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Abstract. The validation of geophysical data sets (e.g. de-
rived from models, exploration techniques or remote sens-
ing) presents a formidable challenge as all products are in-
herently different and subject to errors. The collocation tech-
nique permits the retrieval of the error variances of differ-
ent data sources without the need to specify one data set as
a reference. In addition calibration constants can be deter-
mined to account for biases and different dynamic ranges.
The method is frequently applied to the study and compar-
ison of remote sensing, in-situ and modelled data, particu-
larly in hydrology and oceanography. Previous studies have
almost exclusively focussed on the validation of three data
sources; in this paper it is shown how the technique general-
izes to an arbitrary number of data sets. It turns out that only
parts of the covariance structure can be resolved by the col-
location technique, thus emphasizing the necessity of expert
knowledge for the correct validation of geophysical products.
Furthermore the bias and error variance of the estimators are
derived with particular emphasis on the assumptions neces-
sary for establishing those characteristics. Important proper-
ties of the method, such as the structural deficiencies, depen-
dence of the accuracy on the number of measurements and
the impact of violated assumptions, are illustrated by appli-
cation to simulated data.

1 Introduction

Adequate knowledge of the error characteristics of different
sensors, models, remote sensing products, etc. can be consid-
ered a prerequisite for their meaningful application in prac-
tice and scientific studies. It is, for example, necessary when
assimilating satellite and in-situ observations with meteoro-
logical models (e.g.Munro et al., 2004), when combining

data from different sources (e.g.Missaoui et al., 2011; Liu
et al., 2011), and when analyzing such measurements or
models as to their accuracy and range of validity (e.g.Stoffe-
len, 1998; Scipal et al., 2008). The validation of such prod-
ucts is intrinsically difficult due to the lack of knowledge of
the “truth”: the actual value of the parameter to be deter-
mined is never known with absolute certainty, and spatial as
well as temporal mismatch often exert a confounding influ-
ence.

The collocation technique does not require the specifica-
tion of a reference data set and is applicable when three or
more data sources are available. It permits the estimation
of the error variance of each sensor provided certain assump-
tions about the error structure are met. When applied to three
data sources, it is called triple collocation and its popularity
has grown considerably over the last decade. Most frequently
it has been applied to remote sensing products in order to
evaluate their error structure and compare them to models,
in-situ and alternative remote sensing measurements.

The method was introduced byStoffelen(1998) in order
to study the error characteristics of wind vector data de-
rived from a model, buoy measurements and scatterometer
observations. Further oceanographic studies pertaining to
wind speed, wave height or sea surface temperature measure-
ments includeCaires and Sterl(2003); Janssen et al.(2007);
O’Carroll et al.(2008); Winterfeldt et al.(2010). Regarding
land hydrological applications the comparison of soil mois-
ture estimates from models, in-situ data and remote sensing
products has become an active field of research (e.g.Scipal
et al., 2008; Dorigo et al., 2011; Loew and Schlenz, 2011;
Parinussa et al., 2011). The technique has, for example,
also been applied to the study of evapotranspiration data by
Miralles et al.(2011).
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Apart from the estimation of the error structure, the de-
termination of calibration constants is of vital practical im-
portance as well in order to account for biases and different
dynamic ranges of the products. This can be achieved within
the collocation framework, as shown byStoffelen(1998) and
Muraleedharan et al.(2006). Alternative ways of estimat-
ing these calibration constants have also been proposed, e.g.
the error-in-variables regression approach suggested bySci-
pal et al.(2008).

While the triple collocation technique has become a rou-
tine tool in calibration/validation studies of models and mea-
sured data, its statistical properties and sensitivity with re-
spect to violated assumptions, e.g. the presence of correla-
tions between different data sources, have not been analyzed
in detail. This is one objective of this paper. The other one,
which will be treated before that, is the analysis of the tech-
nique for a general number of data sources: which properties
of measurement errors can be estimated and which cannot.
These structural deficencies highlight the importance of ex-
pert knowledge and experience with the analyzed data sets
for validation studies.

The notation and the error models related to the colloca-
tion technique are defined in Sect.2. The triple collocation
method, as applied in many previous studies, is introduced in
Sect.3. Subsequently – Sect.4 – the inherent mathematical
structure for an arbitrary number of data sources is analyzed
and it is shown to what degree error covariances can be esti-
mated. The key statistical properties of the estimators for the
error characteristics and the calibration constants are derived
and discussed in Sect.5. These results are compared and ap-
plied to simulated data in Sect.6 with particular emphasis on
the determination of the uncertainties and the dependence on
the number of samples.

2 Error models

The collocation method relies on a stochastic model in which
the noise is additive. More specifically this paper treats three
such models; the difference is due to the varying number of
calibration constants included.

In general it is assumed that there areN sets of measure-
ments with each set containing a measurement of each of the
M data sources. In the classical triple collocation approach
M = 3. In previous studies the different samplesn = 1...N

referred to different epochs in time and we also adopt this
view and terminology. The statistical properties and assump-
tions are not inherently related to this interpretation; the tech-
nique can thus be applied to non-temporal data as well. An-
gle brackets〈·〉 are adopted for expectation values.

2.1 Basic model

The basic model describes data sources that are mutually cal-
ibrated and only differ in an additive random error:

yn
i = xn

+en
i (1)

whereyn
i is the measurement numbern by sensori, xn is the

unknown variable anden
i is the corresponding error.

Note that in this paperxn is treated as an unknown deter-
ministic parameter and not as a random variable. An alterna-
tive view considersx to be random in principle: the analysis
is conducted by conditioning onxn, thus fixing their values
as in the deterministic point of view. These different concep-
tions regardingx are equivalent and mirror the way the ex-
ogenous variables can be treated in regression analysis. The
conclusions drawn from the collocation technique thus do not
rely on any additional assumptions about the “truth”x except
the validity of the model defined in Eq. (1).

2.2 Bias model

An extension of the basic model allows for the inclusion of
an additive bias termα (e.g.Parrens et al., 2011). As the col-
location technique makes no assumptions about the unknown
parameterx, the zero point of one of the data sets has to be
taken as reference; w.l.o.g. this is the setm = 1.

yn
i = xn

+αi +en
i (2)

Note thatα1 = 0 and form = 1 the bias model essentially
collapses to the basic model.

2.3 Affine model

The affine model also accounts for a multiplicative bias or
scale factorβ (source). Following the reasoning for the bias
model,β1 = 1 and thus the first data set determines the zero
point and the units to which the remaining data sets will refer
after calibration (i.e. estimation of the calibration constantsα

andβ).

yn
i = βix

n
+αi +en

i (3)

2.4 Assumptions

The assumptions regarding the statistical characteristics of
the error terms are crucial for the validity of the colloca-
tion technique. One important contribution of this paper is
to show which assumptions are necessary for certain proper-
ties of the estimators to hold; the following will be referred
to in the subsequent analyses:

Assumption 1 (Zero expectation) the expected values of
the error terms vanish, i.e.〈en

i 〉 = 0

Assumption 2 (Homoscedasticity)the error (co)variances
do not depend on time, i.e.〈(en

i )2
〉 = σii , 〈en

i en
j 〉 = σij

Assumption 2b the time invariance also holds for the fourth
moments, i.e.〈(en

i )4
〉 = γi
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Assumption 3 (Zero crosscorrelation) the correlations be-
tween different errors at the same epochn are 0, i.e.〈en

i en
j 〉 =

0, i 6= j

Assumption 4 (Zero autocorrelation) the correlations at
different times vanish, i.e.〈en′

i en′′

i 〉 = 0,n′
6= n′′

Note that these assumptions about the errors pertain to the
error model used for deriving and characterizing the estima-
tors. Failure to meet one of them can in certain cases be
circumvented by choosing an appropriate error model. If, for
example, one of the error terms had a bias (〈ei〉 6= 0), the cal-
ibration constantαi could account for this in the bias or the
affine model.

3 Basic triple collocation

The vast majority of applications of the collocation technique
to study error characteristics have focussed on three different
data sources as this is the minimum number needed in order
to estimate the RMS error of each. An in-depth analysis is
provided in Sect.5; in this brief introduction only the key
properties are stressed. To this end it is sufficient to look at
the basic model.

3.1 Estimating the error variance

Applied to three sensors, the basic model postulates the fol-
lowing error structure:

yn
1 = xn

+en
1

yn
2 = xn

+en
3

yn
3 = xn

+en
3

By forming a difference between two simultaneous measure-
ments, the parameterxn vanishes such that for example〈(

yn
1 −yn

2

)(
yn

1 −yn
3

)〉
=
〈
en

1en
1 −en

1en
2 −en

1en
3 +en

2en
3

〉
= σ11

using assumptions 1, 2, and 3 and it thus seems natural to
apply the following estimators

σ̂11 =
1

N

N∑
n=1

(
yn

1 −yn
2

)(
yn

1 −yn
3

)
(4)

σ̂22 =
1

N

N∑
n=1

(
yn

2 −yn
1

)(
yn

2 −yn
3

)
(5)

σ̂33 =
1

N

N∑
n=1

(
yn

3 −yn
1

)(
yn

3 −yn
2

)
(6)

These estimators are unbiased given assumptions 1, 2, and 3,
as is shown in Sect.5.1, where also their variance is given.

Analogously toStoffelen (1998) it is also possible to
postulate a fixed covariance between two data sets and
modify these estimators accordingly. In the analysis of

scatterometer-derived wind vectors, for instance, such cor-
relations can arise due to the spatial scale mismatch of
the sensors involved (Vogelzang et al., 2011). If, for ex-
ample, the covariance〈en

2en
3〉 = σ23, the expected value

of 1
N

∑N
n=1

(
yn

1 −yn
2

)(
yn

1 −yn
3

)
becomesσ11 + σ23 so that

−σ23+
1
N

∑N
n=1

(
yn

1 −yn
2

)(
yn

1 −yn
3

)
is an unbiased estimator

for σ11. The other formulae will have to changed in a similar
fashion.

The subsequent discussions examine how this collocation
technique can be generalized to more than three sensors and
whether error covariances can be estimated as well. Further-
more the properties of this and related estimators are ana-
lyzed. Note that the term “collocation” is very general in
nature; it can e.g. refer to a method for numerically solv-
ing differential equations or to the act of linking different
data sets. The phrase “collocation technique”, as used in this
paper, encompasses generalizations of the triple collocation
method for estimating the error variance, which do not re-
quire specification of a reference data set.

4 Structure of the collocation technique

This section is concerned with the general structure of the
collocation technique; more specifically, the possible relax-
ation of assumption 3 (lack of cross-covariance) is studied
for a general number of data sources. In the following the
validity of the basic model and a general error covariance
matrix6 will be assumed; e.g. forM = 3:

6 =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


4.1 Brackets

As certain kinds of products are commonplace in the collo-
cation method, we introduce the bracket notation.

[i,j ;k,l]n = (yn
i −yn

j )(yn
k −yn

l ) = (en
i −en

j )(en
k −en

l ) (7)

Several properties of such brackets follow immediately from
the definition in Eq. (7):

[i,j ;i,j ]
n

= [i,j ;i,k]
n
+[j,i;j,k]

n (8)

[i,j ;i,k]
n

= [i,j ;i,l]n −[i,j ;k,l]n (9)

4.2 Sampling the error covariance matrix

The general bracket in Eq. (7) essentially samples the error
matrix En with en

i,j = en
i en

j . As the expected value ofEn is
the error covariance matrix (given assumption 1), this is of
great importance to the collocation technique. Due to the
distributivity of multiplication over addition we can, by av-
eraging over multiple samplesn, sample the error covariance
matrix, provided assumption 2 is met. We can thus focus our
discussion on the sampling of the error matrix.
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Let us introduce a vectorization of the problem at hand. A
bracket from Eq. (7), such as[1,2;1,3]

n for M = 3, can also
be thought of as an inner product between the error matrix
En and a symmetric bracket matrixB:

[1,2;1,3]
n
= Tr

(
BT

[1,2;1,3]
·En

)
(10)

where Tr is the Trace operator, which defines an inner prod-
uct (Cantrell, 2000). Note that this corresponds simply to
a sum over the products of each corresponding pair of ele-
ments. The bracket matrix is given by

B[1,2;1,3] =

 1 −
1
2 −

1
2

−
1
2 0 1

2
−

1
2

1
2 0


In general we require these matrices to be symmetrical and
that Eqs. (7) and (10) match.

It is clear from Eqs. (8) and (9) that there are dependencies
between the brackets, i.e. that the correspondingB-matrices
are linearly dependent. This also follows due the fact there
are

(
M+1

2

)
degrees of freedom in aM×M symmetric matrix.

The aim of Sect.4.3 consists of identifying the structure
of the possible information that can be gained from Eq.10.
Before this we will show that the brackets are sufficient for
this task.

4.2.1 Sufficiency of brackets

A product of the form(yi −yj )(yk −yl) can be generalized
to one where on either side a linear combination of the mea-
surements whose weights sum to 0 is allowed. This condi-
tion is necessary and sufficient for cancelling the unknown
parameter.

All linear functionals fulfilling the above condition form
anM−1 dimensional subspace of which the vectorsum, m =

1...M −1, form a basis: they are defined by

um,l = δm,l+1−δm,l (11)

whereδ is the Kronecker delta.
Such a general product can be written as(
M∑

m=1

vmym

)(
M∑

m′=1

wm′ym′

)
(12)

Consequently, the weightsvm andwm′ can be expressed in
theum basis as

vm =

M−1∑
l=1

ul,mpl

wm′ =

M−1∑
l′=1

ul′,m′ql′

so that Eq. (12) becomes(
M∑

m=1

M−1∑
l=1

ul,mplym

)(
M∑

m′=1

M−1∑
l′=1

ul′,m′ql′ym′

)

=

M−1∑
l=1

M−1∑
l′=1

plql′

[
M∑

m=1

M∑
m′=1

ul,mymul′,m′ym′

]
where it turns out that the terms inside the square brackets
are just brackets of the form[l +1,l;l′ +1,l′], which shows
that the most general product of Eq. (12) can be thought of as
a linear combination of simple products as defined in Eq. (7).
The brackets are thus perfectly general for our purposes.

4.3 Resolvable structure of the error covariance matrix

The previously defined sampling of the error matrix in
Eq. (10) allows us to describe the quadratic estimators in
terms of linear algebra. The key question is whether the com-
plete error covariance matrix can be resolved by the brackets
of Eq. (7). The answer is simple: No. Suppose you have
5 independent sensors (with the basic model defined in Eq.1
applicable) and none of them has any measurement noise.
All 5 will give the same result. On the other hand, suppose
you have 5 sensors with equal error variance that are all per-
fectly correlated. Again, all 5 sensors will yield the same
result and there is no way to tell the difference between the
two cases without additional assumptions. It will now be
shown that there is more structure that cannot be resolved by
the collocation technique.

In terms of linear algebra a bracket corresponds to an inner
product between the error matrix and the associated bracket
matrix. The vector space and the important subspaces are
denoted and defined as follows1:

Vector spaceCM the vector space of all symmetric
M ×M matrices. Note that definiteness plays no role.
Its dimension is

(
M+1

2

)
.

Vector space BM the vector space spanned by the
bracket matrices given there areM sensors. The previ-
ous discussion shows that (linear combinations of) the
brackets can represent all possible products, i.e. they are
perfectly general.BM is a subspace ofCM

Vector spaceKM the orthogonal complement ofBM

(Lang, 1987), using the dot product of Eq. (10).

If BM were of dimension
(
M+1

2

)
, we could sample the er-

ror matrix completely, i.e. we could reconstruct it. We will
now show that its dimension is only

(
M
2

)
. We will first find

two sets of independent vectors, one forBM and one forKM

and then argue on dimensional grounds that these actually
form a basis for their respective space.

1Actually it is not necessary to introduce the formalism of inner
products, but rather to think of the brackets as a linear functional
acting on the error matrix. The description adopted here, however,
simplifies the analysis and notation cosiderably.
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4.3.1 Vectors inBM

Let us turn to the matrices corresponding to brackets of the
form [i,j ;i,j ] with i < j . There are clearly

(
M
2

)
of these

matricesB[i,j ;i,j ]. They are also independent because only
B[i,j ;i,j ] has a non-vanishing coefficient at positions(i,j)

and(j,i).

4.3.2 Vectors inKM

These vectors are by definition orthogonal to the brackets
matricesB[i,j ;k,l]. The elements(i,j) of one set of such vec-
torsAm are given by1

2(δi,m +δm,j ), such that forM = 3

A1 =
1

2

2 1 1
1 0 0
1 0 0

A2 =
1

2

0 1 0
1 2 1
0 1 0

A3 =
1

2

0 0 1
0 0 1
1 1 2


These vectors are independent because onlyAi has a non-

zero element at the(i,i) position.
The orthogonality with respect toBM , although straight-

forward to show, is a bit tedious to establish because of the
number of cases to consider. In the following the vectorAu

will be dotted with all possible bracket matrices. As the
brackets of the form[i,i;i,i] vanish, we only have to look
at those with 2, 3 or 4 distinct indices.

The first group of bracket matrices to consider consists of
thoseB[i,j ;i,j ] with i 6= j . There are two cases. Firstly,u 6=

i 6= j . The dot product in Eq. (10) is clearly zero because
B[i,j ;i,j ] has only zero elements in row/columnu. Secondly,
we haveu = i (theu = j case is analogous), in which case the
(i,i) element exactly cancels the(i,j) and(j,i) elements.

The second group contains the matrices of the form
B[i,j ;i,k] with i 6= j 6= k, j < k. There are three cases to con-
sider. Firstly, ifu = i the (i,i) cancels with the(i,j), (j,i),
(i,k), and(k,i) elements. Secondly, ifu = j (u = k is analo-
gous), the(i,j) and(j,i) elements cancel the(j,k) and(k,j)

elements. Thirdly, whenu is distinct fromi, j , andk, the dot
product vanishes becauseB[i,j ;i,k] has only zero elements in
row/columnu.

The third group consists of matrices of the formB[i,j ;k,l].
Whenu is distinct fromi, j , k, andl, we have orthogonality
for the same reasons as above. When one of them, sayj = u,
then the(j,k) and(k,j) elements cancel the(j,l) and(l,j)

elements.

4.3.3 Resolution and consequences

We have found
(
M
2

)
independent vectorsB[i,j ;i,j ] in BM and

M vectorsAm in KM . As orthogonality implies indepen-
dence, we have found a set ofM +

(
M
2

)
=
(
M+1

2

)
independent

vectors inCM . We have thus found a basis for this spaceCM

(Lang, 1987) and consequently also a basis forBM , whose
dimension is thus established to be

(
M
2

)
. Covariance struc-

ture corresponding to its orthogonal complementKM cannot
be resolved, as the inner product yields 0.

Unfortunately it turns out there is anM dimensional sub-
spaceKM which is invisible to the collocation technique.
Furthermore the elements of this space are not particularly
easy to interpret, the only exception being

∑M
m=1Am, which

corresponds to the case of perfectly correlated measurements
described in Sect.4.3. In practice it will be easier to postulate
that certain covariances vanish. The standard triple colloca-
tion technique asserts exactly that, i.e. the three assumptions
needed are exactly those that all correlations are 0.

5 Statistical analysis

In this section various estimators of elements of the error
covariance matrix as well as the calibration constants will
be analyzed; particular emphasis is placed on their expected
values and variances. Each of the three models is discussed
separately.

5.1 Basic model

Previous studies (e.g.Stoffelen, 1998; Scipal et al., 2008;
Dorigo et al., 2011) predominantly applied the following es-
timator of the error variance (withi 6= j 6= k):

σ̂ii =
1

N

N∑
n=1

[i,j ;i,k]
n (13)

=
1

N

N∑
n=1

(
en
i en

i +en
j en

k −en
i en

k −en
j en

i

)
By recourse to assumptions 1, 2 and 3 it follows that the es-
timator given by Eq. (13) is unbiased, i.e.̂σii = 〈σii〉.

The variance of the estimator follows from its definition

Var(σ̂ii) =

〈(
σ̂ii −σii

)2〉
= −σ 2

ii +

〈
σ̂ 2

ii

〉
= −σ 2

ii +
1

N2

N∑
n′=1

N∑
n′′=1

(en′

i −en′

j )(en′

i −en′

k )

·(en′′

i −en′′

j )(en′′

i −en′′

k )

=
1

N

(
γi −σ 2

ii +σiiσkk +σiiσjj +σjjσkk

)
(14)

where the last line is obtained by expanding the expression
into sums of four error terms – the algebra mirrors the deriva-
tion of the variance of the classical variance estimator of
a sample (e.g.Kenney and Keeping, 1956). Most of these
terms cancel when assumptions 1, 2, 2b, 3 and 4 are invoked.
The first of these termst1, for example, is:

t1 =

N∑
n′=1

N∑
n′′=1

〈(en′

i )2(en′′

i )2
〉

= N〈(en′

i )4
〉+N(N −1)〈(en′

i )2(en′′

i )2
〉︸ ︷︷ ︸

n′ 6=n′′

= Nγi +N(N −1)σ 2
ii
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If the erroren
i follows a Gaussian distribution,γi = 3σ 2

ii

and Eq. (14) simplifies to 1
N

(
2σ 2

ii +σiiσkk +σiiσjj +σjjσkk

)
(Koopmans, 1995). In general the fourth-order moments will
neither be known in advance nor estimated from the data.
The Gaussian assumption thus provides simplified and ap-
proximate expressions for the error variances.

The derivation of the estimation variance leading to
Eq. (14) relies on several assumptions – in particular assump-
tion 4 (no autocorrelation), which does not affect the ex-
pected value given by Eq. (13). Alternatively a more general
error model (including e.g. autocorrelation) could be used to
compute the error variance. In practical cases such informa-
tion is, however, very difficult to obtain; this is whyCaires
and Sterl(2003); Muraleedharan et al.(2006) suggested the
bootstrap method for estimating the error variance from the
data.

It is worthwhile to discuss the estimation of the RMSE
(root mean square error), i.e. the square root of the error vari-
ance if assumption 1 holds. When taking the square root of
σ̂ii in Eq. (13) as an estimate of the RMSE –r̂ii =

√
σ̂ii – the

result will have a negative bias as

Var
(
r̂ii
)
= 〈(r̂ii)

2
〉−〈r̂ii〉

2
≥ 0⇒

√
σii ≥ 〈r̂ii〉

This result (as well as the derivation) is exactly the same
as for the usual sample variance/standard deviation (Kenney
and Keeping, 1956) and could also have been derived by re-
course to Jensen’s inequality.

It is easy to determine whether the obtained covariance
matrix is positive definite in case of a diagonal matrix: the
diagonal elements must be greater than 0. Note that the col-
location technique does not guarantee the retrieval of a valid
(i.e. positive definite) covariance matrix.

5.2 Bias model

5.2.1 Calibration constants

In addition to the error structure, the bias termsαi , i 6= 1
have to be estimated when the bias model is assumed. The
latter can also be obtained from the differences between two
measurements (Muraleedharan et al., 2006). The following
estimator seems obvious:

α̂i =
1

N

N∑
n=1

yn
i −yn

1 = αi +
1

N

N∑
n=1

en
i −en

1 (15)

The unbiasedness follows immediately from the rightmost
part by assumption 1.

Given assumptions 1, 2, 3, and 4, the estimatorα̂i is
the best linear (in the difference) unbiased estimator, as
will now be shown. A general linear estimator is given by
α̌i =

∑N
n=1wn

(
yn
i −yn

1

)
. From assumption 1 and the valid-

ity of the bias model, it follows that〈α̌i〉 = αi

∑N
n=1wn such

that the weights must sum to one forα̌i to be unbiased. For
such an unbiased estimator the variance under assumptions 1,

2, 3, and 4 is given by Var(α̌i) = (σii +σ11)
∑N

n=1w2
n, which,

for α̂i from Eq. (15), evaluates to

Var(α̂i) = (σii +σ11)
1

N
(16)

This variance is the smallest value possible as

Var(α̌i)−Var(α̂i) = (σii +σ11)

[(
N∑

n=1

w2
n

)
−

1

N

]

= (σii +σ11)

N∑
n=1

(
wn −

1

N

)2

≥ 0

where the second line follows from the unbiasedness condi-
tion.

5.2.2 Error terms

Let [i′j ′
;kl] = (yn

i − α̂i −yn
j + α̂j )(y

n
k −yn

l ) and similarly for
various other brackets.

In order to derive an unbiased estimator ofσ11, we first
look at

∑N
n=1

〈
[1,j ′

;1,k′
]
n
〉
, wherej 6= k. By recourse to

assumptions 1, 2, 3, and 4, this evaluates to(N −1)σ11. Note
that assumption 4 (no autocorrelation) is invoked to derive
this result because of the correlation between the individual
error terms and the estimated calibration constantsα̂. Thus
we have an unbiased estimator forσ11:

σ̂11=
1

N −1

N∑
n=1

[1,j ′
;1,k′

]
n (17)

The denominator isN −1, as in the unbiased estimation of
the population variance from the sample variance. The small
bias of the naive estimator withN in the denominator is neg-
ligible for reasonably sized samples. Likewise, it can be
shown that the following estimators forσjj , i 6= 1 are un-
biased (j 6= k 6= 1):

σ̂jj =
1

N −1

N∑
n=1

[j ′,1;j ′,k′
]
n (18)

The evaluation of the variance of these two estimators
turns out to be a veritable tour de force; it closely follows
Kenney and Keeping(1956) and Eq. (14) but there are many
more terms. For both Eq. (17) and Eq. (18) it follows that

Var(σ̂uu) =
1

N(N −1)2

[
N2(γu −3σ 2

uu +σuuσvv

+ σuuσww +σvvσww)+N(−6γu

+ 11σ 2
uu −4σuuσvv −4σuuσww (19)

− 4σvvσww)+(13γu −8σ 2
uu +11σuuσvv

+ 11σuuσww +11σvvσww)
]

where u = 1, v = j , and w = k for Eq. (17); and u = j ,
v = 1, andw = k for Eq. (18). Remarkably the expressions in
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Eqs. (17) and (18) for the variance are the same and also pos-
sess surprising permutational symmetries e.g. with respect to
1 andk in the second case, whereas the one betweenj and
k in the first case is obvious. Comparing the variance given
by Eq. (19) with the corresponding one of the basic model
shown in Eq. (14), we see that the dominant terms (which
diminish with 1

N
) are almost identical; the only difference is

the coefficient ofσ 2
uu and it is due to the different denomina-

tors.

5.3 Affine model

The analysis of the affine model is vastly more difficult than
before. It is impossible to draw conclusions along the lines of
the basic and the affine model because of the multiplicative
nature of theβ term.

First the determination of the scale factorβ is analyzed.
FollowingMuraleedharan et al.(2006), we first introduce the
differenced measurementsy′

y
′n
i = yn

i −
1

N

N∑
n′=1

yn′

i = yn
i −〈yi〉e

the right most part of which defines the empirical average
〈·〉e. Similarly, letx

′n
= xn

−〈x〉e ande
′n
i = en

i −〈ei〉e. The
empirical covariance between two differenced measurements
in the affine model is given by〈
y′

1y
′

i

〉
e

= βi〈x
′2
〉e +βi〈x

′e′

1〉e +〈x′e′

i〉e +〈e′

ie
′

1〉e〈
y′

iy
′

j

〉
e

= βiβj 〈x
′2
〉e +βi〈x

′e′

j 〉e +βj 〈x
′e′

i〉e +〈e′

ie
′

j 〉e

The expected values of these two terms are given by (as-
sumptions 1 and 3):〈
〈y′

1y
′

i〉e

〉
= βi〈x

′2
〉e〈〈

y′

iy
′

j

〉
e

〉
= βiβj 〈x

′2
〉e

where – as explained in Sect.2.1– the average is taken with
respect to the error terms whereasx is treated as a deter-
ministic parameter. This suggests the following estimator
(i 6= j 6= 1) (Caires and Sterl, 2003):

β̂j =

〈
y′

iy
′

j

〉
e〈

y′

1y
′

i

〉
e

(20)

Due to it being a quotient of two dependent random variables,
the statistical properties cannot be derived in the same way
as those ofα in the bias model.

Assumingβi known for a moment, it follows from the def-
inition of the affine model that

yn
i −βiy

n
1 = αi −βie

n
1 +en

i (21)

which suggests the following estimator

α̂i =
1

N

N∑
n=1

yn
i −βiy

n
1 (22)

which is actually unbiased if assumption 1 holds. If, how-
ever, only an estimate ofβi is available, the complex depen-
dencies between this estimate and the error terms render a
straightforward analysis impossible.

It was noted in Sect.1 that different ways of obtaining
estimates of the calibration constants have been proposed,
e.g. an iterative scheme based on error-in-variables regres-
sion (Scipal et al., 2008) or the linear re-scaling byMiralles
et al.(2010); Hain et al.(2011). Alternatively, the calibration
could also have been determined in a previous study or based
on a completely different method not connected to the collo-
cation technique. The advantage of using the simple estima-
tor for α in the bias model, which essentially just matches the
first moments, lies in the conceptual simplicity and the ease
with which analytical properties of the estimators can be de-
rived. As the latter breaks down in the presence of the scale
factor β, the relative merits and drawbacks of the different
estimators of the calibration constants remain an open topic
of research.

5.4 Basic model with known correlations

In this section the estimators are adapted so that known (or
postulated) correlations between different data sets can be
taken into account. An example was already given in Sect.3,
where one non-vanishing covariance was assumed. Follow-
ing the analysis in this section, it is immediately obvious that
the following estimators are unbiased:

σ̂ii = σij +σik −σjk +
1

N

N∑
n=1

[i,j ;i,k]
n (23)

The computation of the variance can be repeated
along the lines of Eq. (14); however, terms such as∑N

n′=1
∑N

n′′=1〈e
n′

j en′

k en′′

j en′′

k 〉 are encountered. This one

yieldsσ 2
jk if n′

6= n′′ by assumption 4 but additional assump-
tions about the higher order structure are required in order
to evaluate it forn′

= n′′. For simplicity’s sake it will be as-
sumed that the errors at timen are samples from a multivari-
ate normal distribution, for which we have that (Koopmans,
1995)

〈vivjvkvl〉 = σijσkl +σikσj l +σilσjk (24)

wherevi ...vl are elements of a zero mean multivariate nor-
mal distribution andσij denotes the (i,j ) element of its co-
variance matrix.

After collecting the terms, the following expressions for
the variances are obtainedi 6= j 6= k:

Var
(
σ̂ii

)
=

1

N

(
2σ 2

ii −4σiiσij −4σiiσik +σiiσjj

+ 2σiiσjk +σiiσkk +σ 2
ij +6σijσik (25)

− 2σijσjk −2σijσkk +σ 2
ik −2σikσjj

− 2σikσjk +σjjσkk +σ 2
jk

)
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which relies on assumptions 1, 2, 2b, 3, 4 and the normality
requirement for evaluating the 4th order moments. It is also
consistent with Eq. (14) and possesses permutational sym-
metry with respect toj andk.

5.5 Basic model with one covariance estimated

The last constellation of error terms to be analyzed is the ba-
sic model when correlations are estimated. There are two
scenarios of interest: (i) all other covariances besides the one
estimated vanish and (ii) there are additional non-zero co-
variances.

5.5.1 Correct covariance estimated

For the remainder of this part, assumption 3 will be gener-
alized: all error covariances apart fromσij vanish. Among
the possible estimators ofσij , those of the following form are
particularly amenable to analysis (i 6= j 6= k 6= l):

σ̂ij =
1

N

N∑
n=1

[i,k;j,l]n (26)

=
1

N

N∑
n=1

(
en
i en

j −en
i en

l −en
ken

j +en
ken

l

)
where the unbiasedness follows directly from assumption 1,
2, and 3 (modified).

In order to compute the variance of this estimator, we will
proceed as in the previous subsection Sect.5.4: the error is
assumed to follow a multivariate normal distribution and thus
Eq. (24) applies. The usual expansion and collection of terms
yields

Var(σ̂ij ) =
1

N

(
σ 2

ij +σiiσjj +σiiσll +σjjσkk +σkkσll

)
(27)

where also assumption 4 is invoked.

5.5.2 Incorrect covariance estimated

We will now look at the consequences of additional cross-
covariances on the estimator of Eq. (26); i.e. when these cor-
relations are not properly accounted for. The estimator of
Eq. (26) is generally biased in such cases:

〈
σ̂ij

〉
=

1

N

N∑
n=1

〈
en
i en

j −en
i en

l −en
ken

j +en
ken

l

〉
= σij −σil −σkj +σkl (28)

6 Simulation

In this section the previously gained insight is applied and
compared to simulated data; this allows us to study the im-
pact of violated assumptions on the retrieved results. As
the emphasis of this paper rests on the generalization of the

collocation technique toM > 3 and the treatment of cross-
correlations, the estimation of calibration constants is for-
gone and only the basic model of Eq. (1) considered.

At each epochn the noise termsen
i are sampled from a

zero mean Gaussian distribution with specified covariance
matrix6, the numerical values of which will be given in the
relevant subsections. These noise terms at different epochs
are independent.

The time series of the parameterxn is simulated as well
even though the results of the collocation technique are un-
affected due to the inherent differencing, e.g. Eq. (13). It is
generated by independently drawing from a uniform distri-
bution (lower limit: 0, upper limit: 10) at each epochn and
subsequently smoothing this result with a 5 element boxcar
filter.

A particularly important aspect of the simulation study is
the analysis of the results as the number of samplesN grows.
In this case the new samples are not merely appended to the
previous data but the entire sample is re-drawn.

Section6.1demonstrates the dependence of the results and
their accuracy on the number of samplesN available. The
influence of cross-correlations on the collocation method is
studied in Sect.6.2. Section6.3 deals with the possibility
of estimating cross-covariances in quadruple collocation, i.e.
whenM = 4.

6.1 Triple collocation

In this first study we will look at three sensors, the (unitless)
error covariance matrix6a of which is taken to be

6a =

1 0 0
0 2 0
0 0 3


This is thus a standard triple collocation analysis where all
assumptions (1, 2, 2b, 3, and 4) are met. Figure1 shows an
exemplary time series generated by the approach described
in the previous section.

The error variances can be estimated by recourse to
Eq. (13), and more specifically Eqs. (4)–(6). The variance
can be computed using Eq. (14) – the simplification for Gaus-
sian noise applies. The results for two sensors as a function
of the number of samplesN is displayed in Fig.2; the lines
indicate the±2SE range, where the standard error SE is the
square root of the estimator variance, Eq. (14).

The estimator variance given by Eq. (14) drops off asN−1,
which corresponds to a line with slope−1 in a log-log plot;
the different multiplicative factors get mapped to different
intercepts. This is illustrated for the same two sensors in
Fig. 3. The data values are empirically estimated variances:
for eachN 50 time series are generated and the variance of
the estimated̂σii plotted.

These results about the uncertainty in the estimates allow
us to address a question of great importance: the number
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5.5 Basic model with one covariance estimated

The last constellation of error terms to be analyzed is the ba-
sic model when correlations are estimated. There are two
scenarios of interest: i) all other covariances besides the one
estimated vanish and ii) there are additional non-zero covari-
ances.

5.5.1 Correct covariance estimated

For the remainder of this part, assumption 3 will be general-
ized: all error covariances apart from σij vanish. Among the
possible estimators of σij , those of the following form are
particularly amenable to analysis (i 6= j 6= k 6= l):

σ̂ij =
1

N

N∑
n=1

[i,k;j,l]n (26)

=
1

N

N∑
n=1

(
eni e

n
j −eni enl −enkenj +enke

n
l

)
where the unbiasedness follows directly from assumption 1,
2, and 3 (modified).

In order to compute the variance of this estimator, we will
proceed as in the previous subsection Sect. 5.4: the error
is assumed to follow a multivariate normal distribution and
thus Eq. (24) applies. The usual expansion and collection of
terms yields

Var(σ̂ij) =
1

N

(
σ2
ij+σiiσjj+σiiσll+σjjσkk+σkkσll

)
(27)

where also assumption 4 is invoked.

5.5.2 Incorrect covariance estimated

We will now look at the consequences of additional cross-
covariances on the estimator of Eq. (26); i.e. when these
correlations are not properly accounted for. The estimator of
Eq. (26) is generally biased in such cases:

〈σ̂ij〉 =
1

N

N∑
n=1

〈
eni e

n
j −eni enl −enkenj +enke

n
l

〉
= σij−σil−σkj+σkl (28)

6 Simulation

In this section the previously gained insight is applied and
compared to simulated data; this allows us to study the im-
pact of violated assumptions on the retrieved results. As
the emphasis of this paper rests on the generalization of the
collocation technique to M > 3 and the treatment of cross-
correlations, the estimation of calibration constants is for-
gone and only the basic model of Eq. (1) considered.

At each epoch n the noise terms eni are sampled from a
zero mean Gaussian distribution with specified covariance
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Fig. 1. Exemplary time series with N = 60, generated by the ap-
proach described in Sect. 6.

matrix Σ, the numerical values of which will be given in the
relevant subsections. These noise terms at different epochs
are independent.

The time series of the parameter xn is simulated as well
even though the results of the collocation technique are un-
affected due to the inherent differencing, e.g. Eq. (13). It is
generated by independently drawing from a uniform distri-
bution (lower limit: 0, upper limit: 10) at each epoch n and
subsequently smoothing this result with a 5 element boxcar
filter.

A particularly important aspect of the simulation study is
the analysis of the results as the number of samplesN grows.
In this case the new samples are not merely appended to the
previous data but the entire sample is re-drawn.

Section 6.1 demonstrates the dependence of the results and
their accuracy on the number of samples N available. The
influence of cross-correlations on the collocation method is
studied in Sect. 6.2. Section 6.3 deals with the possibility
of estimating cross-covariances in quadruple collocation, i.e.
when M = 4.

6.1 Triple collocation

In this first study we will look at three sensors, the (unitless)
error covariance matrix Σa of which is taken to be

Σa =

1 0 0
0 2 0
0 0 3


This is thus a standard triple collocation analysis where all
assumptions (1, 2, 2b, 3, and 4) are met. Figure 1 shows an
exemplary time series generated by the approach described
in the previous section.

The error variances can be estimated by recourse to Eq.
(13), and more specifically (4-6). The variance can be com-
puted using Eq. (14) – the simplification for Gaussian noise
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proach described in Sect.6.S. Zwieback et al.: Structural and statistical properties of the collocation technique 9

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
st

im
at

ed
va

ri
an

ce
σ̂
ii

Sensor 1
Sensor 3

Fig. 2. Estimated variance σ̂ii as function of the number of samples
N . The solid lines indicate the ±2SE range (around the actual
value), as determined from Eq. (14).
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Fig. 3. Convergence of the variance of the estimated variance as
the number of samples N grows. The markers indicate the sample
variance obtained by running 50 simulations for each N . The solid
lines are the theoretical values given by Eq. (14).

applies. The results for two sensors as a function of the num-
ber of samples N is displayed in Fig. 2; the lines indicate the
±2SE range, where the standard error SE is the square root
of the estimator variance, Eq. (14).

The estimator variance given by Eq. (14) drops off as
N−1, which corresponds to a line with slope −1 in a log-log
plot; the different multiplicative factors get mapped to differ-
ent intercepts. This is illustrated for the same two sensors in
Fig. 3. The data values are empirically estimated variances:
for each N 50 time series are generated and the variance of
the estimated σ̂ii plotted.

These results about the uncertainty in the estimates al-
low us to address a question of great importance: the num-
ber of samples N needed to achieve reliable results. The
validity of the variance formula 8 depends on assumptions
1, 2, 2a, 3, and 4. The autocorrelation assumption is par-

ticularly problematic in time series studies. Nevertheless,
if these assumptions hold and the noise can be modelled
as a normal distribution, the variance was shown to be
1
N

(
2σ2

ii+σiiσkk+σiiσjj+σjjσkk
)
. If all error variances

are similar in size this can be approximated by

Var(σ̂ii)≈
5

N
σ2
ii⇒ s=

√
5

N
σii (29)

whereas otherwise, we can take sensor i to be the one with
the largest error variance and interpret this formula as a con-
servative bound. In Eq. (29) the simplified standard error
s is just the square root of the approximate variance. In
practice one is often not particularly interested in the abso-
lute standard error (s), but in the standard error relative to
the quantity of interest (σii), which has the great advantage
of being a dimensionless quantity. In our case this relative

error r= s
σii

=
√

5
N . The frequently touted advice (Scipal

et al., 2008; Dorigo et al., 2011) of needing at least N = 100
samples corresponds to r= 0.22; if we want a relative un-
certainty of 10%, we need 500 samples, provided all the
previously mentioned assumptions hold. Note that positive
autocorrelation (which is the one most commonly encoun-
tered) generally increases the standard error and thus results
in overly optimistic estimates of the uncertainty, whereas the
simplification required to obtain Eq. (29) leads to conserva-
tive values of r.

6.2 Triple collocation: crosscorrelation

In order to study the influence of a violation of assumption 3,
we now take the covariance matrix to be

Σb =

1 0 0
0 3 1
0 1 3


which corresponds to a correlation ρ23 = 0.33. When Eq.
(4-6) are adopted for estimating the error variances, the ex-
pected value of each of them is 2, i.e. all estimates are wrong.
This behaviour is illustrated using the simulated data in Fig.
4. If, on the other hand, the applicable set of equations Eq.
(23) is adopted, the correct results are obtained, as is made
evident in Fig. 5. Note that the covariance σ23 has to be
known and that the normality assumption is invoked for com-
puting the standard errors.

6.3 Quadruple collocation

The possibility of estimating error covariances will be
demonstrated by applying the collocation technique to a sce-
nario consisting of four data sets with a covariance matrix
Σc

Σc =


2 1 0 0
1 3 0 0
0 0 1

2 0
0 0 0 5

2



Fig. 2. Estimated variancêσii as function of the number of sam-
plesN . The solid lines indicate the±2SE range (around the actual
value), as determined from Eq. (14).

of samplesN needed to achieve reliable results. The va-
lidity of the variance formula 8 depends on assumptions 1,
2, 2a, 3, and 4. The autocorrelation assumption is par-
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as a normal distribution, the variance was shown to be
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whereas otherwise, we can take sensori to be the one with
the largest error variance and interpret this formula as a con-
servative bound. In Eq. (29) the simplified standard error
s is just the square root of the approximate variance. In
practice one is often not particularly interested in the abso-
lute standard error (s), but in the standard error relative to
the quantity of interest (σii), which has the great advantage
of being a dimensionless quantity. In our case this relative
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σii
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applies. The results for two sensors as a function of the num-
ber of samples N is displayed in Fig. 2; the lines indicate the
±2SE range, where the standard error SE is the square root
of the estimator variance, Eq. (14).

The estimator variance given by Eq. (14) drops off as
N−1, which corresponds to a line with slope −1 in a log-log
plot; the different multiplicative factors get mapped to differ-
ent intercepts. This is illustrated for the same two sensors in
Fig. 3. The data values are empirically estimated variances:
for each N 50 time series are generated and the variance of
the estimated σ̂ii plotted.

These results about the uncertainty in the estimates al-
low us to address a question of great importance: the num-
ber of samples N needed to achieve reliable results. The
validity of the variance formula 8 depends on assumptions
1, 2, 2a, 3, and 4. The autocorrelation assumption is par-

ticularly problematic in time series studies. Nevertheless,
if these assumptions hold and the noise can be modelled
as a normal distribution, the variance was shown to be
1
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. If all error variances

are similar in size this can be approximated by
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whereas otherwise, we can take sensor i to be the one with
the largest error variance and interpret this formula as a con-
servative bound. In Eq. (29) the simplified standard error
s is just the square root of the approximate variance. In
practice one is often not particularly interested in the abso-
lute standard error (s), but in the standard error relative to
the quantity of interest (σii), which has the great advantage
of being a dimensionless quantity. In our case this relative

error r= s
σii

=
√

5
N . The frequently touted advice (Scipal

et al., 2008; Dorigo et al., 2011) of needing at least N = 100
samples corresponds to r= 0.22; if we want a relative un-
certainty of 10%, we need 500 samples, provided all the
previously mentioned assumptions hold. Note that positive
autocorrelation (which is the one most commonly encoun-
tered) generally increases the standard error and thus results
in overly optimistic estimates of the uncertainty, whereas the
simplification required to obtain Eq. (29) leads to conserva-
tive values of r.

6.2 Triple collocation: crosscorrelation

In order to study the influence of a violation of assumption 3,
we now take the covariance matrix to be

Σb =

1 0 0
0 3 1
0 1 3


which corresponds to a correlation ρ23 = 0.33. When Eq.
(4-6) are adopted for estimating the error variances, the ex-
pected value of each of them is 2, i.e. all estimates are wrong.
This behaviour is illustrated using the simulated data in Fig.
4. If, on the other hand, the applicable set of equations Eq.
(23) is adopted, the correct results are obtained, as is made
evident in Fig. 5. Note that the covariance σ23 has to be
known and that the normality assumption is invoked for com-
puting the standard errors.

6.3 Quadruple collocation

The possibility of estimating error covariances will be
demonstrated by applying the collocation technique to a sce-
nario consisting of four data sets with a covariance matrix
Σc
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Fig. 3. Convergence of the variance of the estimated variance as
the number of samplesN grows. The markers indicate the sample
variance obtained by running 50 simulations for eachN . The solid
lines are the theoretical values given by Eq. (14).
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previously mentioned assumptions hold. Note that positive
autocorrelation (which is the one most commonly encoun-
tered) generally increases the standard error and thus results
in overly optimistic estimates of the uncertainty, whereas the
simplification required to obtain Eq. (29) leads to conserva-
tive values ofr.

6.2 Triple collocation: crosscorrelation

In order to study the influence of a violation of assumption 3,
we now take the covariance matrix to be

6b =

1 0 0
0 3 1
0 1 3


which corresponds to a correlationρ23 = 0.33. When
Eqs. (4)–(6) are adopted for estimating the error variances,
the expected value of each of them is 2, i.e. all estimates are
wrong. This behaviour is illustrated using the simulated data
in Fig. 4. If, on the other hand, the applicable set of equa-
tions Eq. (23) is adopted, the correct results are obtained, as
is made evident in Fig.5. Note that the covarianceσ23 has to
be known and that the normality assumption is invoked for
computing the standard errors.

6.3 Quadruple collocation

The possibility of estimating error covariances will be
demonstrated by applying the collocation technique to a
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Only one covariance is estimated as this facilitates the
test of the positive-definiteness of the obtained covariance
matrix. Figure 6 illustrates the results of the quadruple
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variance (σ12) and when the estimators are chosen accord-
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Figure 7 shows the results of the application of the follow-
ing estimators to the simulated data:

– aσ̂22 = 1
N

∑N
n=1[2,3;2,4]n

– bσ̂22 = 1
N

∑N
n=1[2,1;2,3]n

– aσ̂23 = 1
N

∑N
n=1[2,4;3,1]n

– bσ̂23 = 1
N

∑N
n=1[2,1;3,4]n

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
st

im
at

ed
va

ri
an

ce
σ̂
ii

Sensor 1 Sensor 2 Covar. 12

Fig. 6. Estimated variances σ̂11, σ̂22 and covariance σ̂12 when σ12

is the only non-zero covariance. The solid lines indicate the ±2SE
range (around the actual value), as determined from Eq. (14) and
(27).
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where the left indices a and b denote two different estima-
tors of the same parameter: the expected values of both es-
timators a and b would clearly be identical, if there were no
non-zero covariance terms that were not taken into account.
From a practical point of view this offers the possibility of
detecting such covariances. However, in light of the results
obtained in Sect. 4.3, the collocation technique can only re-
solve one part of the covariance matrix: the one in the vector
space BM . The detection and estimation of the covariance
structure thus has to rely on additional assumptions (apart
from the validity of the additive error models and assump-
tions 1 and 2) and these will likely be determined by expert
knowledge and experience with the respective data sources.

Fig. 4. Estimated variance of the three sensors computed with
Eqs. (4)–(6) in the presence of correlations. The dashed lines in-
dicate the correct values.

10 S. Zwieback et al.: Structural and statistical properties of the collocation technique

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
E

st
im

at
ed

va
ri

an
ce
σ̂
ii

Sensor 1 Sensor 2 Sensor 3

Fig. 4. Estimated variance of the three sensors computed with Eq.
(4-6) in the presence of correlations. The dashed lines indicate the
correct values.

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
st

im
at

ed
va

ri
an

ce
σ̂
ii

Sensor 1
Sensor 3

Fig. 5. Estimated variance computed with the correct formula Eq.
(23), where the correct covariance σ23 is known. The solid lines
indicate the ±2SE range around the actual value.

Only one covariance is estimated as this facilitates the
test of the positive-definiteness of the obtained covariance
matrix. Figure 6 illustrates the results of the quadruple
collocation technique in the presence of one non-zero co-
variance (σ12) and when the estimators are chosen accord-
ingly: σ̂11 = 1

N

∑N
n=1[1,3;1,4]n, σ̂22 = 1

N

∑N
n=1[2,3;2,4]n,

σ̂12 = 1
N

∑N
n=1[1,3;2,4]n.

Figure 7 shows the results of the application of the follow-
ing estimators to the simulated data:

– aσ̂22 = 1
N

∑N
n=1[2,3;2,4]n

– bσ̂22 = 1
N

∑N
n=1[2,1;2,3]n

– aσ̂23 = 1
N

∑N
n=1[2,4;3,1]n

– bσ̂23 = 1
N

∑N
n=1[2,1;3,4]n

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
st

im
at

ed
va

ri
an

ce
σ̂
ii

Sensor 1 Sensor 2 Covar. 12

Fig. 6. Estimated variances σ̂11, σ̂22 and covariance σ̂12 when σ12

is the only non-zero covariance. The solid lines indicate the ±2SE
range (around the actual value), as determined from Eq. (14) and
(27).

0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

−3

−2

−1

0

1

2

3

4

E
st

im
at

ed
va

ri
an

ce
σ̂
ii

aσ̂22

bσ̂22

aσ̂12

bσ̂12

Fig. 7. Estimated variances σ̂33 and covariance σ̂23 when σ12 is the
only non-zero covariance (Σc). The bias between the two estima-
tors for both the variance and the covariance is due to the covariance
not taken into account. The dashed lines indicate the correct values.

where the left indices a and b denote two different estima-
tors of the same parameter: the expected values of both es-
timators a and b would clearly be identical, if there were no
non-zero covariance terms that were not taken into account.
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obtained in Sect. 4.3, the collocation technique can only re-
solve one part of the covariance matrix: the one in the vector
space BM . The detection and estimation of the covariance
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Fig. 5. Estimated variance computed with the correct formula
Eq. (23), where the correct covarianceσ23 is known. The solid
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scenario consisting of four data sets with a covariance ma-
trix 6c

6c =


2 1 0 0
1 3 0 0
0 0 1
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0 0 0 5
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Only one covariance is estimated as this facilitates the

test of the positive-definiteness of the obtained covariance
matrix. Figure6 illustrates the results of the quadruple
collocation technique in the presence of one non-zero co-
variance (σ12) and when the estimators are chosen accord-
ingly: σ̂11 =

1
N

∑N
n=1[1,3;1,4]

n, σ̂22 =
1
N
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n=1[2,3;2,4]

n,

σ̂12=
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n=1[1,3;2,4]

n.
Figure7 shows the results of the application of the follow-

ing estimators to the simulated data:

– a σ̂22=
1
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∑N
n=1[2,3;2,4]

n

– bσ̂22=
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where the left indices a and b denote two different estima-
tors of the same parameter: the expected values of both es-
timators a and b would clearly be identical, if there were no
non-zero covariance terms that were not taken into account.
From a practical point of view this offers the possibility of
detecting such covariances. However, in light of the results
obtained in Sect. 4.3, the collocation technique can only re-
solve one part of the covariance matrix: the one in the vector
space BM . The detection and estimation of the covariance
structure thus has to rely on additional assumptions (apart
from the validity of the additive error models and assump-
tions 1 and 2) and these will likely be determined by expert
knowledge and experience with the respective data sources.

Fig. 6. Estimated varianceŝσ11, σ̂22 and covariancêσ12 whenσ12
is the only non-zero covariance. The solid lines indicate the±2SE
range (around the actual value), as determined from Eq. (14) and
(27).
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where the left indices a and b denote two different estima-
tors of the same parameter: the expected values of both es-
timators a and b would clearly be identical, if there were no
non-zero covariance terms that were not taken into account.
From a practical point of view this offers the possibility of
detecting such covariances. However, in light of the results
obtained in Sect. 4.3, the collocation technique can only re-
solve one part of the covariance matrix: the one in the vector
space BM . The detection and estimation of the covariance
structure thus has to rely on additional assumptions (apart
from the validity of the additive error models and assump-
tions 1 and 2) and these will likely be determined by expert
knowledge and experience with the respective data sources.

Fig. 7. Estimated varianceŝσ33 and covariancêσ23 whenσ12 is the
only non-zero covariance (6c). The bias between the two estimators
for both the variance and the covariance is due to the covariance not
taken into account. The dashed lines indicate the correct values.
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where the left indicesa andb denote two different estima-
tors of the same parameter: the expected values of both es-
timatorsa andb would clearly be identical, if there were no
non-zero covariance terms that were not taken into account.
From a practical point of view this offers the possibility of
detecting such covariances. However, in light of the results
obtained in Sect.4.3, the collocation technique can only re-
solve one part of the covariance matrix: the one in the vector
spaceBM . The detection and estimation of the covariance
structure thus has to rely on additional assumptions (apart
from the validity of the additive error models and assump-
tions 1 and 2) and these will likely be determined by expert
knowledge and experience with the respective data sources.
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Fig. 8. Estimated variances σ̂33 and covariance σ̂23 when σ12 is the
only non-zero covariance (Σd). The bias between the two estima-
tors for both the variance and the covariance is due to the covariance
not taken into account. The dashed lines indicate the correct values.
Note that this example only differs from the one in Fig. 7 in the
noise: this illustrates the structural deficiencies of the collocation
technique.

As an example consider the same estimators applied to the
covariance matrix Σd:

Σd =


2 1 1

2 0
1 3 1

2 0
1
2

1
2 1 1

2
0 0 1

2
5
2


where the difference to Σc is exactly one of those unresolv-
able elements of the subspace K. The results are plotted in
Fig. 8 and apart from the fluctuation due to the noise there is
no perceptible difference.

7 Conclusions

The collocation technique has become a widely applied tool
for analyzing the error structure of different data sources.
Previous studies have mostly concentrated on the comparison
of three data sets as this is the minimum number necessary to
determine the error variance of each. Despite its popularity
the method, as well as its theoretical properties, has not been
scrutinized in detail – in this paper we demonstrate which
part of the error covariance matrix can be resolved for an ar-
bitrary number of data sources. The second contribution is
formed by a detailed analysis of the statistical properties of
the various estimators, such as the bias and the standard error.

Particular emphasis is placed on the assumptions neces-
sary to obtain those results. These are notoriously hard to
check when working with real data and further investigations
are necessary in order to establish suitable tests and plots;
this pertains to the possible presence of autocorrelation, time
dependence of the error structure and calibration constants,

etc.. The structural deficiencies of the collocation technique
(as derived in Sect. 4) exert an additional confounding influ-
ence as they imply that certain correlation structures are sim-
ply not resolvable by the method. Expert knowledge about
the sensors and models of interest thus remains a necessity
for the correct application of the collocation method.

Several simulation studies reveal the consequences of vi-
olated assumptions and also serve as empirical confirmation
of the results obtained in Sect. 5. The dependence of the
accuracy on the number of samples is analyzed in detail and
with respect to all the different simulation scenarios.
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