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DiscussionsInteraction of a monopole vortex with an isolated topographic
feature in a three-layer geophysical flow
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Abstract. In the frame of a three-layer, quasi-geostrophic
analytical model of anf -plane geophysical flow, the La-
grangian advection induced by the interaction of a monopole
vortex with an isolated topographic feature is addressed. Two
different cases when the monopole is located either within
the upper or the middle layer are of our interest. In the bottom
layer, there is a delta-function topographic feature, which
generates a closed recirculation region in its vicinity due to
the background flow. This recirculation region extends to the
middle and upper layers, and it plays the role of a topographic
vortex. The interaction between the monopole and the topo-
graphic vortex causes a complex, including chaotic, advec-
tion of fluid particles. We show that the model’s parameters,
namely the monopole and topographic vortices’ strengths
and initial positions, and the layers’ depths and densities, are
responsible for the diverse advection patterns. While the pat-
terns are rather complicated, one can single out two major
processes, which mostly govern the fluid particle advection.
The first one is the variation in time of the system’s phase
space structure, so that within the closed region of the to-
pographic vortex, there appear periodically unclosed particle
pathways by which the particles leave the topographic vor-
tex. The second one is chaotic advection that arises from the
nonstationarity of the monopole–topography interaction.

1 Introduction

Generally speaking, topographic vortices are coherent vorti-
cal structures appearing as closed recirculation regions over
bottom features in the ocean and atmosphere. Topographic
vortices play a fundamental role in the mass, salinity and
temperature advection (transport) in the ocean. Moreover,

topographic vortices are known to influence the dynamics of
different coherent structures, such as unrestrictedly moving
vortices (e.g.van Geffen and Davies, 1999; Dewar, 2002;
Herbette et al., 2003; An and McDonald, 2005; Herbette
et al., 2005; Sutyrin et al., 2011; Candon and Marshall,
2012; Zavala Sanśon et al., 2012). Such topographic vortices
greatly vary in vorticity and size scales in time (Baines and
Smith, 1993; Baines, 1993). In this paper, however, we are
only interested in meso- and synoptic-scale topographic vor-
tices, as these scales are generally believed to be prevailing
in the ocean (Chelton et al., 2007, 2011).

The present paper deals with the Lagrangian regular and
irregular (chaotic) advection generated by a vortex monopole
interacting with a topographic vortex. The topographic vor-
tex under investigation is generated by a regular three-
layerf -plane background flow (e.g.Pedlosky, 1987; Kozlov,
1995) with a delta-function bottom irregularity within the
lower layer (e.g.Sokolovskiy et al., 1998; Izrailsky et al.,
2004; Kozlov et al., 2005). Then we embed a monopole
point-vortex (e.g.Gryanik, 1983; Gryanik and Tevs, 1989;
Gryanik et al., 2000; Carton, 2001; Reznik, 2010; Reznik
and Kizner, 2010) either within the upper or middle layer.
So, these singularities move like passive tracers along regular
background-flow streamlines (Reznik and Kizner, 2007a,b,
2010), while generating a complex – either periodic (for a
time-independent background flow) or quasi-periodic (for
a periodically time-dependent background flow) – velocity
field in their own vicinity. Our main reason for employing
such a three-layer model (e.g.Sokolovskiy, 1997; Ryzhov
and Koshel, 2011a) is to study the Lagrangian advection
induced by the monopole–topography interaction when the
monopole is located within either the upper or middle layers.
Such monopole positioning can be considered as the simplest
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models for a surface eddy and for an interthermocline lens
(e.g.Carton et al., 2002; Wang and Dewar, 2003; Filyushkin
et al., 2011; Filyushkin and Sokolovskiy, 2011), respectively.
However, we should emphasize that the paper deals only with
the surface Lagrangian advection in both cases. The middle-
layer point-monopole appears in the upper layer as a regu-
lar vortex; thus, this configuration generates different fluid
particle advections due to the absence of singularity in the
monopole–topography velocity field.

We investigate two kinds of the monopole–topography in-
teraction: the first one is an infinite-time interaction and the
second one is a finite-time interaction. The infinite-time in-
teraction means that the monopole moves in closed regular
trajectories about the topographic vortex’s elliptic point for
infinite time due to the constancy of the background flow.
However, if the background flow depends periodically on
time, the dynamics of the monopole become more compli-
cated. The monopole itself can be captured within the to-
pographic vortex from the background flow or, conversely,
be released from the topographic vortex into the background
flow and consequently be carried away to infinity.

Thus, the main aim of the present study is to investigate
the Lagrangian advection of fluid particles due to the veloc-
ity field generated by the infinite and short-term monopole–
topography interactions.

2 Equations of motion

We study a three-layer QG flow model with the stream func-
tions presented in Appendix A (see Eq.A6). In a dimension-
less form, the model equations comprise important dimen-
sionless quantities, which will be further used as parameters
governing the different regimes of the Lagrangian advection.
Introduce length scaleL= (k3 (α2 − 1))−1/2; velocity scale
U ; the Rossby number,ε =

U
fL

; and an effective volume of

the topography asτ = πh0L
2, whereh0, L are the height

and radius of a corresponding cylinder (Sokolovskiy et al.,
1998). Then, the following governing parameters are

χ =
f τ

H3UL
=
h0π

εH3
, κm =

fµm

HmUL
, (1)

which characterize the dimensionless topographic vortex
strength and the dimensionless monopole strength, re-
spectively. Then, by satisfying the QG flow requirement
that h0

H3
∼O (ε), we setχ = π . Thus, choosing the fol-

lowing parameter values,H1 = 200 m,H2 = 400 m,H3 =

3000 m, ρ1 = 1026.56 kg m−3, ρ2 = 1027.84 kg m−3, and
ρ3 = 1028.32 kg m−3, we obtain the characteristic horizon-
tal topographic vortex scaleL∼ 1.3× 104 m.

Now, by making use of the dimensionless parameters and
the geostrophic relations, one can write the equations of
motion for the monopole’s centre and for a fluid particle
advected by the monopole–topography velocity field. The
monopole motion in them= 1,2-layer is governed by the

following equations of motion:

d

dt
x∗
m = −

∂ψmm

∂y

∣∣∣∣ x=x∗
m

y=y∗
m

=W +χ
y∗
m

r∗m
Vm
(
r∗m
)
, (2)

d

dt
y∗
m =

∂ψmm

∂x

∣∣∣∣ x=x∗
m

y=y∗
m

= −χ
x∗
m

r∗m
Vm
(
r∗m
)
,

whereW =W(t) is the dimensionless background flow ve-
locity,

Vm (ξ)=
1

γ

(
(α1β2 −α2β1)

1

ξ
+αm (β1 −β2)K1 (ξ)+

+βm (α2 −α1)

√
(β2 − 1)

(α2 − 1)
K1

(√
(β2 − 1)

(α2 − 1)
ξ

))
,

and r∗m =

√(
x∗
m

)2
+
(
y∗
m

)2 is the monopole position in the
m-layer. System (2) is a thoroughly-studied system which
governs the dynamics of a fluid particle due to the velocity
field generated by an exterior background flow intersecting
a delta-function topography. The Lagrangian advection in-
duced by system (2) has been studied recently in the frame
of barotropic (Sokolovskiy et al., 1998; Izrailsky et al., 2004;
Koshel and Prants, 2006), two-layer (Kozlov et al., 2005;
Ryzhov and Koshel, 2011b) and three-layer baroclinic geo-
physical flows (Ryzhov and Koshel, 2011a). In our case,
however, system (2) governs not the fluid particle dynam-
ics, but the monopole-centre dynamics. Thus, the upper-
and middle-layer monopole move as a fluid particle due to
the topographic vortex velocity field. Fluid particles of the
monopole–topography interaction system, however, undergo
the joint influence of both the monopole and topographic vor-
tex velocity fields.

Motion of a fluid particle influenced by the cooperative
monopole–topography velocity field obeys the relations

ẋi = −
∂ψim

∂yi
= (3)

= W + κm

(
yi − y

∗
m

)
r∗im

Pim
(
r∗im
)
+χ

yi

ri
Vi (ri) ,

ẏi =
∂ψim

∂xi
=

= −

(
κm

(
xi − x

∗
m

)
r∗im

Pim
(
r∗im
)
+χ

xi

ri
Vi (ri)

)
,

wherer∗im =

√(
xi − x∗

m

)2
+
(
yi − y∗

m

)2 is the fluid particle
position relative to the monopole’s centre position,

Pim (ξ)=
(−1)3−m

γ

(
(α3−m−β3−m)

1

ξ
+αi (β3−m− 1)

K1 (ξ)+ βi (1−α3−m)

√
(β2 − 1)

(α2 − 1)
K1

(√
(β2 − 1)

(α2 − 1)
ξ

))
,

and m= 1,2 corresponds to the upper- and middle-layer
monopole cases.
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Fig. 1: Azimuthal velocities of the topographic vortex within
the layers. Curves 1,2,3 correspond to the upper, middle,
and bottom layer, respectively. The horizontal straight line
indicates constant background velocity value W0 = 0.2π.

3 Monopole motion

First, we briefly analyse system (2). that governs the
monopole’s dynamics. An elaborated study of this system
has been conducted in (Ryzhov and Koshel, 2011a). If the160

background exterior flow is constant (W =W0), system (2)
is integrable in the sense of the stream-line-trajectory co-
incidence (e.g., Zaslavsky, 1998). Because the bottom to-
pography is singular, any nonzero value of W0 always pro-
duces a closed Taylor column region called a topographic165

vortex within the lower layer. To have such closed regions
within the middle and upper layers, however, the background
velocity should be lower than a critical value. This criti-
cal value is the maximal value of the azimuthal velocity in
the corresponding layer. So, if one chooses the background170

flow to satisfy this condition, then three different-size Tay-
lor columns will occur due to the bottom irregularity. These
three columns may be thought of as a discrete Taylor cone.
Figure 1 depicts azimuthal velocities Vi depending on dis-
tance r to the topographic vortex elliptic point. We chose175

W0 = 0.2π, χ= π to ensure the mesoscale closed regions to
exist in all three layers. The points, where the horizontal
line intersects the azimuthal velocity curves, correspond to
elliptic and hyperbolic critical points of the vortex. Figure 2
demonstrates stream-lines of the resulting topographic vortex180

in the upper-layer. The red curve indicates the separatrix di-
viding the flow into the vortical region and the exterior flow.
Since we also are interested in the middle-layer monopole
case, the vortical region of the middle layer is indicated by
the blue dashed curve.185

Fig. 2: Topographic vortex stream-lines for the upper layer.
The red curve indicates the separatrix. The dashed blue curve
corresponds to the middle layer separatrix. The cross marks
the delta-function topography position, (0, 0).

4 Fluid particle advection

4.1 Regular monopole motion

Now we can analyse the Lagrangian advection being induced
by the monopole-topography interaction velocity field. Mo-
tion of a fluid particle is governed by system (3), where190

the right-hand part of the relations comprises the monopole
motion solution given by (2). First, we consider the peri-
odic solution of (2). This solution, although it cannot be
expressed in an analytical form, is time-dependent with a
period being equal to the time of the monopole passing a195

closed trajectory within the separatrices shown in fig. 2.
Hence, system (3) is a dynamical system with one and a
half degrees of freedom, that allows the irregular dynamics
of the fluid particle, conventionally called chaotic advection
(Aref, 1984; Wiggins, 1992; Aref, 2002). Chaotic advection200

manifests itself through exponential divergence of close tra-
jectories in a finite time (e.g., Lichtenberg and Lieberman,
1983; Zaslavsky, 1998). The easiest way to demonstrate the
chaotic advection manifestation is by constructing Poincaré
sections of system (3). Figure 3a shows a Poincaré sec-205

tion as κ1 = 0.01, y∗1 (0) =−4, corresponding to frequency
ω = 0.1611 of monopole rotation along an orbit shown in
fig. 2.

That half degree of freedom corresponds to a time-
dependent perturbation, which concerning system (3) is the210

monopole motion term comprising strength κm. However,
this monopole strength is not the only parameter greatly af-
fecting the Lagrangian advection, the initial position of the
monopole is also of great importance. Indeed, initial posi-
tions of the monopole determine the orbit the monopole will215

pass along, and different orbits correspond to different rota-
tional frequencies. These, in turn, are the frequencies of the
periodic perturbation, that are introduced by the monopole
into the topographic vortex region. As the initial position

Fig. 1. Azimuthal velocities of the topographic vortex within the
layers. Curves 1,2,3 correspond to the upper, middle, and bottom
layer, respectively. The horizontal straight line indicates constant
background velocity valueW0 = 0.2π .

3 Monopole motion

First, we briefly analyse system (2), which governs the
monopole’s dynamics. An elaborated study of this system
has been conducted (Ryzhov and Koshel, 2011a). If the back-
ground exterior flow is constant (W =W0), system (2) is in-
tegrable in the sense of the streamline-trajectory coincidence
(e.g. Zaslavsky, 1998). Because the bottom topography is
singular, any nonzero value ofW0 always produces a closed
Taylor column region called a topographic vortex within the
lower layer. To have such closed regions within the middle
and upper layers, however, the background velocity should
be lower than a critical value. This critical value is the max-
imal value of the azimuthal velocity in the corresponding
layer. So, if one chooses the background flow to satisfy this
condition, then three different-sized Taylor columns will oc-
cur due to the bottom irregularity. These three columns may
be thought of as a discrete Taylor cone. Figure1 depicts az-
imuthal velocitiesVi depending on distancer to the topo-
graphic vortex elliptic point. We choseW0 = 0.2π, χ = π to
ensure the mesoscale closed regions exist in all three layers.
The points, where the horizontal line intersects the azimuthal
velocity curves, correspond to elliptic and hyperbolic criti-
cal points of the vortex. Figure2 demonstrates streamlines
of the resulting topographic vortex in the upper layer. The
red curve indicates the separatrix dividing the flow into the
vortical region and the exterior flow. Since we also are inter-
ested in the middle-layer monopole case, the vortical region
of the middle layer is indicated by the blue dashed curve.
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velocity should be lower than a critical value. This criti-
cal value is the maximal value of the azimuthal velocity in
the corresponding layer. So, if one chooses the background170

flow to satisfy this condition, then three different-size Tay-
lor columns will occur due to the bottom irregularity. These
three columns may be thought of as a discrete Taylor cone.
Figure 1 depicts azimuthal velocities Vi depending on dis-
tance r to the topographic vortex elliptic point. We chose175
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line intersects the azimuthal velocity curves, correspond to
elliptic and hyperbolic critical points of the vortex. Figure 2
demonstrates stream-lines of the resulting topographic vortex180

in the upper-layer. The red curve indicates the separatrix di-
viding the flow into the vortical region and the exterior flow.
Since we also are interested in the middle-layer monopole
case, the vortical region of the middle layer is indicated by
the blue dashed curve.185

Fig. 2: Topographic vortex stream-lines for the upper layer.
The red curve indicates the separatrix. The dashed blue curve
corresponds to the middle layer separatrix. The cross marks
the delta-function topography position, (0, 0).

4 Fluid particle advection

4.1 Regular monopole motion

Now we can analyse the Lagrangian advection being induced
by the monopole-topography interaction velocity field. Mo-
tion of a fluid particle is governed by system (3), where190

the right-hand part of the relations comprises the monopole
motion solution given by (2). First, we consider the peri-
odic solution of (2). This solution, although it cannot be
expressed in an analytical form, is time-dependent with a
period being equal to the time of the monopole passing a195

closed trajectory within the separatrices shown in fig. 2.
Hence, system (3) is a dynamical system with one and a
half degrees of freedom, that allows the irregular dynamics
of the fluid particle, conventionally called chaotic advection
(Aref, 1984; Wiggins, 1992; Aref, 2002). Chaotic advection200

manifests itself through exponential divergence of close tra-
jectories in a finite time (e.g., Lichtenberg and Lieberman,
1983; Zaslavsky, 1998). The easiest way to demonstrate the
chaotic advection manifestation is by constructing Poincaré
sections of system (3). Figure 3a shows a Poincaré sec-205

tion as κ1 = 0.01, y∗1 (0) =−4, corresponding to frequency
ω = 0.1611 of monopole rotation along an orbit shown in
fig. 2.

That half degree of freedom corresponds to a time-
dependent perturbation, which concerning system (3) is the210

monopole motion term comprising strength κm. However,
this monopole strength is not the only parameter greatly af-
fecting the Lagrangian advection, the initial position of the
monopole is also of great importance. Indeed, initial posi-
tions of the monopole determine the orbit the monopole will215

pass along, and different orbits correspond to different rota-
tional frequencies. These, in turn, are the frequencies of the
periodic perturbation, that are introduced by the monopole
into the topographic vortex region. As the initial position

Fig. 2. Topographic vortex streamlines for the upper layer. The red
curve indicates the separatrix. The dashed blue curve corresponds
to the middle-layer separatrix. The cross marks the delta-function
topography position,(0, 0).

4 Fluid particle advection

4.1 Regular monopole motion

Now we can analyse the Lagrangian advection induced by
the monopole–topography interaction velocity field. Motion
of a fluid particle is governed by system (3), where the right-
hand part of the relations comprises the monopole motion so-
lution given by Eq. (2). First, we consider the periodic solu-
tion of Eq. (2). This solution, although it cannot be expressed
in an analytical form, is time-dependent with a period being
equal to the time of the monopole passing a closed trajectory
within the separatrices shown in Fig.2. Hence, system (3) is
a dynamical system with one-and-a-half degrees of freedom
that allows the irregular dynamics of the fluid particle, con-
ventionally called chaotic advection (Aref, 1984, 2002; Wig-
gins, 1992). Chaotic advection manifests itself through expo-
nential divergence of close trajectories in a finite time (e.g.
Lichtenberg and Lieberman, 1983; Zaslavsky, 1998). The
easiest way to demonstrate the chaotic advection manifesta-
tion is by constructing Poincaré sections of system (3). Fig-
ure 3a shows a Poincaré section asκ1 = 0.01, y∗

1 (0)= −4,
corresponding to frequencyω = 0.1611 of monopole rota-
tion along an orbit shown in Fig.2.

That half degree of freedom corresponds to a time-
dependent perturbation, which concerning system (3) is the
monopole motion term comprising strengthκm. However,
this monopole strength is not the only parameter greatly af-
fecting the Lagrangian advection; the initial position of the
monopole is also of great importance. Indeed, initial posi-
tions of the monopole determine the orbit the monopole will
pass along, and different orbits correspond to different rota-
tional frequencies. These, in turn, are the frequencies of the
periodic perturbation that are introduced by the monopole
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(a) (0,−4) (b) (0,−0.6936)

Fig. 3: Equivalent Poincaré sections of system (3) for the
same values of κ= 0.01 and the same values of perturbation
frequency ω but different monopole initial positions (x∗1, y

∗
1).

parameter, we choose the positions where the stream-lines220

(shown in fig. 2) intersect the y-axis. Figures 3a,b show the
equivalent structures of system (3) phase space for different
initial positions of the monopole, corresponding nevertheless
to the same stream-line. Hence, the positions on the y-axis
correspond to all the frequencies of the monopole rotation225

about topography. Thus, we will further address how the
monopole’s strength and initial position parameters affect the
fluid particle dynamics.

The Poincaré section analysis is a very useful technique
to estimate which part of fluid particles is involved either230

in regular advection or in chaotic advection, however, this
technique fails to show what happens with fluid particles at
certain moments. So, to address the question, how these
fluid particles move while the monopole achieves a revolu-
tion about the topography, we calculate the number of criti-235

cal points that appear at each instant in the flow (Ryzhov and
Koshel, 2011b; Ryzhov et al., 2012). The simple idea of this
classification is that the more critical points of their initial set
survive or, in other worlds, the fewer topological changes ap-
pear during a monopole revolution the more regular system240

(3) is.

4.2 Diagram of the number of the critical points

As the monopole moves about topography, the number of the
regular critical points changes, altering flow topology char-
acteristics with time (e.g., Aref and Brons, 1998). It should245

be mentioned, that, in the upper layer monopole case, one
singular critical point corresponding to the monopole’s cen-
tre always exists, so, we have excluded it from consideration.
In the middle-layer monopole case, no singular points occur

(a) upper-layer monopole
case

(b) middle-layer monopole
case

Fig. 4: Figure 4a, and fig. 4b correspond to the upper-layer
monopole case and to the middle-layer monopole case, re-
spectively. Number of the flow’s regular critical points by
colour. Blue − 3 initial points and 3 or 5 points at half pe-
riod; purple− 5 initial points and 5 points at half period; grey
− 3 initial points and 3 points at half period; red − 3 initial
points and 1 point at half period; green − 1 initial point and
1 point at half period. Yellow − 6 initial points and 2 points
at half period; orange − 4 initial points and 2 points at half
period; brown − 2 initial points and 2 points at half period.

within the upper-layer velocity field because the middle-layer250

point-monopole appears as a regular one in the upper layer.
So, making use of the classification, based on the number of
regular critical points appearing at certain instants of time,
we present diagrams of the number of the regular critical
points in the upper-layer monopole case and in the middle-255

layer monopole case, respectively, depending on monopole’s
strength κ and initial position y. These diagrams depict by
colour how many regular critical points appear at the begin-
ning of the monopole rotation (initial critical points) and at
the time the monopole has passed half a rotation period (crit-260

ical points at half period).
In these diagrams, the κ < 0 region corresponds to

counter-rotation of the monopole and topographic vortex,
and κ > 0 corresponds to co-rotation of the monopole and
topographic vortex. First, we consider the upper layer265

monopole case. Figure 5 shows the flow’s stream-lines at the
initial stage of monopole motion and the stage at half period.
The red curves are the monopole trajectories, and the dashed
blue curve corresponds to the unperturbed topographic vor-
tex separatrix.270

Also, as a Lagrangian advection measure, we have calcu-
lated the escape time (Kozlov and Koshel, 1999, 2000; Izrail-

Fig. 3.Equivalent Poincaré sections of system (3) for the same val-
ues ofκ = 0.01 and the same values of perturbation frequencyω

but different monopole initial positions
(
x∗

1, y
∗
1

)
.

into the topographic vortex region. As the initial position
parameter, we choose the positions where the streamlines
(shown in Fig.2) intersect the y-axis. Figure3a and b show
the equivalent structures of system (3) phase space for dif-
ferent initial positions of the monopole, corresponding nev-
ertheless to the same streamline. Hence, the positions on the
y-axis correspond to all the frequencies of the monopole ro-
tation about topography. Thus, we will further address how
the monopole’s strength and initial position parameters affect
the fluid particle dynamics.

The Poincaŕe section analysis is a very useful technique
to estimate which part of fluid particles is involved either
in regular advection or in chaotic advection; however, this
technique fails to show what happens with fluid particles at
certain moments. So, to address the question of how these
fluid particles move while the monopole achieves a revolu-
tion about the topography, we calculate the number of criti-
cal points that appear at each instant in the flow (Ryzhov and
Koshel, 2011b; Ryzhov et al., 2012). The simple idea of this
classification is that the more critical points of their initial
set survive or, in other words, the fewer topological changes
appear during a monopole revolution, the more regular sys-
tem (3) is.

4.2 Diagram of the number of the critical points

As the monopole moves about topography, the number of the
regular critical points changes, altering flow topology char-
acteristics with time (e.g.Aref and Brons, 1998). It should
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(a) (0,−4) (b) (0,−0.6936)

Fig. 3: Equivalent Poincaré sections of system (3) for the
same values of κ= 0.01 and the same values of perturbation
frequency ω but different monopole initial positions (x∗1, y

∗
1).

parameter, we choose the positions where the stream-lines220

(shown in fig. 2) intersect the y-axis. Figures 3a,b show the
equivalent structures of system (3) phase space for different
initial positions of the monopole, corresponding nevertheless
to the same stream-line. Hence, the positions on the y-axis
correspond to all the frequencies of the monopole rotation225

about topography. Thus, we will further address how the
monopole’s strength and initial position parameters affect the
fluid particle dynamics.

The Poincaré section analysis is a very useful technique
to estimate which part of fluid particles is involved either230

in regular advection or in chaotic advection, however, this
technique fails to show what happens with fluid particles at
certain moments. So, to address the question, how these
fluid particles move while the monopole achieves a revolu-
tion about the topography, we calculate the number of criti-235

cal points that appear at each instant in the flow (Ryzhov and
Koshel, 2011b; Ryzhov et al., 2012). The simple idea of this
classification is that the more critical points of their initial set
survive or, in other worlds, the fewer topological changes ap-
pear during a monopole revolution the more regular system240

(3) is.

4.2 Diagram of the number of the critical points

As the monopole moves about topography, the number of the
regular critical points changes, altering flow topology char-
acteristics with time (e.g., Aref and Brons, 1998). It should245

be mentioned, that, in the upper layer monopole case, one
singular critical point corresponding to the monopole’s cen-
tre always exists, so, we have excluded it from consideration.
In the middle-layer monopole case, no singular points occur

(a) upper-layer monopole
case

(b) middle-layer monopole
case

Fig. 4: Figure 4a, and fig. 4b correspond to the upper-layer
monopole case and to the middle-layer monopole case, re-
spectively. Number of the flow’s regular critical points by
colour. Blue − 3 initial points and 3 or 5 points at half pe-
riod; purple− 5 initial points and 5 points at half period; grey
− 3 initial points and 3 points at half period; red − 3 initial
points and 1 point at half period; green − 1 initial point and
1 point at half period. Yellow − 6 initial points and 2 points
at half period; orange − 4 initial points and 2 points at half
period; brown − 2 initial points and 2 points at half period.

within the upper-layer velocity field because the middle-layer250

point-monopole appears as a regular one in the upper layer.
So, making use of the classification, based on the number of
regular critical points appearing at certain instants of time,
we present diagrams of the number of the regular critical
points in the upper-layer monopole case and in the middle-255

layer monopole case, respectively, depending on monopole’s
strength κ and initial position y. These diagrams depict by
colour how many regular critical points appear at the begin-
ning of the monopole rotation (initial critical points) and at
the time the monopole has passed half a rotation period (crit-260

ical points at half period).
In these diagrams, the κ < 0 region corresponds to

counter-rotation of the monopole and topographic vortex,
and κ > 0 corresponds to co-rotation of the monopole and
topographic vortex. First, we consider the upper layer265

monopole case. Figure 5 shows the flow’s stream-lines at the
initial stage of monopole motion and the stage at half period.
The red curves are the monopole trajectories, and the dashed
blue curve corresponds to the unperturbed topographic vor-
tex separatrix.270

Also, as a Lagrangian advection measure, we have calcu-
lated the escape time (Kozlov and Koshel, 1999, 2000; Izrail-

Fig. 4. (a) and (b) correspond to the upper-layer monopole case
and to the middle-layer monopole case, respectively. Number of the
flow’s regular critical points by colour. Blue – 3 initial points and
3 or 5 points at half period; purple – 5 initial points and 5 points at
half period; grey – 3 initial points and 3 points at half period; red –
3 initial points and 1 point at half period; and green – 1 initial point
and 1 point at half period. Yellow – 6 initial points and 2 points at
half period; orange – 4 initial points and 2 points at half period; and
brown – 2 initial points and 2 points at half period.

be mentioned that, in the upper-layer monopole case, one
singular critical point corresponding to the monopole’s cen-
tre always exists, so we have excluded it from consideration.
In the middle-layer monopole case, no singular points occur
within the upper-layer velocity field because the middle-layer
point-monopole appears as a regular one in the upper layer.
So, making use of the classification based on the number of
regular critical points appearing at certain instants of time,
we present diagrams of the number of the regular critical
points in the upper-layer monopole case and in the middle-
layer monopole case, respectively, depending on monopole’s
strengthκ and initial positiony. These diagrams depict by
colour how many regular critical points appear at the begin-
ning of the monopole rotation (initial critical points) and at
the time the monopole has passed half a rotation period (crit-
ical points at half period).

In these diagrams, theκ < 0 region corresponds to
counter-rotation of the monopole and topographic vor-
tex, andκ > 0 corresponds to corotation of the monopole
and topographic vortex. First, we consider the upper-layer
monopole case. Figure5 shows the flow’s streamlines at the
initial stage of monopole motion and the stage at half period.
The red curves are the monopole trajectories, and the dashed
blue curve corresponds to the unperturbed topographic vor-
tex separatrix.
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Also, as a Lagrangian advection measure, we have calcu-
lated the escape time (Kozlov and Koshel, 1999, 2000; Izrail-
sky et al., 2004), which is the time a fluid particle needs to
be carried away by the exterior flow from the topographic
vortex region. This measure is an analogue to the Lyapunov
exponent, and it shows where the Lagrangian advection pro-
gresses faster or slower. Thus, we have uniformly distributed
within the separatrix 104 markers and then taken into con-
sideration the time they would need to cross the line far
enough out of the vortex interaction (we chose linex = 5).
The escape-time distributions are shown in Fig.8, where
unity of the time is equal to the corresponding period of a
monopole revolution. A general feature of all the subfigures
is the almost circular areas of long-lived fluid particles. These
areas correspond to the monopole region with a very high
velocity that tends to infinity, approaching the monopole’s
centre. Hence, fluid particles within these areas move regu-
larly (Ryzhov and Koshel, 2011b), and, therefore, they do not
leave the topographic vortex region.

The blue region corresponds to a strong influence of the
monopole motion. At the initial stage, there are three regular
critical points that form a heteroclinic structure (see Fig.5a).
The topographic vortex cannot be distinctly identified be-
cause no instantaneous hyperbolic point corresponds to the
unperturbed hyperbolic point. So, this case of monopole–
topography interaction cannot be considered as a perturba-
tion of the topographic vortex. Moreover, this initial stream-
line pattern resembles a counter-rotating dipole structure
(e.g.Voropayev et al., 2001; Ryzhov, 2011). The change with
time of this structure produces, at half period, three regu-
lar critical points forming two homoclinic structures associ-
ated either with the topographic or monopole vortices (see
Fig. 5b). Due to that topological alteration, the Lagrangian
advection is very effective. Most particles are carried away
within 5 monopole revolutions (see Fig.8a).

The purple region corresponds to a moderate influence of
the monopole motion. At the initial stage, five regular crit-
ical points form one heteroclinic and one homoclinic struc-
ture (see Fig.5c). This homoclinic structure almost coincides
with the unperturbed topographic vortex separatrix, which
indicates that this case can be considered as a perturbation
of the topographic vortex flow. At half period, the streamline
pattern appears almost the same as before in the blue region
(see Fig.5d). The Lagrangian advection still occurs fast, and
extends over the whole separatrix region, but is less efficient
than before. No stagnation zone appears within the region
(see Fig.8b).

The grey region corresponds to the weakest monopole in-
fluence. This positiveκ region differs topologically from
those presented. Because the vortices are corotating, the ini-
tial topological structure appears as a corotating dipole en-
veloped by a common separatrix (see Fig.5e). So, this struc-
ture can be considered as a topographic vortex with a double
centre. Although this double centre greatly perturbs the fluid
particle dynamics, the structure of the topographic vortex

can be revealed during a whole monopole revolution (see
Fig. 5f). Since there are two centres, fluid particles in the
vicinity of the topographic vortex centre move almost regu-
larly; however, the surrounding fluid is carried away very fast
(see Fig.8c).

The red region corresponds to a transitional case of the
monopole–topography interaction. Initially, the streamline
pattern appears as a corotating dipole structure (see Fig.5g);
then, during a monopole revolution, the dipole structure
breaks, so that the point-monopole absorbs the topographic
vortex elliptic point and becomes a new centre of the topo-
graphic vortex over a certain time. During this time span,
the Lagrangian advection within the topographic vortex (with
the new singular centre) is rather regular (see Fig.5h). How-
ever, during a whole monopole revolution, almost all the fluid
from the topographic vortex is carried away (see Fig.8d).

The green region corresponds to the capture of the
monopole, with the point-monopole centre playing the role
of a new topographic vortex centre. Both at the initial stage
and the stage at half period, the streamline patterns comprise
only one regular critical point that corresponds to the hy-
perbolic point of the topographic vortex. The initial stream-
line pattern is shown in Fig.5i, while the streamline pattern
at half period appears as almost the same as that shown in
Fig. 5j. Thus, this case can be thought of as the topographic
trapping of a monopole vortex. The Lagrangian advection,
in this case, differs insignificantly from the case previously
addressed (see Fig.8e).

Figures6 and 7 depict two examples of particle scatter-
ing due to counter- and corotation of the monopole and to-
pographic vortex. The dashed blue curve corresponds to the
unperturbed topographic vortex separatrix and serves as the
boundary for the initial distribution of∼ 104 markers. The
bold curve is the trajectory of the monopole, with a tri-
angle at the monopole’s current position. Figure6c shows
how a prominent dipole structure appears due to the interac-
tion. Comparing Figs.6 and7, one can see that the counter-
rotation case causes a more effective Lagrangian transport.
However, the difference is rather small.

Now, we consider the diagram shown in Fig.4b for the
middle-layer monopole case. The main difference from the
upper-layer monopole case is that no singular point appears
in the upper-layer velocity field; thus, the monopole ap-
pears regular and the topographic vortex can also be broken.
Hence, a merger of the vortices can appear because both vor-
tices are regular. This regularity leads all the streamline pat-
terns at half period to appear almost the same with one ellip-
tic point, which is formed by the merger, and one hyperbolic
point. Also, the lack of singular points leads to a much more
regular Lagrangian advection than above.

The yellow region corresponds to six initial regular crit-
ical points (see Fig.9a) and two critical points at half pe-
riod (see Fig.9b), which both correspond to the topographic
vortex with the monopole vortex having disappeared since
the velocity of surrounding flow is too high for a closed
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(a) initial stage for the blue re-
gion (κ=−0.5, y=−3.5)

(b) stage at half pe-
riod for the blue region
(κ=−0.5,y=−3.5)

(c) initial stage for the purple
region (κ=−0.1, y=−3.5)

(d) stage at half period
for the purple region
(κ=−0.1, y=−3.5)

(e) initial stage for the grey re-
gion (κ=0.1, y=−5.5)

(f) stage at half pe-
riod for the grey region
(κ=0.1, y=−5.5)

(g) initial stage for the red re-
gion (κ=0.3, y=−5)

(h) stage at half period for the
red region (κ= 0.3, y=−5)

(i) initial stage for the green re-
gion (κ=0.5,y=−4.5)

(j) stage at half period
for the green region
(κ=0.5,y=−4.5)

Fig. 5: Stream-lines of the flow in the upper-layer monopole case. Red curve corresponds to the monopole motion trajectory.
Dashed blue curve is the topographic vortex unperturbed separatrix.

stream-line pattern at half period is universal for all coloured
regions shown in fig. 9b. The corresponding escape time
distribution is shown in fig. 10a. There is a big stagnation385

region with mostly regular advection corresponding to the
lower closed region shown in fig. 9a.

The orange region is arranged astride the κ= 0 line. This
region corresponds to the existence of three initial critical
points. The difference between the negative and positive or-390

ange region initial stream-line patterns is shown in fig. 9c,d.
Both the corresponding stream-line patterns at half period,
however, appear as almost the same as that shown in fig. 9b.
Since initially two vortex structures can be reliably identi-
fied, and at half period, these structures merge, the escape395

time distribution shows a very effective and intense advec-
tion with no stagnation regions progressing. Figures 10c,d
depict the escape time distribution in the negative and posi-

tive κ cases, respectively.

The brown region corresponds to the existence of two400

initial critical points and two critical points at half period.
The middle-layer monopole does not induce a closed re-
gion within the upper layer. Despite that, the middle-layer
monopole does greatly perturb the Lagrangian advection.
The corresponding stream-line pattern does not change topo-405

logically during a monopole revolution and it appears as al-
most the same as that shown in fig. 9b. However, on both
sides of the κ= 0 line, the advection efficiency is very dif-
ferent. In the κ< 0 zone, the Lagrangian advection is very
irregular (see fig. 10d) due to counter-rotation of the middle-410

layer monopole and the topographic vortex. On the other
hand, in the κ> 0 zone, the Lagrangian advection is mostly
regular, a big stagnation region appears near the topographic
vortex (see fig. 10e), due to co-rotation of the middle-layer

Fig. 5. Streamlines of the flow in the upper-layer monopole case. Red curve corresponds to the monopole motion trajectory. Dashed blue
curve is the topographic vortex unperturbed separatrix.

circulation region to be formed. The position of the cor-
responding middle-layer monopole vortex is marked by a
cross. Such a streamline pattern at half period is universal
for all coloured regions shown in Fig.9b. The corresponding
escape-time distribution is shown in Fig.10a. There is a big
stagnation region with mostly regular advection correspond-
ing to the lower closed region shown in Fig.9a.

The orange region is arranged astride theκ = 0 line. This
region corresponds to the existence of three initial criti-
cal points. The difference between the negative and pos-
itive orange region initial streamline patterns is shown in
Fig. 9c and d. Both of the corresponding streamline pat-
terns at half period, however, appear as almost the same as
that shown in Fig.9b. Since initially two vortex structures
can be reliably identified, and at half period these structures
merge, the escape-time distribution shows a very effective

and intense advection with no stagnation regions progress-
ing. Figures10c and d depict the escape-time distribution in
the negative and positiveκ cases, respectively.

The brown region corresponds to the existence of two
initial critical points and two critical points at half period.
The middle-layer monopole does not induce a closed re-
gion within the upper layer. Despite that, the middle-layer
monopole does greatly perturb the Lagrangian advection.
The corresponding streamline pattern does not change topo-
logically during a monopole revolution, and it appears as al-
most the same as that shown in Fig.9b. However, on both
sides of theκ = 0 line, the advection efficiency is very differ-
ent. In theκ < 0 zone, the Lagrangian advection is very irreg-
ular (see Fig.10d) due to counter-rotation of the middle-layer
monopole and the topographic vortex. On the other hand, in
theκ > 0 zone, the Lagrangian advection is mostly regular,
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(a) t=15 (b) t=30 (c) t=45

Fig. 6: An example of particle scattering in the upper-layer
monopole case due to counter-rotation of the monopole and
topographic vortex, κ=−0.1, y0 =−3.5. Bold black curve
is the trajectory of the monopole, with a triangle that shows
the monopole current position.

(a) t=15 (b) t=30 (c) t=46

Fig. 7: The same as in fig. 6 due to co-rotation of the
monopole and topographic vortex, κ= 0.1, y0 =−3.5.

monopole and the topographic vortex.415

We will further study how the irregular motion of the
monopole influences the Lagrangian advection

4.3 Irregular monopole motion

In this paragraph, we analyse the Lagrangian advection be-
ing induced by a aperiodic perturbation consisting of peri-420

odic background flow oscillation and non-periodic part due
to monopole irregular motion within the topographic vortex.
This irregular monopole motion occurs because the point-
monopole’s centre moves as a fluid particle in the periodi-
cally driven velocity field of the topographic vortex, which is425

known to produce the irregular dynamics (e.g., Sokolovskiy
et al., 1998; Kozlov and Koshel, 2001; Izrailsky et al., 2004,
2008; Koshel et al., 2008). The aperiodic perturbation is
of interest in the view of studying real geophysical flows,
which are aperiodic by nature. Considerable progress has430

been made in this way due to the implementation of dynam-
ical system theory (see a few recent studies Mancho et al.,
2006; Branicki and Wiggins, 2010; Mendoza et al., 2010;

Rypina et al., 2011; Titaud et al., 2011). Strictly speaking, if
one set the background flow to oscillate periodically,435

W =W0(1+µW cosνW t), (4)

where µW , and νW are the magnitude and frequency of the
background flow oscillation, then system (2) becomes a sys-
tem with one and a half degree of freedom permitting the
chaotic dynamics to occur. Hence, with such an oscillating440

background flow, the monopole can start moving out of the
topographic vortex, and then it can be trapped temporarily by
the topography. And, on the contrary, if the monopole starts
moving within the topographic vortex, it can be carried away
by the exterior flow. It should be mentioned that the back-445

ground flow oscillation also affects the fluid particle dynam-
ics, resulting in certain number of particles to leave the topo-
graphic vortex region. However, in our numerical simulation,
we chose a very small perturbation magnitude (µW = 0.01),
so there are very few such particles. So, by making use of450

such a configuration, we study the Lagrangian advection be-
ing mostly induced by the short-term monopole-topography
interaction.

Figure 11 depicts an example of the Lagrangian advec-
tion being generated by the short-term interaction, while the455

monopole accomplishes a few revolutions within the topo-
graphic vortex. Figure 11a shows the initial configuration of
red and green markers corresponding to the topographic and
monopole vortex regions, respectively. The unperturbed to-
pographic vortex region is uniformly filled in with 104 red460

markers. Also, 1.5 · 103 green markers are placed to dis-
tinguish the monopole vortex region. The monopole with
strength κ= 0.1 starts moving out of the topographic vor-
tex (see fig. 11a) at the point x=−2, y=−8.4. Then, the
monopole vortex is captured by the topographic vortex due465

to chaotic advection (see fig. 11b). Next, fig. 11c shows
the marker distribution as the monopole has passed half a ro-
tational period (the black curve points out the trajectory of
the monopole’s centre). A great deformation caused by the
monopole is clearly seen. Figure 11d illustrates the particle470

distribution after the monopole has made three whole rev-
olutions about the topography. A few red markers from the
initial distribution have stayed within the topographic region.
Figure 11e depicts the monopole leaving the topographic vor-
tex region after four revolutions.475

Figure 12 also depicts a series of marker scattering pat-
terns, but for the middle-layer monopole case. In this case,
the monopole starts moving at the position with coordinates
x=−1.18, y=−8 and it appears as a regular vortex within
the upper layer. As a consequence, a closed recirculation480

region corresponding to the monopole ceases to exist at the
stage at half period. Hence, the green markers mostly leave
the monopole region (see fig. 12c). However, when the
closed recirculation region appears again (see fig. 12d), the
monopole captures a great deal of the red markers initially as-485

sociated with the topographic vortex. Thus, during topogra-
phy capture, the monopole encloses some red markers, then,

Fig. 6. An example of particle scattering in the upper-layer
monopole case due to counter-rotation of the monopole and to-
pographic vortex,κ = −0.1, y0 = −3.5. The bold black curve is
the trajectory of the monopole, with a triangle that shows the
monopole’s current position.

and a big stagnation region appears near the topographic
vortex (see Fig.10e), due to corotation of the middle-layer
monopole and the topographic vortex.

We will further study how the irregular motion of the
monopole influences the Lagrangian advection.

4.3 Irregular monopole motion

In this paragraph, we analyse the Lagrangian advection in-
duced by an aperiodic perturbation consisting of a periodic
background flow oscillation and a non-periodic part due to
monopole irregular motion within the topographic vortex.
This irregular monopole motion occurs because the point-
monopole’s centre moves as a fluid particle in the periodi-
cally driven velocity field of the topographic vortex, which is
known to produce the irregular dynamics (e.g.Sokolovskiy
et al., 1998; Kozlov and Koshel, 2001; Izrailsky et al., 2004,
2008; Koshel et al., 2008). The aperiodic perturbation is
of interest in the view of studying real geophysical flows,
which are aperiodic by nature. Considerable progress has
been made in this way due to the implementation of dynam-
ical system theory (see a few recent studies:Mancho et al.,
2006; Branicki and Wiggins, 2010; Mendoza et al., 2010;
Rypina et al., 2011; Titaud et al., 2011). Strictly speaking, if
one set the background flow to oscillate periodically,

W =W0 (1+µW cosνW t) , (4)

whereµW andνW are the magnitude and frequency of the
background flow oscillation, then system (2) becomes a sys-
tem with one-and-a-half degrees of freedom permitting the
chaotic dynamics to occur. Hence, with such an oscillating
background flow, the monopole can start moving out of the
topographic vortex, and then it can be trapped temporarily by
the topography. And, conversely, if the monopole starts mov-
ing within the topographic vortex, it can be carried away by
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(a) t=15 (b) t=30 (c) t= 45

Fig. 6: An example of particle scattering in the upper-layer
monopole case due to counter-rotation of the monopole and
topographic vortex, κ=−0.1, y0 =−3.5. Bold black curve
is the trajectory of the monopole, with a triangle that shows
the monopole current position.

(a) t=15 (b) t=30 (c) t= 46

Fig. 7: The same as in fig. 6 due to co-rotation of the
monopole and topographic vortex, κ= 0.1, y0 =−3.5.

monopole and the topographic vortex.415

We will further study how the irregular motion of the
monopole influences the Lagrangian advection

4.3 Irregular monopole motion

In this paragraph, we analyse the Lagrangian advection be-
ing induced by a aperiodic perturbation consisting of peri-420

odic background flow oscillation and non-periodic part due
to monopole irregular motion within the topographic vortex.
This irregular monopole motion occurs because the point-
monopole’s centre moves as a fluid particle in the periodi-
cally driven velocity field of the topographic vortex, which is425

known to produce the irregular dynamics (e.g., Sokolovskiy
et al., 1998; Kozlov and Koshel, 2001; Izrailsky et al., 2004,
2008; Koshel et al., 2008). The aperiodic perturbation is
of interest in the view of studying real geophysical flows,
which are aperiodic by nature. Considerable progress has430

been made in this way due to the implementation of dynam-
ical system theory (see a few recent studies Mancho et al.,
2006; Branicki and Wiggins, 2010; Mendoza et al., 2010;

Rypina et al., 2011; Titaud et al., 2011). Strictly speaking, if
one set the background flow to oscillate periodically,435

W =W0(1+µW cosνW t), (4)

where µW , and νW are the magnitude and frequency of the
background flow oscillation, then system (2) becomes a sys-
tem with one and a half degree of freedom permitting the
chaotic dynamics to occur. Hence, with such an oscillating440

background flow, the monopole can start moving out of the
topographic vortex, and then it can be trapped temporarily by
the topography. And, on the contrary, if the monopole starts
moving within the topographic vortex, it can be carried away
by the exterior flow. It should be mentioned that the back-445

ground flow oscillation also affects the fluid particle dynam-
ics, resulting in certain number of particles to leave the topo-
graphic vortex region. However, in our numerical simulation,
we chose a very small perturbation magnitude (µW = 0.01),
so there are very few such particles. So, by making use of450

such a configuration, we study the Lagrangian advection be-
ing mostly induced by the short-term monopole-topography
interaction.

Figure 11 depicts an example of the Lagrangian advec-
tion being generated by the short-term interaction, while the455

monopole accomplishes a few revolutions within the topo-
graphic vortex. Figure 11a shows the initial configuration of
red and green markers corresponding to the topographic and
monopole vortex regions, respectively. The unperturbed to-
pographic vortex region is uniformly filled in with 104 red460

markers. Also, 1.5 · 103 green markers are placed to dis-
tinguish the monopole vortex region. The monopole with
strength κ= 0.1 starts moving out of the topographic vor-
tex (see fig. 11a) at the point x=−2, y=−8.4. Then, the
monopole vortex is captured by the topographic vortex due465

to chaotic advection (see fig. 11b). Next, fig. 11c shows
the marker distribution as the monopole has passed half a ro-
tational period (the black curve points out the trajectory of
the monopole’s centre). A great deformation caused by the
monopole is clearly seen. Figure 11d illustrates the particle470

distribution after the monopole has made three whole rev-
olutions about the topography. A few red markers from the
initial distribution have stayed within the topographic region.
Figure 11e depicts the monopole leaving the topographic vor-
tex region after four revolutions.475

Figure 12 also depicts a series of marker scattering pat-
terns, but for the middle-layer monopole case. In this case,
the monopole starts moving at the position with coordinates
x=−1.18, y=−8 and it appears as a regular vortex within
the upper layer. As a consequence, a closed recirculation480

region corresponding to the monopole ceases to exist at the
stage at half period. Hence, the green markers mostly leave
the monopole region (see fig. 12c). However, when the
closed recirculation region appears again (see fig. 12d), the
monopole captures a great deal of the red markers initially as-485

sociated with the topographic vortex. Thus, during topogra-
phy capture, the monopole encloses some red markers, then,

Fig. 7.The same as in Fig.6 due to corotation of the monopole and
topographic vortex,κ = 0.1, y0 = −3.5.

the exterior flow. It should be mentioned that the background
flow oscillation also affects the fluid particle dynamics, re-
sulting in a certain number of particles to leaving the topo-
graphic vortex region. However, in our numerical simulation,
we chose a very small perturbation magnitude (µW = 0.01),
so there are very few such particles. So, by making use of
such a configuration, we study the Lagrangian advection that
is mostly induced by the short-term monopole–topography
interaction.

Figure 11 depicts an example of the Lagrangian ad-
vection generated by the short-term interaction while the
monopole accomplishes a few revolutions within the topo-
graphic vortex. Figure11a shows the initial configuration of
red and green markers corresponding to the topographic and
monopole vortex regions, respectively. The unperturbed to-
pographic vortex region is uniformly filled in with 104 red
markers. Also, 1.5× 103 green markers are placed to dis-
tinguish the monopole vortex region. The monopole with
strengthκ = 0.1 starts moving out of the topographic vor-
tex (see Fig.11a) at the pointx = −2, y = −8.4. Then, the
monopole vortex is captured by the topographic vortex due
to chaotic advection (see Fig.11b). Next, Fig.11c shows the
marker distribution as the monopole has passed half a ro-
tational period (the black curve points out the trajectory of
the monopole’s centre). A great deformation caused by the
monopole is clearly seen. Figure11d illustrates the particle
distribution after the monopole has made three whole rev-
olutions about the topography. A few red markers from the
initial distribution have stayed within the topographic region.
Figure11e depicts the monopole leaving the topographic vor-
tex region after four revolutions.

Figure 12 also depicts a series of marker-scattering pat-
terns, but for the middle-layer monopole case. In this case,
the monopole starts moving at the position with coordi-
natesx = −1.18, y = −8 and it appears as a regular vortex
within the upper layer. As a consequence, a closed recircu-
lation region corresponding to the monopole ceases to exist
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vects them to the infinity (see fig. 12e).
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performed a numerical simulation, in which we calculated495

the number of fluid particles escaping the topographic vor-
tex with respect to the number of the monopole revolutions.
Since the monopole motion is irregular, two initially close
monopole trajectories wind around the topography very dif-
ferently, with different revolution numbers. Hence, it is im-500

possible to predict how many revolutions the monopole will
complete starting at a new initial position. Thus, as initial
positions for the monopole, we have chosen two intervals of
initial positions (x=−2, y ∈ [−8.42;−8.38]) for the upper-
layer monopole case, and (x=−1.18, y ∈ [−8.02;−7.98])505

for the middle-layer monopole case.
Then we have followed the evolution of all the monopoles

starting at these initial positions, calculating the revolution
number, N , of each of those monopoles, and obtained the
advection efficiency, E =na/ni, where na is the number of510

markers advected out of the topographic vortex. These are
the markers that have crossed line x= 5, and ni = 104 is the
initial marker distribution number. It is also worth noting,
that although some of these monopoles have revolved about
the topography an equal number of times, the Lagrangian ad-515

vection being generated by these monopoles is mostly equiv-
alent in each case (see fig. 13). Indeed, each point in fig. 13
corresponds to one initial position of the monopole. Thus,
if different initial positions correspond to equal number of
monopole revolutions N , then advection efficiency E is suf-520

ficiently similar.
Figure 13 depicts advection efficiency E in the upper-

layer monopole case (see fig. 13a,b), and in the middle-layer
monopole case (see fig. 13c,d). By analysing these subfig-
ures, one can draw several conclusions. First, N = 0.5 cor-525
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is. To estimate that short-term monopole influence, we have
performed a numerical simulation, in which we calculated495
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Fig. 9. Streamlines of the flow in the middle-layer monopole case.
The red curve corresponds to the monopole motion trajectory. The
dashed blue curve is the topographic vortex unperturbed separatrix.

at the stage at half period. Hence, the green markers mostly
leave the monopole region (see Fig.12c). However, when the
closed recirculation region appears again (see Fig.12d), the

monopole captures a great deal of the red markers initially as-
sociated with the topographic vortex. Thus, during topogra-
phy capture, the monopole encloses some red markers, then,
after being carried away from the topographic vortex, it ad-
vects them to infinity (see Fig.12e).

Figures11 and12 also clearly show that particle advec-
tion is greatly affected by the number of monopole revo-
lutions about the topography. The longer the monopole re-
volves about the topography, the more effective advection
is. To estimate that short-term monopole influence, we have
performed a numerical simulation in which we calculated
the number of fluid particles escaping the topographic vor-
tex with respect to the number of the monopole revolutions.
Since the monopole motion is irregular, two initially close
monopole trajectories wind around the topography very dif-
ferently, with different revolution numbers. Hence, it is im-
possible to predict how many revolutions the monopole will
complete starting at a new initial position. Thus, as initial po-
sitions for the monopole, we have chosen two intervals of ini-
tial positions:(x = −2, y ∈ [−8.42;−8.38]) for the upper-
layer monopole case and(x = −1.18, y ∈ [−8.02;−7.98])
for the middle-layer monopole case.

Then we followed the evolution of all the monopoles start-
ing at these initial positions, calculating the revolution num-
ber,N , of each of those monopoles, and obtained the advec-
tion efficiency,E = na/ni , wherena is the number of mark-
ers advected out of the topographic vortex. These are the
markers that have crossed linex = 5, andni = 104 is the ini-
tial marker distribution number. It is also worth noting that,
although some of these monopoles have revolved about the
topography an equal number of times, the Lagrangian advec-
tion generated by these monopoles is mostly equivalent in
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Fig. 10: Escape time distribution in the middle-layer monopole case.
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Fig. 11: Upper-layer monopole case. Particle scattering at the short-term monopole-topography interaction. Red and green
markers correspond to the topographic and monopole vortex regions, respectively, the blue dashed curve is the unperturbed
topographic vortex separatrix, and the black curve points out the trajectory of the monopole’s centre. Subfigures depict markers
distribution at the corresponding instant in time.

responds to the case of monopole passing very close to the
topographic vortex but not being captured by it. In this case,
although, if monopole is very weak (κ= 0.01), it causes a
great deal of the fluid particle advection. A few monopole
revolutions are enough for all the particles from the topo-530

graphic vortex region to be carried away. Second, the sign
of the monopole self-rotation is not the main reason of the
advection efficiency, but this efficiency is mostly determined
by |κ|). Third, evidently, a point-monopole (see fig. 13a,b)
causes a much more efficient advection than a regular one535

(see fig. 13c,d).

5 Conclusions

In the frame of a three-layer geophysical flow model, the
Lagrangian advection of fluid particle in the vicinity of a
monopole vortex interacting with a topographic vortex has540

been addressed. Two cases of the monopole propagation
have been investigated: the upper-layer monopole propaga-
tion, and middle-layer monopole propagation. Such advec-
tion has been shown to be determined by two most significant
processes. First, chaotic advection due to the nonstationar-545

ity of the monopole-topography interaction, and, second, the
appearance or disappearance of closed recirculation zones
in time. Cooperative influence of these processes causes a
very efficient Lagrangian advection. Two controlling param-
eters, namely, the monopole’s strength and initial position550

have been analysed, and, on the basis of the number of reg-
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in time. Cooperative influence of these processes causes a
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Fig. 11.Upper-layer monopole case. Particle scattering at the short-term monopole–topography interaction. Red and green markers corre-
spond to the topographic and monopole vortex regions, respectively. The blue dashed curve is the unperturbed topographic vortex separatrix,
and the black curve points out the trajectory of the monopole’s centre. Subfigures depict markers’ distribution at the corresponding instant in
time.

each case (see Fig.13). Indeed, each point in Fig.13 cor-
responds to one initial position of the monopole. Thus, if
different initial positions correspond to an equal number of
monopole revolutionsN , then advection efficiencyE is suf-
ficiently similar.

Figure13depicts advection efficiencyE in the upper-layer
monopole case (see Fig.13a and b) and in the middle-layer
monopole case (see Fig.13c and d). By analysing these sub-
figures, one can draw several conclusions. First,N = 0.5 cor-
responds to the case of a monopole passing very close to the
topographic vortex but not being captured by it. In this case,
however, if a monopole is very weak (κ = 0.01), it causes a
great deal of the fluid particle advection. A few monopole
revolutions are enough for all the particles from the topo-
graphic vortex region to be carried away. Second, the sign
of the monopole self-rotation is not the main reason for the

advection efficiency, but this efficiency is mostly determined
by |κ|). Third, evidently, a point-monopole (see Fig.13a and
b) causes a much more efficient advection than a regular one
(see Fig.13c and d).

5 Conclusions

In the frame of a three-layer geophysical flow model, the
Lagrangian advection of fluid particle in the vicinity of
a monopole vortex interacting with a topographic vortex
has been addressed. Two cases of monopole propagation
have been investigated: upper-layer monopole propagation
and middle-layer monopole propagation. Such advection has
been shown to be determined by two most significant pro-
cesses: first, chaotic advection due to the nonstationarity
of the monopole–topography interaction; and, second, the
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Fig. 12: The same as in fig. 11 for the middle-layer monopole case.

ular critical points assessment, a classification of different
regimes of the Lagrangian advection has been presented.

By adding a nonstationary term to the background flow,
we have analysed a short-term monopole-topography inter-555

action. If the monopole passes near the topographic vortex,
it causes a great deal of particles initially located within the
topographic vortex to be carried away. If the monopole is
captured by the topographic vortex, then it rotates a certain
time about the topography, and, finally, is carried away by560

the background flow. During this passage, the topographic
vortex almost completely renews its fluid.
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Appendix A
570

Three-layer QG flow

For a background three-layer QG flow under the rigid lid ap-
proximation, the potential vorticity, qi, in the i-layer, where
i= 1,2,3 corresponds to the upper, middle, and lower layer,
is equal to (Pedlosky, 1987)575

q1 = ∆ψ1 +
f

H1
ζ1 +f, q2 = ∆ψ2 +

f

H2
(ζ2−ζ1)+f, (A1)

q3 = ∆ψ3 +
f

H3
(h(x,y)−ζ2)+f,

where ∆ψi = ∂vi

∂x −
∂ui

∂y is the 2D relative vorticity with
stream-function ψi and two-dimensional velocity field ui,vi;
ζ1, ζ2 are the interface heights between the upper and mid-580

dle, and the middle and lower layers; h(x,y) = τδ(r)) is the
Dirac delta function bottom irregularity with effective vol-
ume τ ; Hi is the i-layer depth; f is the constant Coriolis
parameter. According to the pressure continuity condition,

the interface heights can be written in the form (Pedlosky,585

1987),

ζ1 =
f (ψ2−ψ1)ρ2

(g(ρ2−ρ1))
, ζ2 =

f (ψ3−ψ2)ρ3

(g(ρ3−ρ2))
, (A2)

where ρi is the i-layer fluid density; g is the gravitational ac-
celeration; ∆ρ1 = ρ2−ρ1, and ∆ρ2 = ρ3−ρ2 are the density
jumps.590

Since our study concerns only the cases of the upper- and
middle-layer monopole propagation, we set the lower-layer
potential vorticity to be always time-independent. And, ei-
ther the upper or middle layer potential vorticity has one
time-dependent singular value moving with the monopole’s595

centre. Hence, we have two sets of singular perturbations of
the flow,

qm = q∗m+
f

Hm
µmδ(|ri−r∗m|), q3−m = q∗3−m, q3 = q∗3 ,(A3)

where m = 1 corresponds to the upper-layer monopole
case, and m= 2 corresponds to the middle-layer monopole600

case, µm is the monopole’s strength and r∗m is the posi-
tion of the monopole’s singularity within the m-layer, q∗i
is the potential vorticity background value, and |ri−r∗m|=√

(xi−x∗m)2 +(yi−y∗m)2 with xi, yi being Cartesian coor-
dinates of a fluid particle within the i-layer.605

Potential vorticities (A1) should satisfy the potential vor-
ticity conservation law in each layer,

∂tqi+J (ψi,qi) = 0. (A4)

To obtain explicit analytical relations for stream-functions
ψi, one can split relations (A1) (see e.g., Gryanik and Tevs,610

1989). Omitting intermediate transformations, we explicitly
obtain barotropic mode Φ1 and two baroclinic modes Φ2, Φ3

for the upper (m= 1) and middle (m= 2) layer monopole
cases,

Φ1m =
f

γ

(
(−1)3−m(α3−m−β3−m)µ1

H1
log(r∗i1)+ (A5)615

Fig. 12.The same as in Fig.11 for the middle-layer monopole case.

appearance or disappearance of closed recirculation zones
in time. Cooperative influence of these processes causes a
very efficient Lagrangian advection. Two controlling param-
eters, namely the monopole’s strength and initial position,
have been analysed, and, on the basis of the number of reg-
ular critical points assessment, a classification of different
regimes of the Lagrangian advection has been presented.

By adding a nonstationary term to the background flow,
we have analysed a short-term monopole–topography inter-
action. If the monopole passes near the topographic vortex,
it causes a great deal of particles initially located within the
topographic vortex to be carried away. If the monopole is
captured by the topographic vortex, then it rotates a certain
time about the topography and, finally, is carried away by the
background flow. During this passage, the topographic vortex
almost completely renews its fluid.

Appendix A

Three-layer QG flow

For a background three-layer QG flow under the rigid-lid ap-
proximation, the potential vorticity,qi , in the i-layer, where
i = 1,2,3 corresponds to the upper, middle, and lower layer,
is equal to (Pedlosky, 1987)

q1 = 1ψ1 +
f

H1
ζ1 + f, q2 =1ψ2 +

f

H2
(ζ2 − ζ1)+ f,

q3 = 1ψ3 +
f

H3
(h(x,y)− ζ2)+ f, (A1)

where1ψi =
∂vi
∂x

−
∂ui
∂y

is the 2-D relative vorticity with
stream functionψi and two-dimensional velocity fieldui, vi ;
ζ1, ζ2 are the interface heights between the upper and mid-
dle, and the middle and lower layers;h(x,y)= τδ(r)) is the
Dirac delta-function bottom irregularity with effective vol-
umeτ ; Hi is thei-layer depth; andf is the constant Coriolis
parameter. According to the pressure continuity condition,

the interface heights can be written in the form (Pedlosky,
1987)

ζ1 =
f (ψ2 −ψ1)ρ2

(g (ρ2 − ρ1))
, ζ2 =

f (ψ3 −ψ2)ρ3

(g (ρ3 − ρ2))
, (A2)

whereρi is the i-layer fluid density;g is the gravitational
acceleration; and1ρ1 = ρ2 − ρ1 and1ρ2 = ρ3 − ρ2 are the
density jumps.

Since our study concerns only the cases of the upper-
and middle-layer monopole propagation, we set the lower-
layer potential vorticity to be always time-independent. Ad-
ditionally, either the upper- or middle-layer potential vortic-
ity has one time-dependent singular value moving with the
monopole’s centre. Hence, we have two sets of singular per-
turbations of the flow:

qm = q∗
m+

f

Hm
µmδ

(∣∣r i − r∗
m

∣∣) ,
q3−m = q∗

3−m, q3 = q∗

3, (A3)

wherem= 1 corresponds to the upper-layer monopole case,
m= 2 corresponds to the middle-layer monopole case,
µm is the monopole’s strength andr∗

m is the position
of the monopole’s singularity within them-layer, q∗

i is
the potential vorticity background value, and

∣∣r i − r∗
m

∣∣=√(
xi − x∗

m

)2
+
(
yi − y∗

m

)2 with xi, yi being Cartesian coor-
dinates of a fluid particle within thei-layer.

Potential vorticities (Eq.A1) should satisfy the potential
vorticity conservation law in each layer,

∂tqi + J (ψi,qi)= 0. (A4)

To obtain explicit analytical relations for stream functions
ψi , one can split relations (Eq.A1) (see e.g.Gryanik and
Tevs, 1989). Omitting intermediate transformations, we ex-
plicitly obtain barotropic mode81 and two baroclinic modes
82, 83 for the upper (m= 1) and middle (m= 2) layer
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(a) upper-layer positive κ monopole

(b) upper-layer negative κ monopole

(c) middle-layer positive κ monopole

(d) middle-layer negative κ monopole

Fig. 13: Lagrangian advection efficiency E depending on
monopole revolution number N .

+
(α1β2−α2β1)τ

H3
log(ri)

)
,

Φ2m = −f
γ

(
(−1)3−m(β3−m−1)µ1

H1
K0

(√
k3(α2−1)r∗i1

)
+

+
(β1−β2)τ

H3
K0

(√
k3(α2−1)ri

))
,

Φ3m = −f
γ

(
(−1)3−m(1−α3−m)µ1

H1
K0

(√
k3(β2−1)r∗i1

)
+

+
(α2−α1)τ

H3
K0

(√
k3(β2−1)ri

))
,620

where ri =
√
xi2 +yi2, r∗im =

√
(xi−x∗m)2 +(yi−y∗m)2,

α1 = −k22/k21 − α2/k21(−k21−k22 +k3(α2−1)),
α2 = (k1 +k3 +k21 +k22 +λ0)/(2k3), β1 =
−k22/k21 − β2/k21(−k21−k22 +k3(β2−1)),
β2 = (k1 +k3 +k21 +k22−λ0)/(2k3), λ0 =625 √

(k1−k3 +k21 +k22)2−4(−k1k3−k3k21 +k1k22),

γ = α2−α1 + β1− β2 +α1β2−α2β1, and k1 = f2ρ2
H1g∆ρ1

,

k3 = f2ρ3
H3g∆ρ2

, k21 = f2ρ2
H2g∆ρ1

, k22 = f2ρ3
H2g∆ρ2

.
Now, introducing a nonvortical plane boundary source flux

in the form, −Uy, which generates no vorticity and is com-630

pensated by an analogous drain flux (e.g. Izrailsky et al.,
2004), where U is a characteristic velocity, the final stream-
functions of the three-layer model with the monopole moving
within the m-layer are

ψim =−Uy+Φ1m+αiΦ2m+βiΦ3m, (A6)635

where α3 =β3 = 1.
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monopole cases
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+ (A5)
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+
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,

whereri =

√
xi2 + yi2, r∗im =

√(
xi − x∗

m

)2
+
(
yi − y∗

m

)2,
α1 = −k22/k21−α2/k21(−k21− k22+ k3 (α2 − 1)),
α2 = (k1 + k3 + k21+ k22+ λ0)/(2k3),
β1 = −k22/k21−β2/k21(−k21− k22+ k3 (β2 − 1)),
β2 = (k1 + k3 + k21+ k22− λ0)/(2k3),
λ0 =

√
(k1 − k3 + k21+ k22)

2
− 4(−k1k3 − k3k21+ k1k22),

γ = α2 −α1 +β1 −β2 +α1β2 −α2β1, and k1 =
f 2ρ2

H1g1ρ1
,

k3 =
f 2ρ3

H3g1ρ2
, k21 =

f 2ρ2
H2g1ρ1

, andk22 =
f 2ρ3

H2g1ρ2
.

Now, introducing a nonvortical plane boundary source flux
in the form−Uy, which generates no vorticity and is com-
pensated by an analogous drain flux (e.g.Izrailsky et al.,
2004), whereU is a characteristic velocity, the final stream
functions of the three-layer model with the monopole mov-
ing within them-layer are

ψim = −Uy+81m+αi82m+βi83m, (A6)

whereα3 = β3 = 1.
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