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Abstract. The Arctic’s sea ice cover has been receding
rapidly in recent years, and global climate models typically
predict a further decline over the next century. It is an
open question whether a possible loss of Arctic sea ice is
reversible. We study the stability of Arctic model sea ice
in a conceptual, two-dimensional energy-based regular net-
work model of the ice-ocean layer that considers ARM’s
longwave radiative budget data and SHEBA albedo mea-
surements. Seasonal ice cover, perennial ice and perennial
open water are asymptotic states accessible by the model.
We show that the shape of albedo parameterization near the
melting temperature differentiates between reversible contin-
uous sea ice decrease under atmospheric forcing and hystere-
sis behavior. Fixed points induced solely by the surface en-
ergy budget are essential for understanding the interaction
of surface energy with the radiative forcing and the under-
lying body of ice/water, particularly close to a bifurcation
point. Future studies will explore ice edge stability and re-
versibility in this lattice model, generalized to a latitudinal
transect with spatiotemporal lateral atmospheric heat trans-
fer and high spatial resolution.

1 Introduction

The future state of the Arctic’s sea ice cover is subject
to a multi-faceted discussion in the literature. Results of
general circulation models (GCMs) are scrutinized regard-
ing the ice extent under various forcing scenarios (Fourth
Assessment Report of the Intergovernmental Panel on Cli-
mate Change;IPCC, 2007). Single column models (ODE,
by e.g.,Maykut and Untersteiner, 1971; Thorndike, 1992;
Eisenman and Wettlaufer, 2009; Notz, 2009; Müller-Stoffels
and Wackerbauer, 2011a) and energy balance models (EBM,
by e.g., Sellers, 1969; North, 1984) are used to discuss
the stability of Arctic sea ice in terms of few interacting

climate components. While GCMs contain the most detail
of physical features found in the climate system and de-
scribe large-scale interactions between oceans, landmasses
and atmosphere reasonably well, their complexity and high-
dimensional parameter space require hierarchical modeling
in order to understand complex climate processes and feed-
backs (Bony et al., 2006).

Arctic sea ice has a relatively high albedo in the visible
shortwave spectrum, while open water has a low albedo.
When sea ice melts, the surface turns from a very good re-
flector of sunlight to a very good absorber; more open ocean
absorbs more solar energy to melt more ice. This ice albedo
feedback is one of several known major feedbacks of similar
magnitude in the Arctic (Bony et al., 2006) and its under-
standing is crucial to the understanding of the stability of sea
ice.

A variety of albedo parameterizations are used in the
literature, ranging from steplike to more gradual albedo
changes around the melting point. Albedo parameterizations
in GCMs can depend on snow depth, ice thickness, and the
frequency band of shortwave radiation, and typically exhibit
a sharp step in some neighborhood of the phase transition
(e.g.,Bony et al., 2006; Eisenman et al., 2007; DeWeaver
et al., 2008; Shine and Henderson-Sellers, 1985; Winton,
2008; Liu et al., 2007). Small tuning of the ice albedo value
severely changes the outcome of GCM’s ice extent predic-
tions (Eisenman et al., 2007). TheIPCC(2007) reports large
intra- and inter-model differences in ice extent and ice vol-
ume for the coming century, but these GCMs do not only
differ by the albedo parameterization. In EBM models the
form of the albedo parametrization influences the existence
of a small ice cap instability (North, 1984). In ODE models
the loss of Arctic sea ice is found to be reversible or non-
reversible (Thorndike, 1992; Eisenman and Wettlaufer, 2009;
Notz, 2009; Müller-Stoffels and Wackerbauer, 2011a).
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ODE-type ice albedo feedback models differ in forc-
ing components and albedo parameterization, and are real-
ized in energy (Müller-Stoffels and Wackerbauer, 2011a),
enthalpy (Eisenman and Wettlaufer, 2009), or temperature
space (Thorndike, 1992; Notz, 2009). Parameterizations for
longwave radiative balances are similar among models in-
sofar as radiative surface heat loss increases with temper-
ature; they are assumed to be seasonally dependent (e.g.,
Thorndike, 1992; Eisenman and Wettlaufer, 2009) or only
dependent on temperature (e.g.,Notz, 2009; Müller-Stoffels
and Wackerbauer, 2011a). Shortwave forcing was mod-
eled as constant (Notz, 2009), binary on-off (Thorndike,
1992), monthly (Eisenman and Wettlaufer, 2009) and hourly
(Müller-Stoffels and Wackerbauer, 2011a) surface heat in-
flux. These differences in shortwave forcing did not result in
qualitatively different model dynamics and hysteresis behav-
ior for the model used in this paper. Thus, we hypothesize
that the albedo parametrization is key to the model’s out-
come regarding stability and reversibility of Arctic sea ice,
since albedo parameterizations differ across models, includ-
ing smooth (Müller-Stoffels and Wackerbauer, 2011a) and
sharp (Thorndike, 1992) step-like albedo behavior around
the melting point and wide linear albedo parameterizations
(Notz, 2009). In Sect.2 we briefly describe the regular net-
work model for the ice albedo feedback (Müller-Stoffels and
Wackerbauer, 2011a), adjusted for ARM’s longwave radia-
tive budget data (Barrow, AK) and compared with albedo
data from the SHEBA experiment. In Sect.3 we discuss
the relevance of fixed points induced by the annual average
surface energy budget and the instantaneous surface energy
budget for identifying bistability in parameter space as well
as for understanding the system dynamics close to bifurca-
tion points. The effect of albedo parameterization on the ro-
bustness of hysteresis is explored in Sect.4.

2 Model and albedo parameterization

In the following we briefly describe the regular network
model byMüller-Stoffels and Wackerbauer(2011a) for an
Arctic sea ice-ocean layer under atmospheric and oceanic
forcing. Lattice (regular network) models are commonly
used to describe nonlinear spatiotemporal dynamics (Cross
and Hohenberg, 1993; Stahlke and Wackerbauer, 2009). We
review several albedo parameterizations from the literature
that are used in conceptual models. The choice of parameter-
izations for longwave-radiative flux density and for albedo is
motivated from observational data.

2.1 Model

A thin vertical ice-ocean layer is modeled by a two-
dimensional regular network of diffusively interacting ice-
ocean cells (Müller-Stoffels and Wackerbauer, 2011a). A
conceptual picture of the model domain is given in Fig.1.
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Fig. 1. The thin vertical ice-ocean layer is modeled by a regular
network of diffusively interacting ice-ocean cells. The state of each
cell is given by its energy contentEi,j , which also defines the phase
of the cell (ice, water). Each cell can exchange energy with its near-
est neighbors via state-dependent nonlinear diffusion. Atmospheric
heat fluxes are entering at the upper surface (top row), and oceanic
heat fluxes are entering at the bottom row of the ice-ocean layer.
The inset shows the steplike phase transition between ice(φ = 0)

and water(φ = 1) and the gradual release of latent heatL as the
energy of a cell increases (shaded area).

The state of each cell(i,j) is given by its energy content
Ei,j , which also governs the liquid-solid phase transition.
The model equation for the total energy (sensible and latent
heat)En+1

i,j of cell (i,j) at discrete timen+1 is

En+1
i,j = En

i,j (1)

+ ζ

1∑
k=−1

D[i,i+k],j (E
n
i+k,j −En

i,j )

+ ζ

1∑
k=−1

Di,[j,j+k](E
n
i,j+k −En

i,j )

+ δ1iζh4(RSW+RLW)+δNiζh4Fo.

ζ = 1t/h2 is a global coupling constant, that determines the
relationship between temporal and spatial resolution, con-
strained by numerical stability.D is a heterogeneous and
nonlinear diffusion constant (local coupling). The model do-
main is forced by absorbed solar shortwave radiationRSW,
longwave radiative exchangeRLW between atmosphere and
ice/ocean surface, and an oceanic heat flux densityFo that is
assumed to be a constant in this study. The factorh4 ensures
correct dimension withh being the cell size.δij represents
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the Kronecker delta. See alsoMüller-Stoffels and Wacker-
bauer(2011a) for model details, and Table1 for the physical
and numerical parameters used in this study.

The phase of each cell(i,j) determines its physical prop-
erties such as surface albedo or thermal diffusivity. The
phase transition is modeled by a local energy-dependent
phase factor(inset Fig.1),

φ(Ei,j ) =
1

π
arctan[c(Ei,j −Em−

L

2
)]+

1

2
, (2)

with melting energyEm and volumetric latent heatL. Em =

CIh
3T0 represents the energy content of a cell of ice at tem-

peratureT0 = 273K with CI the volumetric heat capacity of
ice. The sharpness of the phase transition is determined byc.
The phase factorφ controls the phase dependent parameter
X via a switch function according to

X = XI +(XW −XI)φ, (3)

where the subscripts I and W refer to ice and water respec-
tively. The parameterX represents the surface albedoα, the
thermal conductivityk, the volumetric heat capacityC, or
the release of latent heatL.

The thermal diffusivityDi,j = ki,j/Ci,j for a single cell
follows Eq. (3). We use the molecular thermal diffusivity of
ice or water as given in Table1. Thermal exchange between
two adjacent cells is calculated from the respective individual
thermal diffusivitiesDi1,j andDi2,j as

D[i1,i2],j = 2
Di1,jDi2,j

Di1,j +Di2,j

(4)

for two vertically adjacent cells(i1,j) and (i2,j). In this
study we assume spatial homogeneity in the horizontal di-
rection, which leads toDi,[j1,j2] = Di,j with j = j1 = j2.

Theabsorbed solar shortwave radiationRSW depends on
the surface albedoα and the actual downwelling shortwave
radiationR

↓

SW (e.g.,Campbell and Norman, 1998; Müller-
Stoffels and Wackerbauer, 2011a),

RSW= (1−α)R
↓

SW= (1−α)Sp0[τ
m

+0.3(1−τm)]. (5)

Sp0 is the shortwave flux density received at the top of the
atmosphere on a surface perpendicular to the incoming flux,
and depends on the zenith angle. The factor in square brack-
ets describes the transmission losses in the atmosphere for
direct (first term) and diffuse (second term) radiation, with
τm the optical thickness. The absorbed shortwave radiation
is both a function of time and local surface properties.

Longwave radiative forcing, RLW : one contribution to
RLW is due to the longwave radiative budget between the at-
mosphere and the surface of the ice-ocean layer according
to Stefan-Boltzmann’s equation,(εa− εs)σT 4, with Stefan-
Boltzmann constantσ and temperatureT in Kelvin. The
emissivity εs for the upwelling thermal radiation is rather
constant, withεs = 0.96 being a good approximation for sea
ice’s and ocean’s surface emissivity (Campbell and Norman,

Table 1. Physical constants and system parameters used in all sim-
ulations unless stated otherwise.

Symbol Description Value

l Latent heat of fusion 3.35×105 J kg−1

ρW Density of water 1000 kg m−3

ρI Density of ice 917 kg m−3

CW Heat capacity of water 4.18×106 J (m3 K)−1

CI Heat capacity of ice 1.93×106 J (m3 K)−1

kW Thermal conductivity of water 0.6 W (m K)−1

kI Thermal conductivity of ice 2.2 W (m K)−1

αW Water albedo (minimum) 0.07
αI Ice albedo (maximum) 0.85
τm Optical thickness 0.13
8 Latitudinal angle 80◦ N
Fo Ocean heat flux 2 W m−2

1t Time step 4 h
h Cell dimension 0.3 m
ζ =

1t
h2 Coupling constant 1.6×105 s m−2

N Number of vertical cells 16
M Number of horizontal cells 50
c Sharpness factor 10−5

1998). The atmosphere’s emissivityεa depends on vari-
ous parameters such as temperature, water vapor pressure,
and gas concentration (e.g.,Satterlund, 1979; Prata, 1996;
Crawford and Duchon, 1999). Not all parameterizations
for εa given in the literature remain physical (i.e.,εa < 1)
across reasonable model conditions. After exploring sev-
eral parameterizations (Satterlund, 1979; Prata, 1996; Craw-
ford and Duchon, 1999), we chose the parameterization by
Satterlund(1979) in this study, since his parameterization is
reported to perform well at low temperatures, remains phys-
ical for all temperatures, and depends only on one variable
(if one concedes that water vapor pressure is a function of
temperature itself). We modified this parameterization such
that it cannot exceedεs, which renders Satterlund’s equation
to be

εa= εs

[
1−exp(−e

T/2016
0 )

]
. (6)

The vapor pressuree0 is assumed to be 80 % of the satu-
ration vapor pressure, since an average relative humidity of
80 % in the Arctic is comparable to annually averaged me-
teorological data for Barrow, AK (ARM, 2010). The satu-
ration vapor pressure is calculated from the temperature (in
Kelvin) using the World Meteorological Organization’s rec-
ommended parameterization byGoff (1957). With these as-
sumptions the exponent in Eq. (6) can be well approximated
as−e

T/2016
0 ≈ −7.7×10−5T 2

+0.028T −3.1.
The other contribution to the longwave radiative forcing

RLW is due to the thermal contact of the Arctic with lower
latitudes via ocean and atmospheric heat transfer. This plays
an important role, especially during times when temperature
gradients between lower latitudes and the Arctic are large.
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This can cause strong local temperature inversions, espe-
cially in the winter, which complicates calculation of a radi-
ation balance via just one (surface) temperature. To account
for the actual transfer of sensible heat northward we assume a
linear temperature relationship and fit the longwave radiation
budgetRLW to longwave radiation data provided by ARM for
Barrow, AK (ARM, 2010), following

RLW = [εa(T )−εs]σT 4
+aT +b, (7)

with b = b0+1b. a andb0 are empirical constants, and1b

is a bifurcation parameter. Figure2 shows the temperature
dependence of this longwave radiation budgetRLW for a =

−1.05 W m−2 K−1, b0 = 301 W m−2, and 1b = 0 W m−2,
and compares it to daily averages for the 14 yr record of long-
wave radiation data for Barrow, AK under all sky and clear
sky conditions. For comparison we also show the longwave
radiation budgets used byThorndike(1992), Eisenman and
Wettlaufer(2009), andNotz (2009) in their respective con-
ceptual models.Thorndike(1992) andEisenman and Wett-
laufer (2009) use an irradiance model for the atmosphere to
derive the longwave budget. All parameterizations assume
that the LW budget is a monotonously decreasing function of
temperature. This is not a trivial assumption and does not
simply emerge in Stefan-Boltzmann budgets(εa − εs)σT 4

from the parameterizations ofεa given in the literature (e.g.,
Satterlund, 1979; Prata, 1996; Crawford and Duchon, 1999),
although it is consistent with the data record for Barrow, AK.
BothThorndike(1992) andEisenman and Wettlaufer(2009)
include a direct time-dependence into their longwave bud-
get parameterization, based on observations. Interestingly,
our parametrization (Eq.7) andEisenman and Wettlaufer’s
August and March parameterization intersect at reasonable
seasonal temperatures.

Our system exhibits slightly exaggerated high and low
temperature values because several significant dampening
factors are not included, as e.g., a connection to a stable tem-
perature reservoir (deep ocean), evaporation effects (cool-
ing due to absorption of latent heat of evaporation), and en-
hanced heat transfer in the ocean due to eddy thermal diffu-
sivities.

2.2 Albedo parameterization

The (surface) albedo describes the fraction of shortwave ra-
diation reflected by the surface, and refers to a spectrally in-
tegrated bulk albedo herein. In the sea ice-ocean system the
albedo can range from 0.9 for fresh snow to 0.07 for open
ocean (Perovich et al., 2002). Values for ice lie within this
interval, with young ice’s albedo around 0.7, and melting ice
and melt ponds down to 0.4 (Perovich et al., 2002). Albedo
measurements at a fixed location do not support a clear tem-
perature dependence, especially as snow or ice albedo dis-
play aging effects due to surface freeze-thaw cycles and snow
metamorphosis. Daily average albedos along a SHEBA tran-
sect, however, do reveal a relatively sharp transition between
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Fig. 2. Longwave radiative energy budgetRLW versus surface tem-
peratureT , with negative values signifying a heat loss of the surface
to the atmosphere. The light grey dots represent daily averages for
the 14 yr record of ARM’s longwave radiative budget data for Bar-
row, AK (ARM, 2010) for all sky (cloudy and clear) conditions. The
black dots mark the subset of data points for clear sky conditions,
assuming that the sky is free of clouds if the skyward pointing IR
thermometer reads values below 220 K. These scattered clear sky
data are filtered with a 50 data point wide moving average (solid
blue line). The longwave budget (solid red line) from Eq. (7) is
fitted to these filtered clear sky data with a higher weight to the
regions of higher data density, and yieldsa = −1.05 W m−2 K−1

andb = b0 = 301 W m−2. Longwave radiative energy budgets used
in other conceptual models are plotted for comparison: parameter-
ization byNotz (2009) (dashed grey line; increased by 100 W m−2

to fit the figure);Thorndike(1992) (dash-dotted lines) differenti-
ates between a summer (red) and winter (blue) parameterization;
and Eisenman and Wettlaufer(2009) (dashed lines) use monthly
varying parameterizations that expand between a maximum (Au-
gust, red) and minimum curve (March, blue). All parameterizations
are monotonously decreasing withT , consistent with the clear sky
50 point running average.

high values for ice (Perovich, 1998) and low values for open
water and leads (Fig.3). At temperatures below but close to
the freezing point the fluctuations in the surface albedo grow
as the average albedo decreases. The average albedo for a
lead (Paulson, 1998) is much lower than that for ice at the
same temperature (Andreas et al., 1998).

In conceptual models different approaches have been
taken in parameterizing the albedo (Fig.3). Notz (2009) fol-
lows Sellers(1969) suggestion of a monotonously decreas-
ing linear function between−43 ◦C and 10◦C, which re-
sults in a very gradual transition of the surface albedo over a
wide temperature range (ALW, Fig.3). Eisenman and Wet-
tlaufer(2009) parameterize the albedo as a smooth step-like
function with a relatively steep transition around the freez-
ing temperature (AST, Fig.3). Thorndike (1992) uses a
sharp step function with a transition at the freezing point.

Nonlin. Processes Geophys., 19, 81–94, 2012 www.nonlin-processes-geophys.net/19/81/2012/
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Fig. 3. Observed and parameterized temperature dependence in sur-
face albedo: The data points correspond to daily average albedo
along a transect in the SHEBA experiment versus daily average
temperature (Perovich’s ice SHEBA data (blue w/ error bars);Paul-
son’s lead SHEBA data (red w/ error bars); andAndreas et al.’s
temperature SHEBA data). The albedo parameterizations were
adjusted to fit the data for cold ice (αI = 0.85) and open water
(αW = 0.07). The parameterizations from conceptual models in
the literature include a linear temperature dependence on a wide
interval (ALW, grey line) suggested bySellers(1969), a smooth
step like temperature dependence (AST, purple line) suggested by
Eisenman and Wettlaufer(2009), and a smooth step like energy de-
pendence (Eq.3, ASE, orange line) suggested byMüller-Stoffels
and Wackerbauer(2011a). For illustration of intermediate param-
eterizations a quadratic parameterization over Seller’s wide tem-
perature interval (−43◦C ≤ T ≤ 10◦C, AQW, blue dashed line),
and a quadratic parameterization over a narrow temperature interval
(−18◦C ≤ T ≤ 0◦C, AQN, grey dash-dotted line) are introduced.

The albedo parameterization in Eq. (3) (Müller-Stoffels and
Wackerbauer, 2011a) is routinely used in this paper; it fol-
lows a smooth step like energy dependence, which appears
as a sharp transition in temperature space (ASE, Fig.3). Two
quadratic parameterizations are introduced as intermediate
cases between the step-like and the linear transition. One
(AQW) is for the wide temperature band (−43◦C to 10◦C) in
whichSellers(1969) varies the albedo linearly, and the other
(AQN) describes the same transition on a narrower (−18◦C
to 0◦C) temperature band (Fig.3). All these albedo param-
eterizations were adjusted to fit the SHEBA data for cold ice
(αI = 0.85) and open water (αW = 0.07).

3 System stability, dynamics, and hysteresis

If the ice-ocean system would react to changes in surface
forcing instantaneously, the system would precisely follow

the instantaneous fixed points resulting from the surface
drive. Technically, this would correspond to a (single row)
ice ocean layer with atmospheric drive, where theinstan-
taneous fixed pointsare determined fromRLW +RSW = 0.
Since the mass of ice and water can only take on or release a
certain amount of heat per time step determined by their ther-
mal diffusivities, the system lags behind these instantaneous
fixed points. During Arctic night, i.e., the time in winter
when the sun remains below the horizon, the surface energy
budget takes its minimum valueRLW (Fig. 4a), and only one
fixed point exists for any1b. In summer when shortwave
radiation dominates the energy budget, one or three instan-
taneous fixed points exist depending on1b. For a frozen
cell the difference between minimum and maximum surface
forcing is given by(1−αI)max(R↓

SW), and for a liquid cell

the corresponding difference is(1−αW)max(R↓

SW). The ice
albedo feedback is clearly visible as an increase in energy
uptake of liquid cells,E−(Em+L/2) > 0.

The Arctic Ocean can be assumed to be in adynamic equi-
librium. Over the years annual forcing, temperature and ice
extent cycles are more or less similar, if we disregard the re-
cently observed trends and the paleoclimate record. Thus,
information about system stability and system dynamics can
be gleaned from annual averages. Figure4a shows the annual
average surface forcing〈RLW +RSW〉 =RLW +[1−α]〈R

↓

SW〉

for 1b = 0 as a function of surface cell energy. If we as-
sume that the ice-ocean layer is driven by this annual average
forcing, three fixed points exist: a stable fixed point below
the freezing point, an unstable fixed point within the phase
transition regime, and a stable fixed point above the freezing
point. The bifurcation parameter1b manipulates the exis-
tence and exact location of the fixed points. The height of
the step between the average surface forcing on ice and on
water (i.e., aroundE = Em +L/2) is directly related to the
albedo difference between ice and water, and can be approx-
imated as(αI −αW)〈R

↓

SW〉. In the following we compare the
(dynamic) equilibria observed in simulations of Eq. (1) with
the fixed points resulting from the average surface forcing.
By (dynamic) equilibrium we mean that the system’s annual
cycle reaches its asymptotic value within numerical accuracy.

From the cubic shape of the annual average surface forc-
ing in Fig.4a we expecthysteresisof the average cell energy
〈E〉 as a response to atmospheric forcing1b. We started
simulations in either the open water regime or the ice cov-
ered regime and let the system equilibrate under various at-
mospheric forcings. Figure4b reveals a single stable fixed
point corresponding to perennial ice cover for parameters be-
low 1b = 28 W m−2. In a narrow range of forcing between
1b = 28 and1b = 30 W m−2, bistability between perennial
ice and seasonal ice cover exists. For seasonal ice cover all
ice in the system has melted (Eij > Em+L/2 ∀ i,j ) for
at least one day per annual cycle, and the surface row of
cells is frozen (E1j < Em+L/2 ∀ j ) for at least one day.
Between1b = 30 and1b = 62 W m−2 bistability between

www.nonlin-processes-geophys.net/19/81/2012/ Nonlin. Processes Geophys., 19, 81–94, 2012
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Fig. 4. (a)Surface energy budgetRSW+RLW versus surface cell
energy for1b = 0, αI = 0.85, αW = 0.07, and the albedo parame-
terization in Eq. (3): annual maximum values (upper blue), annual
minimum (lower blue), and annual averages (red). The zeros of the
surface drives are marked by the horizontal line; the symbols indi-
cate the fixed points resulting from the annual average surface drive.
(b) Hysteresis of the average cell energy〈E〉 as a response to vary-
ing atmospheric forcing1b. Simulations with an initially ice cov-
ered state (blue dots) started with a uniformly frozen ice-ocean layer
[E − (Em+L/2) = −0.61L for all cells], and simulations with an
initially open water state (red circles) started from a uniform water
layer [E − (Em+L/2) = 0.85L for all cells]. The ice cover is sea-
sonal within a narrow range of forcing1b (shaded blue), if started
with an open water initial condition. For comparison, the zeros of
the annual average surface energy budgetRSW+RLW are plotted
as a function of1b (black graph). In both graphs the energy scale is
centered around the phase transition (Eq.2). Energies within−0.5L

and 0.5L (grey area) correspond to the melting point temperature,
i.e., they represent the absorption/release of latent heat of that cell.
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Fig. 5. Annual cycle of the instantaneous fixed points resulting
from the surface energy budget (black curve) together with typi-
cal system trajectories for1b = 40 W m−2 within the parameter
regime of bistability (Fig.4b): Trajectory of average cell energy
(dark red) and surface cell energy (light red) for the equilibrated
system starting from open water initial conditions; trajectory of av-
erage cell energy (dark blue) and surface cell energy (light blue) for
the equilibrated system for an initially frozen ice ocean layer. The
vertical red line denotes the time of year when the system receives
shortwave radiation (Arctic day).

perennial open water and perennial ice exists, while only the
perennial open water state is stable above that forcing regime.
Comparing the hysteresis curve with the fixed points from the
annual average surface forcing (black line) in Fig.4b reveals
that the transition from bistability to a single stable perennial
ice state at about1b = 62 is well predicted by the annual
average surface drive, while the width of the forcing interval
for bistability is overestimated.

Figure5 shows the existence and location of the instan-
taneous fixed points (black graph) for a typical atmospheric
forcing (1b = 40 W m−2) in the parameter regime of bista-
bility. The time of year during which three instantaneous
fixed points exist is surprisingly small and confined to spring
and fall. For most of the year only a single fixed point exists
with a cell energy below the phase transition for the win-
ter months and above the phase transition for the summer
months.

The duration of the existence of three instantaneous fixed
points is directly tied to the difference in ice albedoαI and
ocean albedoαW. The larger the ice albedo, the longer
into the summer the lower fixed point remains in existence
(Fig. 4a). Or vice-versa, the larger the ocean albedo the
later in the summer the higher fixed point comes to exist.
The opposite is the case in the fall. In the extreme case of
αI = αW the step in the surface forcing aroundE = Em+L/2
vanishes, and a single fixed point exists that varies with
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solar radiation. Variation ofαI −αW 6= 0 gives insight into
the dependence of bistability on instantaneous fixed points.
For various ice albedosαI ∈ {0.6,0.7,0.85,0.95} and a fixed
ocean albedoαW = 0.07 we numerically determine the bifur-
cation point1b↓ for which simulations starting from open
water remain in the high energy state of seasonal ice. The
relationship between1b↓ and αI is linear and follows the
numerically determined equation1b↓ = 34.67αI − 1.267,
which is consistent with our previous results inMüller-
Stoffels and Wackerbauer(2011a). For the respective bifur-
cation points1b↓ we find that the duration of the existence
of the upper stable fixed point is at least 150 days. While this
value is likely to be strongly model dependent, the finding
points towards a critical minimum existence time of a sec-
ond stable fixed point for bistability to develop.

Figure5 also shows how typical annual system trajectories
are tracking the instantaneous fixed points within the param-
eter regime of bistability (1b = 40 W m−2). The surface cell
energy for the equilibrated system, starting from open wa-
ter initial conditions (red), decreases during winter but does
not reach the stable fixed point for ice cover nor is it suffi-
ciently cooled for the cell to freeze before the onset of Arc-
tic day. During that first part of the year the surface cell is
heated from below, indicated by a larger average cell energy
than surface cell energy, but the surface energy budget is still
sufficiently negative to cool the surface cell. Solar shortwave
radiation eventually induces a time interval with three instan-
taneous fixed points; the surface cell trajectory moves away
from the unstable steady state aroundE = Em +L/2 to ap-
proach the instantaneous stable fixed point in the open water
energy regime. The surface energy increases rapidly due to
the low albedo of open water, but does not truly follow the
trajectory of the fixed point due to cooling from below the
surface and due to the rapid change of the open water fixed
point to higher and higher energy values. The surface cell
energy reaches its maximum value slightly after the time of
maximum solar radiation since the stable fixed point is still
located at higher energies than the surface cell energy. Cool-
ing from below together with a rapid decline of solar short-
wave radiation reduces the surface cell energy to enter the
time period of a stable single instantaneous fixed point, lo-
cated in the frozen regime. The surface cell energy for the
equilibrated system for an initially frozen ice ocean layer
(blue) is very close to that of the fixed point in the freezing
regime. During the part of summer when that fixed point no
longer exists, the surface cell energy stays rather unchanged,
sinceRSW is low due to the high ice albedo and since the
open water fixed point is far from the melting point and only
weakly attractive (low slope ofRLW for high energies).

The surface energy dynamicsnear the onset and near the
ending of the parameter regime of bistabilityis considered in
more detail, focusing on the seasonal progression of the sur-
face cell energy (Fig.6a–c) and the interaction of surface cell
energy with the surface energy budgetRLW +RSW (Fig. 6d–
f). Note that the surface energy budget differs from the rate of

change of surface cell energy since energy exchange between
surface layer and second layer is not included; Fig.6d–f are
therefore not phase space representations in the usual sense.
We find that the transition from an open ocean to perennial
ice is distinctly different than the transition from perennial
ice to open ocean.

Figure6a shows consecutive annual cycles of surface cell
energy for a simulation with open water initial condition and
atmospheric forcing parameter1b = 27 W m−2 slightly be-
fore the onset of bistability (Fig.4b). During the transition
from initially open water to perennial ice the surface cell en-
ergy and especially its summer maximum diminishes with
each new annual cycle. During the winter months when the
surface cells enter the freezing regime, a latent heat signal
becomes visible in November/December (day 300 to 365)
lasting into the early days of the following year. This release
of latent heat manifests itself as a local variation (squiggle)
of the surface cell energy, where each consecutive squiggle
within an annual cycle denotes a further row of cells freez-
ing. The last annual cycle to leave the freezing regime dur-
ing summer (seasonal ice as a transient state) exhibits fewer
squiggles of latent heat release, since the absorbed solar
shortwave radiation only resulted in surface melt. The fol-
lowing year even the surface remains frozen throughout the
summer; the lack of a sharp increase in surface energy dur-
ing summer is direct evidence that the albedo remained high.
The annual cycle of instantaneous fixed points in Fig.6a
(black) consists of a stable fixed point in the frozen wa-
ter energy regime that exists throughout the year. An ad-
ditional stable fixed point in the open water energy regime
together with an unstable fixed point within the phase transi-
tion regime exists during most part of the Arctic day. For this
atmospheric forcing parameter the upper stable fixed point
only occurs in conjunction with the lower stable fixed point.

Figure 6d shows the typical system trajectories from
Fig. 6a in the space spanned by the surface cell energy and
the surface energy budget. While the system experiences
(transient) seasonal ice the trajectory spirals around the sta-
ble open water fixed point that results from the average an-
nual surface drive. During the winter months when there
is no shortwave radiation, the system trajectory follows the
minimum surface budget (RLW) curve along the horizontal
straight line towards the lower stable fixed point. In the
phase transition regime (shaded gray) the surface tempera-
ture is constant at the freezing point, and the system looses
heat at a constant rate. With the onset of shortwave radia-
tion in spring, the trajectory departs from the horizontal line
upwards and to the right. The surface energy budget is still
negative, but the heat loss is sufficiently reduced from the
lower cells warming the surface from below. The trajectory
then moves close to the unstable fixed point from the annual
average surface drive. Now the direction of the trajectory de-
pends on how much energy is entering the surface. If the in-
coming energy can melt the surface and thus clearly reduce
the albedo, the absorbed shortwave radiation is increasing
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Fig. 6. Top row: annual cycle of the instantaneous fixed points (black curve) resulting from the surface energy budget together with typical
system trajectories (blue) for various atmospheric forcing1b near the onset and near the end of the parameter regime of bistability (Fig.4b):
(a) transition from initially open water to perennial ice (1b = 27 W m−2), (b) transition from initially open water to stable seasonal ice
(1b = 28.5 W m−2), and c) transition from an initially frozen ice ocean layer to perennial open water (1b = 63 W m−2). The arrow marks
the direction of consecutive annual cycles. The vertical red line denotes the time of year when the surface receives solar shortwave radiation
(Arctic day). Bottom row: Corresponding panels that show the trajectories of the surface cells (red dots) in the surface cell energy vs
surface energy budget space. Consecutive dots cover the same time interval. The black graphs in each panel show the annual maximum,
annual average, and annual minimum surface energy budget (from top to bottom) as a function of surface cell energy. The stable (full
circle) and unstable fixed points (open circle) resulting from the annual average drive are marked. A video illustrating the motion of the
trajectory together with the instantaneous fixed points arising from the time varying surface energy budget is supplied atMüller-Stoffels and
Wackerbauer(2011b).

drastically to warm the surface cells; the trajectory moves
quickly to the right. If the surface does not melt however,
the albedo stays high and the absorption of solar shortwave
radiation is small; the trajectory approaches theRLW curve
at lower cell energies during fall, and moves towards the sta-
ble frozen water fixed point (resulting from the annual av-
erage surface drive) to eventually spiral around that state of
perennial ice. A video illustrating the motion of the trajec-
tory together with the instantaneous fixed points arising from
the time varying surface energy budget is supplied atMüller-
Stoffels and Wackerbauer(2011b).

Figure6b shows consecutive annual cycles of surface cell
energy for a simulation with open water initial condition and
forcing parameter1b = 28.5 W m−2 slightly above the onset
of bistability (Fig.4b). The system converges fast to a stable
seasonal ice cover state denoted by the drop of the surface
cell energy below 0L in the winter months and the sudden

increase in energy uptake during surface melt at day 130.
The corresponding system trajectory in Fig.6e shows a sta-
ble closed path around the open water fixed point (from the
annual average surface budget). During spring as the trajec-
tory departs from theRLW curve, the system is heated from
below before the surface melts and takes on large amounts
of shortwave energy during the summer months, similar to
Fig. 6d. During fall the trajectory reaches theRLW curve at
high enough surface energies to stay on this side of the in-
stantaneous unstable fixed point (Video,Müller-Stoffels and
Wackerbauer, 2011b). The coalescence of the lower stable
and the unstable instantaneous fixed point (Fig.6b) is not an
indicator for the onset of bistability as simulations with vari-
ous ice albedo values show. The duration of the existence of
the upper stable fixed point however is slightly longer than
150 days.
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Figure6c shows consecutive annual cycles of surface cell
energy during a transition from perennial ice cover to open
ocean for a forcing parameter1b = 63 W m−2 slightly above
the parameter regime of bistability. Because of the much
larger forcing1b, this transition occurs much more rapidly
than the reverse transition in Fig.6a, which is evident in the
wider spacing of the annual cycles, especially during the win-
ter months. Once the ice cover begins to exhibit surface melt
it declines rapidly and does not refreeze; a latent heat signal
is absent. The annual cycle of instantaneous fixed points still
shows a time period when only the stable fixed point in the
frozen water energy regime exists, but this period is much
shorter than in the two cases described above. As soon as
the surface cell energy reaches values aboveEm +L/2, it
increases rapidly and moves fast towards the instantaneous
fixed point in the open water regime. Figure6f reveals that
the fixed points resulting from the annual average forcing can
describe the system dynamics. The low energy stable fixed
point and the unstable fixed point are close together. Heat-
ing from below (whenRLW +RSW < 0) followed by surface
heating from above (whenRLW +RSW > 0) moves the tra-
jectory to higher energies past the unstable fixed point. The
system heats rapidly due to surface melt and stabilizes on
a trajectory outside the freezing regime to circle around the
stable open water fixed point.

Figure 6d–f reveals that the fixed points resulting from
the annual average forcing do approximate the trajectories
in the space spanned by the surface cell energy and the sur-
face energy budget. Close to a bifurcation point, however, the
annual average information can fail to predict the transition
correctly; the onset of bistability in Fig.4b is shifted whereas
the ending of bistability is well predicted. In such parame-
ter regimes the dynamics is more sensitive and instantaneous
fixed points become more relevant to characterize the sys-
tem dynamics, together with perturbations initiated by heat-
ing/cooling from below the surface. E.g., for the parameter
1b = 27 W m−2 the average surface budget predicts bistabil-
ity and consequently an open water asymptotic state, in con-
trast to the simulation results in Fig.6a and d. Surface cells
cool enough during winters such that the surface cell energy
is below the instantaneous unstable fixed point when it comes
back to exist in the spring. As the system looses more and
more energy in subsequent winters the heating from below
in the spring is no longer sufficient to increase the surface
cell energy sufficiently far beyond the unstable fixed point
to initiate surface melting. The high surface albedo together
with the diminishing solar radiation in fall yield sufficient
cooling of the surface cells to reduce the surface cell energy
quickly to a value below that of the unstable instantaneous
fixed point. At this point the system approaches the lower
stable fixed point asymptotically. Empirical data support the
asymmetry between the predictability of the onset and the
ending of bistability (Fig.4b) by the annual average surface
budget. As reported earlier in this section, simulations start-
ing from open water remain in a high energy state of seasonal

ice as long as the open water instantaneous fixed point ex-
isted for at least 150 days within a year. This criterion is not
fulfilled for the parameter range between the predicted on-
set by the annual average drive (1b ≈ −8 W m−2) and the
actual onset (1b↓ ≈ 18.5 W m−2). Simulations with initially
frozen water remain in a low energy state of perennial ice
until the end of the predicted parameter regime for bistabil-
ity (1b ≈ 62 W m−2). Throughout this parameter regime the
instantaneous fixed point in the frozen water energy range
existed for at least 150 days within a year (Fig.6a–c).

4 Existence of hysteresis under albedo
parameterization

Compared to data taken in a spatially confined area of the
Arctic, step-like albedo parameterizations with temperature
(or energy/enthalpy) are more suitable to describe albedo
changes around the melting point (Fig.3). This does not
mean that the linear albedo parameterization on a wide tem-
perature interval is unreasonable, especially since this pa-
rameterization was initially published for modeling climate
data in large regions (latitudinal band model,Sellers, 1969).
In such a case it is conceivable that the average albedo
across a latitudinal band changes with the average temper-
ature of such a band in a wider temperature interval and with
a smoother behavior than a step-like function. Satellite im-
agery for surface albedo and respective surface temperature
would reveal more insight into the dependence of albedo on
temperature, but is not part of this paper (Agarwal et al.,
2011). We demonstrate in a simple thought experiment that
the smoother approach of parameterizing the albedo is valid
in ODE models of the Arctic and that the step-like (local)
parameterization is linked to the smoother (nonlocal) param-
eterization.

We assume the Earth to be a perfect sphere with radius
R, the Arctic Ocean to be the surface region between two
given latitudesθS andθN , and the surface temperatureT (θ,t)

within this region to be a function of inclination angleθ and
time t . For simplicity the time variation of surface tempera-
ture is independent on the location, and described as

T (θ,t) = T1(θ)+T2(t). (8)

ODE models resolve time, and usually include averages of
spatially varying physical quantities. A step-like nonlocal
albedo parameterization could be obtained from calculating
the average temperature of a latitudinal band and using this
temperature to determine the corresponding albedo. Averag-
ing the local albedos over the various latitudinal bands be-
tweenθS andθN , however, yields a wider albedo parameter-
ization,
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Fig. 7. Spatially averaged surface albedo〈α(T )〉[θS ,θN ]

(Eq. 9) versus spatially averaged surface temperature〈T 〉[θS ,θN ] =

〈T1〉[θS ,θN ] + T2 (Eq. 8) for θS = 60◦ N, θN = 90◦ N, T0 = 1 ◦C,
and different temperature gradients,TS = 0 ◦C, TN = −15◦C (red
graph) andTS = 5 ◦C, TN = −20◦C (blue graph). The local step-
like albedoα(T ) (Eq.11) is plotted for reference (black graph).

〈α(T )〉[θS ,θN ] =

∫ θN

θS
α(T )sinθdθ∫ θN

θS
sinθdθ

, (9)

with 〈α(T )〉[θS ,θN ] a function ofT2(t). For simplicity we con-
sider a linear South to North surface temperature gradient
between latitudeθS = 60◦ N andθN = 90◦ N in Eq. (8),

T1(θ) =
TN −TS

θN −θS

(θ −θS)+TS, (10)

and an albedoα(T ) that can locally be described as a step-
function with surface temperatureT (◦C),

α(T ) = αW −
αW −αI

2

(
1− tanh

( T

T0

))
, (11)

with T0 a scaling temperature used to control the sharpness
of the step. The spatially averaged surface albedo is obtained
from numerical integration of Eq. (9) under the assumptions
of Eqs. (10) and (11). An analytic solution is accessible in
this particular case, but not very illustrative.

Figure 7 shows the spatially averaged surface albedo as
a function of spatially averaged surface temperature for two
linear South to North surface temperature gradients. With in-
creasing surface temperature gradient the spatially averaged
surface albedo becomes wider and looses the step-like behav-
ior, even though the local albedos obey a step-like tempera-
ture dependence (Eq.11). The actual shape of a spatially
averaged albedo depends strongly on the spatial temperature
distribution in the Arctic; the linear temperature gradient was
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Fig. 8. Annual average surface energy budget〈RLW +RSW〉 for the
albedo parameterizations introduced in Fig.3 and1b = 0: ALW
(grey), AQW (dashed blue), AQN (grey dash-dotted), AST (purple),
ASE (orange).

assumed to illustrate scaling properties and possible difficul-
ties when the extended system is interpreted from an ODE
approach.

In the following we show that albedo parameterization has
a significant effect on the properties of stable states and on
the existence of bistability and hysteresis. The albedo param-
eterizations introduced in Fig.3 cover the range from step-
like to wide linear temperature dependence around the melt-
ing point with a fixed albedo for cold iceαI = 0.85 and open
waterαW = 0.07. Figure8 shows the annual average surface
energy balance,〈RLW +RSW〉 =RLW +[1−α(T )]〈R

↓

SW〉, for
all albedo parameterizations. The parameter regime of bista-
bility in the annual average surface budget is largest for step-
like albedo parameterizations (ASE, Eq.3; AST). The cor-
responding cubic shape is progressively less pronounced for
more gradual transitions (AQN, AQW, ALW) between ice
albedo and open ocean albedo. For the linear albedo pa-
rameterization on a wide temperature range (ALW) the cu-
bic feature in the surface energy budget is almost lost. For a
slightly smaller difference betweenαI andαW this cubic fea-
ture would disappear, and the annual average surface budget
would lack a parameter regime of bistability for that ALW
parameterization.

Figure9 shows the influence of albedo parameterization
on hysteresis properties in the average cell energy〈E〉 as
a response to atmospheric forcing1b. We find that hys-
teresis between perennial ice and seasonal ice (or open wa-
ter) disappears for sufficiently wide/gradual albedo param-
eterization around the melting temperature. The step-like
albedo in temperature space (AST, Fig.3) yields bistabil-
ity on a 20 W m−2 wide parameter interval of1b, starting
at 1b = 16 W m−2. In comparison to the step-like albedo
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M. M üller-Stoffels and R. Wackerbauer: Albedo parameterization and reversibility of sea ice decay 91

−20 0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

2.5

<
E

>
 −

 (
E

m
 +

 L
/2

) 
[L

]

 Δb [W m-2]

a

−20 0 20 40 60 80
−1

−0.5

0

0.5

1

1.5

2

2.5

<
E

>
 −

 (
E

m
 +

 L
/2

) 
[L

]

 Δb [W m-2]

b

−40 −20 0 20 40 60
−1

−0.5

0

0.5

1

1.5

2

2.5

−5 0
−0.8

−0.6

−0.4

 Δb [W m-2]

<
E

>
 −

 (
E

m
 +

 L
/2

) 
[L

]

c

−40 −20 0 20 40 60
−1

−0.5

0

0.5

1

1.5

2

2.5

−24 −23 −22 −21

−0.8

−0.7

−0.6

−0.5

 Δb [W m-2]

<
E

>
 −

 (
E

m
 +

 L
/2

) 
[L

]

d

Fig. 9. Asymptotic states of the average cell energy〈E〉 as a response to atmospheric forcing1b for the albedo parameterizations in Fig.3:
(a) AST, (b) AQN, (c) AQW, and(d) ALW. Simulations with an initially ice covered state (blue dots) started with a uniformly frozen ice-
ocean layer, and simulations with an initially open water state started from a uniform water layer as in Fig.4b. The ice cover is seasonal
for the data points within the blue shaded area, and surface melt exists for the data points within the dark grey shaded area. Convergence is
reached within numerical accuracy, i.e., doubling the simulation time does not change the values of〈E〉.

parameterization in energy space (ASE, Fig.4b), the onset
of bistability is at a lower1b for AST, and the parameter
regime of bistability is shortened by about 40 %. Simulations
that started with an open ocean initial condition (Fig.9a, red
circles) in the bistable region converge to seasonally ice cov-
ered solutions for a wider range of parameters than in the
ASE case. The quadratic albedo parameterization on the nar-
row temperature interval (AQN) softens the step-like albedo
change around the melting temperature; the albedo starts to
deviate fromαI = 0.85 around−15◦C (Fig. 3). This shifts
the local minimum in the annual average surface energy bud-
get from the neighborhood of the melting point (AST, ASE)
to the neighborhood of−15◦C (AQN, Fig. 8) and reduces
the height of the cubic part in the annual average surface en-
ergy budget to about two thirds of the height for the step-like
functions. Bistability exists on a narrow1b-interval of width
6 W m−2, with the onset of bistability at even smaller atmo-
spheric forcing,1b = 6 W m−2 (Fig.9b). Once the quadratic

albedo parameterization is flattened (AQW, Fig.3) by widen-
ing the temperature interval according toSellers(1969), the
local minimum in the annual average surface energy bud-
get moves to lower temperatures, and the cubic structure is
further weakened (Fig.8). Hysteresis between perennial ice
and seasonal ice (or open water) is lost. With increasing at-
mospheric forcing the system transitions rather steadily from
perennial ice, to perennial ice with surface melt, to seasonal
ice, and then to perennial open ocean (Fig.9c). This steady
transition is interrupted by two very narrow bistable regimes,
in both of which the stable states are close together (insert,
Fig. 9c). One hysteresis exists between perennial ice and
perennial ice with surface melt, the other hysteresis exists
between two stable states of perennial ice with surface melt
but slightly different energies. For the linear albedo parame-
terization (ALW, Fig.3) on the wide temperature interval by
Sellers(1969) the cubic structure in the annual average sur-
face energy budget is almost lost (Fig.8). The transition from
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perennial ice to open water is very similar to the AQW case,
with again no hysteresis between perennial ice and seasonal
ice or open water (Fig.9d). The insert reveals a very narrow
region of bistability between two slightly different energies,
i.e., perennial ice and perennial ice with surface melt.

The transition between ice and ocean albedo can also be
made more gradual by reducing the difference betweenαI
andαW and considering a fixed temperature interval for the
albedo transition around the melting point. FollowingSell-
ers(1969), we keepαI = 0.85 and replaceαW with a “non-
ice” albedo value of 0.37, which is rather high as it incor-
porates both ocean and land. Under these conditions, the
width of the bistability regime is reduced in comparison to
the regimes in Fig.9a and b, and the linear albedo param-
eterization does not yield any bistability. These results are
consistent with the studies byEisenman(2011) andAbbot
et al. (2011) which indicate that bistability disappears or is
weakened for smaller differencesαI − αW. They are also
consistent withNotz (2009), who uses these albedo values
to define the slope in the albedo transition and to conclude
that the ice pack is stable under perturbations.

5 Conclusions

The spatially extended conceptual dynamical systems model
by Müller-Stoffels and Wackerbauer(2011a) addresses the
stability of Arctic sea ice and feedback processes based on
the thermodynamic interaction of nonlinearly coupled ice
ocean cells with atmospheric and oceanic nonlinear spa-
tiotemporal forcing. We adjust several model components to
include observations from the Arctic region. The longwave
radiative budget considers clear sky data provided by ARM,
and variations in albedo parameterization were inspired by
data provided through the SHEBA project and the work by
Sellers(1969), Thorndike(1992), Eisenman and Wettlaufer
(2009) andNotz (2009). These adjustments follow our core
model development paradigm to base the change in physical
variables and parameters on the change in system state and
not on explicit time-dependences in physical quantities that
are based on todays or past observation. This is particularly
relevant when investigating system dynamics and feedback
processes under a broader range of climatic conditions than
accessible by reliable data.

The complexity of the dynamical system is evident in a
seemingly minor change in the shape of a model component
that significantly changes the outcome of certain model sim-
ulations. Adjusting the longwave radiative budget to obser-
vations provided by ARM from its site in Barrow, Alaska,
results in seasonal ice being a stable state, where previously
only perennial ice cover and perennially open ocean were
stable solutions (Müller-Stoffels and Wackerbauer, 2011a).
This stable annual cycle of seasonal ice is a special case of
the higher energy stable state and becomes the open ocean
stable state for larger atmospheric forcing.

The annual average surface forcing provides an approxi-
mate tool to locate bistability in parameter space. For bista-
bility to exist in our model, it is necessary that the fixed
points induced solely by the annual average surface forcing
exhibit a parameter regime of bistability. Further analysis
of the (instantaneous) fixed points induced solely by the in-
stantaneous surface drive reveals that in much of the param-
eter regime of bistability only one of the two stable (instan-
taneous) fixed points exists for most of the annual cycle. The
system can be considered to be of cyclically varying stability,
possibly displaying time intervals with the existence of a sin-
gle stable state in the frozen energy regime, a single stable
state in the open water energy regime, or with coexistence
of both of these stable states. We find that the instantaneous
fixed points are essential for the understanding of the system
dynamics, particularly in the neighborhood of a bifurcation
point. They provide insight into the interaction of the surface
energy with the radiative forcing and the underlying body
of ice/water. Surface cell energies are tracking the instan-
taneous fixed points, but are rarely close due to the inertia
of the underlying system, which releases/stores energy at a
limited rate.

There is an ongoing discussion in the literature about the
reversibility of sea ice loss and the existence of a tipping
point (Walker, 2006; Lenton et al., 2008; Eisenman and Wet-
tlaufer, 2009; Notz, 2009). The albedo parameterization
(among others) is distinctly different between ODE models
exhibiting hysteresis and tipping point behavior and mod-
els exhibiting a smooth continuous sea ice decrease under
increasing atmospheric forcing (Sellers, 1969; Thorndike,
1992; Eisenman and Wettlaufer, 2009; Notz, 2009; Eisen-
man, 2011). We choose ice and ocean albedos that are com-
monly used in GCMs (Liu et al., 2007) and manipulate the
shape of albedo parametrization around the melting point.
We show that albedo parametrization is key to distinct tran-
sition behavior. The hysteresis between perennial ice and
seasonal ice is less pronounced for albedo parameterizations
with a more gradual transition between ice and ocean albedo
around the melting temperature. For the linear albedo param-
eterization on the wide temperature interval bySellers(1969)
the transition from perennial ice to open water is smooth
with increasing atmospheric forcing and stable under pertur-
bations.

An interesting question is of course, which albedo param-
eterization to pick in a conceptual model. Local measure-
ments (SHEBA) reveal that while the albedo starts to dimin-
ish slightly below the freezing point, step-like parameteriza-
tions capture the transition better than wide gradual transi-
tions. Spatial averaging, however, reconciles the local step-
like albedo behavior with the more gradual albedo transition,
indicating that gradual parameterizations can provide a bulk
albedo for the model Arctic as a whole. Consequently, the
albedo parametrization is model dependent. If only local pa-
rameters enter into an ODE model then the outcome is local.
For a regional ODE model the (spatially averaged) albedo
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parameterization depends on e.g., temperature gradients in
the region, and the actual form of the local albedo parame-
terization. Further studies are necessary to better represent
albedo parameterization in conceptual models and models
per se, particularly, since the existence of hysteresis is cru-
cially dependent on the albedo parameterization (this paper),
and since small changes to the ice albedo severely change the
outcome of GCM’s ice extent predictions (Eisenman et al.,
2007).

Many GCMs produce a seasonal ice state under increased
greenhouse gas emission scenarios (IPCC, 2007). The ini-
tial conditions of these GCMs usually allow for some region
of open water at lower latitudes. Latitudinal differences in
shortwave fluxes generate an inherent spatial inhomogene-
ity that induce lateral fluxes. This is a significant difference
to ODE models and cannot be overlooked when translating
ODE model to GCM results. This paper explores a spatially
confined model domain at latitude 80◦ N. Insolation values
for other latitudes would shift parameter ranges for bistabil-
ity and seasonal ice. In ODE models the common definition
of seasonal ice is that the whole model domain will be ice
covered for some time every year. The definition of sea-
sonal ice in a GCM is that there exists a region within the
model domain that will be ice covered for some time every
year. Inherent in the difference is the significant limitation of
ODE models regarding spatial resolution. Our findings that
(1) smoother albedo parametrizations have significant impact
on the asymptotic behavior of ODE models, and that (2) spa-
tial scaling gives a smoother albedo parametrization, are sig-
nificant in understanding and interpreting ODE model results
in a GCM context.

The lattice structure of our model enables spatial inho-
mogeneities in the ice-ocean layer to be implemented rather
straightforward. We adjust the lattice to describe a latitudi-
nal transect between 60◦ and 90◦ N (with one-tenth of a de-
gree resolution) and include lateral atmospheric heat trans-
fer via diffusion of surface temperatures and enhanced heat
transfer in the ocean mixed layer via vertical and horizon-
tal eddy thermal diffusivities. Preliminary results show that
bistability in the annual average ice edge location is strongly
influenced by the albedo parametrization, and that a locally
step-like albedo parameterization results in a wider spatially
averaged albedo along the transect.
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