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Abstract. The multifractal properties of the daily solar X-
ray brightness,Xl andXs , during the period from 1 January
1986 to 31 December 2007 which includes two solar cycles
are examined using the universal multifractal approach and
multifractal detrended fluctuation analysis. Then we convert
these time series into networks using the horizontal visibility
graph technique. Multifractal analysis of the resulting net-
works is performed using an algorithm proposed by us. The
results from the multifractal analysis show that multifractal-
ity exists in both raw daily time series of X-ray brightness
and their horizontal visibility graphs. It is also found that the
empirical K(q) curves of raw time series can be fitted by
the universal multifractal model. The numerical results on
the raw data show that the Solar Cycle 23 is weaker than the
Solar Cycle 22 in multifractality. The values ofh(2) from
multifractal detrended fluctuation analysis for these time se-
ries indicate that they are stationary and persistent, and the
correlations in the time series of Solar Cycle 23 are stronger
than those for Solar Cycle 22. Furthermore, the multifractal
scaling for the networks of the time series can reflect some
properties which cannot be picked up by using the same anal-
ysis on the original time series. This suggests a potentially
useful method to explore geophysical data.

1 Introduction

An important aim of solar-terrestrial physics is to understand
the causes of geomagnetic activity in general and geomag-
netic storms in particular. Since solar flares (using X-ray
measurements from GOES) are coincident with many coro-
nal mass ejections (CMEs) (see, for example, Zhang et al.,

2007), they are useful for prediction of geomagnetic storms
(Park et al., 2002; Yermolaev et al., 2005) due to the shorter
propagation times of solar photons. Commonly the studies
on solar flares (e.g., Howard and Tappin, 2005) have focused
on a relatively small number of events,∼ 10 per year, with
large magnitudes.

Fractal methods can be used to characterise the scaling
properties in each time series. Multifractals are a broad gen-
eralisation of the (geometrical) fractals. They are not only
more general but also fundamental (Schertzer and Love-
joy, 2011). Multifractal analysis was initially proposed to
treat turbulence data and is a useful way to characterise
the spatial heterogeneity of both theoretical and experimen-
tal fractal patterns (Grassberger and Procaccia, 1983; Halsy
et al., 1986). It has been applied successfully in many dif-
ferent fields including financial modelling (e.g., Anh et al.,
2000; Canessa, 2000), biological systems (e.g., Yu et al.,
2001, 2003, 2004, 2006; Anh et al., 2001, 2002; Zhou et
al., 2005), geophysical systems (e.g., Schertzer and Love-
joy, 1987; Schmitt et al., 1992; Tessier et al., 1993, 1996;
Olsson, 1995; Olsson and Niemczynowicz, 1996; Harris et
al., 1996; Lovejoy et al., 1996; Deidda, 2000; Lilley et al.,
2006; Kantelhardt et al., 2006; Veneziano et al., 2006; Venu-
gopal et al., 2006; Lovejoy and Schertzer, 2006, 2010a, b;
Garcia-Marin et al., 2008; Serinaldi, 2010) and high energy
physics (e.g., Ratti et al., 1994). Fractal and multifractal ap-
proaches have been quite successful in extracting salient fea-
tures of physical processes responsible for the near-Earth
magnetospheric phenomena (Lui, 2002). As solar observa-
tional techniques improve, fine small-scale structures ob-
served on the solar surface become more pronounced. Abra-
menko (2005) proposed a scaling of structure functions to
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analyse multifractality and found that flare-quiet regions tend
to possess a lower degree of multifractality than flaring active
regions do. A method to describe the multiple scaling of the
measure representation of theDst time series was provided in
Wanliss et al. (2005). A prediction method based on the re-
current iterated function system in fractal theory was detailed
in Anh et al. (2005) together with some evaluation of its per-
formance. A two-dimensional chaos game representation of
theDst index for prediction of geomagnetic storm events was
proposed in Yu et al. (2007). Yu et al. (2009) used both mul-
tifractal detrended fluctuation analysis (MF-DFA) proposed
by Kantelhardt et al. (2002) and traditional multifractal anal-
ysis to study the scaling properties ofDst, ap and the solar
X-ray measurements. Our group used multifractal analysis
and fractional stochastic differential equations to study the
AE data and geomagnetic field data (Anh et al., 2007, 2008;
Yu et al., 2010).

Complex networks have been studied extensively due to
their relevance to many real-world systems such as the world-
wide web, the internet, energy landscapes, and biological and
social systems (Song et al., 2005). After analyzing a vari-
ety of real complex networks, Song et al. (2005) found that
they consist of self-repeating patterns on all length scales,
i.e., they have self-similar structures. In order to unfold the
self-similar property of complex networks, Song et al. (2005)
calculated their fractal dimension, a known useful charac-
teristic of complex fractal sets (Mandelbrot, 1983; Falconer,
1997), and found that the box-counting method is a proper
tool for further investigations of network properties. Because
a concept of metric on graphs is not as straightforward as
the Euclidean metric on Euclidean spaces, the computation
of the fractal dimension of networks via a box-counting ap-
proach is much more complicated than the traditional box-
counting algorithm for fractal sets in Euclidean spaces. Song
et al. (2007) developed a more involved algorithm to cal-
culate the fractal dimension of complex networks. Lee and
Jung (2006) found that the behaviour of complex networks
is best described by a multifractal approach. Our group pro-
posed a new box-covering algorithm to compute the gener-
alised fractal dimensions of a network (Wang et al., 2012).

Recent works have used network techniques to investi-
gate time series (Donner et al., 2011; and the references
therein). Inspired by the concept of visibility (de Berg et
al., 2008), Lacasa et al. (2008) suggested a simple computa-
tional method to convert a time series into a graph, known as
a visibility graph (VG). The constructed graph inherits sev-
eral properties of the series in its structure. Thereby, peri-
odic time series convert into regular graphs, and random se-
ries into random graphs. Moreover, fractal time series convert
into scale-free networks, enhancing the fact that a power-law
degree distribution of its graph is related to the fractality of
the time series. These findings suggest that a visibility graph
may capture the dynamical fingerprints of the process that
generates the time series. Elsner et al. (2009) used the visi-
bility network to study hurricanes in the United States. Then

Luque et al. (2009) proposed the horizontal visibility graphs
(HVG) which are geometrically simpler and form an ana-
lytically solvable version of VG. Xie and Zhou (2011) stud-
ied the relationship between the Hurst exponent of fractional
Brownian motion and the topological properties (clustering
coefficient and fractal dimension) of its converted HVG.

In this paper, we examine the multifractal properties of
the daily solar X-ray brightness,Xl (i.e., 1–8 Å X-rays
(Watts m−2)) andXs (i.e., 0.5–4Å X-rays (Watts m−2)) , dur-
ing the period from 1 January 1986 to 31 December 2007, in-
cluding two solar cycles (cycle 1 and cycle 2 corresponding
to Solar Cycles 22 and 23 respectively), using the universal
multifractal approach (Schertzer and Lovejoy 1987) and MF-
DFA (Kantelhardt et al. 2002). Then we convert these time
series into networks using the HVG technique proposed by
Luque et al., (2009). In our recent paper (Wang et al. 2012),
we proposed a new algorithm to perform multifractal analy-
sis on different types of networks. We will apply this algo-
rithm on the resulting HVGs ofXl andXs time series. The
results from these multifractal analyses confirm the existence
of multifractality in the time series ofXl,Xs and their HVGs.

2 Methods

2.1 Universal multifractal approach

When a cascade proceeds over a scale ratioλ = L/l (i.e., the
ratio of the largest scale of interest to the smallest scale,L

being a fixed external scale,l varying from 1 toL), we de-
note byελ the density of the conserved energy flux. Then its
statistical moments will have the following scaling behaviour
asλ → ∞ (or l → 0) (Schertzer and Lovejoy, 1987):

Mq =
〈
(ελ)

q
〉

≈ λK(q), q ≥ 0 (1)

where 〈〉 indicates ensemble averaging. If the curveK(q)

versusq is a straight line, the data set is monofractal. How-
ever, if this curve is convex, the data set is multifractal (e.g.,
Garcia-Marin, 2008). The scaling of the moments can be as-
sessed by computingMq at different scales, and plottingMq

against the scale ratioλ in a log-log plane, where the power-
law relation in Eq. (1) becomes linear (Serinaldi, 2010).
Hence the empiricalK(q) functions can be estimated from
the slopes ofMq against the scale ratioλ in a log-log plane.

The universal multifractal model proposed by Schertzer
and Lovejoy (1987) assumes that the generator of multi-
fractals was a random variable with an exponentiated ex-
tremal Ĺevy distribution. Thus, the theoretical scaling expo-
nent functionK(q) for the momentsq ≥ 0 of a cascade pro-
cess is obtained according to (Schertzer and Lovejoy, 1987;
Ratti et al., 1994; Garcia-Marin et al., 2008; Serinaldi, 2010)

K(q) = qH +

{
C1(q

α
− q)/(α − 1), α 6= 1,

c1q log(q), α = 1
(2)
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in which the most significant parameterα ∈ [0,2] is the Ĺevy
index, which indicates the degree of multifractality (i.e., the
deviation from mono-fractality). The valuesα = 0 andα = 2
correspond to the beta model (monofractal) and log-normal
model (multifractal), respectively.C1 ∈ [0,d], with d being
the dimension of the support (d=1 in our case), describes
the sparseness or inhomogeneity of the mean of the process
(Garcia-Marin et al., 2008). The parameterH is called the
non-conservation parameter sinceH 6= 0 implies that the en-
semble average statistics depend on the scale, whileH = 0
is a quantitative statement of ensemble average conservation
across the scales (e.g., Ratti et al., 1994; Serinaldi, 2010).

The parametersC1 and α can be estimated by applying
the double trace moment (DTM) technique (Schmitt et al.,
1992; Lavallee et al., 1993). From the estimated values ofα

andC1, and taking the value of exponentβ that characterises
the energy spectrum of the conserved processE(ω) ≈ ω−β ,
with ω being the frequency, the parameterH is given by (e.g.,
Lavallee et al., 1993; Serinaldi, 2010):

H =
β − 1+ K(2)

2
=

β − 1

2
+

C1(2α
− 2)

2(α − 1)
, (α 6= 1). (3)

Although the above method has been widely used to esti-
mate the parametersH , C1 andα in geophysical research, it
is complicated and the goodness of fit of the empiricalK(q)

functions depends on the fit forβ, and sometimes the fitting
of K(q) is not satisfactory (e.g., Olsson and Niemczynow-
icz, 1996; Garcia-Marin et al., 2008; Serinaldi, 2010). In this
paper we adopt a method which is similar to that proposed
in Anh et al. (2001): If we denoteKT (q) theK(q) function
defined by Eq. (2), andKd(q) the empiricalK(q) function.
We estimate the parameters by solving the least-squares op-
timisation problem

min
H,C1,α

J∑
j=1

[KT (qj ) − Kd(qj )]
2. (4)

2.2 Multifractal detrended fluctuation analysis

The traditional multifractal analysis has been developed for
the multifractal characterisation of normalised, stationary
time series. This standard formalism does not give cor-
rect results for non-stationary time series which are affected
by trends. Multifractal detrended fluctuation analysis (MF-
DFA), which is a generalisation of the standard detrended
fluctuation analysis (DFA), is based on the identification of
the scaling of theqth-order moments of the time series,
which may be non-stationary (Kantelhardt et al., 2002). DFA
has been used to study the classification problem of protein
secondary structures (Yu et al., 2006). Movahed et al. (2006)
used the MF-DFA to study sunspot fluctuations.

We now summarise the MF-DFA technique. Consider a
time series{X1,X2, ...,XN } of length N . For an integer
s ≥ 0, we divide the time series into[N/s] segments of equal

lengths, where[N/s] is the integer part ofN/s. In each seg-
mentj , we compute the partial sumsY (i) =

∑i
k=1Xk, i =

1,2, ..., s, fit a local trendyj (i) to Y (i) by least squares, then
compute the sample variances of the residuals:

F 2(s,j) =
1

s

s∑
i=1

(Y ((j−1)s+i)−yj (i))
2, j = 1, ..., [N/s].

(5)

Note that linear, quadratic, cubic or higher order polynomials
yj (i) can be used in the local trend fitting, and the DFA is
accordingly called DFA1, DFA2, DFA3,... In the following
we use only DFA1.

The qth-order fluctuation function is then defined as the
average over all segments:

Fq(s) =

(
1

[N/s]

[N/s]∑
j=1

(
F 2(s,j)

)q/2
)1/q

. (6)

Since the segments are all of the same length, the second-
order fluctuation functionF2 (s) is equivalent to the sample
variance of the entire series. This is not so for the general
caseq 6= 2. We will assume thatFq(s) is characterised by a
power law:

Fq(s) ∝ sh(q). (7)

The scaling functionh(q) is then determined by the regres-
sion of logFq(s) on logs in some range of time scales.

For fractional Brownian motion, Movahed et al. (2006)
showed that the Hurst indexH1 = h(2) − 1. Using this re-
lationship (orH1 = h(2) for the stationarity case) and the
estimate ofh(2) from the regression of logF2(s) on log
s, an estimate of the Hurst indexH1, and hence the extent
of long memory in the time series, is obtained. For Brown-
ian motion (with uncorrelated increments), the scaling expo-
nentH1 is equal to 1/2. The range 1/2 < H1 < 1.0 indicates
the presence of long memory (persistence), while the range
0 < H1 < 1/2 indicates short memory (anti-persistence).

2.3 Visibility graph and horizontal visibility graph of
a time series

A graph (or network) is a collection of nodes, which denote
the elements of a system, and links or edges, which identify
the relations or interactions among these elements.

Inspired by the concept of visibility (de Berg et al.,
2008), Lacasa et al. (2008) suggested a simple computa-
tional method to convert a time series into a graph, known
as visibility graph (VG). A visibility graph is obtained
from the mapping of a time series into a network accord-
ing to the following visibility criterion: Given a time se-
ries {x1,x2, ...,xN }, two arbitrary data pointsxta andxtb in
the time series have visibility, and consequently become two
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connected nodes in the associated graph, if any other data
pointxtc such thatta < tc < tb fulfils

xtc < xta + (xtb − xta )
tc − ta

tb − ta
;

thus a connected, unweighted network could be constructed
based on a time series and is called its visibility graph. It
has been shown (Lacasa et al., 2008) that time series struc-
tures are inherited in the associated graph, such that periodic,
random, and fractal series map into motif-like random expo-
nential and scale-free networks, respectively.

Then Luque et al. (2009) proposed horizontal visibil-
ity graphs (HVG) which are geometrically simpler and
analytically solvable version of VG. Given a time series
{x1,x2, ...,xN }, two arbitrary data pointsxta andxtb in the
time series have horizontal visibility, and consequently be-
come two connected nodes in the associated graph, if any
other data pointxtc such thatta < tc < tb fulfils

xtc < min{xta ,xtb };

thus a connected, unweighted network could be constructed
based on a time series and is called its horizontal visibility
graph. As a matter of factor, for a given time series, its hor-
izontal visibility graph is always a subgraph of its visibility
graph (Luque et al., 2009). Xie and Zhou (2011) studied the
relationship between the Hurst exponent of fractional Brow-
nian motion and the topological properties (clustering coeffi-
cient and fractal dimension) of its converted HVG.

2.4 Multifractal analysis of complex networks

The most common algorithms of traditional multifractal
analysis are the fixed-size box-counting algorithms (Halsy et
al., 1986). For a given measureµ with supportE in a metric
space, we consider the partition sum

Zε(q) =

∑
µ(B)6=0

[µ(B)]q , (8)

q ∈ R, where the sum is evaluated over all different
nonempty boxesB of a given sizeε in a grid covering of
the supportE. The exponentτ(q) is defined by

τ(q) = lim
ε→0

lnZε(q)

lnε
(9)

and the generalised fractal dimensions of the measure are de-
fined as

D(q) = τ(q)/(q − 1), for q 6= 1, (10)

and

D(q) = lim
ε→0

Z1,ε

lnε
, for q = 1, (11)

whereZ1,ε =
∑

µ(B)6=0µ(B) lnµ(B). The generalised frac-
tal dimensions are numerically estimated through a linear

regression of(lnZε(q))/(q − 1) against lnε for q 6= 1, and
similarly through a linear regression ofZ1,ε against lnε for
q = 1. TheD(q) corresponding to positive values ofq give
relevance to the regions where the measure value is large.
TheD(q) corresponding to negative values ofq deal with the
structure and the properties of the regions where the measure
value is small.

Our group proposed a new box-covering algorithm to com-
pute the generalised fractal dimensions of a network (Wang
et al., 2012). For a network, we denote the matrix of short-
est path lengths byB = (bij )N×N , wherebij is the length
of the shortest path between nodesi and j . Then we use
B = (bij )N×N as input data for multifractal analysis based
on our modified fixed-size box counting algorithm as fol-
lows:

i. Initially, all the nodes in the network are marked as un-
covered and no node has been chosen as a seed or centre
of a box.

ii Sett = 1,2, ...,T appropriately. Group the nodes intoT

different ordered random sequences. More specifically,
in each sequence, nodes which will be chosen as seed or
centre of a box are randomly arrayed.
Remark: T is the number of random sequences and is
also the value over which we take the average of the
partition sumZr(q). In this study, we setT = 1000 for
all the networks in order to compare them.

iii. Set the size of the box in the ranger ∈ [1,d], whered

is the diameter of the network.
Remark: When r = 1, the nodes covered within the
same box must be connected to each other directly.
When r = d, the entire network could be covered in
only one box no matter which node was chosen as the
centre of the box.

iv. For each centre of a box, search all the neighbours
within distancer and cover all nodes which are found
but have not been covered yet.

v. If no newly covered nodes have been found, then this
box is discarded.

vi. For the nonempty boxesB, we define their measure as
µ(B) = NB/N, whereNB is the number of nodes cov-
ered by the boxB, andN is the number of nodes of the
entire network.

vii. Repeat (iv) until all nodes are assigned to their respec-
tive boxes.

viii. When the process of box counting is finished, we calcu-
late the partition sum asZr(q) = 6µ(B)6=0[µ(B)]q for
each value ofr.
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ix. Repeat (iii) and (iv) for all the random sequences,
and take the average of the partition sumsZr(q) =

(
∑t

Zr(q))/T , and then useZr(q) for linear regres-
sion.

Linear regression is an essential step to get the appropri-
ate range ofr ∈ [rmin, rmax] and to get the generalised fractal
dimensionsDq . In our approach, we run the linear regres-
sion of[lnZr(q)]/(q−1) against ln(r/d) for q 6= 1, and sim-
ilarly the linear regression ofZ1,r against ln(r/d) for q = 1,
whereZ1,r = 6µ(B)6=0µ(B) lnµ(B) andd is the diameter of
the network.

3 Results and discussion

This section examines the multifractal properties of the daily
solar X-ray brightness,Xl andXs , during the period from
1 January 1986 to 31 December 2007 (including two solar
cycles) and their horizontal visibility graphs.

The solar X-ray data are from the GOES space envi-
ronment monitors on GOES 6, 7, 8, 9, 10, 11, and 12.
Ion chamber detectors are used to provide whole-sun X-
ray fluxes for the 0.5-to-3 (0.5-to-4 prior to GOES-8)
and 1-to-8 wavelength bands. These bands are referred
to as theXs and Xl , respectively. Hourly measurements
were downloaded from the National Geophysical Data Cen-
ter (NGDC, http://spidr.ngdc.noaa.gov/spidr/index.jsp) and
combined, using the more recent measurements to fill, when-
ever possible, any gaps in the earlier ones. No attempt was
made to compensate for differences in calibration between
the measurements or to average them. By using measure-
ments from all the satellites, gaps in the observations are re-
duced significantly. During the period covered by GOES 8
(1 March 1995 to 30 June 2003) the gaps in the measure-
ments were reduced significantly, from 1496 to 77 h for the
longer wavelength,Xl , observations. Most of the remaining
gaps span multiple hours, even a full 24 h. Since there are
usually three satellites providing observations, the remaining
gaps are probably the result of geomagnetic storm effects at
Earth. Although the solar measurements may be missing dur-
ing a storm, any flare(s) associated with a storm is typically
observed, since it occurred hours earlier. The daily time se-
ries of solar X-ray brightness,Xl andXs , are shown in Fig. 1.

We divide the raw dailyXl andXs data into two time se-
ries, one for each solar cycle in the data. First we perform the
universal multifractal analysis on the four time series. For
calculating the empiricalK(q) for the time series, we use the
MATLAB program “TraceMoment.m” provided by S. Love-
joy at the web sitehttp://www.physics.mcgill.ca/∼eliasl/. An
example for obtaining the multifractal functionK(q) is
shown in Fig. 2. From the plots ofMq against the scale ratio
λ in a log-log plane, we find the best linear fit range is from
λ = 7.14 (around 1 week) toλ = 365.27 (around 1 yr). The
empiricalK(q) curves of these time series are given in Fig. 3
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Fig. 1. The daily solar X-ray brightness,Xl andXs , during the pe-
riod from 1 January 1986 to 31 December 2007 which includes two
solar cycles.
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Fig. 2.An example for obtaining the empiricalK(q) function. From
the plots, we find the best linear fit range is fromλ = 7.14 (around
1 week) toλ = 365.27 (around 1 yr).

(the dotted lines). In order to use the universal multifractal
model (i.e., Eq. 2) to fit the empiricalK(q) curves, we use
the function fminsearch in MATLAB to solve the optimisa-
tion problem (Eq. 4) and obtain the estimates ofH , C1 and
α (we set 0.5, 0.5, 0.5 as the initial values of these three pa-
rameters, respectively). The estimated values of these three
parameters are given in Table 1. We also plot the theoretical
K(q) curves in Fig. 3 (the continuous lines). From Fig. 3, it
can be seen that the universal multifractal model fits the em-
pirical K(q) curves very well. From Table 1, we find that all
the values ofα are larger than 1.0 and smaller than 2.0, indi-
cating that the raw dailyXl andXs are multifractal. We also
find that the values ofα for Xl are larger than those forXs ,
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Fig. 3.TheK(q) curves of the raw dailyXl andXs data (the dotted
curves), and their fitted curves (continuous lines) by the universal
multifractal model.

Table 1.The estimated values ofH , C1 andα in the universal mul-
tifractal model andh(2) in the MF-DFA for the daily solar X-ray
data. Here error means the minimal value in Eq. (4).

data H C1 α error h(2)

Xl cycle 1 −0.0233 0.0192 1.7111 4.1074× 104 0.6834
Xl cycle 2 −0.0395 0.0350 1.5419 0.0011 0.8857
Xs cycle 1 −0.0640 0.0733 1.0918 0.0030 0.6937
Xs cycle 2 −0.1134 0.1350 1.0701 0.0293 0.8070

and the values ofα for data in cycle 1 are larger than those
for cycle 2. This fact indicates that the multifractality ofXl

is stronger than that ofXs , and the multifractality of cycle 1
is stronger than that of cycle 2. The values ofH for Xl are
close to zero, indicating that they correspond to a conserva-
tive field.

We also perform MF-DFA on the four time series. An ex-
ample for obtaining the exponenth(2) in MF-DFA is shown
in Fig. 4. The numerical results on theh(q) curves are shown
in Fig. 5. The values ofh(2) for these time series are also
given in Table 1: they are all larger than 0.5 and smaller than
1.0, indicating that these time series are stationary and per-
sistent. Theh(2) values for cycle 2 are larger than those for
cycle 1, indicating that the correlations in the time series of
cycle 2 are stronger than those of cycle 1. The nonlinearity of
theh(q) curves in Fig. 5 also confirms that the raw dailyXl

andXs are multifractal. Theh(q) curves of data in cycle 2
are flatter than those in cycle 1, indicating that the multifrac-
tality reflected by theh(q) curve of the time series in cycle 2
is weaker than that in cycle 1.

De Toma et al. (2004) noted that Solar Cycle 23 (cycle
2 here) is weaker than Solar Cycle 22 (cycle 1 here) in most
solar activity indices, including magnetic flux; they proposed
that it was a distinct, magnetically simpler variant from pre-

0.8 1 1.2 1.4 1.6 1.8 2
−7

−6.5

−6

−5.5

−5

−4.5

log
10

 s

lo
g 10

 F
(s

)

 

 

The slope is 0.6937 ± 0.0117

The slope is 0.6834 ± 0.0201

For X
s
 cycle 1

linear fit for X
s

For X
l
 cycle 1

linear fit for X
l

Fig. 4. Examples for obtaining the exponenth(2) in MF-DFA. The
linear fit range iss = 5 to 98.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

q

h(
q)

 

 

For X
s
 cycle 1

For X
l
 cycle 1

For X
s
 cycle 2

For X
l
 cycle 2

Fig. 5.Theh(q) curves of the raw dailyXl andXs data.

vious cycles. Recently Kossobokov et al. (2012) found that
the length (13.2 yr based on flares) and maximum number
of days between solar flares (466 days) in Solar Cycle 23
are longer and larger than those (9.25 yr based on flares, 157
days) in Solar Cycle 22, respectively. They also found Cy-
cle 23 has the longer quiet period. These differences can be
reflected in theXl andXs time series and will affect our esti-
matedK(q) andh(q) curves. Our results show that the Solar
Cycle 23 is weaker than Solar Cycle 22 in multifractality re-
flected by theK(q) andh(q) curves based on raw data.

To gain more insight into this aspect, we next convert
daily X-ray data (four time series) into their visibility graphs
and horizontal visibility graphs. Because there are too many
edges in the visibility graphs, their diameters are relatively
small (less than 8). Hence it is not meaningful to study the
fractal property of these visibility graphs. The diameters of
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the horizontal visibility graphs (HGV) are much larger and it
is meaningful to study their fractal and multifractal proper-
ties. Hence we performed multifractal analysis on the HGVs
using our algorithm. The estimatedDq curves of the HGVs
of the four time series are shown in Fig. 6. TheseDq curves
again confirm the multifractality of the HGVs. Furthermore,
from theDq curves, we can see the multifractality, which is
characterised by

1D(q) = max
q>2

D(q) − min
q>2

D(q),

of Xs is stronger than that ofXl . This assertion is different
from the multifractality reflected by theα value in the uni-
versal multifractal model and theh(q) curve for the raw data
(the time series point of view). Hence network analysis of the
time series reflects some properties which are not shared by
the same analysis on the original time series. This suggests a
potentially useful method to explore geophysical data.

Remark

As claimed in our previous work (Wang et al., 2012), we
considered the generalised fractal dimensionsDq to deter-
mine whether the object is multifractal from the shape ofDq .
In our results, an anomalous behaviour is observed: theDq

curves increase at the beginning. This anomalous behaviour
has also been observed in Opheusden et al. (1996), Smith and
Lange (1998), and Fernández et al. (1999). Some reasons for
this behaviour have been suggested, including that the boxes
contain few elements (Fernández et al., 1999), or the small
scaling regime covers less than a decade so that we cannot
extrapolate the box counting results for the partition function
to zero box size (Opheusden et al., 1996). Hence the results
from D(q) for largerq, which give relevance to the regions

where the measure value is large (hubs in the network), are
more convincing in our case.

4 Conclusions

Multifractal analysis is a useful way to characterise the spa-
tial heterogeneity of both theoretical and experimental fractal
patterns. The numerical results from the universal multifrac-
tal approach and MF-DFA on the raw dailyXl andXs data
show that these time series are multifractal. The MF-DFA
method shows that the multifractality of the time series in
cycle 2 is weaker than that in cycle 1. It is found that the
empiricalK(q) curves of raw time series can be fitted very
well by the universal multifractal model. The estimated val-
ues ofα in this model suggest that the multifractality of the
Xl time series is more severe than that of theXs time se-
ries. The estimated values ofH in the universal multifractal
model show thatXl corresponds to a conservative field. The
values ofh(2) from MF-DFA for these time series indicate
that they are stationary and persistent, and the correlations in
the data of cycle 2 are stronger than those of cycle 1.

The estimatedDq curves of the horizontal visibility graphs
of the four time series confirm their multifractality. The mul-
tifractality of Xs is stronger than that ofXl , which is differ-
ent from the multifractality reflected by theα value in the
universal multifractal model and theh(q) curve for raw data
(the time series point of view). Hence network analysis of the
time series reflects some properties which are not shared by
the same analysis on the original time series. This suggests a
potentially useful method to explore geophysical data.
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