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Abstract. An approach to solve 3D inverse problem
associated with inverting scismic reflection data is pre-
sented. It exploits the a priori assumption that the
reflection data, reduced properly, can be interpreted
as a perturbation of a dynamical response of a certain
'reference background’. It is supposed that the corre-
sponding perturbation of medium parameters can be
treated in terms of the "Ray + Born'-, or 'Rytov +
Born'’- set of medium functions. This for the reflec-
tion data means that "kinematical’ part does not gen-
erate reflections, while proper reflections are caused by
single-scattering perturbations. Moreover, it is guessed
that the lattcrs are cooperated in a vicinity ol a certain
unknown 2D smooth surface ('interfaces’). When this a
priori information is adequate, the approach allows to
recover hoth the low-frequency features of the medium
(the background) and its discontinuities. The approach
involves a new optimization criterion, called the Entropy
of Image Contrast (EnIC), and a new global optimiza-
tion algorithm, called Regularized (Global Approxima-
tion algorithm (RGA-algorithm). It allows to choose
such a background that the linerized inversion provides
the most focused 1mage of interfaces. In other words, it
yields the maxirnum-contrast, or minimum-entropy, in-
terface image. The method takes into account the large
amounts of data that have to be processed in 3D inver-
sion and the sparseness of input data. It is also robust
with respect to the noise in the data.

1 Introduction.

Probably it is a propagation of scund waves in a medium
that is the best-known nonlincar process in geophysics.
Parameters of the process are distributed in a three-
dimensional physical space and have an excellent phys-
jcal interpretation, e.g. density, slowness, impedance,
Lamé parameters. To extract thesc parameters from
observed data means to solve 3D nonlinear inverse prob-
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lem that creates additional difficulties as compared with
any nonlinear incorrect problem. Indeed, it is impossible
to apply a conventional iterative algorithm to solve the
nonlinear problem because of extremely high computa-
tional costs of 3D forward modeling that is necessary
on each step of the iteration procedure. In view of gen-
eral computational difficulties arising even when solving
a 3D linear inverse problem we try to save the general
structure of the suggested algorithm as much as possible
omitting details that depend on an operator.

The problem of numerical inversion of 3D seismic re-
flection data remains to be a challenge because of the
huge amount of unknowns and data that are to be han-
dled. At the same time it is impossible to ignore the
three-dimensional geometry of real geclogical structures,
i.e. one can’t reduce sufficiently the set of unknown
medium parameter functions.

1t is also impossible to decouple migration or lincar
inversion with respect to an interface from the determi-
nation of the elastic parameters of the overlying layers.
It has been shown by numerical experiments that lin-
eal inversion is extremely sensitive to noise in the travel
times (e.g. Versteeg, 1993) but sufficiently robust with
respect to amplitude noise. It is therefore important to
couple linear inversion with velocity analysis (e.g. Luo
and Schuster, 1992},

We start from realistic assumptions about the data
taking into account their incompleteness, sparseness and
spatial randomness. ‘The data represent an unstacked
digitized finite-band noisy seismogram. It is supposed a
source-recelver array has an arbitrary configuration.

In order to handle incomplete data il is necessary to
introduce an adequate a priori information {Franklin,
1970), (Tikhonov and Arsenin, 1977). We have based
inversion on the assumption that the deviation of model
parameters m(x) x € Q C R®> from a reference model
sp can be decomposed into two components m — sg =
ds-+p. The low [requency component ds(x) corresponds
to the parameter variation inside the layers. The high




frequency component p(x) describes the jumps of the
parameters at interfaces. The high frequency compo-
nent is assumed to be concentrated in a neighborhood
of some two-dimensional manifolds, while the low fre-
quency component ds is assumed to be such that rela-
tive perturbation of a reference medium s¢(x) is rather
smooth, i.e. to belong to a small ball in the Sobolev
space of second order.

Taking into account sparseness of the data we reduce
the size of the problem without any loss of information.
Spatial randomness of the acquisition system does not
cause additional difficulties since we do not interpolate
in the data space.

Updating the low frequency component ds is based on
solving an optimization problem. The objective func-
tion is a measure of the sharpness of an image g of the
high-frequency component obtained by linear inversion
of the data residuals with respect to the background
s = sg+ds. It isdefined in terms of a new function of the
gradient of g, which we call entropy of image contrast
(EnlIC), and an appropriate regularizing term depend-
ing on s. It Is conjectured that a "good” backeground
allows successful migration of high frequency modecl fea
tures. In other words, we suppose that a background
§ = sg +ds is responsible for nonlinear part. of inversion
problem, so we suggest the measure to estimate focus-
ing features of unknown s(x) by analysis of a contrast
of corresponding image p(x).

In order to reduce the nmumber of optimization pa-
rameters we represent the low frequency component in
terms of a truncated expansion in ferms of the eigen-
functions of the "anisotropic Laplacian” V.8V (Scct. 4).
For example, the anisotropy can assign different a priori
weights to horizontal and vertical variations of model
parameters.

The optimization problem is solved by a global opti-
mization algorithm. In order to reduce the number of
evaluatious of the objective function a new algorithm
(RGA-algorithm) has also been introduced by Ryzhikov
and Biryulina (1994) (Appendix C). It has been applied
to optimization in a 12-parameter space.

Each evaluation of EnIC requires interface imaging,
i.e. determination of the high-frequency component 7
while the background modecl M is held fixed. Interface
unaging is implemented by a wave field inversion based
on the Born approximation. In order to reduce the costs
of each evaluation of EnlC the image is constructed in
a small volume €, typically a thin vertical layer in the
physical space. The inversion is based on a relatively
crude diagonalization of the Hessian Lo facilitate com-
putation of its inversc. More accurate inversion may be
needed after the final update of the background model.

The general structure of nonlinear inversion is shown
in Fig. 1,

The method described below is illustrated by apply-
ing it to the scalar wave equation. The model to be
reconstructed is represented by the slowness field s(x).
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Fig. 1. Block diagram of nonlinear inversion.

2 Linearized inversion

We assume that the digitized reflection seismic data d
can be cxpressed in terms of a boundmg field ¢ and an
additive noise ¢;

d = Dp + ¢ (1)

where ) is the compact operator representing convolv-
ing features of a registration channel. For example, data
d{@,;1), registered with the single receiver at a point x,,
can be modeled by d(x,;t) = [dzd(x—x.)D({) *p(x;1),
where the operator /) is represented with the integral
kernel Dé(x — x,), and D(t) is an impulse response of
the 'x.’-channel. It means an inverse operator D! does
not exist and we are to take into account that we are
dealing with narrow time-frequency band data given in
set of sparse spatial points. Here we try to avoid any in-
termediate transformation of data, e.g. deconvolution,
interpolation in space-time, extrapolation. Solving of
these incorrect problems supposes to use a priori infor-
mation in data space which induces indirectly a priori
information in medium parameter space. It is rather
difficult to control this kind of a priori information be-
cause of nonlinear mapping of medium parameters into
data.

The sounding field . generated by source f satisfics
a partial differcntial equation

Ly, ¥ = f (2)
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where m = m(x), x € @ C R® | represents a set of
parameters of the medium (e.g. Ly, = m 87 — V? for
the scalar wave equation, and m{x) is an inverse squared
velocity).

The inverse problem aims at a reconstruction of the
function m(x) from the data registered at a a finite set of
receivers and from a finite set of sources. The problem is
underdetermined and requires a proper regularization.

The inverse problem can be expressed in terms of

the following optimization problem (e.g. Tarantola and
Valette, 1982):

m" = arg ingdr J4{m) (3)

me

where set M has to be chosen properly, and
1
Fim) = 3(d - dealm) | d— deatlm)) (4)

d.q{m) are the data calculated for a model m and d are
the observed data. Assuming that C. is the covariance
matrix of the noise ¢ a natural inner product in the data
space D is given by

: sy def i -1 ;o
(d Id ) - ZZ(CE )n’n" n'dn”a (5)

n’ nli

while d.q; is nonlinear operator on M. The data space
is assumed to be a finite-dimensional space. The vector
components in the data space are indexed by a multi-
index N = (r, s,t), where the indices r,s,t specify the
receiver, the source and the discretized time delay. It
should be mentioned that real data are discrete and an
interpolation can lead to a loss of information. The
norm in the data space

ldlp E(d|d)* (6)

induced a discriminating norm in the wave-field space ®

le=lle = 1{DICT DY (0 - ) (M
where the compact operator : {DVC D)1/ is the weight
in the £%-norm, and D' is adjoint of D: {d | D¢ ) =
( D'd, ¢), where the last expression denotes the integra-
tion over space-time region. Such a discriminating norm
(7) allows us not to take care of accurate approximation
of ¢ very much, at least it concerns high-frequency com-
ponents of the wave-field approximation (Ryzhikov and
Troyan , 1992b)

Linear inversion is based on an approximate solution
of the optimization problem (3), that can be applied if
the unknown m(z) is close to a known model M (x)

e~ [ A0 dalfy =l > min— (8)
where residuals dyey = d—doqi(m), p(x) = m(x)—m(x),

d®)(x) is the integral kernel corresponding to the linear
response of the data to a model perturbation in the Born

approximation, i.e. to the Fréchet-derivative of deq(m)
with respect to m { Appendix A), ||u||* = [, #*(x) dx,
and £ > 0 is a regularization parameter.

The solution of eq.(8) can be written in terms of the
integral kernel of the Hessian of (8)

N N
H(x,x) = 33 (07 ) ()0 (') 426 (x—x)

A further simplification (Ryzhikov and Troyan , 1992b)
H(x,x') = [h(x) +e]6(x —x) (9)

where

N N
Bx) = D0 (O ") prud D) (x) i (x') 8(x = ')

nt nit

is introduced to make the problem tractable in 3D. A
gimilar approximation has beeb made by Beydoun and
Mendes (1989) in elastic inversion problem,

The solution of eq. (8) is given by R7-algorithm {
Appendix A)

px) = (dP(x) | d) (10)
where weighted Born response is defined by

d(B)(x)

By def 4(X)
P E At

(11)

To specify the expression for localized inversion (10)
one needs to construct Fréchet-derivative of the oper-
ator Ly, (e.g. Tarantola (1987), Beylkin and Burridge
(1990}, Chapman and Coates (1994)} and to solve for-
ward problems: to reconstruct wave fields in a chosen
inhomogeneous background. In other words, to recover
a component of u(x) in a given point x it is necessary to
calculate all single-scattered in the point x wave fields
generated by all sources and convolved with impulse re-
sponses of corresponding receivers.

3 Entropy of image contrast.

The definition of the set of admissible solutions rm in (3),
must account for the specific features of the 3D inverse
problem. The inversion problem of reflection seismics
involves sources and receivers located on the surface of
registration and with a relatively small aperture. Deal-
ing with reflection data means we can make an a priori
assumption that the medium m has two well-separated
components. The first component is the background
s(x), which does not cause a significant back-scattering
effect and therefore does not contribute to reflection.
The second one corresponds to interfaces u(x) and is
responsible for reflections. The component u(x) can be
assumed to be located in a vicinity of 2D-surfaces.



The entropy of image contrast (EnIC) is a functional
which quantifies contrast of a function p(x) defined over
a region 1. The EnIC is defined in terms of the entropy

E= —/ p(x) lnp(x)dz (12)
Iy}

of the pseudo-probability density function (pseudo-pdy)

P9 = (Vp(x))*/ [ (Vi) iz (13)

Large contrast of p(x) — or high concentration of
[Vu(x)[? — carresponds to low values of EnIC. EnIC
18 non-negative and assumes minima on suitably con-
strained sets of functions. A few entropy features are
described in Appendix B. In 3D inversion the function
#(X) appears as thc image of the the high frequency
component of the model. A background model is as-
sumed to be acceptable if the solution p of the linearized
inversion problem for the residuals is a high contrast
function.

The cntropy of image contrast £(p) is obtained by
substituting eq. (13) in eq. (12). It is sufficient to
test the contrast of p in a small subset Q of the model
space V provided the rays joining £ to the sources and
receivers cover a sufficient part of V. This makes the
3D problem tractable if the linear inversion/migration
algorithrn is sufficiently simple (e.g. 10) and based on
ray tracing.

The high-frequency component reconstruction is
based upon the set of functions {d®(x)} {8). Each
of them has a support in a vicinity of an isochron if
the sounding signal is sufficiently short {e.g. Miller,
Oristaglio and Beylkin (1987), Ryzhikov and Troyan
{1992a}) Because of the reflection seismic geometry the
nortnals to the isochrons are contained in a narrow ver-
tical cone, which leads the set p(x; s) (10) belongs
to a near-one-parametrical family of images, and con-
sequently the set of pseudo-pdf’s forms the near-onc-
parametrical family also.

On the other hand, in contrary to Symes and Caraz-
zone (1991), Jin and Madariaga (1992) we apply linear
mversion to the full set of data d (1). This yiclds a better
resolution due to a larger set of isochrons at each point
x. Besides it allows us not to claim the images associ-
ated with different sources to be similar. 1t should be
expected that these images do differ because of different
illumination of the medium.

4 Regularized inverse problem

The inverse problem for the data
d = deg(m) + e (14}

with m = m(x), x C @ € R® while no spatial symmetry
is assumed a priori, can be formulated in terms of the
following optimization problem:

m* =arginl {£(m) | meM=8a M) (15)
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where m(x} = s(x) + p(x}, s €S, p € M.
The set of admissible background models & is defined
by

§={s| (¢.[I-V 8V]o) <y} (16)

with ¢ = (5 — sp)/s0, so(x) > 0.

The set (16) constrains the rclative perturbation of
the background o = (5—sp)/s5 to belong to a small ball
In an anisotropic Sobolev space {Ryzhikov and Troyan,
1991). This allows to be sure that the wave feld ¢
in such a background can be treated in terms of the
ray/Rytov/WKBJ - approach. while the set of back-
grounds is sufficiently representative.

The set of admissible interface images M is defined
by

M =A{p = R[d - deat5)]} (17)
where s € §, Ry w = (d®)(x;s) | w). Since § (16) is

compact in £2 and R, (10) is continuous, the mapping
r: 8 = M is continuous, therefore M as an image of »
on & is compact also.

By using of Lagrange multipliers {n;} the solution
(15-17) can be expressed as an approximate solution of
the global optimization problem (3):

m" = arg r;légd G(m)
G=ld = dea(m)l|p + 125(s) + 1aB(u) (18)
where m = s+, S(s) is a squared norm in the

anisotropic Sobolev space W with a weight s57(x):
S (s) = lls = solly =

= /saz(x)dz {(s —s0)[I =V -SV]{(s—s0)} (19}

and B(p) is an appropriate regularizing (quadratic)
term.

Supposing the a priori representation of m to be valid,
we have reduced the problem (18) to the following:

s* = arginf{ £(s} + n(e, [I -V -8V]s) | s€8} (20

where £(s) = £{p(s)). The functional in equation (20)
will be referred to as REnIC (regularized EniC). The
solution of (20) can be interpreted as a generalized ray
tomography, if the lincarized inversion/migration p(s)
is treated in terms of the ray theory (see Sect. 5.3).

5 Numerical experiments.
5.1 The forward problem.

In order to test the applicability of EnIC to 3D inversion
of reflection seismic data some preliminary numerical
tests have been carried out. Because of computational
costs of the numerical experiment we have reduced each
step of it as much as possible.
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Fig. 2. Geometry of 3D inversion experiment. a) general view;
b) slice x=0 . Characteristic wavelength of the sounding signal is
the unit for lateral variables and depth. Cross-section A indicates
a region for EnlC calculations

A block scheme of the experiment was represented by
Fig. 1.

The synthetic data were calculated or by applyving
the ray-theory approximation for the scalar-wave equa-
tien to imitate reflections caused by plane interfaces,
or by applying the Born-approximation in the case of
arbitrary smooth interfaces. Example of a geometry
for simulating of 3D reflection seismic data is given in
Fig. 2 The Born-approximatign of the incoming wave
field @i (x, ) (Appendix A for a homogeneous medium
mix) = s = const as the background was constructed
by convolution of a low-frequency signal f({) with the
Green function for the unbounded medium:

flt = r(xlx) =

Flt = solx = x,]) (21)

A(x[x;)
1 1

:4_1r|x—x5|

Yin (x: t) =

Note here that the second derivative in the eq. 21 is an
example of Fréchet derivative of operator L, mentioned
in eq. 2 with respect to m: Ly = m8? —V?, 50 8Ll =
82. Examples of Fréchet derivatives of a response of data

{Appendix A) for elastic inversicn are given in the paper
by Ryzhikov and Troyan (1992a).

For computational efficiency, travel times in a non-
homogeneous background s(x) were calculated using
linear (with respect to slowness) approximation. The
wave fleld was cxpressed in terms of an approximate
asymptotic Green function of an amplitude 1/ and a
time-shift calculated by integrating slowness s(x) over
straight-line ray. More specifically:

1

t _
win{X, i |x — x,]|

Fe— [ s(x) do) (22)

where ¥’ = x'(e) = x, + a(x — x,);
de = |x — x,| de is an arclength.

a € [0,1], and
Thus, for cxample the response from a plane P, =
{x* | (m, x*) = ¢} in the experiment with £-th pair of

source X; and recciver X, and chosen background s(x)
call be written in the form

J a7 ot ) < 250) - 7o)
/qux*ﬁf(x )f(t —/s(x’)dal

—./S(X”)do'g ) (23)

dé(t) =

where Af(x*) = A8 (x*) = (47) %, —x*|~Lx* — x,| 7L
x' = X'(0o) = x4 + a(x, — x*), doy = |x, — x*| dag
x" = x" 4+ a(x, - x7), doo = |%, — x| da, a € [0,1],

and (n, x*) denates the scalar product in R*.

In order to generate synthetic reflected data we mod-
eled the interface as a set, of point diffractors on a smooth
surface. Numerically the interface was modeled by ”in
serting” point scatterers {x*} in a regular grid located
on the plane surface, which is equivalent to a Riemann
sum for (23).

The Born-approximation was also applied to the cal-
culation of the virtual response d(B)(x*) (10).

5.2 EnlC and REnIC behavior

The low-frequency component of the slowness is ex-
pressed in terms of the reference slowness s;(x) and a
truncaled expansion in terms the cigenfunctions &,(x)
of the regularizing operator [ I — V - 8V] (Scet.4):

“Imax

() l+zaﬂ/

Y12 ()] (24)

where {A,} are eigenvalues of the operator p[I —V -8V)
and S is a positive definite symmetric matrix that al-
lows for an anisotropic a priori scaling. The optimiza-
tion parameters are given by the coefficients o, v =
1, ..., ¥max. Truncation a priori excludes high and mid-
dle frequencies in s. Eq. (24) can also be interpreted
as an expansion in terms of the principal componcnts of



233

Fig. 3. EnlC for a 3-parameter slowness model
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Fig. 4. Regularized EnIC (REnIC) for a 3-parameter slowness model.



a generalized Karhunen-Loéve basis generated by an a

priori Gaussian distribution of the relative perturbation
a ((18):

p(0) o exp{~ (o[ I =V -SV]a)} (25)

where (-, ) denotes the scalar product in £2. Note, that
in terms of o, eq. 25 can be rewritten as

> ot) (26)
v=1

therefore a sphere {3~ o2 = const} represents a iso-
surface of a priori probability in the slowness space.

In Figs. 3 - 4 we present plots of EnlC and REnlIC
for some inversion problems mimicking inversion of 3D
reflection data. The synthetic model involves principal
components £, (x) corresponding to lower values of {A, },
where v = {¥r,7y,7:}. In order to avoid extra calcu-
lations of eigenvalues and eigenfunctions of anisotropic
Laplacian in a given domain © we took eigenfunctions
of Laplacian in a unit box scaled along lateral coordi-
nates and depth by factors a, b, ¢ under homogeneous
Neumnann boundary conditions { the unit box is chosen
rather arbitrary and it has not to create artificial inter-
[aces because of nonzero gradient of slowness on bound-
aries). So, eigenvalues A, and eigenfunctions &, (x) (24)
playing the role of generalized Karhunen-Lo&ve basis in
our simplified version were the following:

plo(a)) o exp{-

[

2 2 2
~
A"( = 77#2 (;'% + Z_§+ %%)l T1.v2, T3 = OalaQ:"'
£,(x) = cos BTE o 12T o B3T2 (27)

The corresponding indexes of coefficients o (24} in
Figs. 34 are following: o) — {0,0,0}, ay —
{0,0,1}, a5 — {0.1,0}. Real slowness model is gen-
erated with a; = —0.5, 0 = 0.0,03 = —0.5, a4 = 0.0.

P
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The corresponding value of REnlIC is 1.41. The value of
4 in the plots is fixed at . The geametry of the model
and acquisition is shown in Fig. 2. A 3-5 percent noise
was included in the synthetic data. The test volume
consisted of a single vertical plane, as shown with the
cross-section A in Fig. 2.

The minimum of EnlC in Fig. 3 has the form of a
valley, which indicates that the solution of eq. (20)
without regularization is non-unigque. This kind of non-
uniqueness results from the fact that the mapping g =
F(s) 1s not injective,

5.3 ReNIC optimization as a generalized ray tomogra-
phy

Numerical experiments indicate that REnlC is a well-
behaved smooth function with a unique glohal mini-
Toum.

The RGA-algorithm (Appendix  C) requires a rela-
tively small number of evaluations of REnlICl. It has
been applied in 4- and 12-parametric {with {0,0,0} —
{1.1, 2} principal components) inversion by REnIC op-
timization. Reconstruction of of REnIC in the 4-para-
metric case is shown in Fig. 5. The values of ag and oy
in the plots are fixed at 0.

It took just 107 evaluations of REnTC in the 4-para-
metric case and 236 evaluations in the 12-parametric
case to get a REnlC value error of < 2 %. In Fig. 6
the reconstructed slowness is represented by isolines of
relative differences. One of the "bad” points in the stow-
ness space which was used by the algorithm is shown in
Fig. 7. It is easy to see that the accuracy of slowness
reconstruction is influenced by the choice of region for
EnlC testing (cross-section A in Fig. 2). Indeed, con-
trast lmages are obtained only if the kinematics, being
responsible for the reconstruction in a chosen region for
EnlC testing, was true. It gave us the basc to call the
method generalized ray tomography as far as virtual rays
as well as real rays arc involved in reconstruction of ve-
locity model.

5 s

Fig. 5. Reconstruction of 3D four-parameter slowness by global optimization of REnIC. a) O-th iteration. 51 points. b) l-st iter-

ation. 70 points. ¢) 2-nd iteration. 107 points.
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Fig. 5. Reconstruction of 3D four-parameter slowness by global optimization of REnIC. a) 0-th iteration. 51 points. b) 1-st iter-
ation. 70 points. ¢) 2-nd iteration. 107 points.
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Fig. 6. Relative difference between reconstructed and real slow-
nesses, Slice X=0. Reconstruction has been carried out for 12-
parameter slowness model. Ratic of REnIC values for recon-
structed and real slownesses is equal to 1.015 .

5.4 Interface image reconstruction

Typical artifacts appear while image reconstructing be-
cause of limited aperture and signal shape even in the
case when the reference model is reconstructed prop-
erly. Interface images have been processed using 2D
Radon-type filtering of 2D slices of u(x) followed the
regularized approximation. The filtering has been car-
ricd out applying the RGA-algorithm (Appendix C) to
get an approximation of Radon-projection function in
the vicinity of its global maximum.

In Fig.. 8 the result of global inversion for an inhomo-
geneous model involving a dipping interface is shown,

— RIS
—LETH

“‘—‘ rs

-~DEPTH
&

108 (T s mai S AN
-10.0 a.0 6.0 10.0

Fig. 7. The same as Fig.6, cxcept onc of the current random
slowness realizations obtained by optimization procedure is pre-
sented instead of reconstructed slowness. Ratio of REn1C values
in this case is equal to 1.440.

The picture shows a vertical cross-section of the recon-
structed part of the interface. The result of global inver-
sion with 8-parameter slowness space (with {0,0,0} —
{1,1,1} principal components) and two curved inter-
faces is presented in Fig.. 9. To estimate slowness func-
tion more accurately than in the previous experiment we
took two small boxes to calculate EnIC (cross-sections
A in Fig.. 9). The error of reconstructed slowness is less
than 2 % in the whole region (less than 0.5% inside the
boxes), as compared with "bad” slowness model that
was detected while optimization searching when the ra-
tio of EnlC values was 1.42, the error reached T%-lavel
inside the boxes and 11 % in the whole region.

Fig. 8. Reconstruction of the interface. a) real interface; b) filtered image of the interface. Section [-1 € z € 1JN[-23 <y < 3].
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6 Conclusions.

The algorithm based on REnIC optimization significant-
ly reduces the computational effort involved in 3D in-
version. The linear inversion (RT-algorithm) takes into
account all the available data rather than their subsets,
in contradistinction to Symes and Carazzone (1991), Jin
and Madanaga (1992). Linear inversion appears as an
element of the evaluation of the EnlC and, at the last
step, it allows imaging of the interfaces. In the tests de-
scribed in Sect. b we have applied linear inversion based
on the Born approximation and its generalizations. It
involves two Green functions which have to be calculated
for the background medium. A cheap way of computing
Green functions in an inhomogeneous medium involves
a high-frequency asymptotic wave field approximation
bascd on ray tracing methods. This approach is also
well adapted to the reconstruction of the background
because it involves ray tracing from the sources and re-
ceivers to a relatively small subset 7 of the physical
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space. It is clear that the time delays along the rays
depend on the stowness field in a much larger subset of
the physical space, coupling the background model to
interface imaging in 7.

To keep the calculations as cheap as possible we ap-
plied the approach just to the scalar wave equation, us-
ing rather rough approximations. But the main goal of
our computer experiments was to check the ability of the
EnIC to measure the focusing feature of velocity model.

In fact the approach does not need in the additive
representation of the medium function m = sy + 45+ p.
The only condition is a priori assumption that data can
be treated as linearized response if the background is
taken properly (e.g. Clayton and Stolt, 1981).

The approach can be applied, for example, to the elas-
tic inversion problem. Elastic inversion deals with two
background models, say so mp and mg, and gives two
images pp and pg. Assuming a priori that jumps of
these two images occur in the same spatial regions, it is
possible to suggest a regularization likewise the entropy
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of image contrast. Namely, introducing two pseudo-
probability density functions

pe(x) = (Viup (x))%/ / (Viup(x))*dz

ps(x) = (Vas(x))*/ [ (Vis(x)?d (28)
one can use Kullback-Leibler measure as the regularizing

functional

I (pp|ps) =
pp(x) / ( )
= X ln ——dr+ x ln 20
It allows , for example, the ratio of P- and S-velocities

to be arbitrary while treating of backgrounds but to get
near-cooperative jumps (in the same spatial regions }.
We suppose the EnlC can be useful for detecting of
any near-singular events, for example for detecting the
signal from time series, for location of single source.

Appendix A Linearized inversion by the modi-
fied gradient method.

The nonregularized solution of the problem (3) can be
calculated by an iterative procedure (the modified gra-
dient method):

mep(z) = mg{z) - R E%}m=mk.]d(m) (A1)

where R is a positive operator, and the gradient of
J¥(m) is given by

§ 4
%J (TTE) = — ( % dcal | d— dcag(m) ) (AQ)
The derivative of d.q with respect to m is given by
& é é
—d = — D in = — 50! =
sm cal 5m ¥ D [ sm L, ]f

= “DLWIZ fF=-D LW ¢ (A3}

The incoming sounding field <,0m is the solution of the
forward problem

Lm, Yin = f (A4)

where L,, denotes the propagation operator for the given

medium. The medium is specified by a set of functions

m, e.g. Mz), (), p(x) for an elastic isotropic medinm.
More specifically, the formal equation (A4) can be

formulated in terms of a pseudo-differential operator £,

representing the propagation in the medium m

and the boundary/initial conditions:

Emﬂoin = X
Fm(;oin =7 (A5)

The operator L, has an inverse &, = L_! mapping
source function f to a sounding signal field ¢ under
given initial/boundary conditions.

The operator V

i}
dm(x) Len

is the Fréchet-derivative of operator L., with respect to
m at x.

Let us now analyze a step of the iteration procedure
(A1), omitting the indices &.

In terms of the data residual dy.y = d—d.q the model

Vi = (Aﬁ)

update My, (x) = mep{x) — m(x) (Al) can be
rewritten as follows:
* _ 5 d o
mres(x ) = -R d‘m(x*)'j (m) -
= < dres ] RD Lf_nl Vi Lin ) (A7)
The Born response of the data is given by
d
J(B) del @ Aot = “1ys.
G (eal DL™ Ve (A8)

For R = 37 in (A1) we can write a representation of the
restored perturbation m,., in the data space:

= B {dpe, | dFN, (A9)

Supposing for simplicity that data d,., are deconvolved
we can rewrite eq. (A7) in terms of the wave fields ¢y,
and @ay:.

Mpes (X*)

B ( Pout l Vir

Mres{2™) = Pin g (A10)
where the scalar product in the wave-field space @ is
defined by integration over space-time, and @y, denotes
an outgoing wave field (e.g. Tarantola and Valette (1982),
Ryzhikov and Troyan (1992a)). The outgoing wave field

obeys the equation:

LTSDout = dres (A].I.)
where d,., = Dtd.., and D! denotes the operator,
conjugate to D in the data space;. L' denotes the
operator, conjugate to L in the wave-field space. For a
differential operator L we have the local operator V:
Vee = Vio(x—x*).

The eq.(A2), or eq. (A10), can be interpreted as the
approximate linear inversion of the data residuals. The
inversion algorithm (10) cne can obtain by substituting
(h(x) + &)~1d(x — x’) (9) as an integral kernel of the
positive operator ‘R in (A1}, which represent a step of
the quasi-Newton iteration procedure.

Appendix B Gateaux derivative of entropy

To illustrate the entropy I (12) behavior in the proba-
bility density function (pdf) space let introduce p™:

p* = argsup E(p) (B1)



and for a pdf p(x) > po > 0 define a x-parameter family
of pdf’s:

pe(x) = p(x) + & (p(x) = p*(x}) (B2)

Using the derivative of the entropy F(p.) with respect
to & in the point & = 0

Er= = [ (p(x) = 5" {x) Inp(x) o (B3)
we can write the evolution equation

I PN O e
0utr) == [ 1)1 Sl ds+ (E(p) ~ £7) (B4

where £* = E(p*) = sup F and therefore (E(p)— E*) <
0. The integral /(p*; p) = fp"(x) In 22 dx is Kull-
back-Leibler measure, that is the first part in (B4) is
negative and d,_ £ < 0. Tt means that the value of en-
tropy FE(p«) is decreasing while changing of pdf along
the line p(x) + & (p(x) — p*(x)), i.e. at least linear in-
creasing of any small perturbation of p* = argsup E(p)
leads to monotonous decreasing of the entropy.

As another example to illustrate the entropy structure
one can take a 3-parametrical family of Gaussian pdf’s:

N 1

B(x) = ———
) Vardet H

where parameters of pdf family p(x} are eigenvalues of

the covariance matrix H. As far as the entropy of Gaus-
sian pdf’s can be written as

exp{—1/2(x, H !x)} (B5)

E(p) = const + %ln det H (B6)

it easy to sec that decreasing of any eigenvalue of the
covariance matrix H decreases the value of entropy.

Appendix C Global optimization algorithm

Global optimization algorithm is bascd on Regularized
Global Approximation of a objective function (RGA-
algorithm). Using values of the objective function (OF)
calculated on a set of points a differentiable global ap-
proximation of the OF is constructed, which can be in-
terpreted as prediction of OF-valuc at any point of the
domain of searching. Next step consists in expansion of
the initial set of points by extremal poinls of the QF-
approximation. The OF is to be calculated at these
points. Renewing set of OF values gives a renewing
OF-approximation. The termination of the algorithm is
defined by condition that minimum of calculated values
of OF is reached namely at the point of global min-
imum of OF-approximation provided the OF-value is
well-predicted.

In our case the OF R 1s regularized entropy of im-
age contrast (eq. 20) that can be rewritten in terms of
slowness parameters v (24) as follow

%:f(a}:(‘f(q)+(a|a)

where o = {a,, y=1,2,...} and { o | a>:Z~,f‘f3-
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So the optimization problem is to find global minimum
of # in the region A, foe example A = 1| aj| £ C}

o :argérela Rie) (C1)

RGA-algorithm can be expressed in terms of the follow-
ing iteration procedure:

R{ex) (C2)

k+1 _— arg  inf

owedkticA

[

The subset A*+" is obtained using the regularized ap-
proximation f* of objective function J calculated at the
set of [K] points A* = {o* = (a!,a?,...,al¥])}:

R* = arg ng;ef {IR—r(@®)|* + (R,[8, — D*VI R}(C3)

where r(a¥) = R(e¥), | R -1 |2 = TH (") -
r(e*))?, and (, ) denotes squared L% norm. The
operator [8; — D?V?] in the regularizing functional
in {C3) stands for the positive exponentlial operator
exp{—tD?V?} with parameter of regularization tD?.
We called this regularization diffusion regularizaiion.
The second functional in (C3) represents a squared norm
in the space that can be called as Sobolev space of infi-
nite order.
The subsct A*+! is constructed as

AR = fo e AR Us AR (C4)

where 64* = {a | V.A%(a)=0}. The subset A,
is generated in random manner.

The point of global extremum a* of I and the global
approximation #¢* are defined by

R (a*) = R(a*) (C5)
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