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Abstract. Reasonable prediction of landslide occurrences inthe scale invariance of many natural phenomena (Bak et al.,
a given area requires the choice of an appropriate probabilityl987), several authors have searched for correlation func-
distribution of recurrence time intervals. Although landslides tions of power-law type in time series. Although the original
are widespread and frequent in many parts of the world, comBTW model provides uncorrelated exponentially (Poisson)
plete databases of landslide occurrences over large periodiistributed recurrence times (Boffetta et al., 1999), several
are missing and often such natural disasters are treated asriants of the BTW model that supply power-law behaviour
processes uncorrelated in time and, therefore, Poisson disf recurrence time probability distributions have been pro-
tributed. In this paper, we examine the recurrence time statisposed (Sanchez et al., 2002; Paczuski et al., 2005). Recur-
tics of landslide events simulated by a cellular automatonrence time statistics of solar flares is found to be character-
model that reproduces well the actual frequency-size statisized by power laws (Boffetta et al., 1999) as well as statis-
tics of landslide catalogues. The complex time series ardics of solar flare magnitudes (Baiesi et al., 2006). Power-
analysed by varying both the threshold above which the timdaw temporal correlations have also been found for recur-
between events is recorded and the values of the key modeknce time probability distribution of earthquakes above a
parameters. The synthetic recurrence time probability distri-given magnitude (Corral, 2004). On the other hand, several
bution is shown to be strongly dependent on the rate at whiclauthors have demonstrated the validity of stretched expo-
instability is approached, providing a smooth crossover fromnential distributions to characterize return interval statistics
a power-law regime to a Weibull regime. Moreover, a Fanobetween extreme events in the case of long-term correlated
factor analysis shows a clear indication of different degreegecords (Altmann et al., 2005; Bunde et al., 2005; Eichner
of correlation in landslide time series. Such a finding sup-et al., 2007). Furthermore, recent works have shown that the
ports, at least in part, a recent analysis performed for the firstWeibull distribution, which is the product of a power-law and
time of an historical landslide time series over a time window a stretched exponential, best represents the recurrence time
of fifty years. distribution of observed time series of tropical temperature
and humidity (Blender et al., 2008) and historical landslides
(Witt et al., 2010). The Weibull distribution is also found by
Santhanam and Kantz (2008), who study long-range corre-
1 Introduction lated time series and investigate the role played by the thresh-
old in modifying the return interval distribution, especially in
Analysis of recurrence times in natural series is a challengtpe power-law regime related to short return intervals.
ing issue in many branches of science, as discovering tempo- | this paper, we analyse the recurrence time statistics
ral correlations between events is crucial to determining theyf 5 cellular automaton (CA) model aimed at reproducing
probability of occurrence of future events. After the seminal the main features of landslide event statistics by means of

paper of Bak, Tang and Wiesenfeld (BTW), who introduced some characteristic parameters (Piegari et al., 2006a, 2009a).
the concept of self-organized criticality (SOC) to explain

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



1072

E. Piegari et al.: Recurrence time distribution and temporal clustering properties

We note that long-term correlated time series are not asTable 1.Variables used in the text.

sumed, but result from different CA simulations of landslide

events. Interestingly, we find that the recurrence time prob-
ability distribution of the CA strongly depends on the rate

v at which the system is driven to instability. This rate con- «
trols how quickly the CA cells reach the instability thresh- 8
old and, therefore, its values describe response time scales
of slope systems rather than triggers of different origin. In 7
this respect, we showed in a previous study (Piegari et al.,
2009a) that similar values of can explain the similarity of
frequency-size distributions of landslides induced by differ-
ent triggering mechanisms (Malamud et al., 2004). By in- =
creasing the values af, a smooth transition from a power-

law to a non power-law regime was found by analysing the
behaviour of landslide frequency-size distributions (Piegari v
et al.,, 2009a). Here, we show that by increasinghe re-

currence time probability distribution smoothly changes its ¢
shape as the effect of a smooth transition from a power-law
regime to a Weibull regime. Finally, temporal correlations
of synthetic time series of landslide events are examined by
calculating the Fano factor, and critical variations of model .,
parameters for recurrence time statistics are discussed in re- f,

lation to previous studies on frequency-size probability dis- F

tributions. FS

L
2 The model n
The CA model is defined on a two-dimensional gridot L nn(i)
square cells. The state of each gel characterized by the N(T)
value of a single dynamical variable, representing the ra- Z
tio of the load acting on the cell to the maximum allowable ¥ (1)

stress, i.e. the inverse of the so-called factor of safety (FS) ¢
e; =1/FS. If ¢; < 1, the acting load is within the allowable

limit and the corresponding celiis stable. Ife; = 1, the act- p()
ing load is at the allowable limit and, thus, valuesepf 1

are associated with failure. We start from a random initial sta-

ble configuration, i.e. we attribute to each cell of the grid a
uniformly distributed random value ef with 0 < ¢; < 1Vi. T,T;

The dynamics of the CA model is defined by the two typical
rules of the SOC theory (Bak et al., 1987). The firstruleisan W

Variable  Description Equation/
Section
Power-law exponent. Eq. (2)

Rate parameter in exponential andeg. (3)
Weibull distributions.

Shape parameter in Weibull
distribution.

Parameter that controls the rate at whiclEq. (1)
instability is approached.

Standard deviation. Sect. 4
Recurrence time, i.e. time interval Sect. 3
between successive events for which

s =>q.

Power-law exponent in Fano factorSect. 4
analysis.

Level of conservation of syster@ =

> fun-

nn

Inverse of the local value of the factor Sect. 2
of safety for the cell.

Eqg. (3)

Sect. 2

Instability threshold. Eq. (2)
Relaxation threshold. Eq. (2)
Instability transfer coefficients. Eq. (2)
Fano factor. Eq. (4)

Local value of the factor of safety for Sect. 2
the celli.

Linear size of the system. Sect. 2
Number of adjacent time intervals of Sect. 4
time series of lengthV, n = W/T.

Neighbour sites of the overcritical site  Eq. (2)
(up, down, left, right).

Number of events above threshold Sect. 4
and over time series with lengihi.

Average of allN(T;),i =1, ..., n. Sect. 4
Threshold value above which> ¢ is Sect. 3

considered an extreme event.

Probability distribution of recurrence Sect. 1
times,t.

Total number of unstable cells, i.e. totalSect. 3
number of cells that reach the instability
threshold in a landslide event.

Time intervals of time series of length Sect. 4
W, T=W/n

Total time length of a temporal series Sect. 4

overall driving that provides an increaserjrat the same rate
v approaching the system to the instability threshajg= 1.

The model parametercontrols the rate at which all sites are According to Eq. 1), when a cell becomes unstable (i.e.

driven towards instability and, in the following, simulation ¢ > ew), it affects, via a chain process, the stability of the

results will be discussed by varying such a key parameterneighbour cells, as a fractiofi) of ; toppling onnn(i).

The second rule is a relaxation rule defined by the equatlonsA]cter a failure, we set; — ey With emin = 10-5: however,

any other finite level would work (Jensen, 1998). In gen-
eral, the transfer coefficients,,;), which describe the dis-
tribution of over-threshold cell loads to the nearest neigh-
bours, can be anisotropic. We sgdf = fright and faown >
fiett, frights fup to mimic the preferential direction for stress
redistribution induced by gravity. We note that if anisotropic
stress redistribution is related to specific slopes, different
choices for the transfer coefficients,,, can be made to take

e > eth— { enn(i)(t + A1) = enn(iy () + fanrei (t) 1)
€i = €min

wherenn(i) denotes the four neighbour sites of the é¢€lle.

nn(i) = up, down, left, right). To aid the reader, a list of vari-

ables used in the text is given in Table 1.
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into account the topography of individual investigated areas
(Piegari et al., 2009b; Di Maio and Piegari, 2012).

During each iteration of Eq.1l}, an amount ok&; is lost
from the system, i.e. the difference betwegrand the sum
of the amountf,,,e; added to each of the four neighbour
sites is not equal to zero. In other words, we take into ac-
count non-conservative (dissipative) cases where the quan-
tity C =Y fun, which fixes the degree of conservation of ‘ ‘

O

eventsize

nn

the system, is less than 1, contrary to other approaches (Her-
garten and Neugebauer, 2000; Hergarten, 2003). The role
of the model parametef has been investigated in previ-
ous works, where we found that the shape of the frequency- (b)
size probability distribution of landslide events is strongly
affected by the values of (Piegari et al., 2006a), while v reset
it is not significantly affected by the values of the coeffi- the system is
cients f,,, in the range of values that supply power-law dis- driven to instability
tributions (Piegari et al., 2006b). In particular, onlydf< 1
do our synthetic frequency-size distributions reproduce those|rincremented an event is recorded
from catalogues (Piegari et al., 2009a), pointing out the rele-| by one unit with recurrence time ¢
vance of dissipative phenomena to landslide triggering. Due
to the peculiar role o€, in the next sections we will discuss
simulation results by varying@, while we fix the ratios be-
tween the transfer coefficients equal fap/ fdown = 2/3 and
Jiettright/ faown = 5/6 for all simulations. Fig. 1. (a) Graph showing the definition of the recurrence time

Finally, we note that the inter-event occurrence time statis-(p) simplified flow chart of our CA model describing the algorithm
tics of the CA is studied once the system has attained a stgor calculation of the recurrence time distributipiir).
tionary state in its dynamics, i.e. the mean value of the dy-
namical variableg;, on the grid sites fluctuates about an av-

time

isthe
event size
>q 3

erage value. note that all relaxation processes, caused by the reaching of
In the following, simulation results are shown for the case instability for one or a group of cells (see Eq. 1) and induced
of a square lattice of linear size= 64. by any trigger, last until alé; < ey, and are considered to be

instantaneous compared to the time scale of the overall drive
_ o v. Consequently, the model is not able to distinguish the two
3 Recurrence time statistics measures of landslide intensity used by Witt et al. (2010), as
, ) ) they are the same in our case. Finally, it is worth noting that
The recurrence time, is the time between two events whose |, heing not exclusively related to rainfall trigger, our numer-
size,s, is above a given threshold (Fig. 1a). In the litera- o5 analysis may be helpful for interpretation of recurrence

ture, 7 is also named inter-extreme or inter-event OCCUITENC&;me statistics of landslide events related to different types of
time, as its definition requires the choice of a threshold. In thetrigger mechanisms.

following, we analyse the recurrence time distribution of the

CA for different thresholdg and by varying the key model 3.1  Analysis of varying threshold values

parameter€ andv. In Fig. 1b, a simplified flow chart of the

CA showing the algorithm for the calculation of the recur- To investigate how the choice gfaffects the recurrence time
rence time distributionp(t), is reported. Simulation results distribution p(t), we analyse the behaviour pf{t) consid-

will be also discussed in light of the results obtained by Witt ering different thresholds and keeping the values ahdC

et al. (2010), who analyse for the first time temporal correla-fixed. In Fig. 2a and b, we show the behaviourpgf) for
tions and clustering in an extensive landslide data set. Thesg = 3, 5, 30 and 50, obtained by using two values abrre-
authors discuss statistics of two landslide intensity time se-sponding to different regimes of the model (see next section).
ries obtained by introducing two kinds of threshold: the num- As results from Fig. 2a, for a small value of p(t) exhibits

ber of reported landslides in a ddy, , and the number of re- a linear regime in a log—log scale — that means a power-law
ported landslides in an everfigven; Where an event includes regime in a linear scale — for recurrence time intervals that
mostly consecutive days with landsliding associated with theenlarge by increasing the threshajd We note that in the
same triggering episode (rainfall in their study). In our CA limit of small values ofv, the model resembles the results of
model, the threshold valug is defined bys, i.e. the total the OFC model (Olami et al., 1992), as extensively discussed
number of cells that reach instability in a landslide event. Wein previous works (Piegari et al., 2006a, 2009a). Thus, in this

www.nonlin-processes-geophys.net/20/1071/2013/ Nonlin. Processes Geophys., 20, 10782013



1074 E. Piegari et al.: Recurrence time distribution and temporal clustering properties

10° : T . - ———rrry
. —m—yv=10" ]
107" + v=10 . qu E —e—v=10"° 3
~m_ 7:73;20 —a—y=310" ]
1074 e g ua o q=50 - —e—v=810" 4
Ce Weibull ]
10° 4 i - ---power-law ]
> Aa, E
= -4 .0‘ E
T 107 3 e 3 s
10° 4 2
10° 4 3
(@)
107 5 4
10° 10’ 10° 10°

recurrence time, t recurrence time, ©

Fig. 3. Recurrence time distributiop(z) for different values of the
driving ratev. In the simulations, the values of the conservation
parameteC and the threshold are kept constan((= 0.4,q = 5).
Also shown are the power-law distribution with negative exponent

—=—-qg=3 o = —2.67 (short dash line) and the Weibull distribution wittgl=
o g j go 1.15 and shape parameter= 0.82 (solid line).
—+-q=50 ]}

3.2 Analysis of varying driving rates

In Fig. 3, we show the behaviour gf(r) by varying the
driving ratev and keeping the thresholg and the conser-
1 vation parameter fixed. As discussed in previous papers
() (Piegari et al., 2006a, 2009a), the parametewhich de-
. scribes the rate of approaching instability, is a key ingredi-
10° ent in the model, as its values are responsible for a change
recurrence time, © in the dynamics of landslide processes. For smak few
cells (a single cell in the limit of vanishing) initially reach
Fig. 2. Recurrence time distributiop(z) for different values of the  the instability threshold and chain processes dominate land-
thresholdy, obta|4ned by driving the system t(_)wards_ instability with slide dynamics. By increasingvalues, an increasing num-
E)afltt?;(i)ol;s:erl\?atioin;ef:);é};ﬁ(r)ifggbtlT:gglitzrrlnclﬂitgzs' the value ber of cells initially reaches instability, so domino processes
o become less and less effective in causing avalanching pro-
cesses, and instability is reached simply because a very large

regimep(7) is expected to be characterized by a power-lawnumber of cells almost instantaneously reach the critical
regime according to SOC-like models proposed for exmain_threshold. Such a change in the model Qynamics control[ed
ing recurrence time statistics of earthquakes and solar flareBY vV corresponds to a smooth crossover in the frequency-size
(Sanchez et al., 2002; Corral, 2004; Pacuzski et al., 2005). indistribution from a power-law to a Gaussian-like regime (Pie-

terestingly, the power-law regime is better defined for the oc-9211 €t al., 2006b). It is worth noting that only:if> 0 does
currence time statistics of the most extreme evepts 80 the automaton provide frequency-size distributions charac-

50). It is also worth noticing that variations gfin Fig. 2a terized by an exponential rollover for small landslides fol-
affect the shape op(z) either for short or for large return '0wed by a power-law regime for medium and large land-
intervals. Conversely, when a larger value of the driving rateSlides, as observed for landslide frequency-size distributions

is considered (Fig. 2b), the behaviourjefr) is affected by ~ from catalogues (Piegari et al., 2009a). In particular, since
the threshold; mainly for short return intervals, as is found !2ndslide inventories corresponding to different triggering

in Santhanam et al. (2008). Moreover, a power-law regime,f"ec_haf‘isms seem to obey the same frequenqy-size propabil-
which is still recognizable for shottand large thresholds, ity distribution (Malamud et al., 2004), we realized that trig-

smoothly disappears with decreasing values.of gers of different origin can affect the stability of a slope with
the same rate of approaching instability, i.e. with the same

v and, therefore, the probability of occurrence of landslide

Nonlin. Processes Geophys., 20, 1071678 2013 www.nonlin-processes-geophys.net/20/1071/2013/
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events is controlled by the ratg rather than the nature of 10°4— —_—

the triggering mechanism (Piegari et al., 2009a). B _\ ]
Interestingly enough, as shown in Fig. 3, the values of 10

are also responsible for a change in the behaviour of the prob- 107 5

ability distribution of recurrence times. For small p(t) 10—3_;

is characterized by a power-law regime typical of SOC-like

systems (Sanchez et al., 2002; Corral et al., 2004; Paczuski et ~ '° 3

al., 2005) in a range of return intervals that becomes shorter = 10°1
and shorter by increasing the valuesiofSurprisingly, if 10°]
we use values of the model parameters for which a good E E
matching between synthetic and real frequency-size proba- 1" 3
bility distribution is obtained, i.ev = 0.003,C = 0.4 (Pie- 10° 4

gari et al., 2009a) ang =5, we find that the behaviour of ins

. . 0 1
p(7) is characterized for smatl by a power law: 10 10
recurrence time, ©

p(r)~1%, 2) : N _
Fig. 4. Recurrence time distributiop(z) for different values of the
with a negative exponent = —2.67, while for medium and conservation valu€'. In the simulations, the values of the threshold

large it is described by a stretched exponential decay well9 2nd driving ratev are kept constang(= 5 andv = 0.003). Also

. _ . e shown are two Weibull distributions withy 8 = 1.15 and shape pa-
approximated by a two-parameter Weibull distribution: rameters, — 0.82 (black line) ang — 0.94 (magenta line).

y—1 Y
vor=2 (5 "on(-(2)). 0 | |
B\B B v value equal to 0.003, for which the best agreement with

: data from catalogues was obtained for the frequency-size
with 1/8 = 1.15 and the shape parametes 0.82. Interest- Y : . .
ingly, {r/?e value of the powerE)IavF\: exponanis in very good probability distribution (Piegari et al., 2009a). As shown in

agreement with the experimental value found by Juanico er'g' 4, variations ofC affect the behaviour op(z) mainly

al. (2008), while the value of the Weibull shape parameter or large return intervals. Specifically_, the probability of oc-
y is in the range of values 0.67 y < 0.83 found by Witt currence of large recurrence times increases by decreasing

et al. (2010) to characterize the landslide intensity of timethe Qegree of.conservatlon in the system. A.S discussed in the
series forSevent(see Sect. 3). previous section, the behaviour pfr) for medium and large
In the case, = 1, the Weibull distribution 3) reduces to 7 is well described by a Weibull distribution with values of

an exponential (Poisson) distribution characteristic of uncor-the shape parametgrless t_han 1‘_ To analyse hov_v the shape
f the stretched exponential, which best approximates,

related time series. Thus, we deduce that in the investigate8

cases the simulated landslide events are correlated in timtgvolvesft\r/]wthc,_wle 1a5Iso zbthm Fig. 4 twotWelbluII dls(;[nsbzu—
beingy < 1. Finally, it is worth noting that in the region of lons with 1/ = 1.15 and shape parameter valyes: 0.

model parameters for which a good agreement with experi-antc_iy Zﬂ? '%4' Wetrr:ote tlhat th;: larger thg derz]grefe ?[f conser-
mental data is obtained, simulated recurrence time distripyy 210N, (e 1arger tne value of ecomes. such afeature can
tions cannot be entirely approximated by Weibull distribu- be explained considering that in the SOC limit, realized for

tions (see Fig. 3, square symbols), as the region of short rC|=t1 dan;iv i ?ﬁitr;le m_oielF:siexpr?((:jt:e?riLo tpr(;)\:lde rt:ngor-
requires the introduction of a different power-law exponent. claled exponentia y{= 1) Poisson distributed recurrence
times (Boffetta et al., 1999).

3.3 Analysis of varying conservation degrees

In previous works (Piegari et al., 2006a, b), we have shown4 The Fano factor

that the model parametef, which fixes the degree of con- To reveal fractal structures in temporal series, it is possible

servation n the SVSte."." s'gror)gly. affects the. shape of th% analyse variations of the values of the Fano factor, which
frequency-size probability distribution of landslide events. In is defined as the ratio of the variance to the mean for win-
particular, we recovered the behaviour of the frequency-siijowed data (Fano, 1947). L&t be the time window and

distributions from catalogu.es.(M_aIamud et al:, 200.4) only the number of non-overlapping adjacent intervals of length
for values of C ~ 0.4-0.5, indicating that the inclusion of T = W/n. The Fano factor is defined as:

dissipative phenomena is obligatory for describing realistic

scenarios. Thus, we investigate the roleCoin determining o2[N (T)]
the recurrence time distribution. In Fig. 4, we show the be-F(T) = N
haviour of p(t) for different values ofC and keep the value
of ¢ andv fixed. In particular, we sey =5 and choose a

: (4)

www.nonlin-processes-geophys.net/20/1071/2013/ Nonlin. Processes Geophys., 20, 10782013



1076 E. Piegari et al.: Recurrence time distribution and temporal clustering properties

o

T T T
g 4
8] - =10° .
7 s e 1 =—q=1 v=0001
_ q=2 o -
6 q=5 4 g=5
5 GJ= - +-g=10
£ E 104
w 4 w
15 [y
BT 34 .g
o (o]
w w
[=] Q
5 2 G
w T w
(a) 1 (b)
1 T T T T T
1 10 100 1000 1 10 100 1000
Time interval length, T Time interval length, T
10 T T T
2-q=1 =001 )
. q=2
. g = 5
A q=10
. * - 14
= 104 E
w w
g 8
Q Q
© (o]
w w
[=] o
§ 5 013
w w
1 © ]
T T T 0.01 T T T
1 10 100 1000 1 10 100 1000
Time interval length, T Time interval length, T

Fig. 5. Fano factor analysis for simulated landslide event series with four threspcdatsl for different values af. The behaviour o (T)
shows fractal organization of landslide events, with power-law exponent for v < 0.01 @, b andc) and an uncorrelated regime for

v =0.01(d). The oscillatory behaviour of (T') in (d) is a purely numerical effect due to the finite system size: it is shifted to larger time
interval lengthdr" if larger grid sizes are used.

wheres?[N (T)] and N (T) are, respectively, the variance with constantd = [N(W)/W]V’. The case of Poisson dis-
and the mean of the number of timin@&(7;) perith in- tributed recurrence times, i.&.(T) =1, is found ify =0
terval, withi =1,...,n. For an unclustered set of timings forall T.

N (T;), the inter-event occurrence times are Poisson dis- We have analysed the variation &f(7) for simulated
tributed (Ross, 1983), and consequently the variance is equad&ndslide event series with four thresholdand for different
to the mean for all interval lengths: values of the driving rate.

Looking at the panels of Fig. 5, which show the evolu-
tion of F(T) with increasing driving rate, it is apparent that
o i ) F(T) # 1in all cases withh < 0.01 (Fig. 5a, b and c). This

If such a condition is substituted in E4)( one gets  yagit provides additional information on the system dynam-
F(T) =1 for uncorrelated time series. In a different way, jcs: specifically, by varying the system undergoes a transi-
fo.r fractal clusters of'tlmlr}gs, ie. tlmlngs'unequally spacedion between two regimes:@rrelatedregime ¢ < 0.01), in
with a fractal (scale |nva1//r|J?1nt) structure, it has been shownyhich events are clustered in time with recurrence times gov-
thate?[N (T)] = [N (T)]" "~ (Teich et al., 1997). Then, if emed by power-law and Weibull distributions (see previous
this last condition is substituted in Egf)(it turns out that  section), and frequency-size distributions characterized by
the Fano factor depends on the time interval |e®m|th a power-|aw decays (Piegari et a|_, 20093), andmacorrelated
power-law exponeny: regime ¢ > 0.01), in which events are Poisson distributed in

T time, and frequency-size distributions are characterized by
F(T) = [N(T)]“’ _ [N(W) <W>} — ATV, (6) beII.-shaped curves (Piegari et al., 2009a). Fordbreelated
regime, the Fano factor shows a power-law dependenég on
with values of the power-law exponegtthat decrease with

o?[N ()] = N (T). (5)

Nonlin. Processes Geophys., 20, 1071678 2013 www.nonlin-processes-geophys.net/20/1071/2013/
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the threshold; and vary in the range 03 ¢ < 0.5. Inter-  collected, over which the triggering mechanism can be con-
estingly, this range of values is the same reported by Witt sidered, in a reasonable first approximation, homogenously
et al. (2010) for the Fano factor analysis carried out for twoactive. A constant driving rate is representative of an aver-
kinds of landslides series recorded in the Emilia-Romagnaaged rapidity with which instability is reached somewhere
region (northern ltaly). It is also worth noting that for val- in the system. Actually, approximate constant driving rates
ues ofv ~ 1073, for which our synthetic distributions well ~for any couple of the following events can be calculated and,
match frequency-size distributions from catalogues (Piegarin principle, they are different from each other. However, in
et al., 2009a), the behaviour &f(T) shown in Fig. 5b re- the real world, luckily, the number of occurrences of strong
produces well the behaviour &f(T) derived from historical ~ perturbations, described by large values of the driving rate,
data (Witt et al., 2010), as well as the flattening of th@") is definitely much smaller than that of small perturbations,
curve by increasing the threshold value. For larger values ofind these latter ones will dominate the inventory. Accord-
v (see Fig. 5¢) and for interval lengths200, a clear change ingly, we reasonably assume that the small approximate con-
in the slope of the?(T') function is found, with values of the stant driving rates dominate the statistics obtained from the
power-law exponenf greater than 0.9. Finally, for > 0.01, inventory. Thus, if small approximate constant driving rates
the case of Poisson distributed recurrence times is found, beare (Gaussian) statistically distributed, we use, in a first ap-
ing F(T) = 1forall T. In this regard, we note that the oscil- proximation, its mean value to characterize the statistics of
latory behaviour ofF (T') is a purely numerical effect due to the whole inventory. The soundest justification for our as-
the finite size of the grid, and, therefore, it will be shifted to sumptions is provided by the good agreement found between
a largerT if the size of the system is increased. synthetic and real data for a given range of approaching in-
stability rates. This suggests the existence of average charac-
teristic response times for loading critical conditions in slope
5 Discussion and conclusions systems, which statistically characterize a crossover region
between a correlated and an uncorrelated regime.
We have analysed the recurrence time statistics of a cellu- Summarizing, if statistical analyses are performed on
lar automaton modelling landslide events by performing alandslide inventories, a qualitative comparison between real
numerical analysis in the parameter space and estimatingnd synthetic data hints at averaged values of model parame-
Fano factor behaviours. The model is an extended versioters that statistically characterize the data set. From the com-
of the OFC model, which itself is a kind of paradigm for parison with the extensive landslide data set used by Witt et
SOC in non-conserved systems (Hergarten and Krenn, 20113l. (2010), our numerical analysis suggests that statistics of
but it works differently from the original OFC model as a such landslide data can be described by a crossover region
finite value of the driving rate is applied. By increasing between a correlated regime and an uncorrelated regime,
the values ofv, which quantifies the rate of approaching where recurrence time distributions are characterized by
instability, the system undergoes a smooth transition frompower-law and Weibull behaviours for short and long return
a correlated regime characterized by power laws to an untimes, respectively. Finally, in such a region of the parameter
correlated regime in frequency-size statistics (Piegari et al.space, clear indications of temporal correlations and cluster-
2009a). We found that such a transition is an indicator of theing by the Fano factor behaviours support, at least in part, the
change in predominant mechanisms to propagate instabilityanalysis performed by Witt et al. (2010).
for small values ob, chain processes dominate the landslide
dynamics, while for large values efsuch processes are no
longer active, and large events simply occur because a |argécknowledgementsThe authors gratefully acknowledge suppo_rt
number of cells simultaneously reach instability. By com- Tom CASPUR. The authors are very grateful to Annette Witt
paring synthetic frequency-size probability distributions with and an anonymous reviewer, who made useful suggestions and
. . criticisms for Improving our manuscrlpt.
those from landslide catalogues, quite good agreement was
found for ranges of driving rate valugs that chgracteriz.e theEdited by: J. Kurths
crossover region between the two different regimes (Piegarkeyiewed by: two anonymous referees
et al., 2009a). In this paper, we have shown that synthetic
recurrence time distributions and Fano factor behaviours re-
semble those from historical time series (Witt et al., 2010)
in a range ofv values that again characterize a crossover re-
gion between a correlated (power-law) regime and an uncor-
related (Weibull) regime. The variation of the driving rate
in a uniform way might raise doubts about the applicability
of our analysis to real-world cases. According to a previous
study (Piegari et al., 2009a), the model grid can simulate sub-
sectors of the region where the Witt et al. (2010) data were
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