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Abstract. Reasonable prediction of landslide occurrences in
a given area requires the choice of an appropriate probability
distribution of recurrence time intervals. Although landslides
are widespread and frequent in many parts of the world, com-
plete databases of landslide occurrences over large periods
are missing and often such natural disasters are treated as
processes uncorrelated in time and, therefore, Poisson dis-
tributed. In this paper, we examine the recurrence time statis-
tics of landslide events simulated by a cellular automaton
model that reproduces well the actual frequency-size statis-
tics of landslide catalogues. The complex time series are
analysed by varying both the threshold above which the time
between events is recorded and the values of the key model
parameters. The synthetic recurrence time probability distri-
bution is shown to be strongly dependent on the rate at which
instability is approached, providing a smooth crossover from
a power-law regime to a Weibull regime. Moreover, a Fano
factor analysis shows a clear indication of different degrees
of correlation in landslide time series. Such a finding sup-
ports, at least in part, a recent analysis performed for the first
time of an historical landslide time series over a time window
of fifty years.

1 Introduction

Analysis of recurrence times in natural series is a challeng-
ing issue in many branches of science, as discovering tempo-
ral correlations between events is crucial to determining the
probability of occurrence of future events. After the seminal
paper of Bak, Tang and Wiesenfeld (BTW), who introduced
the concept of self-organized criticality (SOC) to explain

the scale invariance of many natural phenomena (Bak et al.,
1987), several authors have searched for correlation func-
tions of power-law type in time series. Although the original
BTW model provides uncorrelated exponentially (Poisson)
distributed recurrence times (Boffetta et al., 1999), several
variants of the BTW model that supply power-law behaviour
of recurrence time probability distributions have been pro-
posed (Sanchez et al., 2002; Paczuski et al., 2005). Recur-
rence time statistics of solar flares is found to be character-
ized by power laws (Boffetta et al., 1999) as well as statis-
tics of solar flare magnitudes (Baiesi et al., 2006). Power-
law temporal correlations have also been found for recur-
rence time probability distribution of earthquakes above a
given magnitude (Corral, 2004). On the other hand, several
authors have demonstrated the validity of stretched expo-
nential distributions to characterize return interval statistics
between extreme events in the case of long-term correlated
records (Altmann et al., 2005; Bunde et al., 2005; Eichner
et al., 2007). Furthermore, recent works have shown that the
Weibull distribution, which is the product of a power-law and
a stretched exponential, best represents the recurrence time
distribution of observed time series of tropical temperature
and humidity (Blender et al., 2008) and historical landslides
(Witt et al., 2010). The Weibull distribution is also found by
Santhanam and Kantz (2008), who study long-range corre-
lated time series and investigate the role played by the thresh-
old in modifying the return interval distribution, especially in
the power-law regime related to short return intervals.

In this paper, we analyse the recurrence time statistics
of a cellular automaton (CA) model aimed at reproducing
the main features of landslide event statistics by means of
some characteristic parameters (Piegari et al., 2006a, 2009a).

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.
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We note that long-term correlated time series are not as-
sumed, but result from different CA simulations of landslide
events. Interestingly, we find that the recurrence time prob-
ability distribution of the CA strongly depends on the rate
ν at which the system is driven to instability. This rate con-
trols how quickly the CA cells reach the instability thresh-
old and, therefore, its values describe response time scales
of slope systems rather than triggers of different origin. In
this respect, we showed in a previous study (Piegari et al.,
2009a) that similar values ofν can explain the similarity of
frequency-size distributions of landslides induced by differ-
ent triggering mechanisms (Malamud et al., 2004). By in-
creasing the values ofν, a smooth transition from a power-
law to a non power-law regime was found by analysing the
behaviour of landslide frequency-size distributions (Piegari
et al., 2009a). Here, we show that by increasingν, the re-
currence time probability distribution smoothly changes its
shape as the effect of a smooth transition from a power-law
regime to a Weibull regime. Finally, temporal correlations
of synthetic time series of landslide events are examined by
calculating the Fano factor, and critical variations of model
parameters for recurrence time statistics are discussed in re-
lation to previous studies on frequency-size probability dis-
tributions.

2 The model

The CA model is defined on a two-dimensional grid ofL×L

square cells. The state of each celli is characterized by the
value of a single dynamical variable,ei, representing the ra-
tio of the load acting on the cell to the maximum allowable
stress, i.e. the inverse of the so-called factor of safety (FS)
ei = 1/FSi . If ei < 1, the acting load is within the allowable
limit and the corresponding celli is stable. Ifei = 1, the act-
ing load is at the allowable limit and, thus, values ofei ≥ 1
are associated with failure. We start from a random initial sta-
ble configuration, i.e. we attribute to each cell of the grid a
uniformly distributed random value ofei with 0< ei < 1∀i.
The dynamics of the CA model is defined by the two typical
rules of the SOC theory (Bak et al., 1987). The first rule is an
overall driving that provides an increase inei at the same rate
ν approaching the system to the instability threshold,eth = 1.
The model parameterν controls the rate at which all sites are
driven towards instability and, in the following, simulation
results will be discussed by varying such a key parameter.
The second rule is a relaxation rule defined by the equations:

ei ≥ eth →

{
enn(i)(t +1t)= enn(i)(t)+ fnn(i)ei(t)

ei = emin
(1)

wherenn(i) denotes the four neighbour sites of the celli (i.e.
nn(i)= up, down, left, right). To aid the reader, a list of vari-
ables used in the text is given in Table 1.

Table 1.Variables used in the text.

Variable Description Equation/
Section

α Power-law exponent. Eq. (2)
β Rate parameter in exponential and

Weibull distributions.
Eq. (3)

γ Shape parameter in Weibull
distribution.

Eq. (3)

ν Parameter that controls the rate at which
instability is approached.

Eq. (1)

σ Standard deviation. Sect. 4
τ Recurrence time, i.e. time interval

between successive events for which
s ≥ q.

Sect. 3

ψ Power-law exponent in Fano factor
analysis.

Sect. 4

C Level of conservation of systemC =∑
nn
fnn.

Sect. 2

ei Inverse of the local value of the factor
of safety for the celli.

Sect. 2

eth Instability threshold. Eq. (2)
emin Relaxation threshold. Eq. (2)
fnn Instability transfer coefficients. Eq. (2)
F Fano factor. Eq. (4)
FSi Local value of the factor of safety for

the celli.
Sect. 2

L Linear size of the system. Sect. 2
n Number of adjacent time intervals of

time series of lengthW , n=W/T .
Sect. 4

nn(i) Neighbour sites of the overcritical sitei
(up, down, left, right).

Eq. (2)

N(Ti) Number of events above thresholdq
and over time series with lengthW .

Sect. 4

N̄ (T ) Average of allN(Ti), i = 1, . . . ,n. Sect. 4
q Threshold value above whichs ≥ q is

considered an extreme event.
Sect. 3

p(τ) Probability distribution of recurrence
times,τ .

Sect. 1

s Total number of unstable cells, i.e. total
number of cells that reach the instability
threshold in a landslide event.

Sect. 3

T ,Ti Time intervals of time series of length
W , T =W/n

Sect. 4

W Total time length of a temporal series Sect. 4

According to Eq. (1), when a cell becomes unstable (i.e.
ei ≥ eth), it affects, via a chain process, the stability of the
neighbour cells, as a fractionfnn(i) of ei toppling onnn(i).
After a failure, we setei = emin with emin = 10−6; however,
any other finite level would work (Jensen, 1998). In gen-
eral, the transfer coefficientsfnn(i), which describe the dis-
tribution of over-threshold cell loads to the nearest neigh-
bours, can be anisotropic. We setfleft = fright andfdown>

fleft,fright,fup to mimic the preferential direction for stress
redistribution induced by gravity. We note that if anisotropic
stress redistribution is related to specific slopes, different
choices for the transfer coefficients,fnn, can be made to take
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into account the topography of individual investigated areas
(Piegari et al., 2009b; Di Maio and Piegari, 2012).

During each iteration of Eq. (1), an amount ofei is lost
from the system, i.e. the difference betweenei and the sum
of the amountfnnei added to each of the four neighbour
sites is not equal to zero. In other words, we take into ac-
count non-conservative (dissipative) cases where the quan-
tity C =

∑
nn

fnn, which fixes the degree of conservation of

the system, is less than 1, contrary to other approaches (Her-
garten and Neugebauer, 2000; Hergarten, 2003). The role
of the model parameterC has been investigated in previ-
ous works, where we found that the shape of the frequency-
size probability distribution of landslide events is strongly
affected by the values ofC (Piegari et al., 2006a), while
it is not significantly affected by the values of the coeffi-
cientsfnn in the range of values that supply power-law dis-
tributions (Piegari et al., 2006b). In particular, only ifC < 1
do our synthetic frequency-size distributions reproduce those
from catalogues (Piegari et al., 2009a), pointing out the rele-
vance of dissipative phenomena to landslide triggering. Due
to the peculiar role ofC, in the next sections we will discuss
simulation results by varyingC, while we fix the ratios be-
tween the transfer coefficients equal to:fup/fdown = 2/3 and
fleft,right/fdown = 5/6 for all simulations.

Finally, we note that the inter-event occurrence time statis-
tics of the CA is studied once the system has attained a sta-
tionary state in its dynamics, i.e. the mean value of the dy-
namical variable,ei , on the grid sites fluctuates about an av-
erage value.

In the following, simulation results are shown for the case
of a square lattice of linear sizeL= 64.

3 Recurrence time statistics

The recurrence time,τ , is the time between two events whose
size,s, is above a given thresholdq (Fig. 1a). In the litera-
ture,τ is also named inter-extreme or inter-event occurrence
time, as its definition requires the choice of a threshold. In the
following, we analyse the recurrence time distribution of the
CA for different thresholdsq and by varying the key model
parametersC andν. In Fig. 1b, a simplified flow chart of the
CA showing the algorithm for the calculation of the recur-
rence time distribution,p(τ), is reported. Simulation results
will be also discussed in light of the results obtained by Witt
et al. (2010), who analyse for the first time temporal correla-
tions and clustering in an extensive landslide data set. These
authors discuss statistics of two landslide intensity time se-
ries obtained by introducing two kinds of threshold: the num-
ber of reported landslides in a day,DL , and the number of re-
ported landslides in an event,Sevent, where an event includes
mostly consecutive days with landsliding associated with the
same triggering episode (rainfall in their study). In our CA
model, the threshold valueq is defined bys, i.e. the total
number of cells that reach instability in a landslide event. We

 1 

 2 

Figure 1. (a) Graph showing the definition of the recurrence time ; (b) simplified flow chart of our 3 

CA model describing the algorithm for calculation of the recurrence time distribution p(). 4 

5 

Fig. 1. (a) Graph showing the definition of the recurrence timeτ ;
(b) simplified flow chart of our CA model describing the algorithm
for calculation of the recurrence time distributionp(τ).

note that all relaxation processes, caused by the reaching of
instability for one or a group of cells (see Eq. 1) and induced
by any trigger, last until allei < eth and are considered to be
instantaneous compared to the time scale of the overall drive
ν. Consequently, the model is not able to distinguish the two
measures of landslide intensity used by Witt et al. (2010), as
they are the same in our case. Finally, it is worth noting that
ν being not exclusively related to rainfall trigger, our numer-
ical analysis may be helpful for interpretation of recurrence
time statistics of landslide events related to different types of
trigger mechanisms.

3.1 Analysis of varying threshold values

To investigate how the choice ofq affects the recurrence time
distributionp(τ), we analyse the behaviour ofp(τ) consid-
ering different thresholds and keeping the values ofν andC
fixed. In Fig. 2a and b, we show the behaviour ofp(τ) for
q = 3, 5, 30 and 50, obtained by using two values ofν corre-
sponding to different regimes of the model (see next section).
As results from Fig. 2a, for a small value ofν, p(τ) exhibits
a linear regime in a log–log scale – that means a power-law
regime in a linear scale – for recurrence time intervals that
enlarge by increasing the thresholdq. We note that in the
limit of small values ofν, the model resembles the results of
the OFC model (Olami et al., 1992), as extensively discussed
in previous works (Piegari et al., 2006a, 2009a). Thus, in this
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Figure 2. Recurrence time distribution p() for different values of the threshold q, obtained by 4 

driving the system towards instability with rates (a)  = 10
-4

 and (b)  = 0.003. In the simulations, 5 

the value of the conservation parameter C is kept constant, C = 0.4. 6 

 7 

 8 

Fig. 2. Recurrence time distributionp(τ) for different values of the
thresholdq, obtained by driving the system towards instability with
rates(a) ν = 10−4 and(b) ν = 0.003. In the simulations, the value
of the conservation parameterC is kept constant,C = 0.4.

regimep(τ) is expected to be characterized by a power-law
regime according to SOC-like models proposed for explain-
ing recurrence time statistics of earthquakes and solar flares
(Sanchez et al., 2002; Corral, 2004; Pacuzski et al., 2005). In-
terestingly, the power-law regime is better defined for the oc-
currence time statistics of the most extreme events (q = 30,
50). It is also worth noticing that variations ofq in Fig. 2a
affect the shape ofp(τ) either for short or for large return
intervals. Conversely, when a larger value of the driving rate
is considered (Fig. 2b), the behaviour ofp(τ) is affected by
the thresholdq mainly for short return intervals, as is found
in Santhanam et al. (2008). Moreover, a power-law regime,
which is still recognizable for shortτ and large thresholdsq,
smoothly disappears with decreasing values ofq.

 1 

Figure 3. Recurrence time distribution p() for different values of the driving rate . In the 2 

simulations, the values of the conservation parameter C and the threshold q are kept constant, (C = 3 

0.4, q = 5). Also shown are the power-law distribution with negative exponent  = -2.67 (short dash 4 

line), and the Weibull distribution with 1/= 1.15 and shape parameter  = 0.82 (solid line).  5 

6 

Fig. 3.Recurrence time distributionp(τ) for different values of the
driving rateν. In the simulations, the values of the conservation
parameterC and the thresholdq are kept constant (C = 0.4,q = 5).
Also shown are the power-law distribution with negative exponent
α = −2.67 (short dash line) and the Weibull distribution with 1/β =

1.15 and shape parameterγ = 0.82 (solid line).

3.2 Analysis of varying driving rates

In Fig. 3, we show the behaviour ofp(τ) by varying the
driving rateν and keeping the thresholdq and the conser-
vation parameterC fixed. As discussed in previous papers
(Piegari et al., 2006a, 2009a), the parameterν, which de-
scribes the rate of approaching instability, is a key ingredi-
ent in the model, as its values are responsible for a change
in the dynamics of landslide processes. For smallν, a few
cells (a single cell in the limit of vanishingν) initially reach
the instability threshold and chain processes dominate land-
slide dynamics. By increasingν values, an increasing num-
ber of cells initially reaches instability, so domino processes
become less and less effective in causing avalanching pro-
cesses, and instability is reached simply because a very large
number of cells almost instantaneously reach the critical
threshold. Such a change in the model dynamics controlled
by ν corresponds to a smooth crossover in the frequency-size
distribution from a power-law to a Gaussian-like regime (Pie-
gari et al., 2006b). It is worth noting that only ifν > 0 does
the automaton provide frequency-size distributions charac-
terized by an exponential rollover for small landslides fol-
lowed by a power-law regime for medium and large land-
slides, as observed for landslide frequency-size distributions
from catalogues (Piegari et al., 2009a). In particular, since
landslide inventories corresponding to different triggering
mechanisms seem to obey the same frequency-size probabil-
ity distribution (Malamud et al., 2004), we realized that trig-
gers of different origin can affect the stability of a slope with
the same rate of approaching instability, i.e. with the same
ν and, therefore, the probability of occurrence of landslide
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events is controlled by the rateν, rather than the nature of
the triggering mechanism (Piegari et al., 2009a).

Interestingly enough, as shown in Fig. 3, the values ofν

are also responsible for a change in the behaviour of the prob-
ability distribution of recurrence times. For smallν, p(τ)
is characterized by a power-law regime typical of SOC-like
systems (Sanchez et al., 2002; Corral et al., 2004; Paczuski et
al., 2005) in a range of return intervals that becomes shorter
and shorter by increasing the values ofν. Surprisingly, if
we use values of the model parameters for which a good
matching between synthetic and real frequency-size proba-
bility distribution is obtained, i.e.ν = 0.003,C = 0.4 (Pie-
gari et al., 2009a) andq = 5, we find that the behaviour of
p(τ) is characterized for smallτ by a power law:

p(τ)≈ τα, (2)

with a negative exponentα = −2.67, while for medium and
largeτ it is described by a stretched exponential decay well
approximated by a two-parameter Weibull distribution:

p(τ)=
γ

β

(
τ

β

)γ−1

exp

(
−

(
τ

β

)γ)
, (3)

with 1/β = 1.15 and the shape parameterγ = 0.82. Interest-
ingly, the value of the power-law exponentα is in very good
agreement with the experimental value found by Juanico et
al. (2008), while the value of the Weibull shape parameter
γ is in the range of values 0.67< γ < 0.83 found by Witt
et al. (2010) to characterize the landslide intensity of time
series forSevent(see Sect. 3).

In the caseγ = 1, the Weibull distribution (3) reduces to
an exponential (Poisson) distribution characteristic of uncor-
related time series. Thus, we deduce that in the investigated
cases the simulated landslide events are correlated in time
beingγ < 1. Finally, it is worth noting that in the region of
model parameters for which a good agreement with experi-
mental data is obtained, simulated recurrence time distribu-
tions cannot be entirely approximated by Weibull distribu-
tions (see Fig. 3, square symbols), as the region of shortτ

requires the introduction of a different power-law exponent.

3.3 Analysis of varying conservation degrees

In previous works (Piegari et al., 2006a, b), we have shown
that the model parameterC, which fixes the degree of con-
servation in the system, strongly affects the shape of the
frequency-size probability distribution of landslide events. In
particular, we recovered the behaviour of the frequency-size
distributions from catalogues (Malamud et al., 2004) only
for values ofC ≈ 0.4–0.5, indicating that the inclusion of
dissipative phenomena is obligatory for describing realistic
scenarios. Thus, we investigate the role ofC in determining
the recurrence time distribution. In Fig. 4, we show the be-
haviour ofp(τ) for different values ofC and keep the value
of q and ν fixed. In particular, we setq = 5 and choose a

 1 

Figure 4. Recurrence time distribution p() for different values of the conservation value C. In the 2 

simulations, the values of the threshold q and driving rate  are kept constant, (q = 5 and  = 0.003). 3 

Also shown are two Weibull distributions with 1/= 1.15 and shape parameters  = 0.82 (black 4 

line) and  = 0.94 (magenta line). 5 

6 

Fig. 4.Recurrence time distributionp(τ) for different values of the
conservation valueC. In the simulations, the values of the threshold
q and driving rateν are kept constant (q = 5 andν = 0.003). Also
shown are two Weibull distributions with 1/β = 1.15 and shape pa-
rametersγ = 0.82 (black line) andγ = 0.94 (magenta line).

ν value equal to 0.003, for which the best agreement with
data from catalogues was obtained for the frequency-size
probability distribution (Piegari et al., 2009a). As shown in
Fig. 4, variations ofC affect the behaviour ofp(τ) mainly
for large return intervals. Specifically, the probability of oc-
currence of large recurrence times increases by decreasing
the degree of conservation in the system. As discussed in the
previous section, the behaviour ofp(τ) for medium and large
τ is well described by a Weibull distribution with values of
the shape parameterγ less than 1. To analyse how the shape
of the stretched exponential, which best approximatesp(τ),
evolves withC, we also plot in Fig. 4 two Weibull distribu-
tions with 1/β = 1.15 and shape parameter valuesγ = 0.82
andγ = 0.94. We note that the larger the degree of conser-
vation, the larger the value ofγ becomes. Such a feature can
be explained considering that in the SOC limit, realized for
C = 1 andν = 0, the model is expected to provide uncor-
related exponentially (γ = 1) Poisson distributed recurrence
times (Boffetta et al., 1999).

4 The Fano factor

To reveal fractal structures in temporal series, it is possible
to analyse variations of the values of the Fano factor, which
is defined as the ratio of the variance to the mean for win-
dowed data (Fano, 1947). LetW be the time window andn
the number of non-overlapping adjacent intervals of length
T =W/n. The Fano factor is defined as:

F(T )=
σ 2 [N (T )]

N̄ (T )
, (4)

www.nonlin-processes-geophys.net/20/1071/2013/ Nonlin. Processes Geophys., 20, 1071–1078, 2013
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Figure 5. Fano Factor analysis for simulated landslide event series with four thresholds q, and for 4 

different values of . The behavior of F(T) shows fractal organization of landslide events with 5 

power-law exponents  > 0 for  < 0.01 (Figs 4a, 4b and 4c) and an uncorrelated regime for  = 6 

0.01 (Fig. 5d). The oscillatory behavior of F(T) in (d) is a purely numerical effect due to the finite 7 

system size: it is shifted to larger time interval lengths T if larger grid size are used. 8 

 9 

Fig. 5. Fano factor analysis for simulated landslide event series with four thresholdsq, and for different values ofν. The behaviour ofF(T )
shows fractal organization of landslide events, with power-law exponentsψ > 0 for ν < 0.01 (a, b andc) and an uncorrelated regime for
ν = 0.01(d). The oscillatory behaviour ofF(T ) in (d) is a purely numerical effect due to the finite system size: it is shifted to larger time
interval lengthsT if larger grid sizes are used.

whereσ 2 [N (T )] and N̄ (T ) are, respectively, the variance
and the mean of the number of timingsN (Ti) per ith in-
terval, with i = 1, . . . ,n. For an unclustered set of timings
N (Ti), the inter-event occurrence times are Poisson dis-
tributed (Ross, 1983), and consequently the variance is equal
to the mean for all interval lengthsT :

σ 2 [N (T )] = N̄ (T ) . (5)

If such a condition is substituted in Eq. (4), one gets
F(T )= 1 for uncorrelated time series. In a different way,
for fractal clusters of timings, i.e. timings unequally spaced
with a fractal (scale invariant) structure, it has been shown
that σ 2 [N (T )] =

[
N̄ (T )

]ψ+1
(Teich et al., 1997). Then, if

this last condition is substituted in Eq. (4), it turns out that
the Fano factor depends on the time interval lengthT with a
power-law exponentψ :

F (T )=
[
N̄ (T )

]ψ
=

[
N(W)

(
T

W

)]ψ
= AT ψ , (6)

with constantA=
[
N (W)/W

]ψ . The case of Poisson dis-
tributed recurrence times, i.e.F(T )= 1, is found ifψ = 0
for all T .

We have analysed the variation ofF(T ) for simulated
landslide event series with four thresholdsq, and for different
values of the driving rateν.

Looking at the panels of Fig. 5, which show the evolu-
tion of F(T ) with increasing driving rate, it is apparent that
F(T ) 6= 1 in all cases withν < 0.01 (Fig. 5a, b and c). This
result provides additional information on the system dynam-
ics; specifically, by varyingν the system undergoes a transi-
tion between two regimes: acorrelatedregime (ν < 0.01), in
which events are clustered in time with recurrence times gov-
erned by power-law and Weibull distributions (see previous
section), and frequency-size distributions characterized by
power-law decays (Piegari et al., 2009a), and anuncorrelated
regime (ν > 0.01), in which events are Poisson distributed in
time, and frequency-size distributions are characterized by
bell-shaped curves (Piegari et al., 2009a). For thecorrelated
regime, the Fano factor shows a power-law dependence onT ,
with values of the power-law exponentψ that decrease with
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the thresholdq and vary in the range 0.3<ψ < 0.5. Inter-
estingly, this range ofψ values is the same reported by Witt
et al. (2010) for the Fano factor analysis carried out for two
kinds of landslides series recorded in the Emilia-Romagna
region (northern Italy). It is also worth noting that for val-
ues ofν ≈ 10−3, for which our synthetic distributions well
match frequency-size distributions from catalogues (Piegari
et al., 2009a), the behaviour ofF(T ) shown in Fig. 5b re-
produces well the behaviour ofF(T ) derived from historical
data (Witt et al., 2010), as well as the flattening of theF(T )
curve by increasing the threshold value. For larger values of
ν (see Fig. 5c) and for interval lengths>200, a clear change
in the slope of theF(T ) function is found, with values of the
power-law exponentψ greater than 0.9. Finally, forν > 0.01,
the case of Poisson distributed recurrence times is found, be-
ingF(T )= 1 for all T . In this regard, we note that the oscil-
latory behaviour ofF(T ) is a purely numerical effect due to
the finite size of the grid, and, therefore, it will be shifted to
a largerT if the size of the system is increased.

5 Discussion and conclusions

We have analysed the recurrence time statistics of a cellu-
lar automaton modelling landslide events by performing a
numerical analysis in the parameter space and estimating
Fano factor behaviours. The model is an extended version
of the OFC model, which itself is a kind of paradigm for
SOC in non-conserved systems (Hergarten and Krenn, 2011),
but it works differently from the original OFC model as a
finite value of the driving rateν is applied. By increasing
the values ofν, which quantifies the rate of approaching
instability, the system undergoes a smooth transition from
a correlated regime characterized by power laws to an un-
correlated regime in frequency-size statistics (Piegari et al.,
2009a). We found that such a transition is an indicator of the
change in predominant mechanisms to propagate instability:
for small values ofν, chain processes dominate the landslide
dynamics, while for large values ofν such processes are no
longer active, and large events simply occur because a large
number of cells simultaneously reach instability. By com-
paring synthetic frequency-size probability distributions with
those from landslide catalogues, quite good agreement was
found for ranges of driving rate values that characterize the
crossover region between the two different regimes (Piegari
et al., 2009a). In this paper, we have shown that synthetic
recurrence time distributions and Fano factor behaviours re-
semble those from historical time series (Witt et al., 2010)
in a range ofν values that again characterize a crossover re-
gion between a correlated (power-law) regime and an uncor-
related (Weibull) regime. The variation of the driving rate
in a uniform way might raise doubts about the applicability
of our analysis to real-world cases. According to a previous
study (Piegari et al., 2009a), the model grid can simulate sub-
sectors of the region where the Witt et al. (2010) data were

collected, over which the triggering mechanism can be con-
sidered, in a reasonable first approximation, homogenously
active. A constant driving rate is representative of an aver-
aged rapidity with which instability is reached somewhere
in the system. Actually, approximate constant driving rates
for any couple of the following events can be calculated and,
in principle, they are different from each other. However, in
the real world, luckily, the number of occurrences of strong
perturbations, described by large values of the driving rate,
is definitely much smaller than that of small perturbations,
and these latter ones will dominate the inventory. Accord-
ingly, we reasonably assume that the small approximate con-
stant driving rates dominate the statistics obtained from the
inventory. Thus, if small approximate constant driving rates
are (Gaussian) statistically distributed, we use, in a first ap-
proximation, its mean value to characterize the statistics of
the whole inventory. The soundest justification for our as-
sumptions is provided by the good agreement found between
synthetic and real data for a given range of approaching in-
stability rates. This suggests the existence of average charac-
teristic response times for loading critical conditions in slope
systems, which statistically characterize a crossover region
between a correlated and an uncorrelated regime.

Summarizing, if statistical analyses are performed on
landslide inventories, a qualitative comparison between real
and synthetic data hints at averaged values of model parame-
ters that statistically characterize the data set. From the com-
parison with the extensive landslide data set used by Witt et
al. (2010), our numerical analysis suggests that statistics of
such landslide data can be described by a crossover region
between a correlated regime and an uncorrelated regime,
where recurrence time distributions are characterized by
power-law and Weibull behaviours for short and long return
times, respectively. Finally, in such a region of the parameter
space, clear indications of temporal correlations and cluster-
ing by the Fano factor behaviours support, at least in part, the
analysis performed by Witt et al. (2010).
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