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Abstract. This paper presents a particle method designed for
high-dimensional state estimation. Instead of weighing ran-
dom forecasts by their distance to given observations, the
method samples an ensemble of particles around an opti-
mal solution based on the observations (i.e., it is implicit).
It differs from other implicit methods because it includes the
state at the previous assimilation time as part of the optimal
solution (i.e., it is a lag-1 smoother). This is accomplished
through the use of a mixture model for the background dis-
tribution of the previous state. In a high-dimensional, lin-
ear, Gaussian example, the mixture-based implicit particle
smoother does not collapse. Furthermore, using only a small
number of particles, the implicit approach is able to detect
transitions in two nonlinear, multi-dimensional generaliza-
tions of a double-well. Adding a step that trains the sampled
distribution to the target distribution prevents collapse during
the transitions, which are strongly nonlinear events. To pro-
duce similar estimates, other approaches require many more
particles.

1 Introduction

Most particle filters perform poorly in very high dimensions.
Their ensembles collapse onto a single particle unless the en-
semble size grows exponentially with the system dimension.
This is a problem of sample impoverishment, and is a mani-
festation of whatBellman(1957) calls “the curse of dimen-
sionality”.

The bootstrap particle filter (BPF;Gordon et al., 1993) is a
straightforward method that weighs random solutions of the
dynamical model based on their proximity to observations.
Even if the model and observation functions are linear and
have Gaussian errors, BPF suffers from ensemble collapse
as the system dimension increases (Bengtsson et al., 2008;
Bickel et al., 2008; Snyder et al., 2008). There is also evi-
dence (Snyder, 2012) that this result is more generally appli-
cable and all particle filters suffer a similar fate.

One approach that has improved the performance of par-
ticle methods is to use mixture models rather than discrete
approximations of probability distributions. This idea be-
gan with the work ofAlspach and Sorenson(1972). Since
then,Anderson and Anderson(1999), Chen and Liu(2000),
Bengtsson et al.(2003), Kotecha and Djuríc (2003), Smith
(2007), Hoteit et al. (2008), Dovera and Rossa(2011),
Stordal et al.(2011), Reich(2012), Frei and Künsch(2013),
Sondergaard and Lermusiaux(2013a, b) and many others
have developed similar approaches. In particular, all of these
techniques followed from adaptations of BPF or the ensem-
ble Kalman filter (EnKF;Evensen, 1994, 2009).

Both BPF and EnKF begin by generating an ensemble of
random model forecasts that are independent of the obser-
vations. The resulting estimates are linear combinations of
the forecasts, where the coefficients depend on the likelihood
that the forecast produced the observations. This paper refers
to such methods as explicit, in analogy with the terminology
from the numerical solution of differential equations.

Explicit data assimilation methods are prone to errors
when the forecast distribution is nearly singular with the dis-
tribution conditioned on the observations, also called the tar-
get or posterior. For example, this occurs when the model
has multiple isolated attracting states and none of the fore-
casts are in the basin of attraction of the true state (Miller
et al., 1999; Evensen and van Leeuwen, 2000). The singu-
larity can be significantly reduced, however, if the stochastic
model has an invariant measure (a climatology). This point
is the basis of the mean field filter, maximum entropy fil-
ter, and related techniques (Eyink and Restrepo, 2000; Kim
et al., 2003; Eyink et al., 2004; Eyink and Kim, 2006), which
form a parametrized transformation of the model climatology
with the same mean, and possibly covariance, as the forecast
samples. Nevertheless, there are many stochastic processes
that do not have invariant measures, including the ubiquitous
Wiener process and a related example considered later in this
paper.
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Implicit methods, unlike explicit ones, skip the construc-
tion of a forecast distribution and work directly with the tar-
get. Their goal is to sample an “optimal” importance distri-
bution whose difference with the target is minimal (Doucet
et al., 2000). This approach has a strong theoretical ba-
sis and is effective in a variety of contexts, particularly in
low to moderate dimensional problems from the geosciences
(Chorin and Tu, 2009; Chorin et al., 2010; Morzfeld et al.,
2012; Morzfeld and Chorin, 2012; Weir et al., 2013; Atkins
et al., 2013). In these applications, the implicit methods re-
quire a factor ofO(10) toO(100) fewer particles than BPF
and EnKF to compute estimates of comparable accuracy
(Morzfeld and Chorin, 2012; Weir et al., 2013).

The implicit particle method introduced in this paper
avoids ensemble collapse in high dimensions in three ways.
First, it forms a mixture model approximation of the back-
ground distribution of the state at the previous assimilation
time. Second, it uses numerical optimization to find the most
probable model solution given the observations and samples
around that solution. Third, if the target/posterior distribu-
tion is strongly non-Gaussian, it further improves the results
by refining the sampled importance distribution to better ap-
proximate the target.

While it is possible to improve the estimates of BPF and
EnKF significantly, e.g., using Markov chain Monte Carlo re-
sampling methods (Weare, 2009), running-in-place (Kalnay
and Yang, 2010), the finite-size EnKF (Bocquet, 2011), and
iterative EnKF (Bocquet and Sakov, 2012), only their sim-
plest forms are considered here. Some particle filters (van
Leeuwen, 2010; van Leeuwen, 2011; Ades and van Leeuwen,
2013) do, in fact, perform well in high dimensions. Yet it re-
mains unclear if these approaches satisfy the tail decay prop-
erties necessary for convergence (Geweke, 1989). Surveys of
many other assimilation techniques can be found in the re-
views ofvan Leeuwen(2009) andBocquet et al.(2010).

The remainder of the paper proceeds as follows. The state
estimation problem is introduced next. After that, Sect. 3 de-
scribes the mixture-based implicit particle smoother (MIPS)
in a general form. This method is applied to a high-
dimensional example with a linear model and Gaussian
statistics in Sect. 4 and to multi-dimensional generalizations
of the double-well problem in Sect. 5. Both sections include
comparisons with BPF, EnKF, and the implicit particle fil-
ter. The final section summarizes the results and conclusions
from these examples. Throughout, vectors are written in bold
italics, matrices in regular bold, random variables in capital
letters and their realizations in lowercase letters.

2 State estimation

The system state is a stochastic process{Xm :m= 0,1, . . .}
in Nx dimensions that satisfies the equation

Xm+1 =M(Xm,Xm+1)+
√

QEm+1, (1)

whereM is a discrete-time dynamical model,{Em} is a (di-
mensionless) standard normal/Gaussian process, which rep-
resents model error,Q is the (dimensional) error covariance
matrix and

√
Q is any square root ofQ, i.e.,

√
Q

√
QT

= Q.
The model dependence on the new stateXm+1 is included to
account for implicit numerical time discretizations (Kloeden
and Platen, 1999). In general, the initial condition is impre-
cisely known, and the value of its probability density func-
tion (pdf) at a realizationx0 is denotedp(x0).

The stochastic model is supplemented with noisy obser-
vations at a subsequence{tm(n) : n= 1,2, . . .} of the model
times such that

Y n =H
(
Xm(n)

)
+

√
RDn (2)

for a given functionH, (dimensionless) observation error
process{Dn} and (dimensional) covariance matrixR. The
goal of data assimilation is to efficiently sample from the
distribution of model solutions conditioned on a sequence
of realizations{y1, . . . ,yk} of the observations (2) at suc-
cessive times. The pdf of this stochastic process is denoted
p

(
x0:m(k) |y1:k

)
, which uses the shorthandzi:j for a given

sequence{zi, . . . ,zj }.
It is possible to assimilate each new observation and dis-

card it afterward because the target pdf satisfies the recursion
relationship

p(x0:m(k+1) |y1:k+1)∝ p
(
x0:m(k) |y1:k

)
·p

(
xm(k)+1:m(k+1) |xm(k)

)
·p

(
yk+1 |xm(k+1)

)
. (3)

This follows from an application of Bayes’ theorem, the
Markov property of the state, the conditional independence
of the observation errors, and a second application of Bayes’
theorem. Using the convention that m(0)= 0, andy1:0 = ∅,
Eq. (3) applies ifk = 0 as well.

The model errorEm and observation errorDn need not be
Gaussian in general. However, this paper assumes the a pri-
ori application of an anamorphosis transformation (Bertino
et al., 2003; Weir et al., 2013) to the state and observation so
that the corresponding errors are Gaussian random variables.

2.1 The effective dimension

The state of nearly every geophysical model is a collec-
tion of variables, e.g., velocity, pressure and temperature,
evaluated at each point of a grid. Since the number of grid
points is oftenO(106) or greater, the state dimension is high
as well. Fortunately, the effective dimension (Bickel et al.,
2008) of the problem is usually much smaller. For exam-
ple, the model can have a low-dimensional attractor, or states
and observations separated by large distances can have neg-
ligible correlations. Dimensional reduction takes advantage
of the smaller effective dimension by projecting the prob-
lem onto the effective subspace. There are a number of dif-
ferent techniques, including dynamically orthogonal decom-
position (Sondergaard and Lermusiaux, 2013a, b), localiza-
tion (many variations exist, butOtt et al., 2004, is one of the
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most well known), and partial noise reduction (Morzfeld and
Chorin, 2012).

The second fundamental assumption of this paper is the
a priori application of any possible dimensional reduction,
and hence that the eigenvalues of the model and observa-
tion error covariance matrices are bounded away from zero.
Although the reduced model can have many possible forms,
the lowest frequency mode of a climate model is quite often
a double-well, i.e., a nonlinear model with two stable fixed
points (Majda et al., 2003; Kravtsov et al., 2005). Under the
influence of stochastic perturbations, its solutions transition
periodically between these two points. It is perhaps the sim-
plest energy balance model capable of reproducing the tran-
sitions characteristic of global temperature records (Sutera,
1981). The models considered below combine double-wells
and linear maps to extend this scenario to problems in multi-
ple dimensions with multiple attracting states.

3 The mixture-based implicit particle smoother

The assimilation technique to follow is a modification of the
implicit particle filter (IPF) introduced byChorin and Tu
(2009) and extended to parameter estimation byWeir et al.
(2013). In the latter, the method is continued sequentially by
constructing a kernel density estimate (Silverman, 1986) of
the background distribution of the model parameters. In this
paper, the previous statexm(k) plays the role of the model pa-
rameters. Although it is successful in examples where EnKF
fails, the kernel-based implicit approach requires a relatively
large number of particles,O(1000), to avoid collapse in a
O(10) dimensional sample space. One possibility is that this
requirement is primarily due to the deficiencies of the kernel
density estimate.

As an alternative to kernel density estimates,Sondergaard
and Lermusiaux(2013a, b), referred to as SL13 from now
on, suggest using a mixture model (McLachlan and Peel,
2001). The mixture-based implicit particle smoother (MIPS)
does exactly that. It differs from the approach of SL13 in
two ways: it constructs a mixture approximation of the back-
ground of the previous statexm(k) rather than the next state
xm(k+1), and it uses optimization to find probable model
solutions rather than using an analysis step based on the
Kalman filter.

Figure 1 is a graphical comparison of a one-component
mixture model and kernel density estimate of a standard nor-
mal density. Even in two dimensions, the kernel density es-
timate requiresO(1000) samples to have any visual simi-
larity with the true density. The mixture model approxima-
tion with O(100) samples, on the other hand, is compara-
ble to the true density. Both estimates are quite poor with
10 samples, and their errors only increase as the dimension
grows (McLachlan and Peel, 2001; Silverman, 1986). Given
just a handful of samples in very many dimensions, it is
thus unlikely that any representation of the true density is

very accurate. In this case, it is often appropriate to use a
one-component mixture model, since the statistical evidence
against the Gaussianity of the true distribution is minimal
(e.g., the multivariate normality test ofMardia, 1974).

3.1 Gaussian mixture models

The assimilation of the(k+1)-th observation begins with an
ensemble ofNp particles resulting from thek-th assimila-
tion:{
x
(i)
m(k) ∼ p

(
xm(k) |y1:k

)
: i = 1, . . . ,Np

}
.

Given these samples, one may compute an approximation
that is a mixture ofNm Gaussian components,

p̂
(
xm(k) |y1:k

)
=

Nm∑
j=1

αjN
(
xm(k);µj ,Bj

)
, (4)

≈ p
(
xm(k) |y1:k

)
,

where the weightαj , meanµj and covarianceBj of the com-
ponents are all estimated from the samples.

Here, the only assumption onBj is that it is symmetric
and positive-semidefinite. In the case thatBj is not positive
definite, its inverse is taken as the Moore–Penrose pseudoin-
verse (Moore, 1920; Penrose, 1951) and its determinant as
the product of its non-zero eigenvalues. IfBj is anNx ×Nx
matrix of all zeros, thenN (µj ,Bj ) denotes the Dirac delta
function atµj .

Following SL13, MIPS uses the expectation-maximization
(EM) algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 2008) to find the maximum likelihood estimate
(ML/MLE) of αj , µj , andBj . At iterationn, the EM update
is computed in two steps:

1. Expectation,

τ
(i)
j,n =

αj,nN
(
x
(i)
m(k);µj,n,Bj,n

)
∑
l αl,nN

(
x
(i)
m(k);µl,n,Bl,n

) ,
Tj,n =

∑
i

τ
(i)
j,n,

2. Maximization,

αj,n+1 =
1

Np
Tj,n,

µj,n+1 = T −1
j,n

∑
i

τ
(i)
j,nx

(i)
m(k),

Bj,n+1 = T −1
j,n

∑
i

[
τ
(i)
j,n

(
x
(i)
m(k)− µj,n+1

)
(
x
(i)
m(k)− µj,n+1

)T ]
.

This is one of many possible choices of clustering methods
(seeFrei and Künsch, 2013, for an example of an alternative).
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Fig. 1.Continuous estimates of the density of a two-dimensional standard normal random variable. Contours are plotted at equal intervals of
the logarithm of the (thin circles) true density and (thick curves) estimated densities. The estimates are the(a) Gaussian with sample mean
and covariance and(b) kernel density estimate from the same samples. The number in parentheses is the sample size. The kernel density
estimates are computed using the optimal bandwidth and have the same first two moments as the samples (Silverman, 1986).

3.2 The number of components

What remains is an approach for specifying the numberNm
of components in the mixture. At one extreme,

µ =
1

Np

Np∑
i=1

x
(i)
k ,

B =
1

Np

Np∑
i=1

(
x
(i)
k − µ

)(
x
(i)
k − µ

)T
,


if Nm = 1,

where the covarianceB has the normalization 1/Np because
the EM algorithm finds the MLE. This is a completely para-
metric representation of the background distribution typical
of ensemble implementations of the Kalman filter. At the
other extreme,

αj = 1/Np,

µj = x
(j)
k , Bj = 0,

}
if Nm =Np,

and the densitiesN (µj ,Bj ) are thus Dirac delta functions.
This is the traditional particle filter approach, which repre-
sents the background as a sum of delta functions, making no
parametric assumptions.

For simplicity, this paper assumes thatNm = 1 untilNp is
so large that there is no ensemble collapse. After this point, it
is safe to takeNm =Np. Given a small number of particles in
very high dimensions, the method therefore relies upon sim-
plifying parametric assumptions. On the other hand, in the
limit as Np → ∞, it maintains the convergence properties
of particle filters. An approximation for the number of parti-
clesN∗

p at which to make the transition is derived for linear
and Gaussian problems in the following section. The appro-
priate value ofN∗

p for nonlinear and non-Gaussian problems
is not immediately obvious, but a reasonable choice usually
can be determined from numerical experimentation. While
it is not considered here, pickingNm based on the Akaike
or Bayes information criteria (SL13;Konishi and Kitagawa,
2008) may have the same convergence properties and be
more efficient for finite values ofNp.

Nonlin. Processes Geophys., 20, 1047–1060, 2013 www.nonlin-processes-geophys.net/20/1047/2013/



B. Weir et al.: A potential implicit particle method for high-dimensional systems 1051

3.3 The target density

Given a mixture model approximation to the background,
there is a corresponding approximation to the target.
Marginalizing overx0:m(k)−1 and using the conditional in-
dependence of the state and observation, the target is

p
(
xm(k):m(k+1) |y1:k+1

)
= p

(
xm(k) |y1:k

)
·

m(k+1)∏
m=m(k)+1

p(xm+1 |xm) (5)

·p
(
yn |xm(n)

)
.

By definition of the model (1) and observation (2),

em+1 = Q−1/2 [
xm+1 −M(xm,xm+1)

]
,

dn = R−1/2 [
yn−H

(
xm(n)

)]
,

and expressions for the conditional pdfsp(xm+1 |xm) and
p(yn |xm(n)) follow from the change of variables for-
mula. If the time discretization of the model is explicit:
M(xm,xm+1)=M(xm), then

p(xm+1 |xm)∝ exp

(
−

1

2
eTm+1em+1

)
, (6)

p
(
yn |xm(n)

)
∝ exp

(
−

1

2
dTn dn

)
. (7)

Otherwise, Eq. (6) is more complex, but the algorithm below
remains the same.

Substituting the mixture approximation (4) and the expres-
sions (6) and (7) into Eq. (5) gives the approximation of the
target,

p̂
(
xm(k):m(k+1) |y1:k+1

)
∝

∑
j

αjβ
−1
j exp(−ϕj ),

whereβj =

√
(2π)Nx det

(
Bj

)
, and the component cost func-

tionsϕj are defined such that

ϕj =
1

2

(
xm(k)− µj

)TB−1
j

(
xm(k)− µj

)
+

1

2

m(k+1)∑
m=m(k)+1

eTmem+
1

2
dTk+1dk+1.

Finally, to simplify notation, letv denote the vector of inde-
pendent variables that determine the costϕj , i.e.,

v =

 xm(k)
...

xm(k+1)

 , and ϕj = ϕj (v).

3.4 Implicit sampling

In general, sampling directly from the component density
β−1
j exp(−ϕj ) is impossible unlessϕj has one of a limited

number of parametric forms. Rather than make this restric-
tive assumption, implicit techniques use importance sam-
pling (Geweke, 1989), which draws samples from an alter-
nate density, called the importance, then weighs the samples
to account for the difference between the actual and sampled
densities.

The “optimal” importance is a Gaussian approximation of
the component density with the same modev∗

j . In general,
the mode, which is also the global minimizer ofϕj , must
be found using numerical optimization, a task that is by no
means trivial. A byproduct of any quasi-Newton optimization
method is an approximation8j of the Hessian ofϕj at v∗

j ,
and hence a quadratic approximationψj of ϕj such that

ψj (v)= ϕ∗

j +
1

2

(
v − v∗

j

)T
S−1
j

(
v − v∗

j

)
,

whereϕ∗

j = ϕj (v
∗

j ) andSj = 8−1
j . The cost functionψj is

the basis of the “optimal” importance densityγ−1
j exp(−ψj ),

where

γj = exp
(
−ϕ∗

j

)√
(2π)Nv det

(
Sj

)
,

andNv is the dimension ofv. The resulting Gaussian mixture
approximation of the target densitŷp is

q
(
xm(k):m(k+1) |y1:k+1

)
=

∑
j

αjγ
−1
j exp

(
−ψj

)
.

The “optimal” importance is actually optimal if the com-
ponent cost function is a quadratic function ofv (Doucet
et al., 2000). In this case, the component distribution is Gaus-
sian and, given the exact values ofv∗

j and8j , is identical to
the “optimal” importance. In other cases, including an exam-
ple below, there are better choices for the importance.

3.5 The algorithm

MIPS begins by determining the importance density for each
component in three steps:

1. Compute the mixture model approximation to the
background ofxm(k).

2. Find the modev∗

j of β−1
j exp(−ϕj ) and Hessian8j of

ϕj at the mode.

3. Define the covariance matrixSj such thatSj = 8−1
j .

It then proceeds as follows for each particlex
(i)
m(k):

4. Generate a uniform random numberr ∈ (0,1], and find
the component indexl that satisfies

l−1∑
j=1

αj < r ≤

l∑
j=1

αj ,

using the convention that the sum fromj = 1 to j = 0
is zero.
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5. Draw a samplev(i) from the Gaussian importance
γ−1
l exp(−ψl).

6. Give the sample the weight

w(i) =

β−1
l exp

(
−ϕ

(i)
l

)
γ−1
l exp

(
−ψ

(i)
l

) ,
∝ γlβ

−1
l exp

(
ψ
(i)
l −ϕ

(i)
l

)
, (8)

whereϕ(i)l andψ (i)l denote the values of the functions
evaluated atv(i).

Afterward, the weighted samples can be transformed into
a uniformly weighted ensemble by resampling with replace-
ment, also known as the bootstrap (Efron, 1979). Since this
step adds noise to the estimates, it is best to resample only
when the effective sample size (Kong et al., 1994; Liu, 1996;
Doucet et al., 2000) falls below a given fraction ofNp.
There are a variety of improvements to the bootstrap that
reduce the added noise as well. This reduction, however, is
likely dominated by the error in the representation of the tar-
get (Kitagawa, 1996). Although it is not presented here, the
generalization of the EM algorithm to weighted samples is
straightforward.

In two special cases, MIPS is equivalent to other as-
similation techniques. First, if there is a single component
and everything is linear and Gaussian, MIPS is an ensem-
ble Kalman smoother. If the model or observation functions
are nonlinear or ifNm 6= 1, it is not an ensemble Kalman
smoother (for two methods that are, seevan Leeuwen and
Evensen, 1996; Evensen and van Leeuwen, 2000). Second,
if Nm =Np, MIPS is equivalent to IPF. This is because the
covariance of each mixture component is the degenerate form
Bj = 0 (see Sect.3.2), which fixes the value ofxm(k) for each
particle.

Another variation to the above algorithm that can reduce
the variance of the weights is to perform importance sam-
pling on the full mixture distribution rather than its individ-
ual components. IfNm =Np, this approach is equivalent to
an implementation of the marginal particle filter (Klaas et al.,
2005). Its biggest drawback is that it must evaluate every
component density, rather than just one, at every sample to
compute the weights.

4 A linear and Gaussian example

As a simple demonstration of ensemble collapse in high di-
mensions,Bengtsson et al.(2008), Bickel et al.(2008), and
Snyder et al.(2008) propose an example where there are ob-
servations every time step, i.e., m(n)= n, the model and ob-
servation are linear functions such that

M(xm)= Axm, H(xm)= Hxm

and the distribution of the initial condition is Gaussian.

By construction, the difference between components in the
mixture model is the only source of variability in the weights.
This is because the component cost functions,

ϕj =
1

2

(
xk − µj

)T B−1
j

(
xk − µj

)
+

1

2
(xk+1 − Axk)

T Q−1 (xk+1 − Axk)

+
1

2
(yk+1 − Hxk+1)

T R−1 (yk+1 − Hxk+1) ,

are quadratic and the component densities are Gaussian. It is
thus possible to sample the component densities exactly. The
resulting samples have weights (8) that satisfy

w(i) ∝ γlβ
−1
l ,

which depends only on the component of the mixture (recall
thatl is a random function ofi).

Expressions for the mean and covariance of the compo-
nent densities, and hence the weights, follow from similar
algebra to the Kalman smoother (Rauch, 1963; Jazwinski,
1970). Dropping the component indexl to simplify notation,
the mode is the solution of the linear equations

B−1(
x∗

k − µ
)
− ATQ−1(

x∗

k+1 − Ax∗

k

)
= 0,

Q−1(
x∗

k+1 − Ax∗

k

)
− HTR−1(

yk+1 − Hx∗

k+1

)
= 0.

It can be expressed as the backward recursion,

x∗

k+1 = Aµ + K
(
yk+1 − HAµ

)
,

x∗

k = µ + C
(
x∗

k+1 − Aµ
)
,

where

Pf = ABAT
+ Q,

K = PfHT
(
HPfHT

+ R
)−1

,

C = BAT
(
Pf

)−1
.

At every point, the Hessian of the cost function is the block
matrix

S−1
=

[
B−1

+ ATQ−1A −ATQ−1

−Q−1A Q−1
+ HTR−1H

]
.

Its inverse, the covariance matrix is

S=

[
Ps CPa

PaCT Pa

]
,

where the matrices are again the same as in the Kalman
smoother:

Pa =
(
Ix − KH

)
Pf ,
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Ps = B + C
(
Pa − Pf

)
CT ,

andIx is theNx ×Nx identity matrix.
Substituting the expressions back into Eq. (8) and restor-

ing the indexl shows that

w(i) = p(yk+1 |µl,Bl) ,

=
1√

(2π)Nydet(�l)
exp

[
−

1

2
ỹTk+1�

−1
l ỹk+1

]
,

where

ỹl = yk+1 − HAµl, and �l = HPfl HT
+ R.

In other words, the weights are the values of the pdf of the
innovationsỹl , whose covariance is�l .

4.1 Ensemble collapse

A fundamental result ofBengtsson et al.(2008), Bickel et al.
(2008), andSnyder et al.(2008) is that for importance sam-
pling methods

E
[
1/max

i
w(i)

]
= 1+

√
2lnNp

/
σ +O

(
lnNp

/
σ 2

)
, (9)

where

σ 2
= E

[(
logw(i)

)2
]

− E
[
logw(i)

]2
.

To simplify the analysis,Snyder(2012) takes

A = aIx, Q = q2Ix,

H = Ix, R = Ix,

and a standard normal prior on the initial condition. He then
shows that, providedNx � 1,

σ 2
≈

Nx
(
a2

+ q2
)(

3
2a

2
+

3
2q

2
+ 1

)
for BPF,

Nxa
2
(

3
2a

2
+ q2

+ 1
)/(

q2
+ 1

)2
for IPF.

These two cases are depicted in Fig.2 for an example where
a2

= q2
= 0.5. The line for MIPS with a one component

mixture (MIPS1) is identically zero because all of the terms
in Eq. (8) are constant for this example: the first two terms
are constant because there is only one component in the mix-
ture, and the final term is always 1 because the component
costϕ and its quadratic approximationψ are identical.

It is also evident from Fig.2 how to chooseNm in a simple
way to avoid collapse. IfNp is less than the value of the IPF
line, letNm = 1. Otherwise, letNm =Np to revert to using
IPF. The thresholdN∗

p at which to make this change occurs
when

E
[
1
/

max
i
w(i)

]
= 1/0.9.

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

3.5

N
x

ln
 N

p

 

 
BPF
IPF
MIPS1

Fig. 2. Theoretical lines such thatE[1/maxiw
(i)

] = 1/0.9 for the
(solid) bootstrap particle filter, (dashed) implicit particle filter and
(dot-dashed) mixture-based implicit smoother withNm = 1. The
dot-dashed curve is identically zero. Similar to Fig. 3 ofSnyder
(2012) with a correctedy axis label.

Substituting this into Eq. (9), neglecting the higher-order
terms, and using the IPF expression forσ 2 gives

N∗
p = exp

(
σ 2/162

)
,

= exp

[
Nxa

2
(
3a2/2+ q2

+ 1
)/

162
(
q2

+ 1
)2

]
.

In practice, computational resources may necessitate taking
Nm = 1 even well beyond this threshold, maintaining a tran-
sition toNm =Np only to preserve the theoretical properties
of the particle filter. Often, even for nonlinear models, the
choiceNm = 1 performs quite well, as is shown below.

Table1 provides a numerical comparison to the theoretical
lines in Fig.2. In general, the number of particles necessary
to avoid collapse is greater than the transition value

N∗
p = exp(Nx/324),

yet by a factor less than 2. Furthermore, the difference be-
tween the two goes to zero asNx → ∞. The reason for the
discrepancy is that the convergence in Eq. (9) is quite slow
(David and Nagaraja, 2003, Ex. 10.5.3). While more accurate
thresholds are possible, in realistic applications, the model
and observation nonlinearities are likely to have a significant
effect on the weights and thus the choice ofN∗

p.

5 Multiple-well problems

This section considers three examples: a standard, one-
dimensional double-well and two generalizations of it to
multiple dimensions. Although it is simple, the nonlinearity
of the double-well is significant enough to cause difficulties
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Table 1.The dependence ofE[1
/

maxiw
(i)

] onNp andNx for the
implicit particle filter. The number of particlesNp varies along the
rows and the state dimensionNx along the columns. Estimates are
computed from 1000 trials, and typical sampling errors areO(0.01).
The italic values are the closest points to the dashed line in Fig.2.

Np\Nx 100 200 400 800

2 1.08 1.05 1.04 1.03
4 1.15 1.11 1.07 1.05
8 1.24 1.16 1.11 1.08
16 1.34 1.22 1.14 1.10
32 1.42 1.26 1.17 1.11

with data assimilation methods that rely on parametric as-
sumptions about the target, notably the extended Kalman
filter (Miller et al., 1994) and EnKF (Miller et al., 1999;
Evensen and van Leeuwen, 2000). For every example, the
discrete modelM is the result of the Euler–Maruyama
method (Kloeden and Platen, 1999) applied to a continuous
modelf , i.e.,

M
(
xm,xm+1

)
= xm+ τf

(
xm

)
,

the time stepτ is 0.02, observations occur every 200 time
steps,Q = 0.5τ Ix , the observation operator is the identity,
R = 0.1Ix and the initial condition for every component of
the state has mean 1 and standard deviation 0.1. These values
are roughly equivalent to those used by SL13. In the double-
well problem,Nx = 1, and

f (x)= 4x− 4x3.

The multiple-well examples have one of two possible forms:

f (x)=



4x1 − 4x3
1

4x2 − 4x3
2

4x3 − 4x3
3

4− 4x4
...

4− 4xNx


, (10)

or

f (x)=



4x1 − 4x3
1(

− τx2 − x3
)/(

1+ τ2
)(

− τx3 + x2
)/(

1+ τ2
)

4− 4x4
...

4− 4xNx


, (11)

wherexi denotes thei-th element of the vectorx.
The models for the two multiple-well examples (10) and

(11) are intended to illustrate two different possibilities for
the asymptotic statistics of the sample solutions. Projections
into three dimensions of both types of sample solutions are

depicted in Fig.3. In the first example (10), the deterministic
equations

dx

dt
= f (x)

have 8 stable fixed points. The corresponding stochastic
equations have an invariant measure (climatology) that is ap-
proximately the sum of 8 Gaussians centered at these points.
The pdf of this measure is the limit ast → ∞ of the solu-
tion of the Fokker–Planck equation (also known as the Kol-
mogorov forward equation;Øksendal, 2003). In the second
multiple-well example (11), the deterministic equations have
two stable, two-dimensional invariant sets in the limitτ → 0.
The solution of the corresponding Fokker–Planck equation,
like that of a two-dimensional Wiener process, is a measure
whose variances in these two subsets go to infinity as time
increases. Consequently, the stochastic equations have no in-
variant measure.

The non-standard form of the continuous modelf in the
second multiple-well example (11) is meant to aid compar-
ison with BPF and EnKF, which typically only apply to ex-
plicit time discretizations (1). It follows from applying back-
ward/implicit Euler (Kloeden and Platen, 1999) to a rotation
map. This ensures the stability of the discrete model. Implicit
sampling methods, on the other hand, are straightforward to
implement with implicit time discretizations. The only differ-
ence is in the form of the cost functionϕj . This is a notable
advantage of the implicit approach.

5.1 Transition detection

Figure 4 compares the results of EnKF, BPF, the implicit
particle filter (IPF) and the mixture-based implicit particle
smoother with a 1 component mixture model (MIPS1) using
10 particles for the double-well problem. Both implicit meth-
ods perform well, yet MIPS1 requires just over a tenth of the
number of floating point operations of IPF. This is because
it solves a single optimization problem instead of 10, while
including the previous statexm(k) in the optimization prob-
lem only increases the dimension of the problem from 200 to
201.

Both BPF and EnKF miss the transition even after repeated
observations because their forecasting step rarely generates a
particle in the correct well. This is evident in the BPF and
EnKF estimates in Fig.4, which display noticeably less vari-
ability while in the correct well than the implicit estimates.
As a result, artificial inflation of the model error covariance
(Anderson and Anderson, 1999) could improve the perfor-
mance of the explicit methods in these examples.

The estimates of every method for the multiple-well prob-
lems are qualitatively similar to a combination of the double-
well problem with the linear problem. In the dimensions
where the modelf is nonlinear, the problem resembles the
double-well, and in the dimensions where the modelf is lin-
ear, the problem resembles the linear example.
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Fig. 3. Examples of three-dimensional projections of the twin solution for the two multiple-well examples: (a) 8 wells with three transitions
and (b) two wells with one transition. The number of transitions in the left panel is very rare and is used for visualization purposes.
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Fig. 4. Comparison of the estimates with 10 particles of the (a) ensemble Kalman filter, (b) bootstrap particle filter, (c) implicit particle filter
and (d) mixture-based implicit particle smoother with Nm = 1.

Fig. 3. Examples of three-dimensional projections of the twin solution for the two multiple-well examples:(a) 8 wells with three transitions
and(b) two wells with one transition. The number of transitions in the left panel is very rare and is used for visualization purposes.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 
(n

on
−

di
m

.)

(a) EnKF

 

 
twin
estimate
obs.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
(b) BPF

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
(c) IPF

0 100 200 300 400
time (non−dim.)

x 
(n

on
−

di
m

.)

0 100 200 300 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
(d) MIPS1

time (non−dim.)

Fig. 4.Comparison of the estimates with 10 particles of the(a) ensemble Kalman filter,(b) bootstrap particle filter,(c) implicit particle filter
and(d) mixture-based implicit particle smoother withNm = 1.

www.nonlin-processes-geophys.net/20/1047/2013/ Nonlin. Processes Geophys., 20, 1047–1060, 2013



1056 B. Weir et al.: A potential implicit particle method for high-dimensional systems

Table 2. Percentage of trials in which an estimate computed with
10 particles is in the same well as the twin solution at the final as-
similation time. The well is determined by the sign of the elements
of the state vector. Results are computed from 100 trials each with
at least one transition.

Nx EnKF BPF IPF/MIPS

1 100 % 85 % 100 %
4 100 % 80 % 100 %
16 96 % 89 % 100 %
64 70 % 79 % 100 %
256 39 % 49 % 100 %

As the state dimensionNx increases, EnKF and BPF are
increasingly less likely to detect the transitions from well to
well. Table2 quantifies this likelihood for the first example
(some of the variability in the results for BPF is most likely
due to sampling errors). Results for the second example are
comparable. Unlike the explicit methods, the implicit meth-
ods consistently detect the transition because they find an
optimal solution based on the observation. In these exam-
ples, the model and observation functions and covariances
have a particularly simple form, and the problem can be de-
composed into a collection of decoupled problems. If this de-
composition is used, the performance of the explicit methods
does not degrade as the dimension increases. Nevertheless,
this decomposition is only possible in very special cases.

5.2 Hessian refinement

Although the implicit methods consistently detect the transi-
tion from one well to another, their weights collapse at the
transition. This happens in MIPS1 because the component
costϕ, is far from its quadratic approximationψ , resulting
in significant variation in the term

exp
(
ψ (i)−ϕ(i)

)
.

As a simple example, supposeϕ(x)= κx2
+ x4 for some

small positive numberκ. Thenψ(x)= κx2, and importance
sampling based onψ will generate very many samples far out
on the tails of the target density and very few in the region of
high probability. Moreover, for a fixedNp, the weight of the
sample closest to the origin approaches 1 asκ approaches 0.

In many examples like the above, it is possible to decrease
the variance of the weights by finding a better approximation
to the covariance of the component density than the inverse
Hessian. One approach is to repeatedly sample the impor-
tance density and update the Hessian based upon the agree-
ment of the component costϕ and importance costψ . This
results in a variation of the MIPS algorithm with the third
step (see Sect.3.5) replaced by the refinement step,

3′. Begin with 8(1) equal to the Hessian at the mode.
For n from 1 to a given numberNr , draw a sam-
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0

50

100

150

200

distance along eigendirection

co
st

 

 
True
Local
Refined

Fig. 5. Plots of the true cost function and its quadratic approxima-
tions along a line in sample space. The direction of the line is paral-
lel to the eigenvector of the Hessian8 with the smallest eigenvalue,
and the mode is translated to 0. The curvature of the local approxi-
mation (dashed) is determined by the second derivative of the cost
function at its minimum, while the curvature of the refined approxi-
mation (dot-dashed) is adapted to better reflect the global properties
of the cost function.

ple v(n) from the Gaussian importanceγ−1exp(−ψ).
Then compute a new Hessian8(n+1), where

8(n+1)
= 8(n)

+ εn1
(n),

1(n)
=

(
ψ (n)−ϕ(n)

) (
v(n)− v∗

)(
v(n)− v∗

)T(
v(n)− v∗

)T (
v(n)− v∗

) ,
and update the covariance matrixS to be the inverse of
8(n+1).

While it is not presented here, the extension of the refinement
toNm > 1 is straightforward.

The iteration on the Hessian follows from an application
of the stochastic gradient descent algorithm ofRobbins and
Monro (1951). Sufficient conditions for its convergence are
thatεn is positive and, asn→ ∞,

εn → 0,
∑
n

εn → ∞ and
∑
n

ε2
n <∞.

The final limit condition, however, can be weakened consid-
erably (Kushner and Yin, 2003, Chap. 5). The result of the
iteration is an approximation of Hessian whose inverse is
the covariance that minimizes the variances of the weights,
a claim which is made precise in Appendix A.

Figure5 compares the true cost functionϕ with approxi-
mations based on its local properties and the Hessian refine-
ment for the double-well example depicted in Fig.4. The plot
is along a line in sample space parallel to the eigenvector of
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the initial Hessian with the smallest eigenvalue. In this exam-
ple,

εn =
1

2
n−3/4 and Nr = 100.

It is apparent that sampling from a Gaussian whose cost func-
tion is based on the refined Hessian is far more efficient
than if the cost function were based on the local approxi-
mation. Finally, the similarity of the results with the example
ϕ(x)= κx2

+ x4 is due to the fact that the transition is the
point in the assimilation where the nonlinear terms of the
functionf matter most.

6 Conclusions

A mixture model approximation of the distribution of the
background state enables particle methods to adjust the back-
ground position of the particles and is often more accurate
than a kernel density estimate. When combined with an im-
plicit assimilation method, this approach, the mixture-based
particle smoother (MIPS), is a possible solution for high di-
mensional problems. This is true for a high-dimensional, lin-
ear, Gaussian example, where MIPS does not collapse.

With only a small number of particles, the implicit method
is able to detect transitions in an example with multiple at-
tracting states. To detect the same transitions, explicit ap-
proaches like BPF and EnKF require considerably more par-
ticles. This number increases with the system dimension,
provided the problem does not admit further dimensional
reduction. Moreover, with the addition of an iteration that
trains the proposal covariance to the true covariance, MIPS
can track transitions without weight collapse given only a
handful of particles.

If MIPS is to be applied to a realistic, high-dimensional as-
similation problem in the geosciences, there are a number of
improvements and simplifications to consider. In particular,
with a limited number of samples in very high dimensions,
the analytically computed values of the modev∗

j and covari-
anceSj may lead to better approximations of the component
meanµj and covarianceBj than the sample estimates. Per-
haps most importantly, the optimization step in MIPS can re-
quire very many floating point operations, and its efficiency
is vital to the applicability of the method as a whole. How-
ever, the examples in this paper show that there is reason
to believe this additional computational requirement enables
the implicit approach to produce accurate estimates in high
dimensions even with a very small number of particles.

Appendix A

Minimization of the variance of the weights

In general, the variance of the weights with respect to the
densityq (v |y1:k+1),

varq [w] = Eq
[
w2

]
− Eq [w]

2, (A1)

measures the success of an importance sampling method. It
determines both the effective ensemble size and, to leading
order, the variance of the sample mean of a general func-
tion (provided it satisfies appropriate integrability conditions;
Kong et al., 1994; Liu, 1996; Doucet et al., 2000).

The goal of the Hessian refinement is to find an approx-
imation 8 of the matrix that minimizes the variance of the
weights (A1). Since the partition functionEq [w] is indepen-
dent of8,

∂

∂8ij

{
Eq [w2

] − Eq [w]
2
}

=
∂

∂8ij
Eq [w2

],

=
∂

∂8ij

∫
p̂ (v |y1:k+1)

2

q (v |y1:k+1)
2
q(v |y1:k+1)dv,

=

∫
p̂ (v |y1:k+1)

2 ∂

∂8ij

[
1

q (v |y1:k+1)

]
dv,

= −

∫
p̂ (v |y1:k+1)

2

q (v |y1:k+1)
2

∂

∂8ij

[
q (v |y1:k+1)

]
dv.

By definition,

∂

∂8ij
q (v |y1:k+1)

∝
∂

∂8ij

{√
det(8)

exp

[
ϕ∗

−
1

2

(
v − v∗

)T
8

(
v − v∗

)]}
,

=
1

2

[
8−1

−
(
v − v∗

)(
v − v∗

)T ]
ij
q (v |y1:k+1) .

At this point, it is possible to apply the Robbins–Monro
iteration (Robbins and Monro, 1951) to the integral objective
equation

∂

∂8ij

{
Eq

[
w2

]
− Eq [w]

2
}

= 0.

However, this approach performs poorly in practice because
of the exponential dependence of the weights on the differ-
ence between the model cost and quadratic cost, which is
very often large in magnitude. The approximation of the min-
imizer follows from expanding the square of the weights into
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the power series

w2
= exp(2ψ − 2ϕ),

= 1+ (2ψ − 2ϕ)+ . . . .

Sinceψ−ϕ =O
(
‖v − v∗

‖
2
)
, regardless of the choice of8,

∂

∂8ij
Eq [w2

] = −
1

2
Eq

{[
8−1

−
(
v − v∗

)(
v − v∗

)T ]
ij

}
+

[
8−1

]
ij

Eq [ϕ−ψ ] +O
(
‖v − v∗

‖
4
)
,

the first term of which is zero by definition of the covari-
ance matrix. Hence, up toO

(
‖v − v∗

‖
4
)
, the Hessian that

minimizes the variance of the weights satisfies the integral
objective equation

Eq [ϕ−ψ ] = 0. (A2)

Since the objective equation (A2) is a single equation for
Nx(Nx + 1)/2 unknowns, it has infinitely many solutions.
Nevertheless, each samplev(i) only contains information
about the model costϕ in the direction ofv(i)− v∗. Similar
to quasi-Newton methods from deterministic optimization,
the random-direction approach makes a rank-1 update to the
Hessian such that

8(i+1)
= 8(i)

+ εi

(
ψ (i)−ϕ(i)

) (
v(i)− v∗

)(
v(i)− v∗

)T(
v(i)− v∗

)T (
v(i)− v∗

) .
This leaves the effect of the Hessian on the null space of
v(i)− v∗ unchanged. However, it is important to truncate the
step if it would cause one of the eigenvalues of8(i+1) to be-
come negative. Although no formal proof is added, there is
no evidence against the requirements for convergence (Kush-
ner and Yin, 2003).
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