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Abstract. A fault system made of two segments or asperities
subject to a constant strain rate is considered. The fault is
modelled as a discrete dynamical system made of two blocks
coupled by a Maxwell spring dashpot element and pulled at
constant velocity on a rough plane. The long-term behaviour
of the fault is studied by calculating the orbits of the system
in the phase space. The model shows the role of viscoelastic
relaxation in the Earth’s crust in controlling the occurrence
times of earthquakes. If a viscoelastic coupling is present,
earthquakes are anticipated or delayed with respect to the
elastic case. The limit cycles made of two alternate asper-
ity failures, which are observed in the case of purely elastic
coupling, are no longer produced. The model is applied to the
1964 Alaska earthquake, which was the effect of the failure
of two asperities and for which a remarkable post-seismic
relaxation has been observed in the subsequent decades. In
such a fault system, viscoelastic coupling of the asperities
appears to have a great influence on the occurrence times of
earthquakes.

1 Introduction

The seismic activity of a fault is controlled by the applied
tectonic stress, due to plate motion, and by the stresses
transferred by dislocations on neighbouring faults. Therefore
fault interaction plays a key role in determining the occur-
rence times of earthquakes. Many studies have been made
on this subject and reviews can be found in Harris (1998),
Stein (1999) and Steacy et al. (2005).

A role in this process is also played by the rheological
properties of the Earth’s crust. Crustal rocks are not per-
fectly elastic, but have a certain degree of anelasticity (Carter,
1976; Kirby, 1983; Kirby and Kronenberg, 1987; Ranalli,
1995; Nishimura and Thatcher, 2003; Bürgmann and Dresen,
2008). As a consequence, the static stress fields produced by

seismic dislocations undergo a certain amount of relaxation
during the interseismic intervals, which may have durations
of hundreds of years (Chen and Molnar, 1983; Dragoni et
al., 1986; Kusznir, 1991; Kenner and Segall, 2000). In a fault
system, such a long-term variation of stress alters the stress
distribution on faults and modifies the occurrence times of
seismic events (e.g. Chéry et al., 2001; Lynch et al., 2003;
Smith and Sandwell, 2006; Piombo et al., 2007).

In addition to bulk relaxation of the crust, creep on
fault segments may take place (e.g. Marone et al., 1991;
Belardinelli and Bonafede, 1995; Heki et al., 1997). The in-
teraction between two faults due to aseismic slip was studied
by Dragoni and Tallarico (1992) and Tallarico et al. (2002)
in the framework of continuum mechanics.

In the present paper, we study a two-fault system where
the stress transferred from a fault to another one partially re-
laxes during an interseismic interval. To this aim we consider
a discrete dynamical system, made of two blocks pulled by
a driver at constant velocity on a rough plane. The coupling
between the blocks is realised by a spring and a dashpot in
series: this amounts to assume a Maxwell viscoelastic rheol-
ogy for the Earth’s crust. We do not consider aseismic slip on
faults in the present paper.

Discrete dynamical systems are usefully employed as
models to investigate the long-term behaviour of faults. Such
models include the essential features of seismic sources, i.e.
a stick-slip mechanism activated by applied forces, but avoid
the detailed field description of continuum mechanics. The
advantage is that we can follow the evolution of the system
in the phase space and obtain a deeper understanding of the
long-term behaviour of the system itself.

In the case of a purely elastic coupling, the two-block
model has been proposed by Nussbaum and Ruina (1987)
and further investigated by Huang and Turcotte (1990a, b,
1992), McCloskey and Bean (1992), de Sousa Vieira (1995),
Turcotte (1997), He (2003), Dragoni and Santini (2010,
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Fig. 1.Sketch of the model.

2011). In the case of uniform friction, the long-term be-
haviour of the system in the phase space is one of an infinite
number of limit cycles producing an alternate motion of the
blocks, representing an alternate slip of the faults. We shall
show how this picture is modified by the introduction of vis-
coelastic coupling.

Studies of block systems with viscoelastic coupling have
been already presented by some authors. A review of such
work up to year 2000 was given by Pelletier (2000). In par-
ticular Hainzl at al. (1999) considered a network of inter-
connected blocks lying between two tectonic plates in the
form of a continuous cellular automaton. Kenner and Si-
mons (2005) considered a spring-dashpot-slider system sim-
ulating the stress interactions that take place in a three-layer
model composed of an elastic plate overlying a viscoelastic
channel above a viscoelastic half-space.

2 The model

We consider a system made of two blocks (named 1 and
2) having equal massm and placed on a horizontal plane
(Fig. 1). Each block is connected by a horizontal spring to a
driving mechanism moving at constant velocityv in the hor-
izontal direction. The two springs (named 1 and 2) have the
same rigidityK. The blocks are connected to each other by
spring 3 with rigidityKc in series with a dashpot with damp-
ing constant0. The Maxwell relaxation time is

τ =
0

Kc

. (1)

The Maxwell body is the simplest viscoelastic model that
is representative of the long-term behaviour of crustal rocks
and is considered to be appropriate in the framework of the
model assumptions. An analogous viscoelastic coupling is
not introduced for the driving mechanism, since we assume
that the characteristic Maxwell time associated with tectonic
loading is much larger than typical interseismic intervals;
therefore, the behaviour can be approximated as elastic. If
this assumption is not made, the stress imposed to the faults
by plate motion would approach a constant value and earth-
quakes would no longer occur. We assume that the motion of

each block is resisted by a static frictionfs and a dynamic
friction fd.

The state of the system can be described by three vari-
ablesx, y andz measuring the extensions of springs 1, 2 and
3, respectively, as functions of timet . Accordingly, the sys-
tem has three degrees of freedom and the phase space is a
6-manifold. We introduce non-dimensional variables

X =
Kx

fs
, Y =

Ky

fs
, Z =

Kz

fs
, T =

√
K

m
t. (2)

The system is described by four non-dimensional parame-
ters that are defined as follows:

α =
Kc

K
, ε =

fd

fs
, V =

√
Km

fs
v, 2 =

√
K

m
τ. (3)

If f1 andf2 are the forces applied to blocks 1 and 2, re-
spectively, we define non-dimensional forces

F1 =
f1

fs
, F2 =

f2

fs
. (4)

They can be written in terms of the model variables as

F1 = −X + αZ, F2 = −Y − αZ (5)

which reduce to the expressions for the elastic case ifZ =

Y − X.
In view of the seismological application, the system is sub-

ject to a number of constraints. The driver velocityV is con-
stant and positive. The degree of couplingα is a real number
greater or equal to zero. The ratioε is a positive real number
smaller than 1.

Since the sign of shear stress on a fault does not change
in time, springs 1 and 2 are always stretched or at rest, so
that X ≥ 0, Y ≥ 0. In additionX and Y can not exceed 1
(corresponding to static friction), while the maximum value
of Z is Y − X. Then

0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, −1 ≤ Z ≤ 1. (6)

Therefore, the projection of the phase space in the space
XYZ is the parallelepiped defined by Eq. (6). The conditions
on X and Y entail an additional condition onε: since the
maximum value of slip is 2(1− ε), which takes place when
α = 0,X andY satisfy the condition of being greater or equal
to zero only if 2(1− ε) ≤ 1 or ε ≥ 1/2.

The dynamics of the system has four different modes, cor-
responding to stationary blocks (mode 00), motion of block 1
(mode 10), motion of block 2 (mode 01), simultaneous mo-
tion of blocks 1 and 2 (mode 11). Each mode is described
by a different system of autonomous differential equations.
Therefore, the dynamical system is piecewise smooth and
has a discontinuous right hand side: it is a Filippov system
(Filippov, 1988; di Bernardo et al., 2008).

The conditions for the onset of motion of blocks 1 and 2
are respectively

F1 = −1, F2 = −1 (7)

or
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Fig. 2.The sticking regionH .

X − αZ − 1 = 0, Y + αZ − 1 = 0. (8)

These are the equations of two planes that we call plane 1
and plane 2, respectively. They have in common the point
(1,1,0).

In mode 00, the velocitieṡX, Ẏ andŻ can be neglected.
The region of phase space including the states in which the
blocks are stationary (sticking region) is therefore a subset of
the hyperplanėX = 0, Ẏ = 0, Ż = 0. It is defined as the set
of solutions of the six linear disequations

0 ≤ X ≤ 1, 0 ≤ Y ≤ 1,
X − 1

α
≤ Z ≤

1− Y

α
. (9)

It is therefore a convex hexahedronH (Fig. 2). Its faces
are 2 trapezoids, 2 rectangles and 2 triangles and its volume
is equal to 1/α. The hexahedron is divided in half by the
planeZ = 0 and its section is a square of unit side on this
plane. The projections of the orbits of the system on the plane
Z = 0 are contained in this square.

3 Solutions

We now write down the equations of motions of the four
modes and give the corresponding solutions.

3.1 Stationary blocks (mode 00)

The variablesX and Y obey the same equations as in the
case of elastic coupling, whileZ is governed by the Maxwell
constitutive equation. The equations of motion are then

Ẍ = 0, Ÿ = 0, Z̈ =
Z

22
(10)

where a dot indicates differentiation with respect toT .
With initial conditions

X(0) = X̄, Y (0) = Ȳ, Z(0) = Z̄ (11)

Ẋ(0) = V, Ẏ (0) = V, Ż(0) = −
Z̄

2
(12)

the solution is

X(T ) = X̄ + V T, Y (T ) = Ȳ + V T, Z(T ) = Z̄e−T/2 (13)

whereT ≥ 0. Equations (13) are the parametric equations of
a curve belonging to the plane

X − Y + Ȳ − X̄ = 0 (14)

which is parallel to theZ axis. The curve tends asymptoti-
cally to the line

Y = X + Ȳ − X̄, Z = 0 (15)

which is also the projection of the curve in the planeZ = 0.

3.2 Motion of block 1 (mode 10)

Since the block moves very fast, the dashpot does not take
part in the motion. Therefore, the equations forX andY are
the same as in the elastic case, whileZ evolves asX:

Ẍ = ε − (1+ α)X + αY (16)

Ÿ = 0 (17)

Z̈ = ε − (1+ α)X + αY. (18)

With initial conditions

X(0) = X̄, Y (0) = Ȳ, Z(0) = Z̄ (19)

Ẋ(0) = V̄ , Ẏ (0) = 0, Ż(0) = −V̄ (20)

the solution is

X(T ) =
ε + αȲ

ω2
+

(
X̄ −

ε + αȲ

ω2

)
cosωT +

V̄

ω
sinωT (21)

Y (T ) = Ȳ (22)

Z(T ) = Z̄ + X̄ − X(T ) (23)

where

ω =
√

1+ α. (24)

Equations (21)–(23) are the parametric equations of a line
that lies on the planeY = Ȳ and has the equation

Z(X) = Z̄ + X̄ − X. (25)
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3.3 Motion of block 2 (mode 01)

The problem is analogous to that of mode 10, but in this case
Z evolves asY . The equations of motion are

Ẍ = 0 (26)

Ÿ = ε + αX − (1+ α)Y (27)

Z̈ = ε + αX − (1+ α)Y (28)

with initial conditions

X(0) = X̄, Y (0) = Ȳ, Z(0) = Z̄ (29)

Ẋ(0) = 0, Ẏ (0) = V̄ , Ż(0) = V̄ (30)

the solution is

X(T ) = X̄ (31)

Y (T ) =
ε + αX̄

ω2
+

(
Ȳ −

ε + αX̄

ω2

)
cosωT +

V̄

ω
sinωT (32)

Z(T ) = Z̄ − Ȳ + Y (T ). (33)

They are the parametric equations of a line that lies on the
planeX = X̄ and has the equation

Z = Z̄ − Ȳ + Y. (34)

3.4 Simultaneous block motion (mode 11)

In this case the equations forX andY are coupled, whileZ
evolves asY − X:

Ẍ = ε − (1+ α)X + αY (35)

Ÿ = ε + αX − (1+ α)Y (36)

Z̈ + �2Z = 0 (37)

where

� =
√

1+ 2α. (38)

If the motion of block 1 triggers that of block 2, initial
conditions are

X = X̄, Y = Ȳ, Z = Z̄ (39)

Ẋ = V̄ , Ẏ = 0, Ż = V̄ (40)

and the solution is

X(T ) = ε −
2ε − X̄ − Ȳ

2
cosT +

V̄

2
sinT +

X̄ − Ȳ

2
cos�T

+
V̄

2�
sin�T (41)

Y (T ) = ε −
2ε − X̄ − Ȳ

2
cosT +

V̄

2
sinT −

X̄ − Ȳ

2
cos�T

−
V̄

2�
sin�T (42)

Z(T ) = Z̄ cos�T +
V̄

�
sin�T. (43)

If the motion of block 2 triggers that of block 1, initial con-
ditions are

X = X̄, Y = Ȳ, Z = Z̄ (44)

Ẋ = 0, Ẏ = V̄ , Ż = −V̄ (45)

and the solution is

X(T ) = ε −
2ε − X̄ − Ȳ

2
cosT +

V̄

2
sinT +

X̄ − Ȳ

2
cos�T

−
V̄

2�
sin�T (46)

Y (T ) = ε −
2ε − X̄ − Ȳ

2
cosT +

V̄

2
sinT −

X̄ − Ȳ

2
cos�T

+
V̄

2�
sin�T (47)

Z(T ) = Z̄ cos�T −
V̄

�
sin�T. (48)

In both cases the solution yields the parametric equations
of a curve.

4 Orbits

We now calculate a typical orbit of the system in the phase
space. We consider the projection of the orbit in the three-
dimensional spaceXYZ. As initial point atT = 0, we choose
a pointP0 = (X0,Y0,Z0) belonging toH , since the system is
in H for the most part of its lifetime. According to Eq. (14),
the first segment of the orbit lies on the plane

Y = X + p (49)

with

p = Y0 − X0. (50)

The orbit will intersect plane 1 or plane 2, according to
whetherZ0 < 0 (spring 3 is compressed) orZ0 > 0 (spring 3
is stretched), respectively. The two cases are symmetric: we
supposeZ0 < 0.

If P1 = (X1,Y1,Z1) is the intersection point of the orbit
with plane 1,X1 andZ1 must satisfy the first of Eq. (8):

X0 + V T1 = 1+ αZ0e
−T1/2 (51)

whereT1 is the instant of time when the representative point
of the system isP1. Solution of (51) yields

T1 = 2W(γ1) +
1− X0

V
(52)

whereW is the Lambert function with argument

γ1 =
αZ0

V 2
e−

1−X0
V 2 . (53)
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Then

X1 = X0 +V T1, Y1 = Y0 +V T1, Z1 = Z0e
−T1/2. (54)

If 2 → ∞, it resultsγ1 = 0 andW(0) = 0: the system re-
duces to the case of elastic coupling, where the coordinates
of P1 depend only on the variablep.

The second segment of the orbit corresponds to the mo-
tion of block 1: it is obtained from Eqs. (16)–(18) with initial
conditions

X(0) = X1, Y (0) = Y1, Z(0) = Z1 (55)

Ẋ(0) = 0 Ẏ (0) = 0, Ż(0) = 0. (56)

The solution is

X(T ) = X1 −
U

2
(1− cosωT ) (57)

Y (T ) = Y1 (58)

Z(T ) = Z1 + X1 − X(T ) (59)

where

U = 2
1− ε

1+ α
. (60)

There are now two possibilities: (1) the motion of block
1 stops at a pointP2 ∈ H ; or (2) the orbit intersects line 2
while block 1 is still moving. In the former case, the system
will resume mode 00, in the latter it will enter mode 11. We
consider the former case. The coordinates ofP2 are then

X2 = X1 − U, Y2 = Y1, Z2 = Z1 + U. (61)

The segmentP1P2 lies on the planeY = Y1 and belongs
to the line

Z = Z1 + X1 − X. (62)

After point P2, the system enters again mode 00 and the
representative point moves on the plane

X − Y + p + U = 0. (63)

If P3 = (X3,Y3,Z3) is the intersection point of the orbit
with plane 2,Y3 andZ3 must satisfy the second of Eqs. (8):

Y2 + V T2 = 1− αZ2e
−T2/2 (64)

whereT2 is the time taken by the system to move fromP2 to
P3. Solution of Eq. (64) yields

T2 = 2W(γ2) +
1− Y2

V
(65)

with

γ2 = −
αZ2

V 2
e−

1−Y2
V 2 . (66)

Then

X3 = X2 +V T2, Y3 = Y2 +V T2, Z3 = Z2e
−T2/2. (67)

The fourth segment of the orbit corresponds to the motion
of block 2: it is obtained from Eqs. (26)–(28) with initial con-
ditions

X(0) = X3, Y (0) = Y3, Z(0) = Z3 (68)

Ẋ(0) = 0 Ẏ (0) = 0, Ż(0) = 0. (69)

The solution is

X(T ) = X3 (70)

Y (T ) = Y3 −
U

2
(1− cosωT ) (71)

Z(T ) = Z3 − Y3 + Y (T ). (72)

There are again two possibilities: (1) the motion of block
2 stops at a pointP4 ∈ H ; or (2) the orbit intersects line 1
while block 2 is still moving. In the former case, the system
will resume mode 00, in the latter it will enter mode 11. We
consider again the former case. The coordinates ofP4 are
then

X4 = X3, Y4 = Y3 − U, Z4 = Z3 − U. (73)

The segmentP3P4 of the orbit belongs to the planeX =

X3 and is given by

Z = Z3 − Y3 + Y (74)

with Y4 ≤ Y ≤ Y3. From the coordinates ofP4 we deduce

Y4 − X4 = p. (75)

Hence the system comes back to the initial plane Eq. (49).
But P4 does not belong to the segmentP0P1 of the orbit,
because of the value ofZ4. This contrasts with the elastic
case, where all the orbits describing the alternate motion of
the two blocks are periodic with period two (Dragoni and
Santini, 2010). The orbit fromP0 to P4 is shown in Fig. 3 for
a choice ofP0 that would immediately give a limit cycle in
the elastic case. It can be seen that pointsP1 andP3 do not
fall on the dashed lines, representing the conditions for the
onset of block motion in the elastic case. Explicit expressions
of the coordinates of pointsP1 to P4 are given in Table 1.

5 Discussion

In the case of purely elastic coupling, the long-term be-
haviour of the system is a limit cycle with a particular re-
currence pattern of earthquakes, whichever the initial state is
(Dragoni and Santini, 2010, 2011). There is an infinite num-
ber of such cycles, the shapes of which are determined by
the initial position of the system in the phase space. Such a

www.nonlin-processes-geophys.net/20/1/2013/ Nonlin. Processes Geophys., 20, 1–10, 2013
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Table 1.Coordinates of the first singular points of an orbit withZ0 < 0.

X1 = V 2W(γ1) + 1, Y1 = V 2W(γ1) + 1+ p, Z1 =
V 2
α W(γ1)

X2 = V 2W(γ1) + 1− U , Y2 = V 2W(γ1) + 1+ p, Z2 =
V 2
α W(γ1) + U

X3 = V 2W(γ2) + 1− p − U , Y3 = V 2W(γ2) + 1, Z3 = −
V 2
α W(γ2)

X4 = V 2W(γ2) + 1− p − U , Y4 = V 2W(γ2) + 1− U , Z4 = −
V 2
α W(γ2) − U

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

P 4

P 3
P 2 P 1

 Y

X

P 0

Fig. 3.Orbit with initial pointP0 = (0.45,0.3,−0.15) and withα =

1, ε = 0.7, V 2 = 1.

position is related to the inhomogeneity of the stress applied
to the fault.

If a viscoelastic coupling is present, this simple behaviour
is altered. In mode 00 the forces applied to the blocks change
in time as

F1(T ) = −X0 − V T + αZ0e
−T/2 (76)

F2(T ) = −Y0 − V T − αZ0e
−T/2. (77)

There are additional nonlinear terms, with respect to the
elastic case, such that the forces change non-monotonically
during the loading phase of the system. Moreover the differ-
enceF1 −F2 is not constant in time, implying that the stress
distribution on the asperities changes during loading. This
contrasts with the elastic case, where both forces are linearly
increasing (in absolute value) at the same rateV and their
difference is constant.

As a consequence, earthquakes are anticipated or delayed
with respect to the elastic case. If we consider the segment
P0P1 of an orbit like the one shown in Fig. 3, the timeT1
needed for the representative point to reach plane 1 is given
by Eq. (52). The corresponding time in the elastic case is

T ′

1 =
1+ αp − X0

V
. (78)

In order to evaluate the effect of viscous relaxation, we
consider the function

1T1(X,Y,Z) = T1 − T ′

1. (79)

Contour plots of1T1/2 are shown in Fig. 4 on cross sec-
tions ofH parallel to the planeZ = 0. If Z0 < 0, such cross
sections are the rectangles

0 ≤ X ≤ 1+ αZ0, 0 ≤ Y ≤ 1. (80)

The points where1T1 is positive represent states imply-
ing a lengthening of the interseismic time, hence a delay of
the earthquake, with respect to the elastic case. The opposite
holds for the points where1T1 is negative.

The importance of viscoelastic coupling depends on the
productV 2 between the velocity of tectonic loading and the
characteristic time of viscoelastic relaxation. ForV 2 in the
order of 1 or less, viscoelastic coupling is important, while
it becomes negligible for larger values, sayV 2 > 10. For
a given value ofV 2, larger values of|Z0| favour an an-
ticipation of the earthquake, because the viscoelastic term
in Eq. (76) gives an important negative contribution toF1,
hence the first condition in Eq. (7) is reached earlier.

It is also interesting to study the dependence ofT1 on the
position of the initial pointP0. Contour plots ofT1/2 are
shown in Fig. 5 on a cross section ofH perpendicular to the
Y axis and forZ < 0. Different values of the productV 2 are
considered. The distribution of initial points with the same
value ofT1 shows a remarkable change with the value ofV 2.
For smaller values ofV 2, T1 virtually depends only onX0
and is fairly independent ofZ0: this means that the initial
stress state of the Earth’s crust is irrelevant when relaxation
is fast. As to the value ofT1, it may be significantly larger
than2 for smaller values ofV 2.

6 Correspondence rules

In order to apply the model to real cases, it is necessary to
assign appropriate values to the model parametersα, ε, V ,

Nonlin. Processes Geophys., 20, 1–10, 2013 www.nonlin-processes-geophys.net/20/1/2013/
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Fig. 4.Contour plots of1T1/2 on different sections ofH : (a)Z0 =

−0.5, (b) Z0 = −0.3, (c) Z0 = −0.1 (α = 1, V 2 = 1).

2. To this aim we consider a simple model based on con-
tinuum mechanics and derive correspondence rules for the
parameters of the discrete system.

We consider a plane fault embedded in a shear zone of
width d enclosed between rigid plates moving at relative ve-
locity v. The shear zone is an elastic medium with rigidity
µ. The fault has two asperities with equal areasA, located at

Fig. 5. Contour plots ofT1/2 on a section ofH perpendicular to
theY axis:(a) V 2 = 1, (b) V 2 = 0.5, (c) V 2 = 0.2 (α = 1).

distanceR from each other. The tectonic shear stress accu-
mulating on the fault is then

σ =
µvt

d
(81)

and the force on each asperity is

f = σA. (82)

www.nonlin-processes-geophys.net/20/1/2013/ Nonlin. Processes Geophys., 20, 1–10, 2013
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A comparison with the forceKvt acting on a block in the
discrete model yields the correspondence rule

K ≈
µA
d

. (83)

If we suppose that an asperity slips by an amountu, the
shear stress produced at distancer in the point-like source
approximation is

1σ(r) ≈
µuA
r3

. (84)

Accordingly, the forcef on the other asperity is changed
by an amount

1f ≈
µuA2

R3
. (85)

In the discrete model,u is the change in the difference
|x − y| and the change inf is the quantityKcu, whence the
correspondence rules

Kc ≈
µA2

R3
, α ≈

Ad

R3
. (86)

Sliding friction is a complicated function of several vari-
ables (e.g. Scholz, 1990). In compliance with the model, we
make the assumption that the two asperities are characterised
by a static frictionσs and a dynamic frictionσd, so that

ε =
σd

σs
. (87)

As to V and 2, they always occur as the productV 2.
According to Eq. (3),

V 2 =
K

fs
vτ (88)

where

fs = σsA. (89)

Taking into account that

u =
fs

K
U (90)

it follows

V 2 ≈
U

u
vτ. (91)

7 An application

Seismic dislocations are in general complex events, with a
nonuniform distribution of friction on the fault surface. In
many cases, the slip distribution can be sketched as the slip-
ping of two asperities. An example is the 1964 Alaska earth-
quake, one of the largest earthquakes in the last century, with

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

P 3 P 2

P 1

 Y

X

P 0

Fig. 6. Orbit with initial point P0 = (0.45,0.9,0.1) and withα =

0.1, ε = 0.7, V 2 = 0.05.

magnitude 9.2. Seismological, geodetic and tsunami data in-
dicate that the earthquake was the result of the slipping of two
asperities, the Kodiak Island and the Prince William Sound
asperity, separated by a large spatial gap (Christensen and
Beck, 1994; Holdahl and Sauber, 1994; Johnson et al., 1996;
Zweck et al., 2002; Santini et al., 2003). We call them asper-
ity 1 and 2, respectively.

Dynamical models show that the slipping of a fault made
of two asperities may involve one asperity at a time or both,
depending on the state of stress (Dragoni and Santini, 2010,
2011). The 1964 Alaska earthquake involved both asperities
and, in particular, it was the result of the slipping of asperity
2 followed immediately by that of asperity 1. For an applica-
tion of the model, we may takeA≈ 104 km2, R ≈ 300 km
and d ≈ 300 km, whenceα ≈ 0.1. With ε = 0.7, we have
U ' 0.55.

For the Alaska earthquake, there is clear evidence of post-
seismic deformation occurring in the decades following the
event (Zweck et al., 2002). Part of the deformation has been
ascribed to aseismic slip of the fault and part to viscoelastic
relaxation. The latter shows a characteristic timeτ ≈ 30 a.
The relative plate velocity isv = 5.7 cm a−1 (DeMets and
Dixon, 1999). The average slips of the two asperities have
been evaluated to about 20 m. ThenV 2 ' 0.05, indicating a
strong influence of viscoelastic relaxation on the occurrence
times of earthquakes.

On the basis of the present model, we may tentatively con-
strain the subset of states in which the system was before
1964. In order to exhibit the observed behaviour, the initial
point P0 was such thatP1 was on plane 2 andP2 was on
plane 1. This implies thatZ0 > 0 and the coordinates ofP0
satisfy the equation

X0 + V T ′
= αZ0e

−T ′/2
− αU + 1 (92)
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Fig. 7.Contour plot ofT1/2 on a section ofH perpendicular to the
Y axis (α = 0.1, V 2 = 0.05).

where

T ′
= 2W(γ ′) +

1− Y0

V
(93)

with

γ ′
= −

αZ0

V 2
e−

1−Y0
V 2 . (94)

Figure 6 shows an orbit with such a property, whereP3 is
a possible position of the system after the 1964 earthquake.
SinceZ3 < 0, the next earthquake would originate from the
failure of asperity 1.

The timeT1 taken by the system to move fromP3 to P4
can be calculated from Sect. 4. Figure 7 shows a contour plot
of T1/2 on a cross section ofH parallel to the planeY = 0,
for values of the model parameters appropriate to the Alaska
fault. The timeT1 can be as large as 20 times the relaxation
time2, implying an interseismic time of several centuries.

Of course this model is a strong simplification of the
Alaska fault system and can only outline the broad charac-
teristics of its seismic activity. However, it shows how dis-
crete dynamical models can potentially seize the long-term
behaviour of fault systems.

8 Conclusions

In many cases larger earthquakes can be considered as the
effect of the failure of two or more asperities. The model
presented in this paper investigates the interaction between
two asperities in the presence of a viscoelastic coupling. We
presented a complete analytical solution for the four modes
of the system. On this basis we calculated the orbits of the
system in the phase space in order to establish how the differ-
ent physical quantities control the occurrence times and the
source functions of the earthquakes generated by the system.

The aim of the present study is to show how a viscoelastic
coupling between adjacent faults or fault segments may af-
fect the time pattern of seismic activity. The model shows
that the importance of viscoelastic coupling is controlled by
the product between the velocity of tectonic loading and the
characteristic time of viscoelastic relaxation. Smaller values
(less than 1) of this product have a remarkable influence on
the occurrence times of earthquakes originated by the two-
fault system.

An earthquake can be anticipated or delayed, with respect
to the case of purely elastic coupling, depending on the ini-
tial state of the system, i.e. on the distribution of stress on
the fault segments. Therefore, the presence of a viscoelastic
coupling spoils the periodicity of seismic activity that is a
property of a simple two-fault model with uniform friction:
limit cycles made of alternate asperity failures are no longer
produced.

We conclude that the observed aperiodicity of seismic ac-
tivity can rise even in strongly symmetric models like the
one considered here. An application of the model to the 1964
great Alaska earthquake suggests that viscoelastic relaxation
plays a major role in controlling the occurrence times of
earthquakes originated by that fault.
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