
Nonlin. Processes Geophys., 20, 163–178, 2013
www.nonlin-processes-geophys.net/20/163/2013/
doi:10.5194/npg-20-163-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques
O

pen A
ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

DiscussionsIon motion in the current sheet with sheared magnetic field – Part 1:
Quasi-adiabatic theory
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Abstract. We present a theory of trapped ion motion in the
magnetotail current sheet with a constant dawn–dusk com-
ponent of the magnetic field. Particle trajectories are de-
scribed analytically using the quasi-adiabatic invariant corre-
sponding to averaging of fast oscillations around the tangen-
tial component of the magnetic field. We consider particle
dynamics in the quasi-adiabatic approximation and demon-
strate that the principal role is played by large (so called
geometrical) jumps of the quasi-adiabatic invariant. These
jumps appear due to the current sheet asymmetry related to
the presence of the dawn–dusk magnetic field. The analyti-
cal description is compared with results of numerical integra-
tion. We show that there are four possible regimes of particle
motion. Each regime is characterized by certain ranges of
values of the dawn–dusk magnetic field and particle energy.
We find the critical value of the dawn–dusk magnetic field,
where jumps of the quasi-adiabatic invariant vanish.

1 Introduction

Description of charged-particle dynamics in strongly inho-
mogeneous magnetic fields with a small curvature radius
is an important problem of plasma physics. This descrip-
tion has applications in theory of thin current sheets in the
Earth’s magnetotail (see reviews byZelenyi et al., 2011; Birn
et al., 2012, and references therein), magnetopause (see dis-
cussion inWhipple et al., 1984; Panov et al., 2011), and
for many other mesoscale structures observed in the mag-
netosphere (see review bySharma et al., 2008; Grigorenko
et al., 2011, and references therein) and solar corona (e.g.

Litvinenko, 1993; Anastasiadis et al., 2008 and references
therein). Moreover, models of penetration of solar wind par-
ticles into magnetosphere (Zhou et al., 2007) and electron dy-
namics in the radiation belts (see e.g.Ukhorskiy et al., 2011,
and references therein) also have a relation to this topic.

In a general situation, to solve Hamiltonian equations of
charged particle motion analytically, one needs to introduce
additional invariants besides the well-known energy and mo-
mentum. One of the most effective theories developed in this
way is the guiding-center theory of charged particle motion,
where the magnetic moment can be introduced as this addi-
tional invariant of motion (Northrop, 1963; Sivukhin, 1965).
This theory is valid for systems with strong magnetic fields,
where spatial and temporal scales of magnetic field variations
are much larger and slower than typical scales of particle mo-
tion.

The guiding-center theory in a general case cannot be ap-
plied to describe ion dynamics in the Earth’s magnetotail
with weak magnetic field in the vicinity of the current sheet.
However, in such systems, another small parameter can be
introduced. This parameter is defined as the ratio of the cur-
vature radius of field lines and ion gyroradius. Thus, comple-
mentary adiabatic type theory of particle motion can be de-
veloped in a more general form. Such a new theory is based
on the adiabatic invariance of the integral of action (Landau
and Lifshitz, 1960; Schindler, 1965; Sonnerup, 1971; Whip-
ple et al., 1986). This invariant is often called quasi-adiabatic
invariant to distinguish it from the magnetic moment. Usu-
ally quasi-adiabatic invariants are more poorly conserved in
comparison with the magnetic moment.
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Ion trajectories in the current sheet can be described an-
alytically using the quasi-adiabatic invariant (Büchner and
Zelenyi, 1986, 1989; Chen, 1992). This description was also
generalized to manage current sheets with the X-line and the
dawn–dusk electric field (Vainchtein et al., 2005) or bifur-
cated current sheets (Artemyev et al., 2011; Vasiliev et al.,
2012). The description of particle trajectories is based on sep-
aration of the particle motion into two components: fast os-
cillations around field lines (or across the current sheet) and
slow oscillations along field lines (or rotation in the current
sheet plane). Roughly speaking, averaging over fast oscilla-
tions gives the quasi-adiabatic invariant.

Systems under consideration contain the separatrix in the
phase plane of fast variables. Trajectories cross the separa-
trix when particles change the character of their motion from
motion along field lines far from the current sheet plane to
rotation in (and oscillations across) the current sheet plane.
Crossings of the separatrix result in the violation of the con-
servation of the quasi-adiabatic invariant: so-called jumps
(Timofeev, 1978; Neishtadt, 1986; Cary et al., 1986; Büchner
and Zelenyi, 1989).

Previously, the theory of the quasi-adiabatic invariants and
related ion motion in the magnetotail current sheet was de-
veloped for systems without shear of the magnetic field, i.e.
with zero value of the dawn–dusk componentBy of the mag-
netic field (hereafter we use GSM coordinate system). Only
the tangential componentBx(z) and the normal component
Bz were taken into account. However,By component is of-
ten present in the magnetotail (seePetrukovich, 2011, and
references therein). It plays an important role in the current
sheet formation (seeSilin and B̈uchner, 2006; Artemyev,
2011; Malova et al., 2012, and references therein) and sta-
bility (seeGaleev et al., 1986; Kuznetsova et al., 1996; Silin
and B̈uchner, 2003; Karimabadi et al., 2005, and references
therein).

There are several numerical investigations of the influ-
ence of the magnetic field shear (By 6= 0) on ion motion
(Karimabadi et al., 1990; Büchner and Zelenyi, 1991; Zhu
and Parks, 1993; Kaufmann et al., 1994; Baek et al., 1995;
Holland et al., 1996; Chapman and Rowlands, 1998; Del-
court et al., 2000; Ynnerman et al., 2000). Major parts of
these numerical investigations are devoted to the description
of peculiarities of particle motion for particular values of sys-
tem parameters. However, analytical theory of this motion is
still not properly developed. In this paper we develop an adi-
abatic theory of ion motion in the current sheet withBy 6= 0.
In the discussion we compare main results of previous nu-
merical investigations with our analytical theory.

In this paper we only consider motion of trapped parti-
cles (this is the first part of our investigation). Moreover, we
take into account only adiabatic motion without effects of
stochastic destruction of the quasi-adiabatic invariant. The
non-adiabatic effects (including peculiarities of untrapped
motion) will be considered in the next paper.

2 General equations

A simple model of the magnetic field componentBx in
the current sheet can be represented asBx = B0(z/L) for
|z/L| < 1 andBx = ±B0 for |z/L| > 1, whereL is the cur-
rent sheet thickness andB0 is the amplitude ofBx . In the
system withoutBy , the field lines have the shape of parabolas
Bzx = B0z

2/2L+const (inside the domain|z/L| < 1). Parti-
cle motion can be qualitatively described as follows: far from
the neutral planez = 0 (whereBx = 0) particles quickly ro-
tate around the field lines and move along them. When par-
ticles approach the neutral planez = 0, they change the type
of motion: now, instead of rotation around field lines, parti-
cles rotate aroundBz and oscillate across the neutral plane
z = 0. After half a period of the rotation aroundBz, parti-
cles leave the neutral planez = 0 and return to the motion
along field lines. This type of trajectory was discovered by
Speiser (seeSpeiser, 1965, 1967). The description of this
motion in the system withBy = 0 was given bySonnerup
(1971); Chen and Palmadesso(1986); Büchner and Zelenyi
(1986, 1989). Far from the neutral planez = 0, due to the
growth of Bx(z) component, particles can make a turn and
start moving towards the neutral plane again. This motion is
bounded and can be considered as trapped. If particles reach
the current sheet boundary whereBx component becomes
constant (Bx = ±B0), the motion becomes unbounded and
can be considered as transient one. Corresponding particle
trajectories are open. In this paper we are interested mainly
in particle behaviour in the vicinity of the neutral planez = 0
during periodical returns of the particle’s trajectory to this re-
gion. Thus, we consider the trapped motion. Effect of open
trajectories and related particle losses is a subject of the next
publication.

We start with brief discussion of main features of trapped
trajectories in current sheets withBy = 0. For this purpose
we show particle trajectories in the current sheet withoutBy

(Fig. 1a, b). In case ofBy = 0 each particle can move along
one of two possible segments of a trajectory: with a turnpoint
at positivez (Fig. 1a) and at negativez (Fig. 1b). Projections
of these two segments onto the neutral planez = 0 coincide.
Both segments consist of two parts: rotation aroundBz in
the neutral planez = 0 (the corresponding oscillations over
z-coordinate have a large amplitude) and motion along field
lines (the amplitude of the oscillations around field lines is
about two times smaller). Any particle moving along one of
the segments can change it to another one at the moment of
leaving the neutral planez = 0 (when the amplitude ofz os-
cillations decreases twice). Detailed description of such tra-
jectories can be found inBüchner and Zelenyi(1986, 1989).

In the case ofBy 6= 0, particle trajectories are more com-
plicated (Fig.1c). Both previous segments merge into a sin-
gle trajectory. This trajectory consists of four segments. The
two segments A1 and A2 correspond to the motion along
field lines and have turning points at positive and negative
z respectively. Their projections onto the neutral planez = 0
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Fig. 1.Characteristic trajectories in current sheets withoutBy (pan-
elsa andb, s = 0 andκ = 0.01) and withBy (panelc corresponds
to s = 0.5 andκ = 0.01 and paneld corresponds tos = 1.0 and
κ = 0.01). Red curves show projection of trajectories onto plane
z = 0.

do not coincide. The segment A3 with the increased ampli-
tude of z-oscillations corresponds to rotation aroundBz in the
neutral planez = 0. The segment A4 corresponds to rotation
aroundBz in the vicinity of the neutral planez = 0 without
the increase of the amplitude of z-oscillations. Note that if
the value ofBy is large enough, the segment A3 with large z-
oscillations and rotation aroundBz in the neutral planez = 0
disappears (Fig.1d). This complex motion of a charged par-
ticle in current sheets with various values ofBy is the subject
of our study. Without loss of generality we consider positive
By (negativeBy corresponds to the mirror reflection of the
system with respect to the neutral planez = 0).

We study dynamics of particles in the system with the
magnetic fieldB = B0(z/L)ex +Byey +Bzez, whereBz > 0
andBy > 0 are constants. Corresponding vector potential is
A = Byzex +(Bzx−B0z

2/2L)ey . The Hamiltonian of a par-
ticle with massm and chargeq in this system has the form

H=
1

2m
p2

z+
1

2m

(
px−

q
c
Byz

)2
+

1
2m

(
py−

q
c
Bzx+

q
2cL

B0z
2
)2

.

We note that particle energy is constantH = h = const
because Hamiltonian does not depend on time ex-
plicitly (∂H/∂t = 0). We use dimensionless variables
p → p/

√
2hm, r → r/

√
ρ0L, dimensionless timet →

t
√

2h/(ρ0Lm), parametersκ = Bz/B0
√

L/ρ0 and s =

By/B0
√

L/ρ0 (ρ0 =
√

2hmc/(qB0) is the Larmor radius).
We also shift coordinate system alongx to set momentum
py = 0 (it is possible because the Hamiltonian does not de-
pend on y-coordinate). In this case, dimensionless Hamilto-
nianH → H/2h can be written as

H =
1
2p2

z +
1
2(px − sz)2

+
1
2(κx −

1
2z2)2. (1)

Our normalization of all variables on particle energyh

gives the equationH(z,pz,κx,px) = 1/2. Thus, in the four-
dimensional space(z,pz,κx,px) the particle moves on the
three-dimensional surfaceH(z,pz,κx,px) = const. IfBy =

0, we haves = 0 and Hamiltonian (1) is the same as the one
considered earlier bySonnerup(1971); Büchner and Zelenyi
(1986, 1989). Parameterκ is small for thin current sheets
observed in the magnetotail (κ ∈ [0.01,0.1] whereL ∼ ρ0;
see review byZelenyi et al., 2011 and references therein).
Therefore, variables(κx,px) are slow and variables(z,pz)

are fast.

3 Fast variables and quasi-adiabatic invariant

We introduce the potential energyU(κx,px,z) = H −
1
2p2

z

of particle motion in the phase plane(z,pz) of fast vari-
ables. At given values of the slow variables, system (1) could
be considered as a Hamiltonian system with one degree of
freedom withH =

1
2p2

z + U(κx,px,z), where(κx,px) are
treated as constant parameters.

FunctionU = U(z,κx,px) is the fourth order polynomial.
The particle’s oscillations in the potentialU occur on the en-
ergy levelH = 1/2, i.e. amplitudes of these oscillations are
determined by the equationU = 1/2. FunctionU(z,κx,px)

can have a single minimum or two minima separated by a
local maximum depending on values ofκx, px . Thus, the
equationU = 1/2 can have two solutions or four solutions.
Here we do not consider such values ofκx,px that the equa-
tion U = 1/2 does not have any real solutions. For values
of κx,px such that there are four solutions of the equation
U = 1/2, the schematic view ofU as a function ofz is pre-
sented in Fig.2a. There are two minima and one local max-
imum at z = zc. The phase portrait of this system is pre-
sented in Fig.2c. A system with two solutions of the equation
U = 1/2 is shown in Fig.2b, d.

www.nonlin-processes-geophys.net/20/163/2013/ Nonlin. Processes Geophys., 20, 163–178, 2013
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Fig. 2. Panels(a) and(b) demonstrate profileU(z). Panels(c) and
(d) demonstrate the corresponding phase plane of the fast variables.
Sl andSr are the areas surrounded by separatrix loops.

One can see two types of particle trajectories in these por-
traits: the first type corresponds to particle oscillations inside
one of the two small potential wells (these are particle oscil-
lations around field lines, Fig.2a, c). The second type corre-
sponds to particle oscillations in the outer region with cross-
ing z = zc (Fig. 2a, c). Separatrix separates these two types
of trajectories (it is shown by the dotted curve in Fig.2c).
Separatrix passes through the saddle point atz = zc. For the
system withBy = 0, we havezc = 0 and trajectories cross-
ing z = zc correspond to oscillations across the neutral plane
z = 0.

As particle trajectories in the plane(z,pz) are closed (i.e.
motion is periodic), one can introduce the quasi-adiabatic in-
variant as the area surrounded by a trajectory divided by 2π :
Iz = (1/2π)

∮
pzdz (Landau and Lifshitz, 1960; Sonnerup,

1971; Büchner and Zelenyi, 1986).

4 Slow variables

Potential energyU depends on the slow variables(κx,px),
and we can divide the phase plane(κx,px) into several do-
mains on the constant energy levelH = 1/2. Each domain
corresponds to some profile ofU(z) and some position of
the lineU = 1/2 with respect to this profile, see Fig.3. Here-
after we use marks (t1), (t2l), (t2r) and (t2) for four domains
with different types of position of the energy levelU = 1/2
relative toU(z) profiles. Each domain is characterized by
properties of solutions of the equationU = 1/2. We consider
location of these solutions with respect to the planez = 0
to determine particle position relative to the neutral plane.
Note that for systems withs 6= 0, valuez = 0 does not play
any particular role in the equationU = 1/2 (for s = 0 poten-
tial U is symmetrical relative to the planez = 0). However,
z = 0 determines position of the neutral plane even fors 6= 0.
Thus, it is important to describe particle motion relative to
this plane.

Fig. 3. The phase plane of slow variables(κx,px) is shown for
two values of the parameters. Various colours are used for domains
with different types of particle motion. Dotted grey lines show the
position of energy levelU = 1/2.

For the system withs = 0 (i.e.By = 0) we have only two
domains. In the first domain (t1) particles oscillate in one of
two symmetric potential wells. Thus, we have four solutions
of the equationU = 1/2. In the second domain (t2) parti-
cles oscillate in the single potential well (i.e. there is just
one well, or there are two wells separated by the maximum
of U located below energy levelH = 1/2). In this domain
we have two solutions of the equationU = 1/2. When the
particle moves inside the (t2) domain, it crosses the neutral
planez = 0. Trajectories corresponding to oscillations in a
single potential well (motion in the (t2) domain) and in one
of two potential wells (motion in the (t1) domain) are sep-
arated by the separatrix in the plane(z,pz) (see Fig.2a, c).
The separatrix corresponds to a certain curve in the(κx,px)

plane. This curve is calledthe uncertainty curve. Thus, the
uncertainty curve separates (t1) and (t2) domains in the plane
(κx,px). When a particle is located on the uncertainty curve
in the plane(κx,px), this particle moves along the separa-
trix in the (z,pz) plane. Hence, we use termthe uncertainty
curveon the phase plane(κx,px) and termthe separatrixon
the phase plane(z,pz) (the uncertainty curve was first intro-
duced byWisdom, 1985). For a system withs = 0, the uncer-
tainty curve is defined by the simple equation(κx)2

+p2
x = 1,

κx > 0.
If s 6= 0, two additional domains appear, while area of

the domain (t1) with two potential wells decreases. These
two new domains, (t2r) and (t2l,), correspond to particle

Nonlin. Processes Geophys., 20, 163–178, 2013 www.nonlin-processes-geophys.net/20/163/2013/



A. V. Artemyev et al.: Ion motion in current sheet with By 167

oscillations inside a single potential well without crossing
the neutral planez = 0. The particle oscillates above (blue
colour) or below (red colour) the neutral planez = 0 inside
the right or left potential wells, respectively. In this case the
equationU = 1/2 has two solutions. Both solutions are posi-
tive for (t2r) domain and negative for (t2l) domain. Fors 6= 0,
the uncertainty curve is the boundary between (t1) and (t2)
domains. Due to decrease of the (t1) domain area, the uncer-
tainty curve shrinks. It looks like a segment of a circle.

At the boundaries between (t1) domain and (t2r), (t2l) do-
mains, the bottom of one of the potential wells is located at
the energy levelH = 1/2, but these boundaries are not un-
certainty curves (crossing of these boundaries does not cor-
respond to the separatrix crossing in the(z,pz) plane). The
boundaries between (t2) domain and (t2r), (t2l) domains are
not an uncertainty curve either. These boundaries are defined
by the following condition: one of solutions of the equation
U = 1/2 is equal to zero. This condition gives the equation
of the boundary(κx)2

+p2
x = 1. Figure3 shows that ifs 6= 0,

the circle(κx)2
+ p2

x = 1 does not coincide with the uncer-
tainty curve. Moreover, some points of the (t1) domain are
located inside this circle. Thus, particles can cross the neu-
tral planez = 0 in course of oscillations inside one of the two
potential wells.

Due to evolution of slow variables, particles can go from
one domain to another in the plane(κx,px) and cross the
uncertainty curve (and hence cross the separatrix in the fast
variable plane). Each transition from one domain to another
corresponds to change in type of the particle’s motion. Tran-
sition from the (t1) domain to the (t2) domain means that
particles change oscillations around field lines to oscillations
across the neutral planez = 0. Transition from the (t2) do-
main to the (t2l) (or (t2r)) domain means that particles change
oscillations across the neutral plane to rotation around field
lines below (or above) the neutral plane. Particles in (t2l) and
(t2l) domains do not cross the neutral planez = 0.

Any separatrix crossing (i.e. transitions from the (t1) do-
main to the (t2) domain and vice versa) results in a variation
of Iz (the so-called jump of the quasi-adiabatic invariant; see
Timofeev, 1978; Cary et al., 1986; Neishtadt, 1986, 1987).
A jump of the quasi-adiabatic invariant1Iz consists of two
parts. The first part corresponds to violation of adiabaticity
of particle motion in vicinity of the saddle pointz = zc (this
is a dynamical jump,1I

dyn
z ). The second part corresponds

to difference of the areas surrounded by the particle’s trajec-
tory inside one of the separatrix loops and in the outer region
outside of these loops (this is a geometrical jump1I

geom
z ).

5 Adiabatic descriptions

Invariant Iz is not an exact integral of motion and is con-
served only approximately. However, variations ofIz far
from the separatrix are proportional to the small parameter
κ. These variations can be reduced by introduction of an im-

proved invariant (see details inNeishtadt, 1986; Arnold et al.,
2006). For a system with a symmetrical phase portrait in the
plane(z,pz) (i.e. for s = 0), dynamical jumps of the quasi-
adiabatic invariant1I

dyn
z at the separatrix are proportional

to κ. For asymmetrical phase portraits (i.e. fors 6= 0), dy-
namical jumps of the quasi-adiabatic invariant1I

dyn
z at the

separatrix are proportional toκ lnκ (Cary et al., 1986; Neish-
tadt, 1986, 1987). In the first approximation, we can neglect
variations ofIz far from the separatrix and dynamical jumps
1I

dyn
z at the separatrix. Such an approximation is called

the adiabatic approximation. According to this approxima-
tion, particle trajectories in the phase plane of slow variables
(κx,px) are defined by the equationIz(κx,px) = const up
to reaching the uncertainty curve. In the course of motion in
the plane(κx,px) of slow variables, particle trajectory in the
plane(z,pz) evolves. However, the area surrounded by the
trajectory in the plane(z,pz) is conserved (i.e.Iz = const).

The areasSl,r surrounded by separatrix loops (see Fig.2)
are functions of the slow variables(κx,px). Thus,Sl,r de-
pends on the particle’s position in the(κx,px) plane. Par-
ticle motion in the(κx,px) plane results in evolution of
Sl,r. Velocity of this evolutionκ2l,r can be determined as
κ2l,r = dSl,r/dt (see details in Appendix A and inArnold
et al., 2006).

In the system withs = 0, we have only two domains in the
plane(κx,px). Particles move in the (t1) domain inside one
of separatrix loops (inside one of two potential wells) with
invariant Iz = const and cross the separatrix. This crossing
occurs when the area surrounded by this loop decreases and
becomes equal to 2πIz. After separatrix crossing, particles
are inside the single potential well in the (t2) domain, where
the area surrounded by the trajectory is exactly two times
larger than the area before the crossing (both separatrix loops
are symmetric andSl = Sr). As a result, one can use factor
1/2 to renormalize the invariantIz. Namely, one can intro-
duce the quasi-adiabatic invariant asIz = (1/2π)

∮
pzdz in

the (t1) domain and asIz = (1/4π)
∮

pzdz in the (t2) domain.
In this case invariantIz is constant along the entire particle
trajectory. Thus, the equationIz(κx,px) = const determines
all particle trajectories in the slow variable plane(κx,px).
This approach is used to describe particle motion after av-
eraging over the fast variable for a system withs = 0 (see,
e.g.Büchner and Zelenyi, 1989; Vainchtein et al., 2005, and
references therein).

One additional property of the system withs = 0 is iden-
tity of the velocitiesκ2l,r of Sl,r evolution. When particles
approach the separatrix inside one of the two potential wells,
the areas surrounded by both separatrix loops decrease. Tra-
jectories cross the uncertainty curve (and cross the separatrix
in the phase plane of fast variables) and should appear in-
side the single potential well in the (t2) domain, because the
capture into one of two small wells is impossible due to the
decrease of corresponding areasSl,r. This transition is shown
in Fig. 4 (top panel, separatrix crossing C1). When particles

www.nonlin-processes-geophys.net/20/163/2013/ Nonlin. Processes Geophys., 20, 163–178, 2013
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Fig. 4. Schemes of particle trajectories in systems withs = 0 and
with s = 0.5 are shown in the phase plane(κx,px). Fragment of
(κx,px) plane with trajectory splitting is shown in separated panel.
Bottom schemes (C1, C2, C3) show particle trajectories before (dot-
ted curves) and after (solid curves) separatrix crossings in the plane
(z,pz).

oscillating in the single potential well in the (t2) domain ap-
proach the separatrix again, areasSl,r increase. As a result,
particles will be captured into one of the two potential wells
in the (t1) domain. This transition is shown in Fig.4 (top
panel, separatrix crossing C2). Such a type of trapped motion
is described in detail byBüchner and Zelenyi(1986, 1989);
Vainchtein et al.(2005) (see also scheme in Fig.4). In the
adiabatic approximation, trapped-type particles move along
a single trajectory in the phase plane(κx,px) forever.

In the system withs 6= 0, the areas of the two separatrix
loopsSl,r are not equal. Moreover, the evolution of these ar-
eas is asynchronous (see Appendix A). As a result, we have

two important new effects. Firstly, the quasi-adiabatic invari-
ant cannot be conserved in the course of the separatrix cross-
ings, even in the adiabatic approximation, becauseSl 6= Sr
(i.e. Sl + Sr 6= 2Sr 6= 2Sl) and there is no factor 1/2 of renor-
malization (as it was for the cases = 0), which would al-
low the elimination of these differences. Thus, in each of the
domains in the plane(κx,px), the particle trajectory is de-
termined by the equationIz(κx,px) = const, but values of
Iz are different in different domains. To plot such a trajec-
tory in the (κx,px) plane, one needs to solve the equation
Iz(κx,px) = const inside each domain and match these so-
lutions at the uncertainty curve. It should be noted that in
the (t1) domain we actually have two non-identical equations
Iz(κx,px) = const, corresponding to oscillations in the left
and right potential wells, respectively (see schemes in Figs.2
and3).

The second effect for current sheets withs 6= 0 corre-
sponds to the difference of the velocities2l,r (see Ap-
pendix A). For example, at the uncertainty curve one can
find segments where2l > 0 and2r < 0, or vice versa. The
velocity of the area evolution for the single potential well
2 = −(2l+2r) can be positive along such a segment. In this
case, each trajectory coming to the uncertainty curve from
the domain (t1) has two prolongations. The particle can go
into the (t2) domain or stay in the (t1) domain but change
the potential well. These two transitions are shown in Fig.4
(middle panel, separatrix crossing C3). If the particle stays
in the (t1) domain, after a certain time it approaches the un-
certainty curve again or comes to the (t2) domain without
the uncertainty curve crossing. The latter variant is shown in
Fig. 4 (middle panel, T2 transition), where the particle tra-
jectory goes around the uncertainty curve and comes to the
(t2) domain. Thus, at the uncertainty curve the adiabatic tra-
jectory splits into two prolongations, and the particle may
follow each of these prolongations with a certain probability
(see description below). In the course of the particle’s mo-
tion, this splitting at the uncertainty curve can occur several
times. Due to this effect, any trajectory can be represented
as a set of segments of trajectories in the various domains
matched at several points at the uncertainty curve.

Hamiltonian (1) is invariant with respect to the trans-
formation z → −z, px → −px . As a result the half-plane
(κx,px), px > 0 is mirror symmetrical to the half-plane
px < 0. Therefore, all transitions from the (t1) domain to the
(t2) domain with trajectory splitting are also mirror symmet-
rical relative to the linepx = 0. For example, should some
particle approach the uncertainty curve inside the left well
(z < 0) atpx = −p∗

x < 0, it can cross the uncertainty curve
and get into the single well. Then this particle can approach
the uncertainty curve inside the single well, cross the uncer-
tainty curve atpx = p∗

x , and get into the right well (z > 0).
Four examples of particle trajectories in the phase plane

of slow variables are presented in Fig.5 (here we describe
trajectories crossing the uncertainty curve at some distance
from its endpoints; see details in Sect. 7). General form of
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Fig. 5. Particle trajectories in the phase plane of the slow variables are shown for four values of the parameters (the left column). Corre-
sponding profiles ofSl,r andS are shown in the right column.

trajectories is defined by the number of the uncertainty curve
crossings, because at these points trajectories split. The char-
acter of splitting and possible prolongations are determined
by signs of2l,r and2 = −(2l + 2r) at the corresponding
point at the uncertainty curve. To describe these trajectories,
we plot schemes with areasSl,r and S = Sl + Sr as func-
tions of the valuep∗

x along the uncertainty curve (see right

panels in Fig.5). We use dotted curves for the segments of
graphs with negative values of2l,r, 2 and solid curves for
the segments with positive values of2l,r, 2. Thus, dotted
and solid curves correspond to the “ejecting” and “absorb-
ing” segments of boundaries of domains, respectively.

Vertical dotted lines in the schemes (right panels) corre-
spond to the particle transitions between the potential wells
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(one line corresponds to one point at the uncertainty curve,
where the trajectory crosses it). Horizontal solid lines corre-
spond to segments of particle trajectories. Particles in this
scheme move along the horizontal straight lines up to the
crossing ofSl,r profiles. Then particles should change the po-
tential well (i.e. particles reach the uncertainty curve).

There is a new effect for the system withs 6= 0. Particles
can switch between the right and left potential wells with-
out the uncertainty curve crossing (i.e. without the separatrix
crossing). Corresponding lines in the schemes in the right
panels of Fig.5 are inside the grey region. The particle can
transit between two wells according to the following sce-
nario: initially, the particle oscillates in the left well. Then
the right well disappears and the left well with the oscillat-
ing particle shifts toward the right well position. Then new
left well appears. The result is the transit of the particle from
the left to the right well without separatrix crossing, i.e. at all
times the particle oscillates in the same well, which changes
its position from left to right. To clarify this description, we
present a scheme with successive profiles ofU(z) and cor-
responding particle position for two transitions from the left
well to the right well with and without separatrix crossings
(see Fig.6).

BecauseSl 6= Sr, particles change the value ofIz due to
the transition between potential wells at the separatrix. As
a result, we have a non-zero value for the geometrical jump
1I

geom
z .
The splitting of the possible routes of particle motion at

the uncertainty curve means that the corresponding trajec-
tory of the full system should choose one of two possible
prolongations. This choice depends on values of the fast vari-
ables at the moment of the separatrix crossing in the plane
(z,pz). Because variables(z,pz) change (approximately) pe-
riodically with periods smaller than time scale ofSl,r evo-
lution, these values may be considered as random. In this
case each choice of the trajectory prolongation at the un-
certainty curve has some probability. These probabilities de-
pend on the crossing position on the uncertainty curve. In
particular, such probabilities can be considered as functions
of the coordinatepx = p∗

x along the uncertainty curve (see
Appendix B).

One can find three types of trajectories in Fig.5.The first
type corresponds to trajectories presented in panels with
s = 0.2 ands = 0.3. Trajectories of this type cross the uncer-
tainty curve several times and have two transitions through
the (t2) domain with the single potential well without un-
certainty curve crossings. The second type of trajectories is
shown for the system withs = 0.4. These trajectories cross
the uncertainty curve only twice (on entering the (t2) domain
with the single well and at the exit from this domain). Parti-
cles moving along such a trajectory always come to the un-
certainty curve at points where2r < 0. Thus, transit into the
right well is possible only without separatrix crossing (see
the scheme in Fig.6, right panels). This type of trajectory
exists fors larger than a certain threshold. The third type of

Fig. 6. Left column shows successive profiles ofU(z) and particle
positions (from top to bottom) for transition from left well to right
well with two separatrix crossings. Right column shows the same
transition, but without separatrix crossings. Grey arrows correspond
to particle positionU = 1/2 and black arrows show direction of
U(z) deformation.

trajectory is presented fors = 1. In this case the uncertainty
curve (and the separatrix) is absent, and the trajectory is a
single closed curve with the sameIz = const along it. The
transition from regimes < 1 to s ≥ 1 corresponds to disap-
pearance of the uncertainty curve.

The existence of various types of trajectories is determined
by the value of the parameters. If s = 0 we have the sys-
tem with two domains in the plane(κx,px) andSl = Sr. In
this case all trajectories are closed curves withIz = const.
In systems withs 6= 0, as long ass is smaller than a certain
valuesbif , only trajectories of the first type exist. All trajec-
tories have the same number of uncertainty curve crossing
points for a fixeds (see Appendix C). Examples of these tra-
jectories are shown in Fig.5 for s = 0.2 ands = 0.3. Value
sbif ≈ 0.25 corresponds to the system where the minimum
value ofS = Sl + Sr is equal to the value ofSl,r at p∗

x = 0.
In systems withsbif < s < 1 we can observe a new type of
trajectory (shown in Fig.5 for s = 0.4). Trajectories of the
first type disappear fors larger than a certain valuēs. This
value s̄ ≈ 0.35 corresponds to the system where2r is neg-
ative everywhere along the uncertainty curve. Therefore, in
the system withsbif < s < s̄ trajectories of both types (first
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and second) can be found. In the system with 1> s > s̄ only
trajectories of the second type exist. In the system withs ≥ 1
the separatrix disappears and we have only trajectories of the
third type (shown in Fig.5 for s = 1.0). Evaluation of bifur-
cation values of the parameters is described in Appendix A.
We summarize all characteristics of systems with variouss

in Table1.

6 Trajectories in 3-D

We compare trajectories obtained in the adiabatic approxi-
mation with numerical solutions of the equations of motion
for Hamiltonian (1). We choose a small value of the parame-
terκ to make dynamical jumps negligibly small. To illustrate
the effect of the trajectory splitting at the uncertainty curve,
we calculate two trajectories starting from the same point in
the (κx,px) plane with the same energy, but with different
values of the fast coordinates (trajectories (1) and (2) in each
panel of Fig.7). Examples of such trajectories are shown for
systems withs = 0.3 ands = 0.4. We also show the splitting
in separated panels.

One can observe that the particle chooses one of two pro-
longations of the trajectory at the uncertainty curve. Roughly
speaking, both trajectories can be initiated at the same point
of the uncertainty curve (splitting points shown in Fig.7), but
their further prolongation would be different. Choice of pro-
longation depends on values of the fast variables. Shapes of
the trajectories are similar to ones obtained in the adiabatic
approximation in the previous section, because the influence
of dynamic jumps was negligible.

7 Discussion

The Hamiltonian system (1) has four variables
(z,pz,κx,px). However, due to conservation of energy
H , the dimension of the system can be reduced to 3-D.
Therefore, any curve in the phase plane(κx,px) of slow
variables corresponds to some surface in this 3-D space.
Without loss of generality we consider the energy level
H = 1/2 (we have the equationH(z,pz,κx,px) = const
and use normalization to obtainH = 1/2). The obtained 3-D
volume3 is filled by trajectories of the fast motion. These
are trajectories of the system with Hamiltonian (1) at various
frozen variables(κx,px). Figure3 is a projection of3 onto
the plane(κx,px). Thus, each trajectory of the fast system is
projected to a point in this plane. However, to each point in
the domain (t1) in Fig.3, two trajectories of the fast system
are mapped. Those are trajectories of oscillations in the left
and right potential wells with the same energyH = 1/2.
A convenient way to represent the dynamics is to consider
two copies, (t1l) and (t1r), of the domain (t1). In this case
those trajectories of oscillations in the left and right potential
wells are projected to (t1l) and (t1r), respectively. Then we
glue (t1l) with (t2l), and (t1r) with (t2r). We also glue (t1l)

Table 1.System characteristics for variouss.

s range Description

s = 0 all trajectories are closed curves with two
crossings of the uncertainty curve

0 < s < sbif only trajectories of the first type exist
(see example in Fig.5, s = 0.2)

sbif < s < s̄ trajectories of the first and second types exist
(see example in Fig.5, s = 0.4)

s̄ < s < 1 only trajectories of the second type exist

s ≥ 1 only trajectories of the third type exist
(see example in Fig.5, s = 1.0)

with (t1r) along their edges corresponding to the uncertainty
curve, which is the projection of separatrices. The obtained
irregular 2-D surface is a phase space of the slow system.
One can show that this surface relates to the classical object
of catastrophe theory – the swallowtail surface (seeArnold,
1992).

In this paper we found the critical value of the parameter
s where the uncertainty curve (and the separatrix) vanishes.
We show that the uncertainty curve does not exist in sys-
tems withs ≥ 1 (see Appendix A). In dimensional variables
this criterion can be written as 2H < m(ω0L)2(By/B0)

4 or
By > B0

√
ρ0/L, whereω0 = qB0/mc. The same criterion of

particle magnetization byBy component was obtained ear-
lier by Galeev and Zelenyi(1978) and widely used in the
theory of current sheet instability (see e.g.Zelenyi and Tak-
takishvili, 1988, and references therein). For a given value of
By , particles with energy 2H < m(ω0L)2(By/B0)

4 are not

scattered in the current sheet (1I
geom
z and1I

dyn
z are absent).

Their motion can be described as adiabatic withIz = const.
One can easily show that for systems withs � 1 the guid-
ing center theory is applicable. In this case the invariantIz is
proportional to the magnetic moment.

The system under consideration contains a class of regu-
lar trajectories in the domain (t2) with the single potential
well called “ring” orbits (see details inBüchner and Zelenyi,
1986; Chen and Palmadesso, 1986; Büchner and Zelenyi,
1989; Chen, 1992). Particles on these trajectories cross the
neutral planez = 0 twice at each period of the fast oscilla-
tions. These trajectories never cross the uncertainty curve. As
a result for these trajectories1I

dyn
z and1I

geom
z are absent.

Phase volume filled by regular trajectories depends on the
length of the uncertainty curvè in the (κx,px) plane. For
the system withs = 0, regular trajectories occupy less than
20 % of the phase volume (this volume can be larger for a
bifurcated current sheet, seeArtemyev et al., 2011; Vasiliev
et al., 2012). However, as we show in Appendix A, length
` decreases with the increase of the parameters. For sys-
tems withs ≥ 1 the separatrix vanishes. Thus, this class of
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Fig. 7. Trajectories in 3D obtained by numerical integration of the Hamiltonian equations are shown for s =0.3

and s = 0.4. Projections of these trajectories onto (·x,px) plane are also shown. In 3D we demonstrate

only segments of each trajectory corresponding to the top panels with projections. Bottom color panels show

moments of trajectory splitting for both values of s.

28

Fig. 7. Trajectories in 3-D obtained by numerical integration of the Hamiltonian equations are shown fors = 0.3 ands = 0.4. Projections
of these trajectories onto(κx,px) plane are also shown. In 3-D we demonstrate only segments of each trajectory corresponding to the top
panels with projections. Bottom colour panels show moments of trajectory splitting for both values ofs.

trajectories (those crossing the neutral planez = 0 twice on
each period of their fast oscillations) does not exist. In sys-
tems withs ≥ 1 all trajectories are regular (i.e.1I

dyn
z and

1I
geom
z are absent), but all particles leave the vicinity of the

neutral planez = 0 moving along field lines (an example of
such a trajectory is shown in Fig.1d).

In Appendix B we determine the probabilities of arrival
into different domains after crossing the uncertainty curve.
These probabilities depend on the coordinatep∗

x along the
uncertainty curve. Using these probabilities one can calculate
the probability for any trajectory consisting of several seg-
ments matched at the uncertainty curve. One needs to mul-
tiply the corresponding probabilities of transitions between
domains in the(κx,px) plane at the uncertainty curve for
such a multisegmental trajectory. This procedure can be used
to obtain the reflection and transition coefficients (portions of
particles which will return to the initial half-space relative to
z = 0 or pass through the current sheet and appear at the op-
posite half-space). We left this topic for further publication.

In this paper we pay more attention to the geometrical
jumps. We assume that1I

geom
z is more important in com-

parison with the dynamical jumps1I
dyn
z . However, for the

system with a small value of the parameters, the influence
of 1I

dyn
z can be comparable with one of1I

geom
z . To es-

timate the critical value ofs, we obtain the approximation
of 1I

geom
z for small s (see Appendix D). One can conclude

that in the system withs > (2/π)κ ln2, the shape of particle
trajectories is defined by the geometrical jumps. Dynamical
jumps lead to a slow diffusion across adiabatic trajectories
(i.e. to a slow evolution of real particle trajectories).

Particles cross the uncertainty curve at each period of
slow variables oscillations (the duration of this period is
proportional toκ−1). Thus, geometrical jumps modify the
particle trajectory (and the value of quasi-adiabatic invari-
ant) at each period. Simultaneously particles slightly change
their trajectories due to dynamical jumps∼ κ lnκ (Neishtadt,
1986; Cary et al., 1986). Each separatrix crossing atpx = p∗

x

is accompanied later by the second separatrix crossing at
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px = −p∗
x at the same adiabatic trajectory (crossings occur

both at enter to and at exit from (t2) domain). The sum of
these two consecutive dynamical jumps can be considered as
a random value with a zero mean. Thus the effect of the dy-
namical jumps will be considerable only after∼ κ−2 ln−2κ

separatrix crossings. This process takes time∼ κ−3 ln−2κ,
while even a single geometric jump produces a consider-
able change of the quasi-adiabatic invariantIz in general.
However, the role of geometrical and dynamical jumps in
the considered system is completely different. Geometrical
jumps lead to the formation of adiabatic trajectories in the
plane of slow variables. These trajectories are made of seg-
ments glued together at the uncertainty curve. Phase point
moves along these trajectories switching randomly between
segments. Dynamical jumps lead to a diffusion across adia-
batic trajectories and stochastization of particle motion.

Charged particle dynamics in the magnetotail current sheet
with By 6= 0 was studied before by means of numerical in-
tegration of trajectories (Karimabadi et al., 1990; Büchner
and Zelenyi, 1991; Zhu and Parks, 1993; Kaufmann et al.,
1994; Baek et al., 1995; Holland et al., 1996; Chapman and
Rowlands, 1998; Delcourt et al., 2000; Ynnerman et al.,
2000). We can compare predictions of our analytical the-
ory with results obtained in these investigations. Five main
effects ofBy were found by numerical integration of par-
ticle trajectories: (1)Karimabadi et al.(1990) andBüchner
and Zelenyi(1991) showed that particles are not scattered
in the current sheet for large enoughBy , i.e. jumps of the
quasi-adiabatic invariant are absent.Büchner and Zelenyi
(1991) determined the critical value ofBy for this transi-
tion to the regime of regular motion asBy > B0

√
L/ρ0. This

value coincides with our estimates ofBy corresponding to
vanishing of the separatrix. Therefore, we can explain ab-
sence of particle scattering by the absence of the separa-
trix in the phase plane(z,pz) at large enoughBy . More-
over, Karimabadi et al.(1990) and Holland et al.(1996)
pointed out that scattering of particles is not influenced byBy

while By < Bz. Our theory gives the more accurate criterion
By < Bz(2/π) ln2 (i.e. By < 0.44Bz); (2) in this paper we
consider only adiabatic theory without detailed analysis of
destruction of the quasi-adiabatic invariant. Thus, the effect
of intensification of particle scattering forBy ∼ Bz is beyond
the scope of our paper. This effect was found byKarimabadi
et al.(1990); Holland et al.(1996); Chapman and Rowlands
(1998); (3) asymmetry of particle trajectories with respect
to the neutral planez = 0 has been mentioned by many au-
thors.Zhu and Parks(1993) numerically integrated particle
trajectories in the current sheet withBy ∼ Bz � B0. They
showed that particles escape from the current sheet mainly
to one hemisphere (z > 0 or z < 0 depending on the sign of
By). Moreover,Baek et al.(1995) demonstrated that atBy

larger than a certain value, particles escape from the current
sheet only to one hemisphere. Our theory describes this effect
of asymmetry. Direction of particle escape from the current
sheet is determined by probabilities of particle capture into

left and right potential wells. Increase ofBy results in de-
crease of one of these probabilities (see Appendix B). Thus,
particle captures are asymmetrical atBy 6= 0. Moreover, if
By > 0.35B0

√
L/ρ0, particles can be captured only in one

potential well. Therefore, all particles escape from the cur-
rent sheet to one hemisphere.Delcourt et al.(2000) found
an interesting feature of asymmetry of particle scattering in
the current sheet withBy 6= 0. They showed that particles
are not scattered for a certain range of initial pitch angles.
We also can describe this asymmetry of scattering. Length
of the uncertainty curve in the(κx,px) plane decreases with
increase ofBy (see Appendix A). As a result some particle
trajectories can cross the current sheet without crossing the
uncertainty curve (thus, without jumps of the quasi-adiabatic
invariant, see Fig.5). Particles moving along these trajecto-
ries are not scattered at one current sheet crossing; (4)Kauf-
mann et al.(1994) and Holland et al.(1996) described an
effect of destruction of particle resonant interaction with the
current sheet in case ofBy 6= 0. Resonant interaction corre-
sponds to particle motion without dynamical jumps of the
quasi-adiabatic invariant (two successive jumps1I

dyn
z com-

pensate each other andIz is conserved; see details inBüchner
and Zelenyi, 1989). However, in this paper we restrict our in-
vestigation to adiabatic theory. Thus, this effect is beyond
the scope of our investigation; (5)Chapman and Rowlands
(1998) andYnnerman et al.(2000) considered the effect of
By in regular particle trajectories, which never cross the un-
certainty curve (i.e. never cross the separatrix). Our theory is
able to describe the decrease in number of such trajectories
with the increase ofBy (this effect was found byChapman
and Rowlands, 1998). This decrease corresponds to decrease
of length of the uncertainty curve. However, we did not de-
velop a detailed theory for this class of trajectories in the case
of By 6= 0. Thus, we do not consider all peculiarities of these
trajectories reported byYnnerman et al.(2000).

We study particle trajectories that cross the uncertainty
curve not very close to its endpoints (all crossings correspond
to |p∗

x | far from ±maxp∗
x). Thus, particle dynamics in the

vicinity of the endpoints of the uncertainty curve is beyond
the scope of this paper. In the close vicinity of the endpoints
of the uncertainty curve, velocities2l,r change the sign (see
Fig. A3 in Appendix A). Related dependence ofSl,r onp∗

x is
not monotonous. Particles crossing the uncertainty curve in
this region have specific trajectories. However, due to small-
ness of this region in the phase plane (the length of the cor-
responding segment of the uncertainty curve is smaller than
1 % of its entire length), the role of such trajectories seems to
be unimportant.

The effect of multiple geometrical jumps in the systems
with periodical separatrix crossings was discussed earlier by
Neishtadt(1986). In this paper we consider a particular phys-
ical system with multiple geometrical jumps. The invariance
of Hamiltonian (1) to transformationpx → −px , z → −z re-
sults in an additional symmetry of the geometrical jumps.
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Finally, all (split) trajectories have a finite number of uncer-
tainty curve crossings (i.e. trajectories are closed). In a gen-
eral situation consecutive geometrical jumps should lead to
an infinite number of uncertainty curve crossings and corre-
spondingly to very fast chaotization (Neishtadt and Treschev,
2011).

8 Conclusions

In this paper we study ion dynamics in current sheets withBy

component of the magnetic field, often called current sheets
with sheared magnetic field. We describe particle trajectories
in adiabatic approximation and demonstrate that a principal
role is played by geometrical jumps of the quasi-adiabatic
invariant. We found four regimes of the system depending on
the parameters = (By/B0)

√
L/ρ0 (see, also, Table1):

1. s ∈ (0, sbif): only one type of trajectory exists; number
of uncertainty curve crossings depends ons value (see
Fig. C1).

2. s ∈ (sbif, s̄): two types of trajectories exist; trajectories
of the second type cross uncertainty curve only twice
(once forp∗

x > 0 and once forp∗
x < 0).

3. s ∈ (s̄,1.0): trajectories of the first type do not exist, and
all trajectories correspond to the second type.

4. s ≥ 1: the separatrix vanishes and the geometrical (as
well as dynamical) jumps of the quasi-adiabatic invari-
ant disappear; fors � 1 one can obtain transition to the
guiding-centre theory.

Analytical estimates givesbif ≈ 0.25 and s̄ ≈ 0.35, or
(By)bif ≈ 0.25B0

√
L/ρ0 andB̄y ≈ 0.35B0

√
L/ρ0. Compar-

ison of the dynamical and the geometrical jumps shows that
ats < (2/π)κ ln2 geometrical jumps are smaller than the dy-
namical jumps. In this case the role of geometrical jumps can
be neglected. Thus, particle dynamics is similar to one for the
system withs = 0. We conclude that the concept of geomet-
rical jumps is very practical and allow the understanding of
the differences between system withs = 0 ands 6= 0.

Appendix A

The separatrix

In Fig.2 one can see the saddle point with coordinatesz = zc,
pz = 0 at the separatrix. At this point the potential energyU

has a local maximum value; thus,∂U/∂z = 0. We use this
condition to express slow coordinates along the uncertainty
curve in the plane(κx,px) as functions ofzc. The equation
for the uncertainty curve can be written as 1= p2

z + (p∗
x −

sz)2
+ (κx∗

−
1
2z2)2, wherez andpz are coordinates of any

Fig. A1. Slow coordinatesp∗
x , κx∗ along the uncertainty curve are

shown as functions ofzc for variouss.

point on the separatrix. Here we usez = zc andpz = 0 and
obtain:

p∗
x = szc −

zc
s
Azc

κx∗
=

1
2z2

c + Azc

Azc =

(
1+

z2
c

s2

)−1/2
.

(A1)

Note that in the system withBy = 0 we haves = 0, zc = 0.
In this case the uncertainty curve in the phase plane of the
slow variables is the half-circle(κx∗)2

+(p∗
x)

2
= 1,κx∗ > 0.

In the system under consideration, the position of the saddle
point zc depends on coordinates along the uncertainty curve
(κx∗,p∗

x), see Fig.A1.
With increase ofs, the range ofp∗

x variation shrinks. The
length of the uncertainty curve in the plane(κx,px) can be
calculated as

`(s) =

zcmax∫
−zcmax

√
1+

(
∂p∗

x/∂κx∗
)2

(∂κx∗/∂zc)dzc

= 2arctan(zcmax/s) − z2
cmax

√
1+ (s/zcmax)

2

= 2arctan
(√

s−4/3 − 1
)

− s1/3
√

s2/3 − s2.

(A2)

Here we use the following expression for the maximum value
of zc: zcmax=

√
s2/3 − s2 (this expression is derived below).

One can easily obtain that̀(0) = π . For s = 1 we have
`(1) = 0. Thus, the uncertainty curve (as well as the sepa-
ratrices) vanishes ats = 1 (see Fig.A2).

In this Appendix we derive expressions for areasSl,r sur-
rounded by two separatrix loops and velocities2l,r of their
evolution (all these values depend on a slow coordinate along
the uncertainty curve). ForSl,r one can write

Sl,r = 2

zmax
l,r∫

zmin
l,r

pzdz = 2

zmax
l,r∫

zmin
l,r

√
2H − 2U

(
κx∗,p∗

x,z
)
dz,

where the limits of integration arezmax
l,r = zc,z+, zmin

l,r =

z−,zc. Values of z± are defined by the equation
H = U(κx∗,p∗

x,z±). We integrate along the separatrix and
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Fig. A2. The length of the uncertainty curve is shown as function
of s.

can takeH = Uc = U(κx∗,p∗
x,zc):

2Uc − 2U (κx,px,z) = (z − zc)
2
[
Azc − s2

−
1
4 (zc + z)2

]
.

After integration we have

Sl,r = −As ±
π
2 zcζ̃

2

As = −zcζ̃
2arctan

(
2zc√

ζ̃2−4z2
c

)
−2z2

c

√
ζ̃ 2 − 4z2

c −
1
3

(
ζ̃ 2

− 4z2
c

)3/2
,

(A3)

where ζ̃ = 2
√

Azc − s2. From Eq. (A3) one can define the

range ofzc variation:zc ∈

[
−

√
s2/3 − s2,

√
s2/3 − s2

]
.

Expressions for2l,r = dSl,r/dκt can be found with the
use of the following formula (see details inNeishtadt, 1986;
Arnold et al., 2006):

2l,r =

∮ (
∂U

∂p∗
x

∂Uc

∂κx∗
−

∂U

∂κx∗

∂Uc

∂p∗
x

)
dt,

where we integrate along the separatrix loop (left or right).
We can write

∂U

∂p∗
x

∂Uc

∂κx∗
−

∂U

∂κx∗

∂Uc

∂p∗
x

= 2Azc (z − zc)
(
2s +

zc
s

(z + zc)
)
.

We replace the integration over time by the integration over
the fast variable, dt = dz/pz, and get

2l,r = 4Azc

(
A2 ±

π
2 s

)
A2 = s arctan

(
2zc√

ζ̃2−4z2
c

)
−

1
2

zc
s

√
ζ̃ 2 − 4z2

c.
(A4)

The area surrounded by two loops isS = Sl + Sr. We denote
2 = −(2l + 2r). We plot these values as functions ofp∗

x in
Fig. A3.

From Fig.A3 one can see that there is a specific values̄

of the parameters. For s > s̄ we have2r < 0 (and2l > 0)
everywhere along the uncertainty curve. To determines̄ we
note that fors = s̄ there is some pointp∗

x = p̄∗
x , where2r =

0 and∂2r/∂p
∗
x = 0 (see Fig.A3). We can replace∂/∂p∗

x

by ∂/∂zc in view of Eq. (A1). In this case we obtain the

Fig. A3. AreasSl (red),Sr (blue),S (black) and velocities2i are
shown as functions of the parameterp∗

x along the uncertainty curve
for variouss. Dotted segments of curvesSi correspond to regions
with 2i < 0.

following system of equations:

A2(z̄c, s̄) =
π
2 s̄

∂A2/∂zc|z̄c,s̄
= 0

p̄x = s̄z̄c −
z̄c
s̄
Azc.

The solution of this system is̄s ≈ 0.35, p̄∗
x ≈ 0.6 andz̄c ≈

−0.35.
Another important value ofs can be found from the equa-

tion `(s) = 0 (i.e. the separatrix vanishes). Equation (A2)
givess = 1 for`(s) = 0. For a system withs ≥ 1, a separatrix
does not exist. As a result1I

geom
z and1I

dyn
z are absent.

The last value of the parameters where bifurcation of
the system occurs iss = sbif . In the system withs < sbif
only one type of particle trajectory exists and in the sys-
tem with s > sbif we have two types of particle trajectories.
The value ofsbif can be defined as follows: whens = sbif
the minimum value ofS = Sl + Sr is equal to the values of
Sl,r at the pointp∗

x = 0. The minimum value ofS = Sl + Sr

is 4π
(
s2/3

− s2
)3/2

. Values ofSl,r at p∗
x = 0 are equal to
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Fig. B1. Probabilities of captureP1 (red),P2 (blue) andP = 1−

P1 − P2 (black) are shown as functions of the parameterp∗
x along

the uncertainty curve for variouss.

(8/3)
(
1− s2

)3/2
. As a result we have the following equation

for sbif :

s
2/3
bif − s2

bif =

(
2

3π

)2/3(
1− s2

bif

)
.

The solution of this equation issbif ≈ 0.25.

Appendix B

Probabilities

When trajectories reach the uncertainty curve, particles get
from one potential well to another. If areas corresponding
to both alternative wells are growing (i.e. corresponding2-
values are positive), particles choose one of the two acces-
sible wells. The probability of being captured into one of

the two small wells isPl,r = 2̂l,r/
(
2̂l + 2̂r + 2̂

)
, where

2̂l,r = max(2l,r,0) and2̂ = max(−2l − 2r,0). The proba-
bility of being captured into the single well isP = 1−Pl −Pr
(see details inNeishtadt, 1987; Arnold et al., 2006).

For the system withs = 0 we have2l = 2r andPl,r = 1/2
for p∗

x > 0 (because there2l,r > 0), whilePl,r = 0 for p∗
x <

0. We plot probabilitiesPl,r andP for various values of the
parameters in Fig. B1. As one can see, in systems withs >

0.35 we havePr = 0. Thus, in these systems particles cannot
be captured into the right well at the uncertainty curve.

Appendix C

Number of the uncertainty curve crossings

In systems withs < s̄, any trajectory can cross the uncer-
tainty curve several times. However, for each particular value
of s, the number of the uncertainty curve crossings is finite.
To determine this number one can use the following scheme.

Fig. C1. Left panel demonstrates the scheme of the calculation
of the number of uncertainty curve crossings. Right panel demon-
strates the number of uncertainty curve crossings atp∗

x < 0 for tra-
jectories of the first type (black) and the second type (grey) as func-
tions ofs.

We plot profiles ofSl andSr for p∗
x < 0. Then we plot the

polygonal line with reflections from both curvesSl,r until es-
cape from the left side. This scheme is shown in the left panel
of Fig. C1. In this scheme we use the same solid line for seg-
ments of graphs with positive and negative values of2l,r.
This scheme for any given initial value ofp∗

x at the uncer-
tainty curve gives all possible values ofp∗

x < 0 at previous
and subsequent arrivals to this curve. One can show that the
corresponding adiabatic trajectory indeed passes through all
these points. The number of reflection points inSl profile is
equal to the number of the uncertainty curve crossings by
trajectories of the first type at the half-spacep∗

x < 0 (the to-
tal number is twice larger). This number as a function of the
parameters is shown in the right panel of Fig.C1(black dots
form a staircase-like graph). One can have arbitrary large
number of the uncertainty curve crossings in the adiabatic
approximation provided thats is small enough. However, for
very smalls dynamical jumps of the quasi-adiabatic invariant
should be taken into account, see Appendix D.

Trajectories of the first type exist in the system withs < s̄.
With increase of the parameters, the number of the uncer-
tainty curve crossings decreases. The minimal number of the
uncertainty curve crossings is four (two for the half-space
p∗

x < 0). Trajectories of the second type exist ifsbif < s < 1.
Trajectories of this type cross the uncertainty curve twice
(once for the half-spacep∗

x < 0).

Appendix D

Comparison of1I
geom
z and 1I

dyn
z

For the current sheet withs = 0, the dynamical jump of the
quasi-adiabatic invariant is defined by the expression (Tim-
ofeev, 1978; Neishtadt, 1986; Cary et al., 1986; Neishtadt,
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1987; Büchner and Zelenyi, 1989):

1I
dyn
z = −(2/π)p∗

xκ ln(2sinπξ) .

Hereξ is the pseudo-phase. The value ofξ characterizes fast
variables at the separatrix crossing (it is treated as a random
value uniformly distributed in the range(0,1); see details in
Neishtadt, 1986; Cary et al., 1986; Neishtadt, 1987; Arnold
et al., 2006). As κ � 1, the dynamical jump can be consid-
ered as a small perturbation of the quasi-adiabatic invariant.

To compare1I
geom
z and1I

dyn
z , we need to consider the

system at small enoughs. In this system we can expand the
expressions forp∗

x andκx∗ (see Eq.A1):

p∗
x ≈ −

zc
s
Azc + O

(
s2

)
κx∗

≈ Azc + O
(
s2

)
.

It is worth noting that in the principal approximation we have
(p∗

x)
2
+ (κx∗)2

= 1. The corresponding expressions forSl,r
can be written as

Sl,r =
8

3

(
κx∗

)3/2
+ 2s

(
2p∗

x
√

κx∗
± πp∗

x

)
+ O

(
s2

)
.

The geometrical jump is1I
geom
z = (Sr − Sl)/2π = −p∗

xs.
Therefore, we can conclude that for a system withs �

(2/π)κ ln2 the geometrical jump is small enough. In this
case one can consider only the dynamical jumps. Such
a system is similar to one withs = 0. In a system with
s � (2/π)κ ln2 the geometrical jumps dominate. The dy-
namical jumps produce slow diffusion across adiabatic tra-
jectories.
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