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Abstract. In the frame of a three-layer, quasi-geostrophic topographic vortices are known to influence the dynamics of
analytical model of anf-plane geophysical flow, the La- different coherent structures, such as unrestrictedly moving
grangian advection induced by the interaction of a monopolevortices (e.gvan Geffen and Davigsl999 Dewar, 2002
vortex with an isolated topographic feature is addressed. TwdHerbette et a).2003 An and McDonald 2005 Herbette
different cases when the monopole is located either withinet al, 2005 Sutyrin et al, 2011, Candon and Marshall
the upper or the middle layer are of our interest. In the bottom2012 Zavala Sansn et al, 2012. Such topographic vortices
layer, there is a delta-function topographic feature, whichgreatly vary in vorticity and size scales in tim@ajnes and
generates a closed recirculation region in its vicinity due toSmith, 1993 Baines 1993. In this paper, however, we are
the background flow. This recirculation region extends to theonly interested in meso- and synoptic-scale topographic vor-
middle and upper layers, and it plays the role of a topographidices, as these scales are generally believed to be prevailing
vortex. The interaction between the monopole and the topoin the oceanChelton et al.2007, 2011).
graphic vortex causes a complex, including chaotic, advec- The present paper deals with the Lagrangian regular and
tion of fluid particles. We show that the model’s parameters,irregular (chaotic) advection generated by a vortex monopole
namely the monopole and topographic vortices’ strengthsnteracting with a topographic vortex. The topographic vor-
and initial positions, and the layers’ depths and densities, aréex under investigation is generated by a regular three-
responsible for the diverse advection patterns. While the patlayer f-plane background flow (e.@edlosky1987 Kozlov,
terns are rather complicated, one can single out two majod995 with a delta-function bottom irregularity within the
processes, which mostly govern the fluid particle advectionlower layer (e.g.Sokolovskiy et al. 1998 Izrailsky et al,
The first one is the variation in time of the system’s phase2004 Kozlov et al, 2005. Then we embed a monopole
space structure, so that within the closed region of the topoint-vortex (e.g.Gryanik 1983 Gryanik and Tevs1989
pographic vortex, there appear periodically unclosed particleGryanik et al, 200Q Carton 2001, Reznik 2010 Reznik
pathways by which the particles leave the topographic vor-and Kizner 2010 either within the upper or middle layer.
tex. The second one is chaotic advection that arises from th&o, these singularities move like passive tracers along regular
nonstationarity of the monopole—topography interaction.  background-flow streamline®Réznik and Kizner20073b,
2010, while generating a complex — either periodic (for a
time-independent background flow) or quasi-periodic (for
a periodically time-dependent background flow) — velocity
1 Introduction field in their own vicinity. Our main reason for employing
such a three-layer model (e.§okolovskiy 1997 Ryzhov
Generally speaking, topographic vortices are coherent vortizng Koshel 20113 is to study the Lagrangian advection
cal structures appearing as closed recirculation regions ovghduced by the monopole—topography interaction when the
bottom features in the ocean and atmosphere. Topographigonopole is located within either the upper or middle layers.

vortices play a fundamental role in the mass, salinity andsych monopole positioning can be considered as the simplest
temperature advection (transport) in the ocean. Moreover,
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models for a surface eddy and for an interthermocline lendollowing equations of motion:

(e.g.Carton et al.2002 Wang and Dewar2003 Filyushkin d Wmm v

etal, 2011 Filyushkin and Sokolovski)201J), respectively.  o-*m = — dy |v=xp = WXV (rm) 2)
However, we should emphasize that the paper deals only with y=yk "

the surface Lagrangian advection in both cases. The middled | 3y, X .

layer point-monopole appears in the upper layer as a reguaym T Tox |a=xt _Xr—*Vm (Vm)’

lar vortex; thus, this configuration generates different fluid y=ym "

particle advections due to the absence of singularity in thewhereW = W (z) is the dimensionless background flow ve-
monopole—topography velocity field. locity,

We investigate two kinds of the monopole—topography in- 1 1
teraction: the first one is an infinite-time interaction and the Vi (§) = — ((Otlﬁz —a2B1) £ +oam (B1—B2) K1(§) +
second one is a finite-time interaction. The infinite-time in- L4
teraction means that the monopole moves in closed regular B2—1 (B2—1)
trajectories about the topographic vortex’s elliptic point for +hm (a2 =) \/(0[2 -1 K1 <\/ (a2 — 1)5>> ’
infinite time due to the constancy of the background flow.

However, if the background flow depends periodically on

time, the dynamics of the monopole become more com Ii—and i = y (X’T’)ZJF (y’j’)z is the monopole position in the
’ y P P m-layer. System2) is a thoroughly-studied system which

cated. The monopole itself can be captured within the to- . . . )
. governs the dynamics of a fluid particle due to the velocity

pographic vortex from the background flow or, conversely, ;: ) ; :
) . ield generated by an exterior background flow intersecting

be released from the topographic vortex into the backgroun : . T
a delta-function topography. The Lagrangian advection in-

flow and consequently be carried away to infinity. . :
Thus, the main aim of the present study is to investigateOIuceOI by system2] has been studied recently in the frame

the Lagrangian advection of fluid particles due to the veloc-Of barotropic Gokolovskiy et al.1998 Izrailsky et al, 2004

- e Koshel and Prant2006, two-layer Kozlov et al, 2005
ity field gengrated py the infinite and short-term monopole—RyZhov and Koshel20118 and three-layer baroclinic geo-
topography interactions.

physical flows Ryzhov and Koshel20113. In our case,

however, system2) governs not the fluid particle dynam-

2 Equations of motion ics, but the monopole-centre dynamics. Thus, the upper-
and middle-layer monopole move as a fluid particle due to

We study a three-layer QG flow model with the stream func-the topographic vortex velocity field. Fluid particles of the

tions presented in Appendix A (see E&$). In a dimension-  monopole—topography interaction system, however, undergo

less form, the model equations comprise important dimen-he joint influence of both the monopole and topographic vor-

sionless quantities, which will be further used as parametersex velocity fields.

governing the different regimes of the Lagrangian advection. Motion of a fluid particle influenced by the cooperative

Introduce length scalé = (k3 (a2 — 1)) ~Y/?; velocity scale  monopole—topography velocity field obeys the relations

U; the Rossby numbeg, = f%; and an effective volume of Vi

the topography as = whoL?, whereho, L are the height '~ ~ 5, ~ )
and radius of a corresponding cylind&akolovskiy et al. (yi _ y*) vi
1998. Then, the following governing parameters are =W+ KmePim (ri) +x 7Vi (i),
im !

_ Jft _hom _ Sim . Vim
XTHUL " eHs T H,UL W ==
which characterize the dimensionless topographic vortex (xi —x;;) " X
strength and the dimensionless monopole strength, re- — ‘™ rr Pim (rin) + Xr_l.V" i) )
spectively. Then, by satisfying the QG flow requirement
that 72 ~ O (), we sety = . Thus, choosing the fol- wherer}, = \/ (xi —x3) 2+ (i — v,)? is the fluid particle
lowing parameter valuest/; = 200m, H, =400m, Hz = position relative to the monopole’s centre position,
3000m, p1 = 102656kgnt3, p, =102784kgnT3, and 13 1
p3=102832 I.<g m 3, we obtain the characteristic horizon- P (§) = (Sl ((Otsm — Bacm) = +ai (Ba—m — 1)
tal topographic vortex scale ~ 1.3 x 10 m. 4 §

Now, by making use of the dimensionless parameters and (B2—1) (B2 —1)
the geostrophic relations, one can write the equations o1 (§)+ Bi (1 —a3—m) —7 K ( —1 ))
motion for the monopole’s centre and for a fluid particle (@2—=1) (@2—=1)

advected by the monopole—topography velocity field. Theand m = 1,2 corresponds to the upper- and middle-layer
monopole motion in then = 1, 2-layer is governed by the monopole cases.
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Fig. 1. Azimuthal velocities of the topographic vortex within the Fig- 2. Topographic vortex streamlines for the upper layer. The red
layers. Curves 12, 3 correspond to the upper, middle, and bottom curve indicates the separatrix. The dashed blue curve corresponds
layer, respectively. The horizontal straight line indicates constantl the middle-layer separatrix. The cross marks the delta-function
background velocity valu®g = 0.27. topography position(0, 0).

3 Monopole motion 4 Fluid particle advection

First, we briefly analyse systen®)( which governs the 4.1 Regular monopole motion
monopole’s dynamics. An elaborated study of this system
has been conducteRyzhov and KosheR0113. Ifthe back-  Now we can analyse the Lagrangian advection induced by
ground exterior flow is constant{ = Wp), system @) is in- the monopole—topography interaction velocity field. Motion
tegrable in the sense of the streamline-trajectory coincidencef a fluid particle is governed by syste®)(where the right-
(e.g. Zaslavsky 1998. Because the bottom topography is hand part of the relations comprises the monopole motion so-
singular, any nonzero value &y always produces a closed lution given by Eq. ). First, we consider the periodic solu-
Taylor column region called a topographic vortex within the tion of Eq. ). This solution, although it cannot be expressed
lower layer. To have such closed regions within the middlein an analytical form, is time-dependent with a period being
and upper layers, however, the background velocity shouldequal to the time of the monopole passing a closed trajectory
be lower than a critical value. This critical value is the max- within the separatrices shown in Fg.Hence, systenfj is
imal value of the azimuthal velocity in the corresponding a dynamical system with one-and-a-half degrees of freedom
layer. So, if one chooses the background flow to satisfy thisthat allows the irregular dynamics of the fluid particle, con-
condition, then three different-sized Taylor columns will oc- ventionally called chaotic advectioAief, 1984 2002 Wig-
cur due to the bottom irregularity. These three columns maygins 1992). Chaotic advection manifests itself through expo-
be thought of as a discrete Taylor cone. Figldepicts az- nential divergence of close trajectories in a finite time (e.g.
imuthal velocitiesV; depending on distanceto the topo-  Lichtenberg and Liebermari983 Zaslavsky 1998. The
graphic vortex elliptic point. We chos&€, = 0.2z, x =n to easiest way to demonstrate the chaotic advection manifesta-
ensure the mesoscale closed regions exist in all three layerion is by constructing Poincarsections of systen8). Fig-
The points, where the horizontal line intersects the azimuthalire 3a shows a Poincarsection ag; = 0.01, y; (0) = —4,
velocity curves, correspond to elliptic and hyperbolic criti- corresponding to frequeney = 0.1611 of monopole rota-
cal points of the vortex. Figurg demonstrates streamlines tion along an orbit shown in Fi@.
of the resulting topographic vortex in the upper layer. The That half degree of freedom corresponds to a time-
red curve indicates the separatrix dividing the flow into the dependent perturbation, which concerning syst8ji§ the
vortical region and the exterior flow. Since we also are inter-monopole motion term comprising strengtfy. However,
ested in the middle-layer monopole case, the vortical regiorthis monopole strength is not the only parameter greatly af-
of the middle layer is indicated by the blue dashed curve. fecting the Lagrangian advection; the initial position of the
monopole is also of great importance. Indeed, initial posi-
tions of the monopole determine the orbit the monopole will
pass along, and different orbits correspond to different rota-
tional frequencies. These, in turn, are the frequencies of the
periodic perturbation that are introduced by the monopole
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(a) upper-layer monopole (b) middle-layer monopole
case case
(a) (0, —4) (b) (0, —0.6936)
Fig. 4. (a) and (b) correspond to the upper-layer monopole case
Fig. 3. Equivalent Poincdr sections of systen3) for the same val-  and to the middle-layer monopole case, respectively. Number of the
ues ofx = 0.01 and the same values of perturbation frequency flow’s regular critical points by colour. Blue — 3 initial points and
but different monopole initial positiong}, ;). 3 or 5 points at half period; purple — 5 initial points and 5 points at
half period; grey — 3 initial points and 3 points at half period; red —
3 initial points and 1 point at half period; and green — 1 initial point
. . . L . and 1 point at half period. Yellow — 6 initial points and 2 points at
into the topographic vortex region. As the initial position it heriod: orange — 4 initial points and 2 points at half period; and
parameter, we choose the positions where the streamlin@sown — 2 initial points and 2 points at half period.

(shown in Fig.2) intersect the y-axis. Figurga and b show
the equivalent structures of systeB) phase space for dif-
ferent initial positions of the monopole, corresponding nev-be mentioned that, in the upper-layer monopole case, one
ertheless to the same streamline. Hence, the positions on thengular critical point corresponding to the monopole’s cen-
y-axis correspond to all the frequencies of the monopole ro+re always exists, so we have excluded it from consideration.
tation about topography. Thus, we will further address how|n the middle-layer monopole case, no singular points occur
the monopole’s strength and initial position parameters affectwithin the upper-layer velocity field because the middle-layer
the fluid particle dynamics. point-monopole appears as a regular one in the upper layer.
The Poincag section analysis is a very useful technique So, making use of the classification based on the number of
to estimate which part of fluid particles is involved either regular critical points appearing at certain instants of time,
in regular advection or in chaotic advection; however, thiswe present diagrams of the number of the regular critical
technique fails to show what happens with fluid particles atpoints in the upper-layer monopole case and in the middle-
certain moments. So, to address the question of how thesgyer monopole case, respectively, depending on monopole’s
fluid particles move while the monopole achieves a revolu-strengthx and initial positiony. These diagrams depict by
tion about the topography, we calculate the number of criti-colour how many regular critical points appear at the begin-
cal points that appear at each instant in the flByzhov and  ning of the monopole rotation (initial critical points) and at
Koshe| 2011h Ryzhov et al,2012). The simple idea of this  the time the monopole has passed half a rotation period (crit-
classification is that the more critical points of their initial ical points at half period).
set survive or, in other words, the fewer topological changes In these diagrams, th& <0 region corresponds to
appear during a monopole revolution, the more regular syscounter-rotation of the monopole and topographic vor-

tem @) is. tex, andx > O corresponds to corotation of the monopole
and topographic vortex. First, we consider the upper-layer
4.2 Diagram of the number of the critical points monopole case. Figugshows the flow’s streamlines at the

initial stage of monopole motion and the stage at half period.
As the monopole moves about topography, the number of th&'he red curves are the monopole trajectories, and the dashed
regular critical points changes, altering flow topology char- blue curve corresponds to the unperturbed topographic vor-
acteristics with time (e.gAref and Brons 1998. It should  tex separatrix.
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Also, as a Lagrangian advection measure, we have calcuean be revealed during a whole monopole revolution (see
lated the escape tim&¢zlov and Koshel1999 200Q Izrail- Fig. 5f). Since there are two centres, fluid particles in the
sky et al, 2004, which is the time a fluid particle needs to vicinity of the topographic vortex centre move almost regu-
be carried away by the exterior flow from the topographic larly; however, the surrounding fluid is carried away very fast
vortex region. This measure is an analogue to the Lyapunoysee Fig8c).
exponent, and it shows where the Lagrangian advection pro- The red region corresponds to a transitional case of the
gresses faster or slower. Thus, we have uniformly distributednonopole—topography interaction. Initially, the streamline
within the separatrix Dmarkers and then taken into con- pattern appears as a corotating dipole structure (se&ig.
sideration the time they would need to cross the line farthen, during a monopole revolution, the dipole structure
enough out of the vortex interaction (we chose line: 5). breaks, so that the point-monopole absorbs the topographic
The escape-time distributions are shown in RBgwhere  vortex elliptic point and becomes a new centre of the topo-
unity of the time is equal to the corresponding period of agraphic vortex over a certain time. During this time span,
monopole revolution. A general feature of all the subfiguresthe Lagrangian advection within the topographic vortex (with
is the almost circular areas of long-lived fluid particles. Thesethe new singular centre) is rather regular (see 5iy. How-
areas correspond to the monopole region with a very highever, during a whole monopole revolution, almost all the fluid
velocity that tends to infinity, approaching the monopole’s from the topographic vortex is carried away (see Bi)-
centre. Hence, fluid particles within these areas move regu- The green region corresponds to the capture of the
larly (Ryzhov and KosheR011h, and, therefore, they do not monopole, with the point-monopole centre playing the role
leave the topographic vortex region. of a new topographic vortex centre. Both at the initial stage

The blue region corresponds to a strong influence of theand the stage at half period, the streamline patterns comprise
monopole motion. At the initial stage, there are three regularonly one regular critical point that corresponds to the hy-
critical points that form a heteroclinic structure (see Baj. perbolic point of the topographic vortex. The initial stream-
The topographic vortex cannot be distinctly identified be- line pattern is shown in Fighi, while the streamline pattern
cause no instantaneous hyperbolic point corresponds to that half period appears as almost the same as that shown in
unperturbed hyperbolic point. So, this case of monopole—Fig. 5j. Thus, this case can be thought of as the topographic
topography interaction cannot be considered as a perturbarapping of a monopole vortex. The Lagrangian advection,
tion of the topographic vortex. Moreover, this initial stream- in this case, differs insignificantly from the case previously
line pattern resembles a counter-rotating dipole structureaddressed (see Fige).

(e.g.Voropayev et a].2001 Ryzhoy 2011). The change with Figures6 and 7 depict two examples of particle scatter-
time of this structure produces, at half period, three regu-ing due to counter- and corotation of the monopole and to-
lar critical points forming two homoclinic structures associ- pographic vortex. The dashed blue curve corresponds to the
ated either with the topographic or monopole vortices (seeunperturbed topographic vortex separatrix and serves as the
Fig. 5b). Due to that topological alteration, the Lagrangian boundary for the initial distribution of 10* markers. The
advection is very effective. Most particles are carried awaybold curve is the trajectory of the monopole, with a tri-
within 5 monopole revolutions (see Figg). angle at the monopole’s current position. Figéeshows

The purple region corresponds to a moderate influence ohow a prominent dipole structure appears due to the interac-
the monopole motion. At the initial stage, five regular crit- tion. Comparing Figsé and7, one can see that the counter-
ical points form one heteroclinic and one homoclinic struc- rotation case causes a more effective Lagrangian transport.
ture (see Fig5c). This homoclinic structure almost coincides However, the difference is rather small.
with the unperturbed topographic vortex separatrix, which Now, we consider the diagram shown in Fith for the
indicates that this case can be considered as a perturbatianiddle-layer monopole case. The main difference from the
of the topographic vortex flow. At half period, the streamline upper-layer monopole case is that no singular point appears
pattern appears almost the same as before in the blue regian the upper-layer velocity field; thus, the monopole ap-
(see Fig5hd). The Lagrangian advection still occurs fast, and pears regular and the topographic vortex can also be broken.
extends over the whole separatrix region, but is less efficienHence, a merger of the vortices can appear because both vor-
than before. No stagnation zone appears within the regiotiices are regular. This regularity leads all the streamline pat-
(see Fig8b). terns at half period to appear almost the same with one ellip-

The grey region corresponds to the weakest monopole intic point, which is formed by the merger, and one hyperbolic
fluence. This positivec region differs topologically from  point. Also, the lack of singular points leads to a much more
those presented. Because the vortices are corotating, the iniegular Lagrangian advection than above.
tial topological structure appears as a corotating dipole en- The yellow region corresponds to six initial regular crit-
veloped by a common separatrix (see FBig). So, this struc- ical points (see Fig9a) and two critical points at half pe-
ture can be considered as a topographic vortex with a doubléod (see Fig9b), which both correspond to the topographic
centre. Although this double centre greatly perturbs the fluidvortex with the monopole vortex having disappeared since
particle dynamics, the structure of the topographic vortexthe velocity of surrounding flow is too high for a closed
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(a) initial stage for the blue re- (b) stage at half pe- (c) initial stage for the purple (d) stage at half period
gion (k=—0.5, y=—3.5) riod for the blue region region (k=—0.1,y=—3.5) for the purple region
(k=-0.5,y=-3.5) (k=-0.1,y=-3.5)

(e) initial stage for the grey re- (f) stage at half pe- (g) initial stage for the red re- (h) stage at half period for the
gion (k=0.1,y=—5.5) riod for the grey region gion (k=0.3,y=—5) red region (k=0.3, y = —5)

(i) initial stage for the greenre- (j) stage at half period
gion (k=0.5,y = —4.5) for the green region
(k=0.5,y=—4.5)

Fig. 5. Streamlines of the flow in the upper-layer monopole case. Red curve corresponds to the monopole motion trajectory. Dashed blue
curve is the topographic vortex unperturbed separatrix.

circulation region to be formed. The position of the cor- and intense advection with no stagnation regions progress-
responding middle-layer monopole vortex is marked by aing. FigureslOc and d depict the escape-time distribution in
cross. Such a streamline pattern at half period is universalhe negative and positivecases, respectively.
for all coloured regions shown in Figb. The corresponding The brown region corresponds to the existence of two
escape-time distribution is shown in Fita. There is a big initial critical points and two critical points at half period.
stagnation region with mostly regular advection correspond-The middle-layer monopole does not induce a closed re-
ing to the lower closed region shown in F&a. gion within the upper layer. Despite that, the middle-layer
The orange region is arranged astridethe O line. This  monopole does greatly perturb the Lagrangian advection.
region corresponds to the existence of three initial criti- The corresponding streamline pattern does not change topo-
cal points. The difference between the negative and postogically during a monopole revolution, and it appears as al-
itive orange region initial streamline patterns is shown in most the same as that shown in Fép. However, on both
Fig. 9c and d. Both of the corresponding streamline pat-sides of thec = 0 line, the advection efficiency is very differ-
terns at half period, however, appear as almost the same at. Inthec < 0 zone, the Lagrangian advection is very irreg-
that shown in Fig9b. Since initially two vortex structures ular (see Figl0d) due to counter-rotation of the middle-layer
can be reliably identified, and at half period these structuresnonopole and the topographic vortex. On the other hand, in
merge, the escape-time distribution shows a very effectivehex > 0 zone, the Lagrangian advection is mostly regular,
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(@)t=15 (b) =30 ()t =45 (a)t=15 (b) t =30 (©)t=416

Fig. 6. An example of particle scattering in the upper-layer
monopole case due to counter-rotation of the monopole and to
pographic vortexx = —0.1, yg = —3.5. The bold black curve is
the trajectory of the monopole, with a triangle that shows the
monopole’s current position.

Fig. 7. The same as in Fig due to corotation of the monopole and
topographic vortexy = 0.1, yg = —3.5.

the exterior flow. It should be mentioned that the background
flow oscillation also affects the fluid particle dynamics, re-
and a big stagnation region appears near the topographigulting in a certain number of particles to leaving the topo-
vortex (see Figl0e), due to corotation of the middle-layer graphic vortex region. However, in our numerical simulation,

monopole and the topographic vortex. we chose a very small perturbation magnitude, (= 0.01),
We will further study how the irregular motion of the so there are very few such particles. So, by making use of
monopole influences the Lagrangian advection. such a configuration, we study the Lagrangian advection that
is mostly induced by the short-term monopole—topography
4.3 Irregular monopole motion interaction.

) ) ~ Figure 11 depicts an example of the Lagrangian ad-
In this paragraph, we analyse the Lagrangian advection inyection generated by the short-term interaction while the
duced by an aperiodic perturbation consisting of a periodicmonopole accomplishes a few revolutions within the topo-
background flow oscillation and a non-periodic part due tographic vortex. Figurd 1a shows the initial configuration of
monopole irregular motion within the topographic vortex. red and green markers corresponding to the topographic and
This irregular monopole motion occurs because the pointyonopole vortex regions, respectively. The unperturbed to-
monopole’s centre moves as a fluid particle in the periOdi'pographic vortex region is uniformly filled in with #0red
cally driven velocity field of the topographic vortex, whichis markers. Also, B x 10® green markers are placed to dis-
known to produce the irregular dynamics (eSpkolovskly  tinguish the monopole vortex region. The monopole with
et al, 1998 Kozlov and Koshel2007, Izrailsky et al, 2004 gtrengthi = 0.1 starts moving out of the topographic vor-
2008 Koshel et al. 2008. The aperiodic perturbation is ey (see Fig11a) at the point = —2, y = —8.4. Then, the
of interest in the view of studying real geophysical flows, monopole vortex is captured by the topographic vortex due
which are aperiodic by nature. Considerable progress hag, chaotic advection (see Fiylb). Next, Fig.11c shows the
been made in this way due to the implementation of dynam-narker distribution as the monopole has passed half a ro-
ical system theory (see a few recent studiancho et al.  tational period (the black curve points out the trajectory of
2006 Branicki and Wiggins 201Q Mendoza et a).2018  the monopole’s centre). A great deformation caused by the
Rypina et al. 2011 Titaud et al, 2011). Strictly speaking, if  monopole is clearly seen. Figuidd illustrates the particle
one set the background flow to oscillate periodically, distribution after the monopole has made three whole rev-
@) olutions about the topography. A few red markers from the

initial distribution have stayed within the topographic region.

whereuy andvy are the magnitude and frequency of the Figurelle depicts the monopole leaving the topographic vor-
background flow oscillation, then syste@) becomes a sys- tex region after four revolutions.
tem with one-and-a-half degrees of freedom permitting the Figure 12 also depicts a series of marker-scattering pat-
chaotic dynamics to occur. Hence, with such an oscillatingterns, but for the middle-layer monopole case. In this case,
background flow, the monopole can start moving out of thethe monopole starts moving at the position with coordi-
topographic vortex, and then it can be trapped temporarily bynatesx = —1.18, y = —8 and it appears as a regular vortex
the topography. And, conversely, if the monopole starts mov-within the upper layer. As a consequence, a closed recircu-
ing within the topographic vortex, it can be carried away by lation region corresponding to the monopole ceases to exist

W = Wo (14 puw cosvyt),
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Fig. 8. Escape-time distribution in the upper-layer monopole case.

monopole captures a great deal of the red markers initially as-
sociated with the topographic vortex. Thus, during topogra-
phy capture, the monopole encloses some red markers, then,
after being carried away from the topographic vortex, it ad-
vects them to infinity (see Fid.2e).

Figures11 and 12 also clearly show that particle advec-
tion is greatly affected by the number of monopole revo-
lutions about the topography. The longer the monopole re-
o ) volves about the topography, the more effective advection
(a) initial stage for the yellow  (b) stage at half period is. To estimate that short-term monopole influence, we have
region (k=—0.7,y=—2.5) for the yellow region performed a numerical simulation in which we calculated

(k=—0.7,y=-2.5) the number of fluid particles escaping the topographic vor-
tex with respect to the number of the monopole revolutions.
Since the monopole motion is irregular, two initially close
monopole trajectories wind around the topography very dif-
ferently, with different revolution numbers. Hence, it is im-
possible to predict how many revolutions the monopole will
complete starting at a new initial position. Thus, as initial po-
sitions for the monopole, we have chosen two intervals of ini-
tial positions:(x = —2, y € [-8.42;, —8.38)) for the upper-

(c) initial stage for the (d) initial stage for the layer monopole case and = —1.18, y € [-8.02 —7.98))
negative ~ orange  region positive  orange  region for the middle-layer monopole case.
(k=-0.5,y=—6) (k=0.5,y=—6) Then we followed the evolution of all the monopoles start-

ing at these initial positions, calculating the revolution num-

_ ) ) ) ber, N, of each of those monopoles, and obtained the advec-
Fig. 9. Streamlines of the flow in the mlddle-layer_ monqpole case. ion efficiency,E = na/n;, wherena is the number of mark-
The red curve corresponds to the monopole motion trajectory. The .
dashed blue curve is the topographic vortex unperturbed separatrixefrs advected out of the topographlc vortex. 'I.'hese.a.re the

markers that have crossed line= 5, andn; = 10% is the ini-

tial marker distribution number. It is also worth noting that,

although some of these monopoles have revolved about the
at the stage at half period. Hence, the green markers mostliopography an equal number of times, the Lagrangian advec-
leave the monopole region (see Figc). However, whenthe tion generated by these monopoles is mostly equivalent in

closed recirculation region appears again (see Hd), the
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Fig. 10.Escape-time distribution in the middle-layer monopole case.

(@t=0 (b)t=30 (©)t=90 (d)t=240 (e) t=315

Fig. 11. Upper-layer monopole case. Particle scattering at the short-term monopole—-topography interaction. Red and green markers corre-
spond to the topographic and monopole vortex regions, respectively. The blue dashed curve is the unperturbed topographic vortex separatrix
and the black curve points out the trajectory of the monopole’s centre. Subfigures depict markers’ distribution at the corresponding instant in
time.

each case (see Fi@3). Indeed, each point in Fidl3 cor- advection efficiency, but this efficiency is mostly determined
responds to one initial position of the monopole. Thus, if by |«|). Third, evidently, a point-monopole (see Figa and
different initial positions correspond to an equal number of b) causes a much more efficient advection than a regular one
monopole revolution®/, then advection efficienc¥ is suf- (see Fig13c and d).
ficiently similar.

Figurel3depicts advection efficiendy in the upper-layer .
monopole case (see Fif3a and b) and in the middle-layer 5 Conclusions
monopole case (see Fit3c and d). By analysing these sub-
figures, one can draw several conclusions. FNst 0.5 cor-
responds to the case of a monopole passing very close to t
topographic vortex but not being captured by it. In this case
however, if a monopole is very weak & 0.01), it causes a
great deal of the fluid particle advection. A few monopole

In the frame of a three-layer geophysical flow model, the
hIeagrangian advection of fluid particle in the vicinity of

a monopole vortex interacting with a topographic vortex
'has been addressed. Two cases of monopole propagation
have been investigated: upper-layer monopole propagation
revolutions are enough for all the particles from the topo- and middle-layer monopole propagation. Such advection has

graphic vortex region to be carried away. Second, the sigrPeen S_hOYV“ to be Qetermlne_d by two most S|gn|f|ca_nt pro-
of the monopole self-rotation is not the main reason for thecesses: first, chaotic advection due to the nonstationarity

of the monopole—topography interaction; and, second, the
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(a)t=0 (b)t=18 (c)t=96 (d)t=120 (e)t=315

Fig. 12.The same as in Fid.1 for the middle-layer monopole case.

appearance or disappearance of closed recirculation zondke interface heights can be written in the forRefllosky
in time. Cooperative influence of these processes causes ¥987)
very efficient Lagrangian advection. Two controlling param-
eters, namely the monopole’s strength and initial position,,  f (Y2—v1) p2 _J(Wz—=v2)p3
have been analysed, and, on the basis of the number of re L (g (p2—p1) 2= (g(p3—p2)
ular critical points assessment, a classification of different
regimes of the Lagrangian advection has been presented. Where p; is thei-layer fluid density;g is the gravitational

By adding a nonstationary term to the background flow, acceleration; andpy = p2 — p1 and Apz = p3 — p2 are the
we have analysed a short-term monopole—topography interdensity jumps.
action. If the monopole passes near the topographic vortex, Since our study concerns only the cases of the upper-
it causes a great deal of particles initially located within the and middle-layer monopole propagation, we set the lower-
topographic vortex to be carried away. If the monopole islayer potential vorticity to be always time-independent. Ad-
captured by the topographic vortex, then it rotates a certairdlitionally, either the upper- or middle-layer potential vortic-
time about the topography and, finally, is carried away by theity has one time-dependent singular value moving with the
background flow. During this passage, the topographic vortexnonopole’s centre. Hence, we have two sets of singular per-
almost completely renews its fluid. turbations of the flow:

f
Qm:qrﬂ;"i‘H_mﬂmaqri_r;

(A2)

),

G3—m =q3_p> 93 =193, (A3)

Appendix A

Three-layer QG flow

wherem = 1 corresponds to the upper-layer monopole case,
Fora background three-layer QG flow under the rlgld-'ld ap-m; =2 Corresponds to the midd|e_|ayer monopo|e case,
proximation, the potential vorticity;;, in thei-layer, where ;= is the monopole’s strength ang’ is the position
i =1,2,3 corresponds to the upper, middle, and lower layer,of the monopole’s singularity within the:-layer, ¢* is
is equal to Pedlosky 1987 the potential vorticity background value, ane; —r}; | =

\/(xi —x;;)z + (yi — y;;)2 with x;, y; being Cartesian coor-
dinates of a fluid particle within thelayer.

q1= Al/f1+Hi§1+fy q2=AK/f2+i(§2—C1)+f,
1 H;

f Potential vorticities (EqA1) should satisfy the potential
q3 = Ay3+ A (h(x,y)=¢2)+ f, (A1) vorticity conservation law in each layer,
where Ay; = 3% — % s the 2-D relative vorticity with — d,q; + J (i.¢;) =0. (A4)

stream functiony; andytwo-dimensional velocity field, v;;

f1, ¢2 are the interface heights between the upper and mid- To obtain explicit analytical relations for stream functions
dle, and the middle and lower layersix, y) = 78(r)) isthe  ;, one can split relations (Edil) (see e.gGryanik and
Dirac delta-function bottom irregularity with effective vol- Tevs 1989. Omitting intermediate transformations, we ex-
umert; H; is thei-layer depth; and is the constant Coriolis  plicitly obtain barotropic mod@; and two baroclinic modes
parameter. According to the pressure continuity condition,®,, ®3 for the upper 2 = 1) and middle £z = 2) layer
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monopole cases

— B3—m) 1

by = log(r/y)+  (A5)

f ((—1>3—m (o3 -m

y H;
. (12 —a2f1) T log (n)) 7

H3
1 3—-m " 1
By — ;‘(( ) (ﬁs )M1K0< st~ Dr) +
(vks(az— )rz))

L, BBt
1 3—m 1— a3,
®a=—L <( I e (ks B D) +

H3
H;

Ko(vka (B2~ 1>ri)) ,

(@2 —a1)T
H3

wherer; = /xZ+ vi2, 1ty = (v — )2+ (i — )
a1 = —ko2/ko1 — az/ko1 (—ko1 — ka2 + k3 (a2 — 1)),

a2 = (k1 + k3 + ko1 + koo + Ao) / (2k3),

B1 = —kao/ko1 — B2/ko1(—ka1— ko2 + k3 (B2 — 1)),

B2 = (k1 + k3 + ko1 + koo — Ao) / (2k3),

Ao =/ (k1 — k3 + ko1 + k22)® — 4 (—k1k3 — kako1 + klk222)a
y=ar—a1+p1— o+ a1fo—azfr, and ky= 522

5 ) ) HigAp1’
_ _[f%p3 fp2 _ _fp3
ks = fgnpm Hagap ANdk22 = g0

ko1 =

Now, introducing a nonvortical plane boundary source flux
in the form—Uy, which generates no vorticity and is com-
pensated by an analogous drain flux (dagailsky et al,
2004, whereU is a characteristic velocity, the final stream
functions of the three-layer model with the monopole mov-
ing within them-layer are

Yim = —Uy + Py + o P2y + Bi Pau, (A6)
whereaz =3=1
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