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Abstract. Contemporary tools for reducing model error in
weather and climate forecasting models include empirical
correction techniques. In this paper we explore the use of
such techniques on low-order atmospheric models. We first
present an iterative linear regression method for model cor-
rection that works efficiently when the reference truth is sam-
pled at large time intervals, which is typical for real world ap-
plications. Furthermore we investigate two recently proposed
empirical correction techniques on Lorenz models with con-
stant forcing while the reference truth is given by a Lorenz
system driven with chaotic forcing. Both methods indicate
that the largest increase in predictability comes from correc-
tion terms that are close to the average value of the chaotic
forcing.

1 Introduction

In forecasting the state of the atmosphere, the occurrence
of two fundamental types of errors is inevitable (Palmer,
2000). The first type, often calledinternal error growth, re-
sults from the amplification of initial condition uncertainties
due to atmospheric instabilities (Kalnay, 2002). The present
tools for tackling internal error growth include data assimila-
tion techniques and ensemble forecasting (Anderson, 2001;
Hunt et al., 2004; Merkova et al., 2011). The second type
is called external or model error and comes from the fact
that atmosphere has larger complexity and resolution than
its representations by models (Orrell et al., 2001; Judd and
Smith, 2004). With mathematical language, the atmosphere
has (many) more degrees of freedom, or variables, and the

equations of its evolution (if they exist) have more complex
structure than those of the atmospheric models. Furthermore,
subgrid-scale atmospheric processes such as cloud formation
are not resolved by the models. Instead, they are approxi-
mated by different parametrization schemes, the choice of
which mainly depends on the preference of the investiga-
tors at a weather forecasting center. The uncertainties coming
from model errors limit our ability to make useful predictions
with any individual model, and current tools that account for
model error are typically called empirical correction tech-
niques (Leith, 1978; DelSole and Hou, 1999; Danforth et al.,
2007; Allgaier et al., 2012; Basnarkov and Kocarev, 2012).

The simplest form of model error occurs in the perfect
model scenario where the model and the truth belong to the
same class. The model structure is correct but the true param-
eter values are unknown, and the goal of eliminating model
error is the same as that of parameter estimation (Smith et al.,
2010). One of the difficulties in reducing model error in this
setting comes from infrequent observation of the truth. For
tackling this problem we provide a new iterative linear re-
gression technique that works efficiently even when the sam-
pling interval between two successive observations of the
truth is very large.

When the model is structurally different from the truth,
one can modify the dynamical equations of the model based
on the statistics of the forecast errors between the model
and the truth. The question arises as to how different meth-
ods compare to each other in this approach, and this paper
attempts to address it by investigating two promising tech-
niques on a chaotically driven toy climate model. Both of
these methods aim to optimize the average model tendency
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200 I. Trpevski et al.: Analysis and applications to chaotically driven atmospheric models

error (i.e., the difference between the true change of the vari-
ables and the model tendency over a time series of observa-
tions) in terms of some linear parameters. The first method
was originally proposed byLeith (1978) with the aim to
correct the model tendency equations by adding a state-
independent or model bias term, and a state-dependent linear
operator. A version of Leith’s correction method has been ap-
plied successfully on a low-dimensional atmospheric model
with O(102) degrees of freedom (DelSole and Hou, 1999),
while a modification of the technique has given promising
results on atmospheric models with as much asO(105) de-
grees of freedom (Danforth et al., 2007). Recently, it has been
shown for a toy climate system that the increase in the av-
erage forecasting accuracy comes at the cost of substantial
qualitative differences between the dynamics of a corrected
model and its reference truth system (Allgaier et al., 2012).

The second method compared in this paper stems from a
more recent idea that one can combine the advantages of dif-
ferent imperfect models to produce an improved forecast of
the truth (Wiegerinck et al., 2011; van den Berge et al., 2011).
In particular this approach constructs a model whose ten-
dencies are given by a weighted combination of the tenden-
cies of the imperfect models. Akin to the Leith’s method, the
weights are determined so as to minimize the average model
tendency error. This method has not been tested as exten-
sively as Leith’s method on larger models, but a recent study
shows that it offers improved forecast on a low-dimensional
Lorenz ’96 system (Basnarkov and Kocarev, 2012).

The experimental test bed on which we test these two tech-
niques is given by a chaotically driven Lorenz 63 system
(Lorenz, 1963) – essentially capturing the fact that at a more
fundamental level the atmosphere is an open system subject
to a variable forcing in time. The external forcing is given
by a chaotic drive signal obtained from the variables of an-
other Lorenz 63. We assume that we cannot resolve the driv-
ing process and model it using a standard parametrization
scheme, namely by adding constants in the Lorenz 63 model.

We note that this type of on-line empirical correction
methods considered in this paper differs from a posteriori
correction methods (offline), such as subtracting the bias
from the forecast itself, in that they modify the dynami-
cal equations of the model.Danforth and Kalnay(2008) re-
cently pointed out that online correction reduces not only
the growth of the bias but also the nonlinear growth of non-
constant (state-dependent and random) forecast errors during
the model integration.

The rest of the paper proceeds as follows. In Sect.2 we
first look at the new method for estimating the parameters of
a perfect model in the case of infrequent observational data.
We then describe the two empirical correction techniques in
Sect.3. Their forecasting properties on the chaotically driven
Lorenz 63 system are analyzed in Sect.4. We provide a dis-
cussion and conclusion in Sect.5.

2 An iterative linear regression method for model
correction

Forecast errors originate from both initial condition errors
and model errors, and it is often assumed that one domi-
nates over the other, although in general this need not be
true. Shadowing time (Orrell, 2001) for example depends on
the interplay between the two types of errors. Here we as-
sume that one can get a goodanalysisof the true state in
terms of the model variables with current state-of-the-art data
assimilation methods so that model error dominates short-
term forecast errors. This allows us to focus on improving
the model by reducing its model error. In the following we
denote the analysis of the truth withxa and the model state
vector withx. Also, assume that the model tendency is given
by

ẋ = T (x,p) , (1)

where the parameters appear linearly in the equations.
We present an iterative linear regression (ILR) method that

can effectively estimate all the parameters appearing in the
model equations (1) when the sampling intervalτ between
two successive observations of the truth is large. The effi-
ciency of the technique is demonstrated in the perfect model
scenario where “true” or optimal values of the parameters of
a system exist but are unknown. In the imperfect model sce-
nario, one needs to define a goal (such as best forecast lead
time) in terms of which one hopes to find the best parame-
ter values (Du and Smith, 2012). Standard linear regression
techniques work by minimizing the Mean Square Tendency
Error (MSTE) with respect to the parametersp:

E1 (p) = 〈|

(
˜̇xa− T (xa,p)

)
|
2
〉 , (2)

where 〈〉 denotes time average overN observations
{xa(t0),xa(t0 + τ) , . . . ,xa(t0 + (N − 1)τ )} sampled with
frequencyτ . The estimated tendency of the truth˜̇xa at time
t can be obtained using standard interpolation techniques or
finite differences from the observations.

We now modify method (2) to be used as a model correc-
tion method:

E2 (p) = 〈|

(
˜̇xa− ˜̇x − c (xa,p)

)
|
2
〉 , (3)

where c (x,p) is the correction of the initial model
(1) and ˜̇x(t) is estimated from time series observation
{x(t0),x (t0 + h) . . . } of frequencyh obtained by integrating
the initial model Eq. (1). A question that arises naturally is
why to estimate the model tendencies from time series in-
stead of directly evaluating the model equations. The reason
is to reduce the effect of the error that occurs, because we
observe the truth at infrequent discrete times. Suppose the
sampling intervalτ is not small enough; theṅ̃xa(t) will be an
incorrect estimation oḟxa(t). If ẋ(t) is used instead oḟ̃x(t),
then there is going to be a non-zero correctionc (x,p) even
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though the initial model is equivalent to the truth, because
ẋ(t) = ẋa(t) 6= ˜̇xa(t) due to the error introduced by any es-
timation scheme of the tendency. However, if˜̇x(t) is used
instead and estimated by matchingh = τ (i.e., we observe
our current model the same way we observe the truth (with
frequencyτ )), then ˜̇x(t) = ˜̇xa(t) will hold and no correction
is needed.

Once we obtain the correctionc (x,p), we can apply it to
our initial model (1) and run a new iteration of the proce-
dure with the corrected model. The convergence criteria can
be decided depending on the model and application. In the
following experiment we stop the iteration when the change
in any of the estimated coefficients between two iterations is
smaller than 10−4.

For testing the method we use the Lorenz system with
standard parameter values as a reference truth. The time se-
ries from the reference truth{xa(t)} is obtained by running
fourth-order Runge–Kutta with timestep 0.01 fromt = 0 to
t = 20 and then taking every seventh observation – thus
τ = 0.07. We start the iteration procedure with a null model
ẋ = 0, and the correction term has the general quadratic form

cj (x,p) = p0,j +

3∑
i=1

pi,jxi +

3∑
i=1

∑
k≥i

pik,jxixk (4)

for j = 1,2,3. The estimation of the tendency of the truth
˜̇xa(t) is done by using spline interpolation (Press et al., 2007)
on the time series, because for the Lorenz system it gives
better derivative estimation than finite differences, although
for higher-order models this need not be true. We estimate
˜̇x(t) by first generating time series{x(t − kh) . . .x(t − h),
x(t), x(t + h). . .x(t + kh)} from the initial model by run-
ning backward and forward Runge–Kutta fork steps start-
ing with the initial statexa(t) ≡ x(t). We found that a local
time series withk = 6 is sufficient for good estimatioṅ̃x(t).
When backward integration is not applicable due to instabil-
ities, one can use a concentrated finite differencing scheme
(Kravtsov et al., 2005):

˜̇x(t) =
1

2h

(
− 3x(t) + 4x (t + h) − x (t + 2h)

)
. (5)

On model time series we use spline interpolation and es-
timate ˜̇x(t) at timet . Using the differenceṡ̃xa− ˜̇x as target
variables, we finally solve Eq. (3) using least squares to ob-
tain the correction term. We can then recursively construct
a new modelT n+1 (x,p) = T n (x,p) + c (x,p). The results
from the 1st, 2nd and last iteration of the procedure are sum-
marized in Table1. For the first iteration there are signifi-
cant errors in the estimation of the bias terms and modest
errors for the parametersρ andβ. Note that the first itera-
tion is equivalent to applying standard multiple polynomial
regression. In the second iteration we can see significant im-
provement in the estimation of the three Lorenz parameters,
but the errors in the bias (constant) terms remain large. The

procedure converges after 13 iterations, and the largest error
in any of the final estimated parameters is less than 1 %.

The iterative correction method cannot be applied straight-
forward to the imperfect model scenario since the im-
perfections in general cannot be resolved. One direction
that is probably worth exploring is the use of stochastic
parametrizations to account for the model imperfections. A
recent approach that iteratively constructs inverse stochas-
tic models with multilevel stochastic forcing has been ef-
fectively applied in explaining climate variability (Kravtsov
et al., 2005; Kondrashov et al., 2005). This approach and the
one presented in this section are algorithmically similar in
that they apply least-squares iteratively to determine better
model coefficients.

3 Empirical correction techniques for imperfect models

3.1 Leith’s correction method

Leith (1978) proposed a technique that reduces model ten-
dency error by adding both a state-independent (constant)
term and a state-dependent (linear) term to the model ten-
dency equations. He pointed out that for short forecast times
the model errors can neither interact nor compound nonlin-
early so a linear equation that approximates the model error
might be useful. The state-independent term accounts for the
difference in the time average between the model and the
truth, while the state-dependent term accounts for the dif-
ference between the variances of the model and truth (All-
gaier et al., 2012). For a general dynamical system given
by Eq. (1), the proposed improved model has the following
form:

ẋ = T (x,p) + Lx + b . (6)

The operatorL and the constant forcing termb are obtained
by least squares optimization of the mean square tendency
error〈eT e〉 where the model tendency errore at a particular
time t is given by

e = ˜̇xa(t) − T (xa(t)) − Lxa(t) − b . (7)

We follow (Allgaier et al., 2012) and first calculate the state-
independent correction:

b = 〈1x〉/τ , (8)

where〈1x〉 denotes the average of forecast errors over the
entire training period. Note that the average forecast error
has to be divided by the length of the sampling interval to
obtain the instantaneous model correction term. This average
provides an estimate for the systematic model error generated
during the observation window, and adding it to the model
equations should produce a model with less bias:

T + (x) = T (x) + b . (9)

www.nonlin-processes-geophys.net/20/199/2013/ Nonlin. Processes Geophys., 20, 199–206, 2013



202 I. Trpevski et al.: Analysis and applications to chaotically driven atmospheric models

Table 1.Estimated coefficients in the quadratic form (4) for the 1st, 2nd and last iteration of the procedure.

p(1) 1 x y z x2 y2 z2 xy xz yz

ẋ −0.6286 −11.1669 10.8096 0.0858 0.0168−0.0004 −0.0031 −0.0114 0.0362 −0.0274
ẏ 11.3944 25.5828 −0.0911 −1.3503 −0.1735 −0.0598 0.0375 0.1930 −0.9332 −0.0182
ż −8.4870 −0.9195 0.7317 −1.3070 0.3116 0.0690 −0.0471 0.6929 0.0262 −0.0233

p(2) 1 x y z x2 xy xz y2 yz z2

ẋ −0.1927 −10.2821 10.1960 0.0347 0.0077−0.0011 −0.0013 −0.0040 0.0086 −0.0064
ẏ 4.8727 27.6313 −0.8928 −0.5571 −0.0734 −0.0293 0.0155 0.0867 −0.9898 −0.0017
ż −3.6866 −0.3729 0.3118 −2.1688 0.0949 0.0273 −0.0159 0.9007 0.0105 −0.0095

p(13) 1 x y z x2 xy xz y2 yz z2

ẋ 0.0058 −10.0008 10.0002 −0.0008 0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000
ẏ −0.0063 28.0035 −1.0019 −0.0000 −0.0003 −0.0001 0.0000 0.0003 −1.0001 0.0001
ż −0.0043 −0.0061 0.0038 −2.6668 0.0000 0.0001 0.0000 0.9999 0.0002−0.0001

To calculate Leith’s operatorL , we recompute the forecast
error time series1x with the bias-corrected model (9) and
then produce two time series of anomalies:

x′
a(t) = xa(t) − 〈xa〉;

1x′(t) = 1x(t) − 〈1x〉 . (10)

Looking for an improved model of the form

T ++ (x) = T + (x) + L (x − 〈xa〉) , (11)

we arrive at the following expressions for Leith’s operatorL :

L = C1x′x′
a
Cx′

ax
′
a
. (12)

on the right-hand side is the lagged cross covariance ma-
trix obtained by taking the outer product1x (t + τ)′ xa(t)

′T

over the entire training period, while the second matrix is the
inverse of the cross covariance matrix of the truthCx′

ax
′
a
=

〈xa(t)
′T xa(t)

′
〉
−1.

3.2 Weighted combination of imperfect models

A more recent approach is to produce an improved model us-
ing weighted linear combination of the tendencies of several
imperfect models. The imperfect models can be any number
of different models expressing the change in the same atmo-
spheric quantities. In general circulation models (GCMs), the
differences are typically in the parametrization of subgrid-
scale processes and forcing parameters. More formally, as-
sume that we are givenM models and that the tendency for
thei-th component of modelµ is given by

ẋ
µ
i = T

µ
i (x) . (13)

This technique constructs an improved model whose tenden-
cies are given by a weighted combination of the tendencies
of the different models. The equation for thei-th component

of the improved model is given by

ẋW
i =

∑
µ

w
µ
i T

µ
i = wT

i T i , (14)

wherewi =
[
w1

i ,w
2
i , . . . ,w

M
i

]T
is the vector of weights and

T i =
[
T 1

i ,T 2
i , . . . ,T M

i

]T
is the vector of tendencies of differ-

ent models. We are left with the task of searching for weights
wi

µ that will give a model with improved forecast when com-
pared to the individual models. The search can be done with
respect to any cost function, but the nature of the problem
allows us to make a fast least square fit of the weights with
respect to MSTE. In general, there are different basis func-
tionsT i for every model componentxi , so we have to solve
a separate regression problem for each one. The mean square
tendency error for thei-th model component is

E
(
wi

)
= 〈|ẋi

a− wT
i T i (x) |2〉 , (15)

where the angle brackets denote time average. The gradient
of the error function takes the form

∇E
(
wi

)
= 〈

(
ẋi

a− wT
i T i

)
T T

i 〉 , (16)

and after setting it to zero we obtain the following linear sys-
tem for the weights:

Ciwi = ci . (17)

Note that the covariance matrices between the tendencies of
different models are given byCi = 〈T iT

T
i 〉. Also the covari-

ance vectors between the true tendency and those of the dif-
ferent models areci = 〈ẋi

aT i〉. To avoid over-fitting of the
weights to the training set, a regularization term can be added
to the error function (Bishop, 2006):

E(wi) +
λ

2
wT

i wi . (18)
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The regularization coefficientλ controls the relative impor-
tance of the data-dependent errorE(wi) and the regulariza-
tion term1

2wT
i wi . Also, the regularization term is a quadratic

function of the weightsw allowing the solution of the prob-
lem to be expressed in closed form:

wi =
(
λI + Ci

)−1
ci . (19)

The choice of the regularization parameterλ can influence
the results, and typically we have to run different simula-
tions for different values ofλ in order to produce a good
result. A clever ansatz from machine learning tells us that
we can start with a small value forλ of 0.01 and increase
it by roughly three times its value in each simulation. In
our simulations we explored the parameter space for the
values [0.01,0.03,0.1,0.3,1,3,10,30,100,300,1000] and
found that a value ofλ = 3 gives the best results.

4 Results on the chaotically driven Lorenz 63 system

We now compare both empirical correction techniques in a
realistic imperfect model scenario where the forecast models
have different dimension and parametrization from the truth.
Because atmospheric models are nonlinear and have chaotic
behavior, we took the paradigmatic Lorenz 63 system as a
model. As truth we considered a Lorenz system that is driven
externally by some nontrivial functions. The role of this forc-
ing can be given to the variables of another Lorenz 63 sys-
tem that is independent. The whole six-dimensional system
is given by

ẋ1 = σ (y1 − x1) + εz2,

ẏ1 = x1 (ρ − z1) − y1,

ż1 = x1y1 − βz1 + δ (x2 + η),

ẋ2 = σ (y2 − x2) ,

ẏ2 = x2 (ρ − z2) − y2,

ż2 = x2y2 − βz2 . (20)

As can be seen the subsystem 2 is the ordinary Lorenz 63
system, which drives the subsystem 1. The latter is thus
a non-autonomous dynamical system with variable forcing.
The parametersε and δ determine the magnitude of the
driving, while η is some constant drift1. For simplicity we
have taken the standard parameter values in both subsystems
σ = 10, ρ = 28 andβ = 8/3. The values used in the simu-
lations for the other parameters areε = 1, δ = 1 andη = 2.
Furthermore, we assume that only the subsystem 1 is acces-
sible for observations, and our aim is to model its time series
x1(t), y1(t) andz1(t). In Fig. 1 we show the projection of

1Inserting the driftη seems artificial, but our aim in this toy
case is to have a constant as a parameter that will represent exter-
nal forces. Sincex2 has both positive and negative values, we have
added drift. On the other hand,z2 is always positive and modeling
its influence inẋ1 with a constant comes naturally.

Fig. 1.Projection of the observations in the model space. The trajec-
tory resembles those obtained from the ordinary Lorenz 63 system.

the full attractor on the three-dimensional space(x1,y1,z1)

where it is clear that it looks like the familiar Lorenz attrac-
tor.

The forecast model is the Lorenz 63 system with constant
“forcing” terms added in the equations for the variablesx and
z. In most advanced atmospheric models, the additive con-
stants are used to model the external forcing, which is due to
some unresolved processes. The models developed at differ-
ent meteorological centers differ in choice of the unresolved
processes that are parameterized and also in the parameter
values. In this simple example, these different choices can be
mimicked by making two models that parameterize the exter-
nal driving at the tendencies ofx1 andz1 variables separately.
It means that in the first case only the unresolved process ap-
pearing at the tendency of variablex is parameterized with
some parameterα:

ẋ3 = σ (y3 − x3) + α;

ẏ3 = x3 (ρ − z3) − y3;

ż3 = x3y3 − βz3 . (21)

The value ofα should be determined by fitting the model’s
output with the observations of the reality – subsystem 1 in
Eq. (20). This optimization procedure models the parameter
fitting that is performed by the meteorologists.

Similarly, one can build another model equation that will
have a parametrization of the process that drives the variable
z:

ẋ4 = σ (y4 − x4) ,

ẏ4 = x4 (ρ − z4) − y4,

ż4 = x4y4 − βz4 + γ, (22)

with the parameterγ . Thus the Eqs. (21) and (22) can be
regarded as two imperfect models developed at different

www.nonlin-processes-geophys.net/20/199/2013/ Nonlin. Processes Geophys., 20, 199–206, 2013
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meteorological centers and serve as a test bed for compar-
ing the empirical correction techniques. We assumed values
for α andγ of 30 and 4, respectively.

4.1 Training and testing

For the purpose of training of each of the techniques, we used
a set of observations comprised of 100 time units of the vari-
ables of subsystem 1. Both the simulated truth and the model
are integrated with fourth-order Runge–Kutta with a time
step of 0.01. The sampling interval is assumed to be 1 model
time steps, so the resulting training set is 10 000 points.

To compare the methods we generated a run of 1 million
points, from which we chose randomly a set of 1000 start-
ing points for which trial forecasts were performed. For
each forecast, anomaly correlation (AC) is computed with
respect to the reference truth and then averaged over all tri-
als. Anomaly correlation is typically used to determine the
length of time for which a model forecast is useful, and it is
given by

AC =
(xa− 〈xa〉)

T
· (x − 〈xa〉)√

|xa− 〈xa〉|
2|x − 〈xa〉|

2
(23)

for a particular time. AC is essentially the dot product of the
anomalous model state with the anomalous true state. A fore-
cast is typically considered useful for as long as its AC re-
mains above 0.6. The AC is calculated for each imperfect
model and both of the corrected models and averaged over
the 1000 random trials. The results of the forecast perfor-
mance in terms of the AC metric are shown in Fig.2. As ex-
pected, both correction techniques offer better performance
when compared to the imperfect models. The first peculiar
observation is that the parametrization in the first equation
is more important since it gives better forecast. On the other
hand, both correction techniques show very similar perfor-
mance, with Leith’s method edging out the weighted com-
bination model by a small margin. A closer look at the es-
timated coefficients by the two correction methods reveals
why this is the case. The coefficients in Leith’s operator along
with the estimated bias term are shown in Table2. Obviously
there is little if any correction appearing before the linear
terms, while the bias values are strikingly close to the aver-
age values of the chaotic forcing in the truth (approximately
23.5 and 2). Similar results are obtained for the weighted
combination where the estimated forcings have values in the
equationsx andz of 20.2 and 0.76, respectively. One can no-
tice from Table3 that the coefficients in front of the linear
and quadratic terms differ from those of the original Lorenz
by 15 % in the equationx and by 5 % in the equationz, be-
cause the weights in front of the different models do not add
up to one. This can be readily removed by solving Eq. (15)
with a quadratic programming technique where a linear con-
straint can be put on the weights so that they sum up to one.
In particular, we have used a subspace trust-region technique
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Fig. 2.Anomaly correlation calculated for the two imperfect models
and the models obtained by the two model correction techniques.

Table 2.The estimated coefficients of Leith’s operator (12) and the
bias term (8).

ẋ ẏ ż

Lx 0.0907 0.0024 −0.0459
Ly −0.0450 −0.0009 0.0159
Lz −0.0350 −0.0010 0.0200
b 22.7862 0.0958 1.3730

for solving quadratic programming problems based on the
interior-reflective Newton method (Coleman and Li, 1996).

This indication from both methods shows that the biggest
improvement in predictability comes from estimating the av-
erage value of the chaotic driving in the variablex, which in
general is not straightforward since the driving comes from
some unresolved processes. When we calculated the AC met-
ric for a Lorenz system with parameterizationsα = 23.5
and γ = 2, there was virtually no difference with Leith’s
method. This conclusion also has implications for mod-
els with stochastic parametrization. The parameters of the
stochastic forcing term should be estimated so as to align its
average value with that of the chaotic drive signal. Captur-
ing higher-order statistics of the chaotic drive signal with the
stochastic parametrization might provide additional increase
in predictability.

5 Conclusions

In this work we have analyzed techniques for reducing model
error by empirically correcting the dynamical equations of
the models. For the case when the observations of the truth
are infrequent, we proposed an iterative linear regression
method that effectively estimates all the parameters in the
perfect model scenario. The key insight into this method is to
match the observation time of the model to the observation
time of the truth so that the error resulting from infrequent
observations is reduced. An open question is how to apply
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Table 3.The estimated weights of the weighted combination model
(14) appearing in front of the corresponding imperfect model ten-
dencies.

w1 w2 w3

Model 3 0.6737 1.0000 0.7586
Model 4 0.1859 0 0.1940

this method in the context of an imperfect model scenario
where model error is always present and each iteration in the
procedure needs not produce a better model than the previ-
ous. One possible extension of the method is in the direction
of models with stochastic parametrization of the imperfec-
tions.

We have also tested and analyzed two promising tech-
niques for model correction on a realistic, imperfect model
scenario where the truth was given by a chaotically driven
Lorenz system and the models are given by the standard
Lorenz system with a constant forcing. Both techniques indi-
cate that the biggest performance gain comes from estimating
a value for the constant forcing that is close to the average
of the chaotic drive forcing. Nevertheless, this may not be
true for higher-order climate models, and applying the tech-
niques to correct parameters in front of linear and quadratic
terms in operational models is worth exploring because of
the importance of weather and climate forecasting. Currently,
in operational weather and climate models, Leith’s method
has been successfully applied only for the state-independent
terms (DelSole et al., 2008; Yang et al., 2008) due to the fact
that calculating the full linear term is computationally pro-
hibitive. The weighted combination of models has not been
applied in any form on operational models, although work is
underway in applying the technique to state-of-the-art Euro-
pean climate models (Shen and Keenlyside, 2012).
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