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Abstract. The propagation of gravity waves in an emerged namic numerical model. The model and the vegetative pa-
three-layer porous medium is considered in this paper. Basethmeter were tested using on-site mangrove detadelia
on the assumption that the flow can be described by Darcy’'sp.) along Keelung River, TaiwaMasda et al(1997) re-
Law, an asymptotic theory is developed for small-amplitudeported on the experimental study of mangrovksr(delia
long waves. This leads to a weakly nonlinear Boussinesqgsp.) as a coastal protection in the Tong King delta, Vietham.
type diffusion equation for the wave height, with coefficients Motivated by the protective function of mangrove in miti-
dependent on the conductivities and depths of each layer. Igating high waves, here we develop a study of gravity waves
the limit of equal conductivities of all layers, the equation re- in a three-layer porous medium. The three layers here are
duces to the single-layer result recorded in the literature. Théeaves, trunks, and roots layers of mangrove forest. Wave in-
model equations are numerically integrated in the case of ateraction with non-uniform mangrove has been considered in
incident monochromatic wave hitting the layers. The resultsthe following literature Vo-Luong and Massg[2008 study
exhibit dissipation and also a downstream net height rise atvave energy dissipation in a three-layer mangrove above ar-
infinity. Wave transmission coefficient in three-layer porous bitrary depth. They use velocity potential formulations with
media with conductivity of mangrove is discussed. Numeri- dissipation to develop a predictive model for random waves
cally, propagation of an initial solitary wave through a porous in a non-uniform forest in water of changing dephhassel
medium shows the emergence of wave reflection and transet al.(1999 study wave attenuation in mangrove forests con-
mission that both evolve as permanent waves. Additionallysisting of roots and trunks.
we examine the impact of a solitary gravity wave on a porous Generally, studying wave propagation through a porous
medium breakwater. structure has many practical applications in coastal and ocean
engineering. As a breakwater, porous structures reduce the
amplitude of waves propagating into the structure. Studies
in this area are quite extensive; here we mention only a
1 Introduction few of them.Sollitt and Crosg1972, Madsen(1974, and
Sulisz(1985 developed a linear wave model for progressive
As reported inrDahdouh-Guebaf2006 andKathiresan and  \aves in a finite thickness of breakwater, and studied wave
Rajendrar(2006, mangrove forests along coastal areas pro-reflection and transmission far away from the porous struc-
vide shelter against storms and floods, as well as tsunamiyres. Experimental and numerical studies of wave interac-
Mangrove belts can absorb wave energy and reduce wavgon with a finite thickness of porous structure are discussed
amplitude and velocity. The amount of wave amplitude re-for instance inFernando et.al(2008, van Gent(1995,
duction in mangroves depends on factors such as water deptpynett et.al.(2000), Lin and Karunarathné&2007), Liu et al.
coastal profile, and also mangrove species and mangrove 999, and Scarlatos and Singf987). These authors use
thickness. Due to the complexity of the problems, researchthe modified shallow water fluid flow equations to take into
on mangrove protection mostly relies on field measuremengccount frictional dissipation. Other autho@hwang and
data from certain areas. For instan€eh et al.(2009 con- Chan (1998, andLiu and Wen (1997, use porous media
ducted a numerical and experimental study of tsunami mitio\ equations as described by Darcy’s Law to describe flow
igation by mangrovesAyicennia officinaliy on the coast  through the structures. Since for thick groves, viscous effects

of Penang, Malaysialiu et al. (2003 studied flow resis-  gominate inertial effects, for our study here we adopt Darcy’s
tance of mangrove trees using a depth-averaged hydrody-
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assumption, and we develop an asymptotic model for gravity z
waves in a rigid isotropic three-layer porous structure.

The organization of this paper is as follows. The govern-
ing equations are presented in Sectin Sect.3 asymptotic )
methods are used to derive a simpler set of equations; the —/u[
wave height is shown to satisfy a Boussinesq equation. Itis  _
a diffusion equation with higher-order nonlinear and disper- | ..
sion terms. In Sec# a predictor—corrector finite-difference ‘
scheme is used to simulate the movement of a monochro-/;(z)
matic wave through the medium. Simulation shows ampli-
tude reduction of waves in three-layer porous media. NumerFig. 1. Schematic diagram of the emerged three-layer porous do-
ical simulations clearly display the nonlinear effect: the ris- main.
ing of water levels at the right ends of rather long porous
media. In Sect5 we use typical hydrauli|c .conductl\./lt.y of Along the two interfaceg = —h; the following boundary
mangrove to calculate the wave transmission coefficient for - )

. . conditions hold:
a porous belt with certain length. In Se6twe show that
the newly derived three-layer Boussinesq model can be com- O, =d;41 On 7= —h; for i=1,2, )
bineq with the Bouss?nesq equation for free water to §imu|gteKiq>iz —K T=—h; fori=12 ®)
a solitary wave passing through a porous medium, in which

the predictor—corrector scheme follows through. Conclusiond=quation ) comes from continuity of the pressure while
are given in Secf. Eqg. 8) comes from the assumption that fluid influx and out-

flux across the interface are the same. The kinematic bound-
ary condition along the surface is

i+1Pit1z ON

2 Governing equations for flow in three-layer porous B - _ o

media Ny — K1®aziz + K1®1z: =0 on z=1. 9)
In this section, we formulate the governing equations forAlor_'ghthe? impermeable botto@= —h3(x), the normal flux
free-surface flow in a three-layer porous medium over an in-/anishes.
finitely Iong horizontal axis. Lefi(x,7) _denote the free sur- 3 =0 on 7= —h3z(®). (10)
face elevation measured from the undisturbed water level; see
Fig. 1. The porous medium consists of three layers: an upperWe summarize: the governing equations for ideal fluid flow
middle, and lower layer with thicknessés, h, —h1, and  in the three-layer porous media are E@s-10).
h3 — h, respectively, denoted as

Q= {()E, D —h1<Z<hED),%e R} (1) 3 Asymptotic expansion method leading to Boussinesq
_ oo ’ equation

Qo={(x,2)|—h2<7<—h1,x eR}, (2 q

Q3= {()z,z)| —h3<Z<-—hy i€ R} () Assuming small amplitude long wavelength, we look for

asymptotic solutionsd; for i =1,2,3 of the governing
We assume that each lay&Y; for i =1,2 3 is a rigid Egs. 6-10). Let L be typical length of the porous medium,
isotropic porous medium containing an ideal fluid of depth /3 the fluid depth, and typical free surface displacement.

h3(x). Introduce the following non-dimensional variables, written
Inside the porous medium we employ Darcy'’s law: without bars as follows:
- _ P _ I . _ L2
u; =—K;V®;, where ®i=E+Z’ 4) n=an, z=hsz, I=Lx, 1= K1E3f’
hi =hsh;, ®;=ad;, for i = 1,2 3. (11)

with K; hydraulic conductivity for each layeér= 1, 2, 3, with

dimension m/sec. In each of the three lay&2smass con-  Note that conductivityk; is scaled in the non-dimensional
servation requires time variabler, and also thatiz = h3/h3 = 1. Further, we
denote two small parameters

Vv2®; =0, in @, for i=123. (5)

= 2
a 2 h3
Along the free surface, the pressutés constant and canbe €= ,;—3 = (f) . 12)

taken as zero; we then obtain a boundary condition
Under the same assumptidiy and Wen(1997) implement

®y=17, on z=1. (6) the asymptotic expansion method for the case of a single
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layer. In this section we extend this approach for the case The detail derivation of Eq.2Q) is given in AppendixA.

of three-layer porous media. Compared to this approach, ou
approach is more direct. Rewriting the governing E§s1()

The Boussinesq equation above, written in normalized vari-
ables, is a model for gravity waves in an emerged three-layer

in non-dimensional variables, equations for the first layer aregporous medium; it is a diffusive equation with higher-order

qu)lxx +®1,,=0 in Q (13)

dy1=nonz=en (14)

12 (n; — e®1ymy) + @1, =0 on z=en. (15)
The equation for the second layer is

M2q>2xx +®2,,=0 in Q. (16)
The equations for the third layer are

MZ(DSXX + ®3,, =0 in Q3 (17)

$3, =0 on z = —hg3, (18)

The matching conditions along the two interfages —#;
are

®; =d;11 onz=—h;for i=1,2,
Ki®i,=Ki1Pi11, ONz=—h; fori=12

(19)
(20)

Further, we restrict to Boussinesq approximation, in which
O(e) = O(1?), and look for a solution in the form of the
series

®;(x,2,1) = Pjo+ p?®;1 4+ p?®ip4---, for i =1,2,3.

We implement the asymptotic expansion method in the nor
malized governing Eqs.18) and @0), by solving the cor-
responding equations layer by layer, starting from the first
O(1) terms, to higher orde®(u?) terms, and further to
O(u*) terms. Hence, an explicit approximate expression of
®;1 fori =1, 2, 3 can then be obtained; see E¢s5), (A7),

and A10) in AppendixA, respectively. Substituting the ap-
proximate potentials into the interface conditi®0) along

z = —hy yields the following equation of Boussinesq type:
N — n?Anxxt = (nx (B + &Ran)), (21)

with coefficientsA and B dependent on the conductivity and
thickness of each layer, or explicitly

B =hy+ Rp1(hp — h1) + R31(h3 — h2),
with Rij =K;/K; fori,j=1,23.
1 (1

=(zn
1/1 s 1,
hl(hz_hl)_E <6(h2_h1) +§h1(h2—h1)>

(22)

A—l(h h)2~|—1h2
— 2T Tonm

3, 1 2
5\G 1+§h1(h2—h1)

+ Ro1

1/1 1
+ Ra1 { ha(hs —h2) — — <é(h3 —h2)*+ 5 [ (ha = hp)?
—(ha—h2)? + 12| (h3 = h2))|

+ Rz (23)

1
(ha = )2 = sz —hl)Z}.

www.nonlin-processes-geophys.net/20/1023/2013/

nonlinearity and dispersion.
The horizontal flux of fluid in the three-layer porous media
is given by

en —hy —hp
Q(x,t)E—/ledZ—IQl/ @2xdz—R31/ ®3,dz.  (24)
—hy —hy —h3
Since the potentia®; for each layer was already approxi-

mated, substituting®;),, fori = 1, 2, 3 yields the following
relation:

0 — u?CQOx = —(B+en) iy, (25)
with
C =35 hi B <6(h2 h1)°+ 2h1(h2 h1)
R31 (1 3 1
— | =(hg—hp)°—=ho(ho—h1)(h3—h . 26
3 <3( 3—ho) > 2(ho—h1)(h3 2)) (26)

Hence, Egs.41) and @5) are Boussinesq models for grav-
ity waves in three-layer porous media. It is interesting to
note that the flux and surface displacement equations are
only weakly coupled; after solving for the displacement us-
ing Eqg. £1), the flux can be obtained using EQ5]. This is
different from the fully coupled equations that arise from the
corresponding shallow water (free) flow problem. The rea-
son for this can be explained as follows. Under Darcy’s as-
sumption, we get boundary conditiob4) which gives us the
first-order termd1g(x, 1) = n(x, t). From the asymptotic ex-
pansion framework, the first-order terms of E§9)(result
in ®oo(x, 1) = P1o(x, 1) =n(x,t), and furtherdso(x,r) =
®op(x, t) = n(x,t). Since the first-order term of all potential
®;,i =123 is justn(x,t), the leading-order term in the
continuity equatiom; + Q. = 0 is just a diffusion equation
with a diffusive term proportional tgxx.

Next, we take a zero test where the three layers reduce to
one layer. For this purpose we take = ho = h3 for which
K3 = K2 = K3, then the dispersion coefficient and diffusion
coefficients becomel = %h% and B = h3 respectively, and

furtherC = %h% Hence, Egs.q1) and @5) reduce to

1
Nt — Mz:—ghgﬁxxt = (77x (hz+ En))x (27)
1
Q_§ h%Qxx=—(h3+€77)77x, (28)

respectively. The set of Eqs2%) and 8) is equivalent to

the Boussinesq equations for flow in one-layer porous media
as derived irLiu and Wen(1997 using a slightly different
asymptotic expansion.

Nonlin. Processes Geophys., 20, 10232013
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4 Wave damping in porous media

Comparing Egs.qd1) and @5) for the three-layer model with 1
the corresponding resultg7, 28) for the single layer, it can
be seen that waves propagating into three layers behave lik 05
those propagating into a single layer. Note that the mode
developed in this paper is based on the assumption that thl °
waves are long compared to depth. For waves of wavelengtl
comparable with the depth (or shorter), the velocity pro-
file would vary significantly with depth, and the single- and -
three-layer models would likely produce different results.

For small amplitude displacemen{sEq. 27) can be ap-
proximated by the linear diffusion equation

2 . Co . .
N — 1 Anxxt = Bnxx, Fig. 2. A periodic tidal wave in a porous medium as the result of

) i i ) Eg. (21) with a significant wave reduction.
with wave-like solutions of the form exjekx — wt). Substi-

tuting this yieldsiw + iwu?Ak? = Bk? or

L iw 14 w 14 iwA 5 This matrix is diagonally dominant for small values of,
"V B—iwu?A =d+D\/ 25 B " hence it is invertible. Correction fob”*1, denoted ag”*,
2 2 12 is calculated using the average of old values at timand
@ A% 4 N @ dicted values at ti follows:
—— ~(1+1) T predicted values at timg_ 1, as follows:
B

- n+l _ At 2 T a1\
The relation above means that waves of frequengropa- i = 2Ax2 {€R31 ("'}+1 - ”7) +5R31('7?—1 1 )
gating into the system decay over a distance on the order of a

wavelength~ 1/k. The penetration length is strongly depen- + (B + 8R3177;5) (,7%1 — 2+ ,7']1,_1)
dent on wave frequenay, which is approximately/2B/w.

Numerical solutions to Eq.2() are obtained using the ( n 1\ (n+l o nt+l |  n+l }
predictor—corrector MacCormack method. The method has + B+ eReu; )(n/“ 21 +ni—1) - (3D

second-order accuraa@(Ax2, At?), with Ax and At the I .
partition length of spatial and time variables, respectively. Having Wi~ for j =1,..., Nx, we can directly compute
Since there is a combine derivative in temg, we first n;?“ for the new time step, using= D~1w.

rewrite Eq. 1) as The above procedure is then used to simulate wave evo-
_ ) lution in a three-layer porous medium. Initially, we have a
Uy ={ne (B+eRaml,, Wwith W=n—u An. still water leveln(x,0) =0, then we impose a monochro-

i ] ) ] matic wave influx from the leftx(0,7) = sin(r) or n] =
The first step in the MacCormack method is the predictor sin(s,). Along the right boundary, we implement a transpar-

— N . o ent boundary, simply by;"]\,j;1 =1nly,_1- FOr computations

vit =Vt 13 {8R31(’7j+1 =) we takes = 2 = 0.3, andAx = Ar = 0.02. We take a three-
layer porous model of the same thickness, with conductivity

+ (B + 8R3177'}) (1 — 20+ ’77—1)] . (29) K1=0.5, K> =0.47, andK3 = 0.5. The surface profile re-

. . . duced in the porous media is depicted in Fg.

AI_ong the Igft or rl_ght boundary, centr_e dlf_fer(_ence IS replz_aced From the same computation we plot waves entering the
with one-sided difference. The overline indicates pred|ctedporous medium in four different scaled frequencies:= 0,
values. When the predicted valuér§+1 forj=1---.Nx  7/2 7, 37/2; see Fig.3. Apart from wave reduction, we
are known, the predicted valug&™ for j = 1,..., Nx can  clearly observe the increase of mean water level in the far

be obtained by solving the linear relatiom = ¥, with right end of the porous medium. This nonlinear phenomenon
is derived inLiu and Wen(1997) as the analytical asymptotic
00 O0---0 solution of the single-layer Boussinesq mod&f)( in which
1-21...0 n— % for x — oo. This well-known but surprising result
Diveone = | ey — 2 A I (30) Was observed bilielsen(1990 in the field.
sz : . . P
0---1-21
0---1-21

Nonlin. Processes Geophys., 20, 1021333Q 2013 www.nonlin-processes-geophys.net/20/1023/2013/



S. R. Pudjaprasetya: Three-layer porous breakwater 1027
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Fig. 3. Monochromatic waves enter the porous medium with four different scaled frequenciesO, wt = 7/2, wt =, wt = 31/2,
computed using = w2 = 0.3. All four cases show the rising of mean water levekas oo.

5 Discussion of possible application to a mangrove belt 1
o.9r ¥ 08sra 1
= -
Consider a mangrove belt as a three-layer porous mediumg ©-8¢ D ]
with upper, middle and lower layers corresponding to leaves, g o.7| ]
trunks and roots of mangrove. We propose an approximates ol |

SMissio

model for wave evolution in mangrove as EZ1). As a wave
breaker, our main concern is the amount of wave energy ab-8 05} ]
sorbed by the breakwater. Since wave energy is proportionalg o4} ]
to the square of wave amplitude, we concern ourselves with
the amount of amplitude reduction in a porous belt. Wave
transmission coefficienk 7 is a quantity defined as a ratio 0.2; 100 200 300 400  soo 600 700
between transmitted wave and incident wave amplitudes. If L (cm)
the surface profile in a mangrove belt as a solution of Eg). (
is known, then theKy curve is just the normalized displace-
ment of wave entering the porous medium with zero phase.
An experimental study irSusilo and Ridd(2009 re-  Table 1.Wave transmission coefficient calculated using conductiv-
ported hydraulic conductivity for mangroveRifizophora ity k4 =0.01cms?!, kK, =0.03cms®, and k3=0.02 cms?
sp.) as about 10mday or approximately 0.01cms.  fore=pu?=0.2—0.6.
Here, we solve Eqg. 1) for three-layer mangrove of
equal thickness, with conductivitif; = 0.01cms?, Ko = Wave freq. Length of mangrove belt
0.03cms?, K3=002cms?, ande = 42 =0.3. We im-

0.3 4

Fig. 4. Wave transmission coefficient curve from numerical compu-
tation usings = 2 = 0.3.

X : ! (rads™) 100cm 200cm 300cm
pose a monochromatic wave with period 10s, or frequency
w =2r/10rads?!. The resulting wave transmission coeffi- 27 /16 (swell) 0.86-0.90 0.73-0.81 0.62-0.72
cient is given in Fig4. Note that the curve is plotted with 27/10 0.80-0.86 0.62-0.74 0.46-0.62
respect to the physical coordinate= Lx = (h3//)x. In 27 /6 (mild wind)  0.74-0.82  0.50-0.65 0.32-0.50

physical dimension, a poin® in Fig. 4 means the follow-

ing. For water depttkz and the incident wave amplitude

that satisfies:/hz = ¢ = 0.3, after passing a porous medium wave transmission coefficient 0.74—-0.82. We note that the

with lengthx = 1022 cm, the wave transmission coefficient recommendation table above holds for Boussinesq waves, i.e.

is 0.8374, which corresponds to an amplitude reduction ofsmall-amplitude long waves, and the water depth is assumed

~ 16 %. to be constant. Moreover, reflection from the beach has been
For a mangrove forest with certain hydraulic conductiv- neglected.

ity, the wave transmission cuni€y clearly depends on the

choice ofe(= u?), and on wave frequency. Further, we g Reflection of a solitary wave

perform calculations using mangrove conductivity as above,

usinge = 0.2 — 0.6 for several wave frequencies, and the re- In a coastal engineering context it is important to determine

sults are given in Tabl&. For mild wind waves with typical how much of the energy of an incoming “soliton” is ab-

frequency 2/6rads !, a porous belt length 100cm gives sorbed by a breakwater, here the three-layer porous media.

www.nonlin-processes-geophys.net/20/1023/2013/ Nonlin. Processes Geophys., 20, 10232013
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With this in mind, we examine the impact of a soliton prop- .
agating across the ocean (dept) on a finite-length porous o
medium of the above type. The soliton is assumed to impac_— S~ 1|~ = X 1~ "
normally on the medium. Of particular interest is the depen-* g& " ‘i&
dence of the transmission coefficiekit on the lengthl. of oo T ~— —
. . . o ege H 0.03 ¥ 0.03 ¥
the porous medium with certain conductivities. The impact- ., !
ing wave is assumed to be long and of small amplitude sucke ——— @
that the standard Boussinesq approximating equations o om0 e vomowore
hai; = — ((h3+ ﬁ)q)f (32) Fig. 5. Surface elevationj(x, 1) gt subsequ_ent tl_mes) =0<
1 1 t1 <...<tg=7s. Every following curve is shifted upwards
Gr — —h2Gze7 = ——Gas — ghaiiz. 33 to give a 3-dimensional impression. Lefk; =0.95, Kp =1,
1~ 3hadis o 1%~ 818l 33) K3=0.95cms right: K1 = 0.7, K» = 0.75,K3=0.7 cms L. Al

are used in the free-water zone; &&bitham(1973. These three layers are of the same thicknesses.

equations are governing equations for bi-directional gravity o o

waves written as variables surface elevaijand horizontal Table 2.Wave transmission coefficient for several lengths of porous
momentuny. In the porous domain, we implement the three- Qe‘ﬂ'gn;'crfqas'ff';‘fj/gs'fgo i@g‘f“"'% =07, K2=0.75 and
layer Boussinesq Eqgs21) and @5) in physical variables; 3T 3= o

they read Length L of porous belt
i — Afzz7 = K1 (7ix(B + Ra1il)) . (34) 20cm 30cm 40cm 50cm 60cm
0—COQ;i =—(B+1)i;, (35) 0.45-0.50 0.40-0.45 0.27-0.33 0.22-0.28 0.20-0.26

with physical parameters = 7134, B = h3B, C = h3C. We

simulate a Solitary wave |n|t|a"y located Upstream of the where we use forward space to Commé?’ 7_],\7 |” and back-

emerged porous medium. As time progresses, the wave prop- — 1 T N

agates through the porous medium and further generates rd/ard space to compugg /™, nzl;" . .

flected and transmitted waves. Here we show that the numer- COnsider acomputational domain with a porous domainin

ical predictor—corrector method as explained in Sadol-  the middle, located ofD, L]. The approximate Eqs3g) and

lows through and can be used for solitary wave simulation. (33): @nd the approximate of three-layer model Egs),(25)
The predictor—corrector method for Boussinesq equation&'€ combined. Vertical matching conditions come from the

in free areas32, 33) is described below. We first rewrite COntinuity of surface elevation

Eq. @3) as il- = il4 (37)

}ﬁgqﬁ, (36)  where— and + denote the left-hand side and the right-hand
3 side of the interface, respectively. In physical variables con-
The new variable/ introduced here is just for computational tinuity of horizontal momentum is as follows:

needs. Its values at grid points relategtowalues through a  _ = _ =

linear correspondenc?e ar?alogous toqup).(The first Step qlo- = K1Qlor,  qli+ = K1Ql-, (38)
implements forward time forward space in E@2)(and 86)  where the ternk; O denotes the reduced horizontal momen-
for calculating predicted values, indicated by overlines, astum in porous media. These matching conditions are com-

1 ) . _
Y= —5 44 —ghang, with ¢ =g—
3

follows: monly used for simulations of wave structure interaction,
e L R e —nn o such as inLiu and Wen(1997, Lynett et.al.(2000, Scar-

T T T Ak [(hs T0j)(qj41—45) +q; (g — "j)] latos and Singlf1987, andWang and Li(2002.

— N 1., ., . . . Here we show how the solitgry Wave_e_v_olves_when it
‘I’j =V + Ax {—Eq, (Gj41—4q5) —ghs (nj+1 - 77,-) } . passes an emerged porous medium. The initial solitary wave

_ . profile of Boussinesq with amplitudeis as follows:
The correction step is then

1/2
S _ 3a o
'7;”_ = '7? n(x,0) =a sech (W) (x — X)), (39)
At T —\=_n — - n - —=_mm+l | -- n+1l 3
— T {(h3+n)qx|,'+q77x|/+(h3+77)‘h|j +q77x|j }
2h3 : : gﬁs/z
- - 3 - -
+1_ g(x,0) ==—————1(x,0), (40)
v =g h3+17(%,0)
At 1 ~=_n =_|n 1 ~=_|n =_|n i i i i - i ig-
-5 {}-quxlj + ghasl + qux|j+1 +gh3nx|j+l} , which travels un_dlsturl_oed in sha_pe in f_ree wa_ter regions. Flg
3 3 ure5 presents simulation of an incoming solitary wave with

Nonlin. Processes Geophys., 20, 1021333Q 2013 www.nonlin-processes-geophys.net/20/1023/2013/
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amplitudea = 3cm on a water depthiz =30cm passing  Solving Eq. A2) with ®1¢ = n and using the boundary con-
through a porous medium (indicated in grey) with lengta: ditions (A3) and @4) yields

60 cm. As the soliton passes through the porous medium, 1

reflected and transmitted waves occur. Amplitude ratio be- __= a2 ( 2 ) —en).

tween these two waves depends on the precise detall 0(1?11 ZUXX(Z e e —m ) @ —en) (A3)
the emerged porous medium, i.e. its lendthand its hy-
draulic conductivity K;, i =1,2,3. Smaller conductivity
yields smaller amplitude of transmitted wave. For fixed con- o ® 0 in o AG
ductivities, wave transmission coefficients are calculated for- 212z T ®20 =0 1 2 (A6)
several lengths of porous medium, and the results are give%olving the equation above withyo =
in Table2.

Next, the orde®(u2) of (16) is

n and interface con-
ditions (19) and @0) with @14 as given in Eq.A5) yields

7 Conclusions 1 ) )
$p1 = —5xx {(Z +h1)*+ (h1+en) }
A non-linear, diffusive and dispersive Boussinesq equation )

has been derived for surface wave propagation in three-layer — (’”ix - ’7t) (h1+en)

porous media. The equation reduces to the Boussinesq equa-
tion for one-layer porous media recorded in the literature.
The predictor—corrector MacCormack method is a condition-
ally stable method for solving the three-layer BoussinesgWith Ri; = Ki /K for i, j = 1,2,3. Next, theO(u?) terms
equations. Numerical simulations of waves propagating inton equations for the third-layef{) and (8) are

a three-layer system behave like waves propagating into a )

one-layer system, including the nonlinear effect: the rising ®31zz+ ®30x =0 In €23 (A8)
of water level at the right end of porous breakwater. The ®31, =0 on z=—h3 (A9)
engineering aspect of mangrove in reducing wave energy

was considered here from the wave transmission coefficienBolving Eq. A8) with ®3q = n and boundary conditiorAQ)
curve, calculated for a porous belt with typical hydraulic and interface conditionslg) for z = —h, with ®; as in
conductivity of mangrove. Further, the MacCormack methodEq. (A7) yields

was shown to be a stable numerical method for Boussinesq

solitary waves. Simulation of reflected and transmitted wavesp = — =, {(z+h3)2—(h3—h2)2+(hz—h1)2+(h1+8n)2}

as a result of an initial soliton passing through a three-layer 2

+R12{nxx(h1+8n)+8n§—m}(z+h1), (A7)

porous medium was performed. + R12 {nxx(hl +en) + sn)f — ?7:} (h1— h2)
Appendix A - (877)% - ﬂt/Kl) (h1+en). (A10)
Appendix To get an approximate evolution equation of the ox@én?)

) o ) from the interface condition along= —#2, we still need to
Here we give a step-by-step derivation of the Boussinesgajculate the order-one term @h,, andds,,. Higher-order
Eqg. 21) from the full governing equations using the asymp- ¢a|culation is made under the assumptios ;2, and fol-

totic expansion method. We start by solving the normalizedigwed by collecting the? (%) terms. The equations for the
Egs. 13)—(20) layer by layer. Expand each potentibl asa  fjrst layer are

series inu?:

®i(x,2,1) = Bio+ u2Dig + pidip 4+ for i=1,23  (Al) P12z + P11 =0 in 2 (A11)
The first-order tern® 1 is a solution of the order-one term of ~ P10 + P12: =0 on z=en. (A12)
the Laplace Eq.13) with boundary conditioni4); it reads Solving Eq. A11) with the boundary conditions\(2) yields
®10(x, z,1) = n(x,1). The first-order terms of interface con-

dition (19) yield ®;q(x,z,7) = n(x,t) for i =2, 3. Further, 1 3 5

we consider terms aP(x?) in equations for the upper-layer P12, =g (z—em”+ 2K1 Nixx (2 —€n)

13)—(15); those are
(13-(19) _ + 02+ 0. (A13)
@117+ Proxx =0 In Q1 (A2) 4
Next, @22, can be obtained from th@(u*) term in the equa-
2 = - 22; 2
(”‘ - 8”)() + @11 =0 on z=ey (A3) " tion for the second layer
®17=0 on z=¢n. (A4)

D227+ P21y =0 in Q2 (A14)
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with the boundary conditior2Q) for z = —h1, and we get

1 1
Do, = g (z+h)3+ { §n4th - hlmxx} (z+h1)

1
— R1o{naxh1 — nxx} E(Z + h1)?

1 1
+ Rlz{—émxhi + Ehimxx + n,%} +0u?. (A15)

Next, collecting the?(u*) terms in the equations for the

third layer, we get

®32,;+ P31k =0 In Q3
P32, =0 on z=—ha.

(A16)
(A17)

Solving Eqg. A16) with boundary conditionsX17) yields
1 3
@32, = 54 (z+h3)

1
+ Znax {—(hs — h2)? + (h2 —h1)2+h§} (2 +h3)

2
— {R12(Maxh1 — nwxx) (ha — h2) + hanux} (2 + h3)
+0W?). (A18)

Substituting Eqgs.A7), (A10) and A15), (A18) into the in-
terface condition Z0) along z = —h2 yields the following
equation:

e — 1P Angx = (nx (B 4 eRaan)), (A19)

with A and B given in Egs. 23) and @2), respectively.
Hence, the approximate Boussinesq LY has been de-
rived.
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