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Abstract. Lake Urmia, a salt lake in the north-west of Iran,
plays a valuable role in the environment, wildlife and econ-
omy of Iran and the region, but now faces great challenges
for survival. The Lake is in immediate and great danger
and is rapidly going to become barren desert. As a result,
the increasing demands upon groundwater resources due to
expanding metropolitan and agricultural areas are a seri-
ous challenge in the surrounding regions of Lake Urmia.
The continuous GPS measurements around the lake illus-
trate significant subsidence rate between 2005 and 2009. The
objective of this study was to detect and specify the non-
linear correlation of land subsidence and temperature ac-
tivities in the region from 2005 to 2009. For this purpose,
the cross wavelet transform (XWT) was carried out between
the two types of time series, namely vertical components of
GPS measurements and daily temperature time series. The
significant common patterns are illustrated in the high pe-
riod bands from 180–218 days band (∼ 6–7 months) from
September 2007 to February 2009. Consequently, the satel-
lite altimetry data confirmed that the maximum rate of linear
trend of water variation in the lake from 2005 to 2009, is
associated with time interval from September 2007 to Febru-
ary 2009. This event was detected by XWT as a critical in-
terval to be holding the strong correlation between the land
subsidence phenomena and surface temperature. Eventually
the analysis can be used for modeling and prediction pur-
poses and probably stave off the damage from subsidence
phenomena.

1 Introduction

The subsidence of the Earth’s surface is a phenomenon that
occurs in some places in the world, which overuses under-
ground sources of water. Iran has a semi-arid and arid cli-
mate and the rate of rainfall is lower than the mean rate in
the world. Moreover, it is faced with over-exploitation of
groundwater in agricultural areas and extension of the cities
and industrial areas. Thus, increased requirement for ground-
water, and the high rate of subsidence resulting from over-
utilization of this valuable resource are likely to become a
serious challenge for the future development of the ground-
water basins of the north-west of Iran. Consequently, un-
organized groundwater extraction and the associated subsi-
dence in the future can also endanger non-agricultural areas,
resulting in costly damages to infrastructure due to chang-
ing ground levels. While damage to infrastructure can be re-
paired, the impact of depleted groundwater supplies will be
more harmful, with immense social, economic and environ-
mental consequences. Future climate change is expected to
put additional stress on ground water resources in Iran (Sar-
raf et al., 2005).

Due to recent years of progressive dry climate, the water
level of Lake Urmia, has been dramatically dropped about
6 m during the last 20 yr (Jalili et al., 2011). This lake, as a
closed lake, is located in an area where evaporation is greater
than rainfall. It obtains its water from a region with much
higher downfall than the area around the lake itself, which is
often a depression of some sort. Nevertheless, constructing
dams and devoting water sources to agricultural, industrial
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and domestic uses are the most important factors for water
surface slump of this lake (Hassanzadeh et al., 2012).

These types of lakes are sensitive to temperature changes.
Further, the temperature is a determining factor in closed
lakes, especially depthless lakes, as it controls many phe-
nomena like evaporation, water quality and biological pro-
cess. In this lake, knowing the spatial pattern of the tempera-
ture is as essential as the temporal pattern. However, there is
a close relationship between the rapid increase in Earth’s av-
erage surface temperature and the occurrence of land surface
subsidence, which creates a serious environmental problem
in urban and agricultural areas (De Bremaecker, 1983; Sneed
et al., 2002).

The objective of this study was to detect and specify the
non-linear correlation of land subsidence and temperature
activities around the lake from 2005 to 2009. First, in or-
der to detect localized and quasi-periodic inconstancy of
the vertical components of GPS measurements, they were
transformed into time-frequency spaces using the continuous
wavelet transform (CWT). In addition, the researchers made
use of cross wavelet transform (XWT) and wavelet coher-
ence (WTC) between two types of time series, namely daily
temperature time series and vertical components of the con-
tinuous GPS measurements, to detect and quantify the tem-
poral and spectral interrelationships between them. Typical
results of this analysis could build up a time-frequency map
that can be used to analyze the time-frequency correlations
between two kinds of time series.

Nevertheless, extensive studies in geophysics and geodesy
indicate the abilities of XWT and WTC in demonstration of
relationships between time-frequency space of pairs of non-
stationary time series (e.g.Torrence and Compo, 1998; Jevre-
jeva et al., 2003; Vedanti and Dimri, 2003; Grinsted et al.,
2004; Kirby and Swain, 2004; Liu et al., 2005; Chamoli et al.,
2006; Jevrejeva et al., 2006; Cazelles et al., 2007; Donner
and Thiel, 2007; Liu et al., 2007; Valdés-Galicia and Velasco,
2007; Barbero and Moron, 2011).

2 Land subsidence in surrounding areas of Lake Urmia

Prior to the use of GPS observations, subsidence estimates
were made using the InSAR observations and first order class
levelling networks in the north-west of Lake Urmia. In or-
der to study the temporal behavior of the deformation in
high spatial resolution,Sedighi et al.(2009) used InSAR ob-
servations consisting of four images acquired by ENVISAT
satellite chosen from descending track 92 and ascending
track 228 passes from 22 September 2003 to 24 May 2004
(eight months). They reported that during this period the sub-
sidence rate was about 6 cm yr−1 in the north-west of the
lake (Gharagheshlagh) which was consistent with the results
of the first order class of repeated levelling networks in the
north-west of Lake Urmia.
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Fig. 1. Map showing location of study area and of four continuous
GPS stations around it.
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Fig. 1. Map showing location of study area and of four continuous
GPS stations around it.

However, the GPS measurements have the ability to detect
surface displacements with millimeter accuracy. This tech-
nique has become an important tool over the last decade
for the detection of land subsidence in developed ground-
water basins. National Cartographic Center of Iran (NCC)
has installed more than 100 permanent stations (since 2004)
across Iran to monitor ground surface movement for the geo-
dynamic purposes (Tavakoli, 2007). As illustrated in Fig.1,
there are four permanent GPS stations in the surrounding ar-
eas of Lake Urmia. In order to study impermanent behavior
of the deformation, the observed motion of each site in verti-
cal direction could be written (Nikolaidis, 2002)

y(ti) = a+ bti + csin(2πti)+ d cos(2πti)+ esin(4πti)+

+f cos(4πti)+
ng∑
j=1

gjH(ti − Tgj )+ νi (1)

whereti for i = 1· · ·N are the daily solution epochs in units
of year, andH is the Heaviside step function. The first
two terms are the site positiona and linear rateb, respec-
tively. Coefficientsc andd describe the annual periodic mo-
tion, while e andf describe semi-annual motion. The next
term corrects for any numberng of offsets, with magni-
tude g and epochsTg. The last termνi denotes the mea-
surement errors, assuming thatE(ν)= 0. Using weighted
least squares solution estimation of the unknown parameters
X̂ = [a b c d e f g]T with associated covariance matrix
ĈX could be performed.

Accordingly, to reveal how the different scales of the non-
stationary time series change over the time, the researchers
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applied the wavelet analysis for performing time-scale de-
compositions of the deformation signals.

3 Threat of land subsidence in time-frequency space

3.1 The continuous wavelet transform (CWT)

There are two classes of the wavelet transforms: discrete
wavelet transform (DWT) and the continuous wavelet trans-
form (CWT). The former is a compact representation of the
data and is particularly useful for noise reduction and data
compression, whereas the latter is a suitable mathematical
tool for the analysis of localized intermittent oscillations in
a non-stationary time series as well as for feature extraction
purposes (Ouadfeul et al., 2012). In mathematics, the CWT
of a continuous, square-integrable functionx(t) at a scale
a > 0 and translational valueb ∈ R is expressed by the fol-
lowing integral:

Wx(a,b)=
1

√
|a|

∞∫
−∞

x(t)ψ∗

(
t − b

a

)
dt (2)

whereψ(t) is a continuous function in both the time domain
and the frequency domain called the mother wavelet and∗

represents the operation of complex conjugate. The main pur-
pose of the mother wavelet is to provide a source function to
generate the daughter wavelets which are simply the trans-
lated and scaled versions of the mother wavelet. To recover
the original signalx(t), inverse continuous wavelet transform
can be exploited:

x(t)=

∞∫
0

∞∫
−∞

1

a2
Wx(a,b)

1
√

|a|
ψ̃

(
t − b

a

)
db da (3)

ψ̃(t) is the dual function ofψ(t), and the dual function
should satisfy:

∞∫
0

∞∫
−∞

1

|a3|
ψ

(
t1 − b

a

)
ψ̃

(
t − b

a

)
db da = δ(t − t1) (4)

whereψ̃(t)= C−1
ψ ψ(t), in which:

Cψ =
1

2

+∞∫
−∞

∣∣∣ψ̂(ζ )∣∣∣2
|ζ |

dζ (5)

is called the admissibility constant andψ̂ is the Fourier trans-
form of ψ . For a successful inverse transform, the admissi-
bility constant form has to satisfy the admissibility condition:
0< Cψ <+∞. It is possible to show that the admissibility
condition implies thatψ̂(0)= 0, so that a wavelet must in-
tegrate to zero (Keller, 2004). Based on CWT, the wavelet
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Fig. 2. The scalograms of the GPS time series of Bonab. This illustration shows the high positive values of the wavelet power spectrum at
the time positions of: 72-490 days band in the period from 7 Apr 2006 to 2 Aug 2010, 77-210 days band in the period from 26 May 2007
to 23 Feb 2009 and 560-1024 days band in the period from 11 Jul 2007 to 12 Dec 2009. The black contour line shows the 95% confidence
interval.
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Fig. 3. The scalograms of the GPS time series of Gharagheshlagh. This illustration shows the high positive values of the waveletpower
spectrum at the time positions of: 144-235 days band in the period from 20 Feb 2008 to 13 Sep 2008, 148-1024 days band in the period from
17 Jan 2008 to 9 Apr 2010, 35-88 days band in the period from 1 May 2009 to 20 Jan 2009 and 98-134 days band in the period from 25 Apr
2009 to 15 Jul 2009. The black contour line shows the 95% confidence interval.

Fig. 2. The scalograms of the GPS time series of Bonab. This il-
lustration shows the high positive values of the wavelet power spec-
trum at the time positions of 72–490 days band in the period from
7 April 2006 to 2 August 2010, 77–210 days band in the period
from 26 May 2007 to 23 February 2009 and 560–1024 days band
in the period from 11 July 2007 to 12 December 2009. The black
contour line shows the 95 % confidence interval.

power of a time seriesx(t) at the time scale space is called
the scalogram and is simply defined as the squared modulus
of Wx(a,b).

The choice of a particular wavelet mother function can in-
fluence the time, the scale, and the frequency resolution of
the time series decomposition (Mallat, 1998; Torrence and
Compo, 1998). The Morlet wavelet provides a good balance
between scale (frequencies) and time localizations (Grinsted
et al., 2004; Mi et al., 2005). It is one of the best mother func-
tions in terms of reproducing the frequency decomposition
of the signal (Kirby and Swain, 2004). It has often been suc-
cessfully used in the study of environmental variables (Tor-
rence and Compo, 1998; Torrence and Webster, 1999; Ma-
raun et al., 2007) and ecological variables (Ménard et al.,
2007; Rouyer et al., 2008). Accordingly, Morlet wavelet was
selected to be applied in the present study. Namely, the Mor-
let wavelet is defined as

ψ(t)= π−π/4e−i2ω0te−t
2/2 (6)

This wavelet is the product of a complex sinusoidale−i2ω0t

by a Gaussian envelopee−t
2/2 whereω0 is the central angu-

lar frequency of the wavelet. The termπ−π/4 is a normal-
ization factor to ensure unit variance. Moreover. the relation
between frequencies and wavelet scales is given by 1/f =

(4π/a)/(ω0 +

√
2+ω2

0) (Cazelles et al., 2007). Whenω0 ≈

2π , the wavelet scalea is inversely related to the frequency,
i.e. a = 1/f . This greatly simplifies the interpretation of the
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wavelet analysis and one can replace, on all equations, the
scalea by the period 1/f (Cazelles et al., 2007).

The vertical components of GPS time series are very noisy.
The values of the wavelet transform are generally corrupted
as the wavelet approaches the edges of the time series, creat-
ing a boundary effect. Further, the affected region increases
in extent as the scale (period) parameter increases. This re-
gion is known as the cone of influence (COI) and the spec-
tral information within this cone is likely to be less accurate.
Therefore, the introduction of a COI is suggested in which
the transform suffers from these edge effects. The COI is
defined so that the wavelet power for a discontinuity at the
edges decreases by a factore−2 and ensures that the edge ef-
fects are negligible beyond this point (Torrence and Compo,
1998). We consider only the information above the COI in or-
der to avoid spurious features caused by the wavelet method.

3.2 Cross wavelet transform (XWT) and the wavelet
coherence (WTC)

While CWT is a general tool for analyzing localized inter-
mittent oscillations in a time series, in many applications, it
is desirable to quantify statistical relationships between two
non-stationary signals. In Fourier analysis, the coherence is
used to determine the association between two signals,x(t)

andy(t). The coherence function is a direct measurement of
the correlation between the spectra of two time series (Chat-
field, 1989). To quantify the relationships between two non-
stationary signals, the following quantities can be computed:
the XWT and the WTC.

The CWT of two time seriesx(t) and y(t) at scalea
and positionb areWx(a,b) andWy(a,b), respectively. Their
product, namely XWT, is defined as

Wxy(a,b)=W ∗
x (a,b)Wy(a,b). (7)

For real-valued time series, the XWT provides a mean to
indicate the coincident events over frequency, for each time
in the signalsx(t) andy(t). The WTC is defined as the cross-
spectrum normalized by (Grinsted et al., 2004)

Rx,y(a,b)=
‖S(Wxy(a,b))‖

‖S(Wxx(a,b))‖
1
2 ‖S(Wyy(a,b))‖

1
2

(8)

whereS denotes a smoothing operator in time-scale space.
The smoothing could be obtained by a convolution with a
constant-length window function in time-scale axis:

S(Wuz(a,b))=

a−1/2∫
a+1/2

b−δ/2∫
b+δ/2

Wu(τ,s)W
∗
z (τ,s)Uδ,1(τ,s)dτds (9)

denotes a smoothing operation with the weight function
Uδ,1(τ,s) that satisfies

∫ ∫
Uδ,1(τ,s)dτds = 1 (Chatfield,

1989). The values ofRx,y(a,b) are thus bounded by 0≤
Rx,y(a,b)≤ 1. The WTC is equal to 1 when there is a perfect
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Fig. 2. The scalograms of the GPS time series of Bonab. This illustration shows the high positive values of the wavelet power spectrum at
the time positions of: 72-490 days band in the period from 7 Apr 2006 to 2 Aug 2010, 77-210 days band in the period from 26 May 2007
to 23 Feb 2009 and 560-1024 days band in the period from 11 Jul 2007 to 12 Dec 2009. The black contour line shows the 95% confidence
interval.
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Fig. 3. The scalograms of the GPS time series of Gharagheshlagh. This illustration shows the high positive values of the waveletpower
spectrum at the time positions of: 144-235 days band in the period from 20 Feb 2008 to 13 Sep 2008, 148-1024 days band in the period from
17 Jan 2008 to 9 Apr 2010, 35-88 days band in the period from 1 May 2009 to 20 Jan 2009 and 98-134 days band in the period from 25 Apr
2009 to 15 Jul 2009. The black contour line shows the 95% confidence interval.

Fig. 3. The scalograms of the GPS time series of Gharagheshlagh.
This illustration shows the high positive values of the wavelet power
spectrum at the time positions of 144–235 days band in the period
from 20 February 2008 to 13 September 2008, 148–1024 days band
in the period from 17 January 2008 to 9 April 2010, 35–88 days
band in the period from 1 May 2009 to 20 January 2009 and 98–
134 days band in the period from 25 April 2009 to 15 July 2009.
The black contour line shows the 95 % confidence interval.

correlation (at particular subset of time-scale space) between
the two signals, and equal to 0 if they are independent. The
advantage of these wavelet-based quantities is that they may
vary in time and can detect transient associations between
studied time series.

As with the Morlet wavelet, theWx(a,b) is a complex
number, one can writeWx(a,b) in terms of its phaseψx(a,b)
and modulus‖Wxy(a,b)‖. The local phase of the Morlet
wavelet transform is proportional to the ratio between the
imaginary part (Im) and the real part (Re) of the wavelet
transform:

ψx(a,b)= arctan
Im(Wx(a,b))

Re(Wx(a,b))
; 0 ≤ ψx(a,b)≤ π (10)

Then, the phase difference of two signalsx(t) and y(t)
could be computed by

ψx,y(a,b)= arctan
Im(Wx,y(a,b))

Re(Wx,y(a,b))
. (11)

A unimodal distribution of the phase difference (for the
chosen range of scales or periods) indicates that there is a
preferred value ofψx,y(a,b) and thus a statistical tendency
for the two time series to be phase locked. Conversely, the
lack of association between the phase ofx(t) and y(t) is
characterized by a broad and uniform distribution (Cazelles
et al., 2007).

Nonlin. Processes Geophys., 19, 675–683, 2012 www.nonlin-processes-geophys.net/19/675/2012/



K. Moghtased-Azar et al.: Land subsidence in Lake Urmia 679K. Moghtased-Azar et al.: Land subsidence in Lake Urmia 9

31 Dec 2005 31 Oct 2006 31 Aug 2007 30 Jun 2008 30 Apr 2009 28 Feb 2010 29 Dec 2010

6.5

6.55

6.6

6.65

6.7

Urmia: slope = −70.73 ± 0.77 mm / yr 

U
P

 C
om

p.
 (

m
et

er
) 

P
er

io
d 

[d
ay

s]

Urmia

31 Dec 200517 Sep 200604 Jun 200719 Feb 200805 Nov 200823 Jul 200909 Apr 201025 Dec 2010

   8

  32

 128

 512

1024 1/128

1/16 

 1   

16   

128  

Fig. 4. The scalograms of the GPS time series of Urmia. This illustration shows the high positive values of the wavelet power spectrum at
the time positions of: 183-1024 days band in the period from 15 Oct 2007 to 30 Apr 2010. The black contour line shows the 95% confidence
interval.
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Fig. 5. The scalograms of the GPS time series of Tasuj. This illustration shows the high positive values of the wavelet power spectrum at the
time positions of: 85-645 days band in the period from 23 Oct 2006 to 18 Dec 2007, 134-610 days band in the period from 14 Jan 2008 to
19 Feb 2009, 228-445 days band in the period from 30 Oct 2009 to18 Aug 2010, 167- 260 days band from 22 Apr 2010 to 23 Aug 2010 and
1040-2048 days band in the period from 15 Sep 2007 to 1 Jan 2010. The black contour line shows the 95% confidence interval.

Fig. 4. The scalograms of the GPS time series of Urmia. This il-
lustration shows the high positive values of the wavelet power spec-
trum at the time positions of 183–1024 days band in the period from
15 October 2007 to 30 April 2010. The black contour line shows the
95 % confidence interval.

4 Numerical analysis

Each vertical position time series was cleaned by exclud-
ing data based on the robust interquartile range (IQR) statis-
tic, defined as the difference between its 75th and 25th per-
centiles (Nikolaidis et al., 2001). All known offsets from the
GPS time series (according to the headers of time series files
given by NCC) are removed by the Heaviside step function
(see the top sides of Figs.2–5).

The most significant subsidence rate was observed
up to −120.06± 1.97 mm yr−1 in the north-west of the
lake (Gharagheshlagh). Moreover, the subsidence value in
the western part of the region (Urmia) was−70.73±

0.77 mm yr−1, in the south-east of the region (Bonab) was
−11.17± 1.34 mm yr−1 and in the north-east of the region
(Tasuj) was−4.65± 0.72 mm yr−1.

Frequently, the continuous GPS measurements contain
gaps and irregular sampling intervals originating from fail-
ures in the measuring equipment or the upgrade of a re-
ceiver. However, since analyzing the non-stationary data us-
ing time-frequency analysis requires equally spaced values,
the gaps in the used data sets are filled using an appreciate in-
terpolation algorithm such as multi-layer feed-forward back-
propagation neural network method before the data analysis.

This method can adequately represent any arbitrary non-
linear function when a properly trained neural network is
used (Moghtased-Azar and Zaletnyik, 2008). In addition,
useful relationships among different inputs and outputs can
be clarified by using this method which is commonly used for
training the neural networks in many applications. The per-
formance of this algorithm is reported to be satisfactory in
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Fig. 5.The scalograms of the GPS time series of Tasuj. This illustra-
tion shows the high positive values of the wavelet power spectrum
at the time positions of 85–645 days band in the period from 23 Oc-
tober 2006 to 18 December 2007, 134–610 days band in the period
from 14 January 2008 to 19 February 2009, 228–445 days band in
the period from 30 October 2009 to 18 August 2010, 167–260 days
band from 22 April 2010 to 23 August 2010 and 1040–2048 days
band in the period from 15 September 2007 to 1 January 2010. The
black contour line shows the 95 % confidence interval.

the interpolation and prediction of the values in time series
(Jwo and Chin, 2002; Schuh et al., 2002; Erol, 2011).

So, the prepared time series of vertical components of four
GPS stations in the study area were analyzed using CWT
techniques. The CWT power spectra of the time series of the
vertical components (associated with four GPS stations in the
study area) are displayed at the bottom of Figs.2–5. Color
scales indicate whether the periodicities have strong (red) or
weak (blue) power and the black line contours show 95 %
level of confidences for the existence of periodicities for cer-
tain scale-periods and time. This illustrations show the high
positive values of the wavelet power spectrums at the time
positions of

i. Bonab: 72–490 days band in the period from
7 April 2006 to 2 August 2010, 77–210 days band in
the period from 26 May 2007 to 23 February 2009 and
560–1024 days band in the period from 11 July 2007 to
12 December 2009.

ii. Gharagheshlagh: 144–235 days band in the period
from 20 February 2008 to 13 September 2008, 148–
1024 days band in the period from 17 January 2008
to 9 April 2010, 35–88 days band in the period from
1 May 2009 to 20 January 2009 and 98–134 days band
in the period from 25 April 2009 to 15 July 2009.

iii. Urmia: 183–1024 days band in the period from 15 Oc-
tober 2007 to 30 April 2010.
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iv. Tasuj: 85–645 days band in the period from 23 Octo-
ber 2006 to 18 December 2007, 134–610 days band
in the period from 14 January 2008 to 19 Febru-
ary 2009, 228–445 days band in the period from 30 Oc-
tober 2009 to 18 August 2010, 167–260 days band from
22 April 2010 to 23 August 2010 and 1040–2048 days
band in the period from 15 September 2007 to 1 Jan-
uary 2010.

Moreover, Fig.6 illustrates time series of daily tempera-
ture values of four GPS stations in the study area (in which
thermometers are located near the GPS receivers). This illus-
tration shows that all stations have common high positive val-
ues of the wavelet power spectrums at the 285–437 days band
in the period from 26 January 2007 to 22 November 2008.

A comparison among Figs.2, 3, 4, 5 and6 reveals similar
patterns in the high period bands. However, in order to search
for statistically relevant correlation between the periodicities
found in GPS data and daily temperature data, XWT analysis
was carried out of pairs of GPS data and daily temperature
time series.

Typical result of this analysis is shown in Fig.7 for the
GPS time series and temperature time series. In all panels,
the curved line in the bottom indicates the cone of influence
under which the signals must be discarded. The color level
bar indicates the intensity of each signal. The contour black
line determines a 95 % level of confidence for the existence
of a periodicity for certain scale/period and time. The arrows
in each plot indicate the phase difference between the com-
ponents of the two time series. The right arrow indicates an
in-phase relation while the left arrow means anti-phase.

The results illustrate significant common powers in:

i. Bonab: 230–256 days band from 8 February 2007 to
9 March 2008 and 157–218 days band from 18 Au-
gust 2007 to 1 March 2009.

ii. Gharagheshlagh: 90–235 days band from 15 Octo-
ber 2007 to 19 June 2009.

iii. Urmia: 180–256 days band from 16 September 2007 to
4 February 2009.

iv. Tasuj: 62–67 days band from 7 January 2007 to
10 April 2007, 109–134 days band from 27 Octo-
ber 2006 to 17 March 2007 and 118–248 days band
from 14 May 2007 to 19 March 2009.

Clearly, significant common patterns in the XWT of four
pairs of time series are illustrated in the high period bands
from 180–218 days band from September 2007 to Febru-
ary 2009.

Additionally, the WTC of the GPS time series and temper-
ature time series is shown in Fig.8. Compared with the XWT,
large sections stand out as significant areas. The WTC finds
regions in time frequency space where the two time series
co-vary (but does not necessarily have high power).
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Fig. 6.The scalograms of the temperature time series. This illustra-
tion shows that all stations have common high positive values of the
wavelet power spectrums at the 285–437 days band in the period
from 26 January 2007 to 22 November 2008. The curve delimits
the cone of influence (COI), which indicates that the region was not
influenced by edge effects. The black contour line shows the 95 %
confidence interval.
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Fig. 7. The XWT between the GPS time series (associated with vertical components) and temperature time series. The results illustrate
significant common powers in (a) Bonab: 230-256 days band from 8 Feb 2007 to 9 Mar 2008 and 157-218 days band from 18 Aug 2007 to
1 Mar 2009, (b) Gharagheshlagh: 90-235 days band from 15 Oct 2007 to 19 Jun 2009, (c) Urmia: 180-256 days band from 16 Sep 2007 to 4
Feb 2009, (d) Tasuj: 62-67 days band from 7 Jan 2007 to 10 Apr 2007, 109-134 days band from 27 Oct 2006 to 17 Mar 2007 and 118-248
days band from 14 May 2007 to 19 Mar 2009. The black contour line shows the 95% confidence interval.

Fig. 7. The XWT between the GPS time series (associated with
vertical components) and temperature time series. The results illus-
trate significant common powers in(a) Bonab: 230–256 days band
from 8 February 2007 to 9 March 2008 and 157–218 days band
from 18 August 2007 to 1 March 2009,(b) Gharagheshlagh: 90–
235 days band from 15 October 2007 to 19 June 2009,(c) Urmia:
180–256 days band from 16 September 2007 to 4 February 2009,
(d) Tasuj: 62–67 days band from 7 January 2007 to 10 April 2007,
109–134 days band from 27 October 2006 to 17 March 2007 and
118–248 days band from 14 May 2007 to 19 March 2009. The black
contour line shows the 95 % confidence interval.

Consequently, water level variations of Lake Urmia (in-
fluenced by drought conditions in the region) in terms of
simultaneous time intervals of GPS and daily temperature
measurements was illustrated by the satellite altimetry data.
Namely, the preferred time interval for the altimetry data was
considered from October 2005 to September 2010. Figure9
shows relative Lake Urmia height variations computed by
Jason-1 and Jason-2/OSTM altimetry while Jason-1 data was
from February 2002 to January 2009 and Jason-2/OSTM data
was from July 2008 to August 2011 (Crétaux et al., 2011).
All classical corrections (orbit, ionospheric and tropospheric
corrections, polar and solid Earth tides) were applied.

Further, a specified time interval, namely from Octo-
ber 2005 to September 2010, was separated into three subin-
tervals and afterwards we have calculated the linear trends of
water level variations over the individual intervals. Namely,

12 K. Moghtased-Azar et al.: Land subsidence in Lake Urmia

Fig. 8. The WTC between the GPS time series (associated with vertical components) and temperature time series. The WTC finds regions
in time frequency space where the two time series co-vary (but do not necessarily have high power). The black contour lineshows the 95%
confidence interval.

Fig. 8.The WTC between the GPS time series (associated with ver-
tical components) and temperature time series. The WTC finds re-
gions in time frequency space where the two time series co-vary
(but do not necessarily have high power). The black contour line
shows the 95 % confidence interval.

before the September 2007 with a rate−23.08 cm yr−1, from
September 2007 to February 2009 with a rate−70.5 cm yr−1

and after February 2009 with a rate 21.38 cm yr−1. Through
the comparison of Figs.7 and 9, the maximum rate of lin-
ear trends (−70.5 cm yr−1) was associated with time interval
from September 2007 to February 2009, in which this event
was detected by XWT as a critical interval to be holding the
strong correlation between the land subsidence phenomena
and surface temperature.

5 Conclusions

The objective of this study was to detect and specify the non-
linear correlation of land subsidence and temperature activi-
ties in the region from 2005 to 2009 around Lake Urmia. The
time-frequency maps of GPS and temperature time series
demonstrated similarity between the portrayed patterns in the
high period bands. In addition, in order to search for statis-
tically relevant correlation between the periodicities found
in GPS data and daily temperature data, XWT analysis was
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Fig. 9.Relative Lake Urmia height variations computed by Jason-1
and Jason-2/OSTM altimetry in which Jason-1 data is from Febru-
ary 2002 to January 2009 and Jason-2/OSTM data is from July 2008
to August 2011 (available on the web site HYDROWEB:http:
//www.LEGOS.obs-mip.fr/soa/hydrologie/HYDROWEB). The lin-
ear trends of water level variations over the individual intervals
are calculated: before Sep 2007 with a rate−23.08 cm yr−1, from
September 2007 to February 2009 with a rate−70.5 cm yr−1 and
after February 2009 with a rate 21.38 cm yr−1.

performed between the two types of time series (GPS data
and daily temperature data). The significant common pat-
terns in the XWT of four pairs of time series are illustrated
in the high period bands from 180–218 days band (∼ 6–
7 months) from September 2007 to February 2009. Conse-
quently, the satellite altimetry data confirmed that the maxi-
mum rate of linear trends of water variation in the lake from
2005 to 2009 was associated with time interval from Septem-
ber 2007 to February 2009 (−70.5 cm yr−1). This event was
detected by XWT as a critical interval to be holding the
strong correlation between the land subsidence phenomena
and surface temperature.
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