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Abstract. Over wide ranges of scale, orographic
processes have no obvious scale; this has provided the
justification for both deterministic and monofractal scaling
models of the earth’s topography. These models predict
that differences in altitude (Ah) vary with horizontal
seperation (I) as Ah~H, The scaling exponent has been
estimated theoretically and empirically to have the value
H=1/2. Scale invariant nonlinear processes are now known
to generally give rise to multifractals and we have recently
empirically shown that topography is indeed a special kind
of theoretically predicted “universal” multifractal. In this
paper we provide a multifractal generalization of the / 172
law, and propose two distinct multifractal models, each
leading via dimensional arguments to the exponent 1/2.
The first, for ocean bathymetry assumes that the orographic
dynamics are dominated by heat fluxes from the earth’s
mantle, whereas the second - for continental topography -
is based on tectonic movement and gravity. We test these
ideas empirically on digital elevation models of Deadman's
Butte, Wyoming.

1. Imntroduction

The geometry and statistics of topography, coastlines and
rivers have always provided stimulus to mathematics and
geophysics. Modern treatments include Perrin's (1913)
discussion of the “tangentless” coastline of Brittany, and
Steinhaus's (1954) discussion.of the "non-rectifiable”
nature of rivers. Explicit applications of scaling ideas to
topography go back at least to Vening-Meinesz (1951) who
found that the spectrum of fluctuations (E(k)) at
wavenumber k was of the scaling (power law) form
E(k)=k "D with spectral slope B, =2 (in accord with Bell
1975, Bills and Kobrick 1985). Similarly, using
yardsticks of varying lengths, Richardson (1961) found
various coastlines to be scaling over wide ranges and
determined the relevant exponents. Mandelbrot (1967)
related Richardson’s exponents to fractal dimensions.
Scaling models of topography have also been developed.
To our knowledge, the first was the deterministic scaling
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model of ocean floor bathymetry (Turcotte and Orburgh,
1967, see Parsons and Sclater 1977 for a review), who
developed a theory to explain the (near) [ 112 \aw for ocean
floor bathymetry at a distance ! from a ridge. Soon after
this, Mandelbrot (1975, 1977) independently proposed a
fractional Brownian motion model of terrain which was
nothing more than a fractional integration (power law
filter) of order H of gaussian white noise (Voss (1983), see
Fournier et al (1982) for a variant). This power law filter
yielded a stochastic topography model whose typical
altitude fluctuation (Ah) varies as Ah=~H, It had the basic
property that all iso-lines - independently of the altitude -
had fractal dimensions D=2-H (it was hence "monofractal").
It also respected another monofractal relation! Bp=1+2H.
Visually and statistically?, these models seem most
realistic for D=3/2, H=1/2, Pp=2.

Surprisingly, direct estimates of fractal dimensions of
various topographic sets (e.g. lines of constant altitude)
have not been numerous>. The main examples of which
we are aware are Goodchild (1980), Aviles et al (1987),
Okubo and Aki (1987), Turcotte (1989), De Cola (1989,
1990), Klinkenberg and Clarke (1992), Klinkenberg and
Goodchild (1992) and Gaonac'h et al (1992). The first
multifractal analyses of topography have been even more
recent (Lovejoy and Schertzer (1990), Lavallée et al
(1993)), as have been the corresponding multifractal

These relations have often been used in the form D=(B-5)/2, to infer D
from B. Unfortunately, they break down completely for multifractals
since D is no longer unique (see discussion in Lavallée et al 1993).
2Actually, whereas “spectral methods™ (using the monofractal formula
H=(B-1¥/2) give H=0.5, the direct measurements of fractal dimension
have tended to give values of D=1.3 hence, assuming monofractality;
H=2-D=(0.7. The discrepancy in estimates is resolved with multifractals,
see footnote 3, and the discussion below and in Lavallée et ai 1993.

We specifically exclude variogram methods such as those reported in
Mark and Aronson (1984), Rees and Muller (1990) and Clarke and
Schweizer (1991), or spectral methods such as those reported in Gilbert
(1989) and Mareschal (1989). These measure the scaling exponent of
the second order moments (K(2) defined below) - which is not a fractal
dimension. In order to infer fractal dimensions they must assume
monofractality.



simulations (Sarma et al (199(), Wilson et al (1991),
Pecknold et al 1993). Below, we put the {1/2 law in a
multifractal framework and show how the exponent can be
derived from physical models of orographic processes. We
also provide a new estimate for H as well as other universal
multifractal parameters.

2. Multifractal processes and topography

Scale invariant geophysical systems are typically
nonlinear, we anticipate that they will be associated with
multiplicative processes and multifractals. The relevant
multiplicative processes were first developed as models of
turbulent cascades4, initially proposed as a description of
atmospheric dynamics by Richardson {1922). If we add the
idea that the fundamental physical quantity in turbulence is
the conserved energy flux from large scales to smalld, we
render Richardson's cascades quantitative, since dimensional
analysis yields the famous Kolmogorov (1941) 113 1aw for
velocity fluctuations:

Avp = 811/311/3 0

where Av; is a velocity fluctuation and g; is the energy
flux to smaller scale through structures ("eddies™) of size [.
Note that the value of the exponent H=1/3 results purely
from dimensional considerations which follwos from the
assumptions a) [ is within the scaling regime, b) in this
range, £ is the fundamental physical quantity. In its
original formulation, & was considered spatially
homogeneous, hence on a given realization of a turbulent
flow, g7 could be treated as constant and the standard
deviation of the random velocity fluctuations (Avy)
depended essentially on I. Although Kolmogorov did not
suggest this®, a fractional Brownian motion (e.g. a
monofractal) with H=1/3 would be a model for such
velocity fluctnations. Later, with the recognition of the
importance of the intermittency (extreme variability) of
turbulence, € itself was considered highly variable (e.g.
Kolmogorov (1962) and Obhukhov (1962) suggested that it
was a lognormal variable) and cascade models were later
constructed in order to model the variability.

In these models, the large scale multiplicatively
modulates the smaller scales; it is now known that these
cascades generically léad to muliifractals (Schertzer and
Lovejoy 1984, 1987). For the moment, the significant

4There is now a whole series of such phenomenological models:
Novikov and Stewart (1964), Yaglom {1966}, Mandelbrot (1974), Frisch
et al. (1978), Schertzer and Lovejoy (1983, 1987), Benzi et al (1984),
Meneveau and Sreenivasan (1987).
5The latter is exactly conserved by the nonlinear terms in the Navier-
Stokes equations. Here and in the following, the term "conserved”
refers to scale by scale conservation of the dynamical process.

Indeed, he may have had such a model in mind since he
mathematically described fractional Brownian motion the previous year
(Kolmogorov 1940).
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point is that throughout this historical development eq. 1
continued to hold, although its interpretation changed
significantly. In the original model, a single ("universal")
exponent H was sufficient, whereas in the general
multifractal/multiplicative cascade model, an infinite
number of exponents is needed to characterize € (we shall
see below, that in actual fact, only two more fundamental
"universal exponents” are likely to be required). Indeed, it
is now clear that whereas fractal geometry is adequate for
dealing with scaling geometric sets of points, scaling fields
{(such as topography) will generally require multifractal
fields. Even without direct empirical confirmation of this
using using functional box-counting (Lovejoy and
Schertzer 1990), it would indeed have been remarkable if all
the different altitude isolines had the same unique fractal
dimensions”.

With this in mind, we can now consider the topography.
In analogy with turbulence may expect the observable
altitude fluctuations (Ahy } to be related to the fundamental
multifractal quantity ¢ and to [:

a lH @

Ahy =@

A topography model with this behaviour (with H=1/2)
was first proposed by Turcotte and Oxburgh (1967} who
modelled the ocean floor bathymetry near mid-ocean ridges.
This model is deterministic; i.e. in the model the difference
in altitude Ah between the mid-ocean ridge and a point
distance [ from the ridge increases as Ah=[1/2_ This
square root profile is the result of conductive cooling (and
hence contraction) of the freshly formed crust as it moves
away from ridges. In multifractal parlance, the model treats
the ridge as a "regularity" (= a negative order "singularity")
of order 1/2. The model uses a one dimensional heat
equation, isostatic equilibrium, a constant velocity of the
tectonic plates, and a constant temperature difference
between the top and bottom of the plates. A monofractal
model obeying eq. 2 but with Ah; interepreted only as a
standard deviation rather than a deterministic quantity can
be obtained by considering the basic quanity ¢ as a
E{aussian white noise, and the /H as a power law filter of k~

(k is a wavenumber). This would yield a fractional
Brownian motion topographyg.

We now outline a way of obtaining a multifractal
physical model with this type of behaviour (i.e. still

7A related consequence of multifractality is that theoretical frameworks
for scaling surfaces involving seif-affine fractal sets are no longer
relevant,

8 Since the gaussian white noise ¢ is space filling, in the notation used
below, C1=0. From a modelling point of view, the difference between a
fractional Brownian motion model of topography and a multifractal
model is that in the former case, the altitude is obtained by power law
filtering of a gaussian white noise, while in the latter case, by power law
filtering of a conserved multifractal (by k"H in both cases).
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Fig. 1: Schematic illustration of the re-scaling operation performed to obtain the field at different resolutions. Example of a remapping operator

@ —> @, is defined in eq. (4).

obeying eq. 2, but with ¢ and h multifractal®). Since, the
analysis of the topographic data sets below indicate that
H=1/2, it turns out that we can use essentially the same
dimensional quantities as Turcotte and Oxburgh (1967).
Take as the basic conservative quantity a multifractal
heat flux Qj from the mantle (which is postulated to be the
basic flux across the mantle/crust boundary responsible for
the forcing, it has units of energy per unit area per unit
time, kg/s3) and then (in the spirit of the Turcotte and
Orburgh model) a number of dimensional parameters which
essentially serve to convert heat fluctuations into altitude
fluctuations. In this picture, the underlying horizontal
variations in the heat flux from the mantle (arising from
nonlinear but scaling mantle dynarmics), lead to temperature
changes and then finally to altitude variations via thermal
expansion. In the simplest model incorporating this
physics, it suffices to consider a mean conduction
coefficient x (mzls), and mean density p (kg/mS), there is
then a unique conserved quantity ¢; compatible with
H=1/2. By adding other dimension quanitities such as, the
thermal expansion coefficient (&, units K1) or the specific
heat (Cp, units K/kg), the uniqueness is lost (for example,
we obtain the dimensionless group (KBCPGPZQ]'l)), but
for our purposes here, any dimensionally correct
combination will suffice. The result is a simple
topography “flux” with correct dimensions given by:

Iy
p 3
o ~|| &« 3
g
Ahg = ¢y 12

(i.e. H=1/2, a=1).
More directly relevant to the continental topography
analysed here (Deadman’s Butte Wyoming, 512X512 pixels

9 multifractal models, structures such as ocean ridges are singularities
of various orders. Near them, it will be possible to discern various
power law behaviours. Note that multifractality means that cach level
set will be characterized by a different fractal dimension and the
statistical moments will be multiscaling (i.e. follow eq. 4). This should
not be confused with broken scaling (e.g. scale dependent fractal
dimensions).

ll

at 50m resolution, see Lavallée et al 1993 for more
information), are the standard orographic models which
assume plate collisions and isostatic equilibrium
{nonlinearly) coupled with sediment transport and erosion
processes. As in the bathymetry model, the physical
processes which determine the topography act over a wide
range of scales: a priori there is no reason to assume that
they break the scale invariant symmetry (i.e. that they
introduce a characteristic length). A simple model
compalible with this is to consider that the only
dimensional quantities responsible for the altitude
fluctuations are the force of gravity (g), and a velocity shear
Avy arising from the horizontal velocity field associated
with the movement of the tectonic plates, subplates etc. In
this case, the only dinE:&zsiona]ly consistent combination
yielding H=1/2 is @7 = = i.e. a=1 as above.

In either case, we Wil consider @} to be the result of
scale invariant multifractal cascade process which
generically leads to the following multiscaling property!?:

Note that in additive monofractals such as fractional
Brownian motion, K{q)=0, whereas for intermittent
multiplicative “f model” (Novikov and Stewart 1964,
Frisch et al 1978) monofractals, K(q) is linear.

3. Analysis of scaling properties of the

statistical moments

We now show by analysing DEM's of Deadman's Butte
that K(q} is both nonzero and nonlinear -hence ¢; is indeed
multifractal - and that H~1/2. This empirical result was
recently reported in Lavallée et al 1993 using a somewhat
different empirical analysis technique. The DEM is
systematically rescaled to lower (or coarsen) the resolution
(see fig. 1) by averaging:

loThe (intrinsic) codimension notation K(g) is rélated to the more
familiar dimension notation (Halsey et al. (1986)) by the following:
() = (g-1D-K{q). Sec Schertzer and Lovejoy (1991} for a
discussion.
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where the ['is the intrinsic resolution of the data, [ the
coarse grained resolution. The integration (or sum) is
performed over all the events in the box By of volume L
and D is the dimension of the support of the fields (=2
here). The qth statistical moment!! {p?} is then
estimated by summing ¢} over all ((L/] D boxes) needed
to disjointedly cover the entire data set (size L) followed by
a sum over all N independent samples (=1 here).

We now now seek to determine the scaling of the
conservative @ in terms of the observed h. Since the
spectrum is the fourier transform of the autocorrelation
function (a second order moment) its energy spectrum is a
power law with spectral exponent By= 1- K(2).
Furthermore, since {* in eq. (1) corresponds to a further
filter by k"H in Fourier space (hence of the modulus by
(k~2H), the spectrum of h will have a scaling exponent
given by the following expression:

B,=B,+2H=1-K(2)+2H ©

Whereas the spectrum of the conservative ¢ is always
less steep than a "1/{ noise” (since K(2)20), and
empirically, for this data set, Br=1.93£0.03 >1 (Lavallée
et al 1993}, h cannot be a conservative processlz. To
obtain an estimate of ¢y, it is sufficient to fractionally
differentiate either in Fourier space, or (for simplicity} here,
by studying the modulus of the gradient of the
topography 13.

¢, =|Vh, (7

The resulting scaling behavior of the log(q)f") as
function of log(L/l) is illustrated in fig. 2 for several
values of q. The straight line behaviour indicates that the

11 Generalization to the trace-moment is discussed in Schertzer and
Lovejoy (1987) and Schertzer ct al. (1991). Further generalization to
the double trace moments (IDTM) were introduced in Lavallée (1991)
and Lavallée et al. (1992).

2 The spectral slope is connected with the apparent stationarity or
nonstationarity of the process. For H<0 all normalized powers of the
corresponding field will be apparently statienary, whereas for H>(}
certain powers will be apparently nonstationary (i.e. for scales within
the scaling regime). Note that in multifractals, unlike (the perhaps more
familiar) quasi-gaussian systems, second order moments play no special
role.
13his could be considered to be a standard "pre whitening" procedure,
although the resulting field need not generally be white, it need only be
at least as spectrally flat as the conserved process . The assumption is
that the estimate of X(g) is not affected by residual nonconservation as
long as the spectrum is fairly flat (when B <1 - K(2)). This
approximation has been discussed with the help of numerical simulations
in Lavallée 1991 and Lavallée ct al 1993,
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scaling is well respected over a range !4 of L/! going from
512/1 to 512/64. The slopes of these curves give the
(nonlincar) behavier of K(q) which shows that the
topography is multifractal (see fig. 3). Using eq. (5), the
value of H can now be inferred from the observed P, and
K(2). Fig. 3 shows that K(2)=0.101£0.02, combined
with!3 B=1.93£0.03 we obtain H=0.5120.03= 1/2. This
last result confirms fairly well the {1/2 Jaw mentioned
earlier and is in accord with the estimates of Lavallée et al
1993.

4. Universal Multifractals

We have already mentioned that stable, attractive behavior
of multifractal procecsses leads K{q) to follow certain
“universal” formsl® (Schertzer and Lovejoy 1987, 1988,
1989, 1991, Fan 1989, Schertzer et al 1991). This means
that under fairly general circumstances, independently of
many of the dynamical details, we may expect to obtain
special "universal" multifractals with the following K(q):

C]
1 @® , ]_
K@={g gla" =9
C logg , =1 ®)

where o0 (0 < £2) and C; are the fundamenial
parameters needed to characterize the processes. The Lévy
index!7 o indicating the class to which the probability
distribution belongsls; it tells us how far we are [rom
monofractality: =0 corresponds to the monofractal
"B model", =2 is thc maximum, the “lognormal”
universal multifractall®, The parameter C1 is the fractal
codimension of the singularities contributing to the average
values of the field - it tells us about the sparsity of the
average level of intensity. Furthermore, if C| >D (the
dimension of space in which the process is observed), then
the multifractal is "degenerate” on the space j.e. it almost
surely vanishes everywhere.

14 Scaling is not well cbserved for the larger values of [, /=128, 256 and
512. This may be due to the small number of events included in the sum
10 approximated statistical moments (E!qs (see eq. 6) at large scale
length ! respectively 16, 4 and 1.

For comparison, standard Brownian motion has H=1/2, K(g)=0, hence
B=2. In spite of the fact that the spectral slope (=1.93) is close to the
Brownian motion value {=2), the difference in statisics is important since
in the multifractal case, the probability distributions will be long taited
log-Levy distributions whereas in the former case they will be gaussian
and large fluctuations will be rare.
10F0r the recent debate about strong v.s. weak multifractal universality,
scc Schertzer and Lovejoy, 1994a.

T Erom eq. §, it can be seen that o is also the degree of nonanalyticity of
K(q) as g—0; Mandelbrot et al 1990 has stressed this aspect, calling the
corresponding ¢ a "left handed measure”.

181y technical parlance, the hypsographic curve (the histogramme of
elevation values) will be log-Levy with the parametcrs indicated below.
19The widespread geophysical phenomenology of lognormal
distributions can thus be explained by universality.
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0.5 1.0 1.5 20 25 3.0

log(Z/I')
Fig, 2: The scaling behavior of the statistical moments of the Deadman’s
Butte data is illustrated here by the straightness of the curves of the
1og(¢i4> as functions of the log(L/l), with L the largest scale in the

DEM: from bottom to top g=0.5, 1.5, 2.5, 3.5 and 5. The slopes
correspond to the scaling exponent K(q}.

The values of the parameters o and Cq can be determined
from the estimated curves of K{q). The behavior of K(q),
given in eq. (7), allows us to deduce two relations, each
dependent on only one of the two universal parameters, o
or C;. The minimum values q_. of K(q) is a

transcendental function ¢ (see Lavallée, 1991):

K|
dq F=4 i _O

LYo rou ©
dun=(=] o (0]

The slope of K(q) for q=1 is simply equal to Cy:

dK(q)

=C ' 10
g ’ (10)

g=1

From the empirically estimated K(q) function, we
estimate q,,;;=0.49. From eq. (9) we obtain o~1.9. The
value of Cq is obtained with this approximation of
eq. (10), C1=(K{1.1)-K(0.9))/0.2=0.055. These values are
very close to, and confirm, previous estimates obtained2?
in Lavallée et al., 1993: a=19+0.1, C1=0.04510.005.

The universal behaviour of K(q) is illustrated by the
continuous curve in fig. 3, using eq. (6) with o=1.9 and

20This can be compared with the corresponding estimates for French
topography over the range 1-1000km; a=17+0.1, C|=0.075£.005;
Lavallée et al 1993,

K(q)

DN W
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0.0 2.0 4.0 6.0 8.0

Fig. 3: The scaling exponent K(q) against q for the Deadman’s Butte
data (see fig. 2). The continuous curve is the theoretical universal
multifractal fit with @=1.9, C;=0.05 (see eq. (8)). For g>6, the
asymptotic behavior of K{g} becomes linear. This is a second order
multifractal phase transition predicted from the finite sample size.

C1=0.055, showing the good fit to the empirical K(g) up
until the breakdown at gg=6. Departure from the universal
behaviour is expected for g> min(gp, qs) where gp, gs
characterize respectively the divergence of moments?! and
the undersampling respectively (Lavallée et al (1991)). In
these cases K(q) becomes linear for ¢ greater than these
critical values, leading to respectively first and second order
multifractal phase transitions (Schertzer et al 1993,
Schertzer and Lovejoy 1994b). When the number of
samples N =1, the value of ¢ is given by the following
relation (see Lavallée, 1991):

Va
D
~| = (11
we(2]

which leads to a value g =7, close to the value2? in

fig. 3.
5. Conclusions

Scaling laws for the variation in the elevation of the earth’s
topography have been proposed in both deterministic and
then in stochastic, but monofractal frameworks in which
lines of coonstant altitude all had the same fractal

2lpe divergence of moments is now considered the hallmark of self-
organized critical (SOC) phenomena. Muliifractals generically involve
the divergence of high order moments, hence they provide a
nonclassical route to SOC, see Schertzer and Lovejoy 1994b.

22 amination of the probability distribution shows that qry>8.



dimensions. In both cases, scaling exponents (H) of value
=1/2 have been invoked for either theoretical or empirical
reasons. Drawing on recent theoretical and empirical work
showing that topography is multifractal rather than
monofractal, we outline multifractal models based on
mantle heat fluxes and on shears of tectonic plates to argue
that the law reappears in this new framework. We then
empirically test the multifractal law on DEM’s of
Deadman’s Butte, confirming a recent estimate that
H=0.514+0.03. Finally, we show that the multiple scaling
exponent K(q) is well described by universal multifractals,
and we give a new estimate of the basic parameters.

The values of K(g}, and H that we have obtained indicate
that the height field has seemingly paradoxical properties
that go a long way towards explaining both the successes
and the limitations of monofractal analyses and models
(which generally assume K(q)=0). First, when q is not far
from 1 (the mean gradient), K(q) is small (since C1=0.05)
compared to H (=0.5) implying that corresponding
topography properties are nearly constant and have fractal
dimensions =2-H=1.5 for lines of constant altitude for
topography of average smoothness. However, once we
start examining isolines at for very rough, wild topography
{or high order moments of gradients), the rapid increase of
K{(q) with q indicates23 that the multifractal nature of the
process will become dominant.
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