINO3
and NINO4 indices. They, however, do not yield additional
information to the SST observations.

Predictability studies often aim to find the perturba-
tion (pattern) of the initial state which exhibits the fastest
growth (Moore and Kleeman, 1996; Chen et al., 1997; Duan
et al., 2009). A possible observation strategy is then to choose
observation locations which minimize the amplitude of the
optimal perturbation in the initial conditions. The approach
we take is in essence the reverse; we determine the optimal
locations, which minimizes the uncertainty of the forecast
after a certain lead time. One of the advantages is that we
can assimilate observations during a specific period and in-
corporate observation error statistics. Major drawback of the
method is the number of ensemble members required. As-
similating accurate observations focuses most of the weight
on a few particles. Hence, the number of ensemble members
determines the number of observations (sequential and/or si-
multaneous) that can be made with a predetermined observa-
tional error before the ensemble degenerates.

As we assimilate observations over a three-month period,
quantities that lead or lag the NINO indices by two months
can contribute useful information. Essentially, the integrated
effect of the observations is used by the data assimilation.
The patterns of observation locations which yield high pre-
dictive power can also be related to the optimal perturba-
tion patterns for initial conditions. For the spring predictabil-
ity barrier, Chen et al.(1997) find a perturbation pattern,
which maximizes SST variability, with the largest amplitude
in eastern Pacific at 110◦ W and 5◦ S. Moore and Kleeman
(1996) locate the optimal perturbation for maximizing total
atmospheric and oceanic perturbation energy around 160◦ W.
Duan et al.(2009) obtain initial errors with the extrema lo-
cated at 150◦ W and 110◦ W that significantly contribute to
the spring predictability barrier. All these locations are in
the eastern Pacific, which is in agreement with the retrieved
optimal locations for increasing the predictive power after a
three-month forecast.
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