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Abstract. This paper presents a new model proposed on thel Introduction

basis of multiplicative cascade process (MCP) theory for in-

tegrating spatial information to be used for mineral resources>ingular physical, chemical and biological processes can re-
prediction and environmental impact assessment. Probabilsult in anomalous energy release, mass accumulation or mat-
ity of a spatial point event is defined as the probability thatter concentration that, generally, are all confined to narrow
a small map calculating unit (map unit) randomly selectedintervals in space or time (Cheng, 2007a). Singularity is a
from a study area contains one or more points. The probapProperty of non-linear natural processes, examples of which
bility that such unit randomly selected from a subarea withinclude cloud formation (Schertzer and Lovejoy, 1987), rain-
known spatial binary map patterns (evidential layers) con-fall (Veneziano, 2002), hurricanes (Sornette, 2004), flooding
tains one or more points is defined as the posterior point everfMalamud et al., 1996; Cheng 2008), landslides (Malamud
probability. In this paper, processes of integrating multiple et al., 2004), forest fires (Malamud et al., 1996) and earth-
binary map patterns that divide the study area into smalleiuakes (Turcotte, 1997; Cheng et al., 1994a). The end prod-
areas with updated posterior probabilities are viewed as mulLcts of these non-linear processes can all be modeled as frac-
tiplicative cascade processes resulting in a new log-lineatals or multifractals.

model for calculating conditional probabilities from the mul-  Hydrothermal processes are special types of singular pro-
tiple evidential input layers. The coefficients (weights) in- cess occurring in the Earth’s crust; they can produce ore de-
volved in this model measuring degree of spatial correlationPosits characterized by high concentrations of metals and
between point event and the evidential layers are found t®ggregate spatial distributions with fractal or multifractal
be associated with singularity indices involved in multifrac- properties (Mandelbrot, 1989; Carlson, 1991; Cheng et al.,
tal modeling. It is demonstrated that the model is simple1994b; Blenkinsop, 1994; Agterberg, 1995; Cheng and
and easy to be implemented in comparison with the existAgterberg 1996; Cheng, 2003; Raines, 2008; Hronsky,
ing weights of evidence model which is commonly applied 2009). Hydrothermal mineral deposits also often exhibit
in spatial decision modeling. In addition, the posterior prob-non-linear features with respect to ore element and associ-
ability as the end product of a multiplicative cascade procesgted toxic element concentration values in rock and related
can be used to describe multifractality and singularity whichsurface media such as water, soil, stream sediment, till, hu-
are useful properties for characterizing spatial distribution ofmus and vegetation (Cheng et al., 1994a; Turcotte, 2002; Xie
predicted point events. A case study of tin mineral poten-and Bao, 2004; Agterberg, 2007a; Xie et al., 2007; Cheng
tial mapping in the Gejiu mineral district in China is used to and Agterberg 2009; Ford and Blenkinsop, 2009; Hronsky,
illustrate principles and use of the modeling process. Four2009). These properties can be used for delineating target
binary layers: formation of limestone, buffer distance for in- areas for finding undiscovered mineral deposits in support
tersections of three groups of faults, local and regional geoof mineral exploration and mineral resources planning. For
chemical anomalies of elements As, Sn, Cu, Pb, Zn and Cdexample, element concentration anomalies in various media

were combined for mapping potential areas for occurrence ofre commonly identified by geochemical exploration tech-
tin mineral deposits. nigues for recognition of target areas for predicting mineral

deposits. Based on mineral deposit genetic models, specific
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58 Q. Cheng: Multiplicative cascade processes and information integration

geological features that control formation of mineral deposits(Schertzer and Lovejoy, 1987) that include both ghmodel

can also be used to reduce the sizes of areas favorable for p@Frisch et al., 1978) and the log-normal model (Yaglom,
tential occurrences of undiscovered mineral deposits. For ex1966), the bound of singularity might be infinite (Lovejoy
ample, hydrothermal mineral deposits may occur around in-and Schertzer, 2007). For some models the value of singu-
trusive rocks; thus certain buffer distance around intrusiondarity can be negative and fractal dimension can be also neg-
can be delineated as favorable area for occurrence of minative. According to the distribution of the value ef the

eral deposits. Combining buffer zone around intrusions withentire mapped area can be classified into subsets or fractals,
other types of geological, geophysical and geochemical faceach of which possesses different singularity valuend,

tors such as fault structures that control distribution of min-accordingly, different fractal dimensiong(x;) < 2). Thisis

eral deposits can further reduce the target areas for minerahe reason that the field pf is described by the term “multi-
exploration. This paper aims to demonstrate that the conceptactality”. The fractal dimension functiofi(«) and the sin-

of multiplicative cascade processes (MCP) and singularitiegyularity « can be estimated by various multifractal methods
as the end products of MCP can be applied to model thesuch as the method based on partition function (Halsey et al.,
processes of combining multiple geo-variables (evidence) tdl986) and gliding box multifractal method (Cheng, 1999),
map potential areas for discovering new mineral deposits. Aust to name a few. For convenience of discussion, in this pa-
new model is developed to associate the posterior probabilper, we will use several terminologies pertaining to the multi-
ity of a unit area containing mineral deposits and conditionsfractal model on the basis of partition function (Halsey et al.,
observed in the unit area as multiple attributes. Using this1986), the entire study area can be partitioned into smaller
model, posterior probabilities can be calculated from the in-subareas of equal sizex ¢ and the measure of each such
put conditions and their associations with mineral depositssmall area can be defined ags). Three functions: mass
These posterior probabilities can be considered as resultingxponent functionz (¢), coarse llder exponenty(g), and
from multiplicative cascade processes that may depict mulfractal spectrum functionf («), can be introduced. They are
tifractality and singularities which can be characterized byassociated according to the following relations (Halsey et al.,

fractal and multifractal models. 1986)
Yl () oce™@
2 Multifractal model and singularity distribution alqg)=1'(q) 3)

_ o fl@)=aq—1(q)
In order to show the potential association between multi- _ o )
plicative cascade processes and information integration proWhereg is the order of moment and the summation in the first
cesses we first briefly introduce the concepts of multiplica-€duation is applied for all subareas of equal sizes with
tive process, simple multifractal model and associated singuPOSitive measurg.. From this formulation we can extract
larities. There are several formulisms for representing mul-the following properties. Wheg =0 and«(0), f(«(0)) =
tifractals; for example, deterministic and stochastic models.~7(0), reaching the maximum value ¢f(o) which corre-
More information about various multifractal models can be SPONds to the box-counting fractal dimension.  If the mea-
found in Schertzer et al. (1997). Complete review of variousSUre covers the entire 2-D set, then the box-counting di-
multifractal models is out of the scope of this paper. Here weMension equals 2, otherwise it is less than 2; when
will only present some assumptions and relevant mathemat: @nd a(1), f(a(1)) = «(1) —7(1). If the first moment
ical notation for deterministic multifractals. Similar discus- 2_#(€) =constant, them (1) =0 and f («(1)) = «(1). If we
sions can be partially applied to stochastic multifractal mod-8ssume the numbe¥, (¢) of areas with size x ¢ covering

measuring size; satisfies mensionf («) of this subset are related by

(e) oce® (1)  Ne(e)oxe /@ (4)

wherex stands for “proportional to” and is the singular-  The total measure of the subset can be expressed as
ity index, also known as the coarsélder exponenty is

a function of scale which possesses isotropic scale invari- No (€)1t (€) &
ance property so that the following ratio of logarithmic trans-
formations ofy ande gives scale independent index when
approaches zero

—flo)+a (5)

Since the total measure of the subset is less than the total
measure of the entire set, the following relation must hold

true:
loglu (e)] @)
o X W o> f(a) (6)
The values ofv usually vary in a finite intervaldmin, ¢max] If relation (6) is not true, then the total measure on the sub-

for deterministic multifractals, but for other models, for ex- set (5) would become infinity when— 0. The frequency
ample, whole family of the Universal Multifractal models distribution of measure characterized by singuladgitiyy the
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Q. Cheng: Multiplicative cascade processes and information integration 59

mapped area can be described by the fractal dimension specandom variable. The frequency distribution of the measure
trum function f(«); this function reaching its maximum converges to a multifractal (Mandelbrot, 1989).
value f («(0)) or the box-counting dimension of the support  Let k/n =&, where¢ is a value with < £ < 1; then the
of u ate(0). This implies that the majority of the area has value of u (&) = [d% (1—d)1~¢]". The number of cells with
measure characterized by~ «(0), whereas areas with val- _. _ n (kK i
uesa > a(0) or o < (0) are more irregular and with fractal sizeey = (1/2)" and u(§) becomesN (z,) = nj) There
dimensionsf (o) < f(«(0)). Since the relation (6) holds true fore, the multifractal patterns generated by this cascade pro-
for all @ and f (), the singular areas with enrichment of the cess have many local maxima and minima, with singularity
measure due te < 2 must have dimensiorf (o) <2 and  expressed as follows (Feder, 1988; Halsey et al., 1986)
those areas with measure depletion d_ue te 2 must have £In(d)+(1—£)In(1—d)
dimensionf («) < 2; the equal sign applies only@&(0) (>2). oa=— in2 (7a)
_EINE+(1-8)In(1-¢)
In2

The fractal dimension spectrufi{e) characterizes the distri-

N bution of measure with singularity. The maximum and the
The theory and concepts of multiplicative cascade processe

| fund tal role i laining th . thinimum values of from Eq. (7a) areumin = —log,(1—d)
play a fundamental role in explaining the generic Con,se'andamax= —log,[d], assumingl > 1/2, therefore, the gen-
quence of scale invariant dynamics including turbulent in-

. d ral value of singularity becomes the combination of the max
termittency and other non-linear processes (Schertzer an§

. ) nd min values of, @ = Eamax+ (1—&)amin. It can be seen
Lovletjoy 198f5, 2007d Schedrtzler et ﬁl" 13?73' There aTe se(;/{ at the range of singularity is related to the choice af,
eral types of cascade models such as the log-normal mode{ =" 7" © )00 0 T Ad the valued ap-

(Yaglgml, h&)GG)a-modeld(SSchert_zer and l‘g;?o)t/’ 1'98t4) and proaches 1/2, the value range of singularity is reduced. If
p-model (Meneveau and Sreenivasan, ), o justname g _ 1/2, then Aamax= 0. According to the fractal dimen-

few. A review of these models can be found in Schertzer etSiorl function. the sets with the maximum and the minimum
al. (1997). The model of de Wijs is a simple binomial mul- singularity veilues have dimension&a(0)) = f(a (1)) = 0

tiplicative cascade model for generating log-normal distribu-and the areas with .
. 8 . (1/2) = —1/2log,[d(1— d)] have di-
tion (de Wijs 1951). It became a multifractal model known ensionf(a(1/2)) = 1. It should be kept in mind that the

as p-model (Meneveau and Sreenivas_an, 1987)2 This mpdg lations (7a) and (7b) hold fgr-model, and for other types
has been used to demonstrate generation of multifractal 1‘|eld8f models the singularity range can be unbounded

and their basic properties of singularities (Agterberg 2001,
2007a; Cheng, 2005; Ford and Blenkinsop, 2009). Other

modifications to the model, for example, a cascade model Information integration processes for mapping

with functional redistribution rate (Agterberg, 2007b) and mineral potential

a cascade model with variable partition processes (Cheng,

2005), are also available. A one-dimensional de Wijs' cas-ldentifying target areas favorable for undiscovered mineral
cade model is to be used in this paper for convenience irfleposits is essential not only for estimating the total min-
introducing the association between MCP and informationeral resource potential in the study area but also for explo-
integration processes. The de Wijs' cascade model involvesation for new mineral deposits. Various techniques and
the partitioning of each unit segment into two sub-segmentgnodels have been developed for facilitating the process of
of equal size. The amount of measuge (n the unit seg-  predictive mapping for undiscovered mineral deposits (e.qg.,
ment then can be written asx u for one half and (1¢) x u Bonham-Carter, 1994). These methods including weights of
for the other half (O< d < 1) so that total mass is preserved, evidence model, logistic regression, fuzzy logic, and fuzzy
diu+ (1—d)u = pu. The coefficient of dispersioni, is in- weights of evidence are commonly used to create predictive
dependent of segment size. At the beginning of the pro4maps by combining multiple geoscience layers of informa-
cess,u for the first segment can be set equal to unity. If tion (i.e., evidence) associated with the occurrence of mineral
d > 1/2, the maximum quantity of measure in small seg- deposits (e.g., Bonham-Carter, 1994; Cheng and Agterberg,
ment unit aftem subdivisions isu = d”, and the minimum  1999). The layers of spatial evidence are often derived from
value isp = (1—d)"; if d <1/2, the maximum and mini- multiple data sources, at multiple scales and in various for-
mum values are switched. The general value of the measur@ats. Integrating these types of geoinformation can reduce
in small segments after subdivisions can be represented the spatial extent of target areas and update information about
aspu =d*(1—d)" %, where O< k <n. The number of seg- the sought-after mineral deposits. The weights of evidence
method is a spatial decision support model integrating map
layers of information for prediction of spatial events (often
and smaller values are assigned to segments using a discrebet not limited to point events) (Bonham-Carter et al., 1988).

fla)=

S . 7b
3 Multiplicative cascade processes and multifractal (75)

distributions

ments with this value |<fl> In a random cascade, larger
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Fig. 1. Schematic diagram showing location of mineral deposits
(D) shown as stars are highly associated with igneous bathgjith
Relatively fewer mineral deposits are located outside of batholit
labeled a<;.

Fig. 2. Schematic diagram showing location of mineral deposits
h(D) shown as stars are highly associated with alteration zone la-
beled ast». Relatively fewer mineral deposits are located outside
of alternation zone labeled &% .

Successive overlay of evidential layers progressively parti-
tions the study area into smaller sub-areas with updated pos-
terior probability of containing points per unit area. In this *
paper it will be shown that the process of integrating layers of
information has similarities with the multiplicative cascade
process introduced previously. For convenience without loss
of generality, we will use binary evidential layers as an ex-
ample to illustrate this relationship. We need to define some
notations as follows.

Let T represent a study area (a 2-D seff; E;}(i =
1,2,...,n) represent series of maps of mutually exclusive bi-
nary patterns,E; and E;, E;NE; =¢, and E;UE; =T,
where ‘N” and “U” stand for intersection and union, respec-
tively. From now on an intersection of sets appears like a
product of them. Superimposing these binary patterns di-
vides the study ared into smaller sub-areas. For example, Fig. 3. Schematic diagram showing mineral deposif§ ghown
four possible intersectiondZ; E;, E;E;, E;E;, E;E; canbe  as stars and two binary maps partitioning the study area into four
formed when two mapf’cEi,Ei} and{Ej,Ej} are combined. Subareas labeled @& E5, E1E, E1Ep andEq Ep, respectively.

To illustrate the definitions and binary patterns and their as-
sociations with mineral deposit®], several schematic dia- . . . .
grams are provided in Figs. 1 to 3 to present two binary maps, In_ order t(_) agsoma_lte point ev_ents (.g., mineral d.EpOS'tS n
igneous batholith and alteration zone, considered as controf r_n_|r_1eral d'St”Ct)_V_V'th these b'F‘.‘”‘Fy maps, we define prob-
ling factors for the occurrence of hydrothermal mineral de- abilities and (_:qnd|t|qnal probabilities as fOHOVYS' Assume a
positsD. Each of the two binary maps divides the study areaSmaII map unitis defmed (for example plxgl of image) so that
into two sub-classes: favorable are&3 &nd unfavorable ar- each pomt.oiD occupies only one map un!t, then the number
eas ) for formation of mineral depositsZ UE =T and of map units occupied by mineral deposits and by map pat-
EE = ®. In this artificial example, 10 discovered mineral ternsE; andE; can be used to estimate the probabilities and
deposits are labeled as dots on the map and 60 % of the onditional probabilities. For example_, the prior probap|llty,
are located on the igneous batholith;§ and 40 % off the LD], .Of a randomly selected map unit containing a '.“'”era'
igneous batholith £1), 70% of points on alteration zone deposit can be estimated by the number of map units occu-

(E2) and 30 % off alteration zonefb). The binary patterns pied by mineral deposits,(D), divided by the total number

are defined according to certain geological features, some o?f map units occupied by, n(T) as

them with natural boundaries such as contacts between rock n(D)

formations, while other patterns could be defined as man? [P1= n(T) ®)
made features with thresholds such as geological anomalies

with concentration values above a certain cutoff value.

Nonlin. Processes Geophys., 19, 568; 2012 www.nonlin-processes-geophys.net/19/57/2012/



Q. Cheng: Multiplicative cascade processes and information integration 61

We denote prior probability of mineral deposits RED]. From the conditional independency condition (11c) we
Similarly, we can define the probabilities of evelfis E; can derive the following relation between conditional proba-
and their intersections. The conditional probability Bf  bility and the probabilities of patterns
given condition of patterng; and E; can be accordingly
defined and denoted @&{ D|E;] and P[D|E;], respectively.
These conditional probabilities can be estimated as the rati¢* (£
of the number of map units occupied both by mineral de- 2INP[D|E*E3..E*] =
posits and by patterfi; or E; over the total number of map PID] v . . .
units occupied byg; or E;, respectively piEcEr. ] (@ (E1)NPLET ] +a (E3)In PLE*2]+ (12)
et a(E})INP[EX}

2InP[E%E}...EX|D] =
HINPIEX]+a(ESINPIES]+ ...+ a(EN)INPIE}]

PIDIE;] = "6

PID|E;] = "0r

9) where each coefficient can be expressed as

) a(Ef) =a(E) ora(E;)
wheren(DE) andn(DE) represent the number of map units

occupied both by mineral deposits and by pattérnor N _ oInP[E;|D]

E;, respectively. IfP[D] is considered as the initial mea-

sure of mineral deposits in the entire area, each addition of . InPE;| D]
an evidential layer of binary patterr£{ and E;) will pro- a(E; ZZW

duce one sub-area (favorable area) with a conditional (pos-_, . . . "

terior) probability that is increased (enhance8)D|E;] > T_h.|s form (12) s a Iog—hntiar* mogd associating the con-
P[D], and another sub-area (unfavorable areas) with a congltlonal probabilitiesP[D| E1 E3...E, ] and each probabil-

o . i ; ity of pattern P[E}]. Therefore, the form (12) with coef-
?Elng!](Eo;'t[%llor) probability that is decreased (depleted)’ficients (13) provides a new model for calculating posterior

Similarly, we can define probabilities and conditional probability. This model will be compared with weights of

probabilities forD and any possible multiple intersections evidence model in Sect. 5.
of patterns, for example,

5 Information integration processes and multifractal
P[D|ETES...E} 10 L
[DIE1E3---Ey] (10) distribution
whereETE5...E;(Ef = E; or E;) is an intersection of pat-
terns. In the following sections we will discuss properties o

the process of integrating map pattgrns. . . In order to show the similarity between the information inte-
In order to ensure the process of integration of binary pat-

termns can reduce the areas with uniaue intersection of atgration model discussed in Sect. 3 and generalized binomial
q Palzascade processes, the simple one-dimensional de Wijs's

terns_, we make th(_e_f_urther assu_mptlon: all probabilities an(fnultiplicative cascade processes introduced in Sect. 2 will
conditional probabilities are positive and all patterns are con-

o i i be compared with each other. The de Wijs's cascade pro-
ditionally independent from each other with respecDto cesses involve binary partitioning of each unit segment into

5.1 Conditional independent cascade processes

P[D]>0, P[E;]>0, P[E;]>0 (11a) two equal segments in each generation. For random parti-
tioning, knowledge of the details of the partition is not re-
P[E;|D]> 0, P[E;|D]>0 (11b) quired, so we can use probability notation to represent the

processes. Comparing the notations used for information in-
P[EJE;..E;|D]= P[E{|D]P[E;|D]...P[E;|D] (11c) tegration with those introduced in de Wijs’ model, we can
] ] o ] ) define a measure as the proportion of map units containing
The main goal of information integration processes is t0 ;) 55 well as measures for the proportions of map unit®on

combine multiple binary map patterns to divide the entire 3 the various patter using joint probabilities. Suppose
area into smaller areas on the basis of unique intersectiong,itial measure in the entire area is defined as

of pattern®[E] E5...E;] and to calculate the correspond-
ing posterior probabilitie®®[D|ETES...E;]. The posterior — n(D)
probability map shows areas with high or low probabilities n(T)
of having mineral deposits and this type of information is
useful for mineral exploration. In the following sections we
will investigate information integration model from the point
of view of cascade processes. w[Ei1=P[DE;]

nlE1= P[DE;]

= P[D] (14)

and measures on each pair of subareas for pattgrandE;
after a partition as

(15)

www.nonlin-processes-geophys.net/19/57/2012/ Nonlin. Processes Geophys., 18852012



62 Q. Cheng: Multiplicative cascade processes and information integration

Similarly, we consider the ratio of the linear size of &t 1. ifand only ifa > 2, thenP[D|E] E5...E;;] decreases;
and the size of the entire area as the measuring scale
. 2. ifand only ifa < 2, thenP[D|ETE3...E] increases;
n(T) 3. if and only if « =2, then P[D|EJE5...E;] is un-

The dispersion coefficierd; and 1—d; as proportions of changed.

measures redistributed iy and E; involved in the partition

can be expressed as These three properties imply that the posterior probability in-

creases when singularity index< 2, decreases when> 2
= % = P[E;|D] and remains unchanged wheg= 2.

. g 17)
1—d; =48] = P[E;| D]

According to the definitions of the probabilities of the events ] -~
PE}E}...Ef], the area sizes of these events (number of mapTO demonstrate the analogies between the de Wijs model and

units containing a specific combination of patterns) are pro-iN€ pattern partitions, we will make following assumptions ir?
portional to the probabilities addition to th.e_ condmo_nal independency assumption (11c):
(1) All partitions are independent from each other

1

5.2 Independent and constant cascade processes

n(E;E}...EX) =n(T)P[E;E}...E}] (18)

k * * k * *
wheren(T) is the total number of map units covering the PlE1Es. By = PLELIPLES ). PLE, ] @D
entire study area. Due to the property that every further par{2) All binary events have the same probability and the same
tition will reduce the total area into two subareas, the sizeconditional probability
of the partitioned subareas generally decreases with increase _ _
of numbers of partitions. Further the positive probability re- P[E;]1= P[E], P[E;]= P[E]
quirement and conditional independency assumption given
in Eq. (11a to c) ensure the following monotonically de- d = P[E;|D]= P[E|D],1—d = P[E;|D]= P[E|D] (22)
scending relationship
Now we can derive the probability d on the subarea with
k occurrences off andn — k times E when combining n

Relation (19) must be true because, otherwise, ifPinary patternsl E3.. £} as
PIEXES..Ef 1= P[EE..E] it would follow that
P[E}E..Ex] = PEIE5..Ef ;] — P[EE}..E¢] = 0, S
and, therefore, P[E{Ej;...Ex|D] = 0, according to the P[D](P[E|D])* (P[E|D]) = P[Dld*(1—ad)y"*
conditional independency assumption (11c) it must exist _

one evidence so thaP[E}|D] =0, which would violate  Accordingly, the probability o[ EX E"~*] can be written as
the condition (11a to b). The relation (19) indicates that e

the sizes of the subareas defined by the intersection op[ gk £n—*| = (p[E])* (p[g])" (24)

patternskE} E3...E;; monotonically decrease with increasing

number of partitions. Keep in mind that without conditional Therefore, the quantity ad on subareas defined wititimes

independency assumption amoAgE?...E; (Eq. 11c) the £ andn —k timesE can be written ag = P[D]d* (1—d)"~*

strict monotonic relation (19) may not be held and some k

subareas delineated by intersection of sets may not approad@d the number of such subareashas- <n> Letk/n=

to zero. In comparison with the relations (1) and (2), the end¢ and considering the size of subareas is proportional to
product may show multifractal distribution with singularities P[EX E"—*]; then

expressed as

PIELES...Ef 41> PIE{E}...E}f] (19)

P[DE*E"*]= P[D]P[E¥E"¥|D]=
(23)

EINP[E|D]+(1—&)InP[E|D]
a=2

* gk * * ok * /2 — 25a
PIDE} E},...E} 1 PIE} E}, ... B} ] - 20) EInPLE]+ (1—6)InPLE] (252)
PID|E} E},..E} 1< PLE} E} ... E}; 1%/

I 1-&)In(1-
The form (20) may be not valid in general but its validity in  f («) =2 sing+@=¢6)ind—=£) (25b)

some special cases will be proved as to be discussed in the §INPIE]+(1-§)InP[E]
next section. If the form (20) holds true, then the singularityAccordmg to relation (25a), we obtain the maximum and
index valuex determines the rate of change of the posterior inimum singularities as
probability when the number of partitions is increased with

reduction of areas proportioned R EJ E5...E; ] inthree sit-  «(E)=2InP[E|D]/InP[E]

uations: a(E)=2InP[E|D]/InP[E] (26)

Nonlin. Processes Geophys., 19, 568; 2012 www.nonlin-processes-geophys.net/19/57/2012/
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and further the following forms patternst, E and eventD as can be concluded from the fol-
PLE|D] = PLEJE)2 lowing properties:

P[E|D] = P[E]a(é)/z DWg=0<a(E)=2,W; =0 a(E)=2;

P[D|E]= P[D]P[E]*E)/2-1 @7) QW >0 a(E) <2,W; >0 a(E) <2

P[D|E] = P[D]P[E]*E)/21 BWg <0< a(E)>2,W; < 0w a(E)>2:

The Eq. (27) is a special form of Eq. (20). Therefore, from  we just need to prove the first property (1) and the other
Egs. (25a) and (26) it follows that the general value of singu-two properties can be proved similarly. For example, if
larity is a linear combination of the valuesE) anda (E). If Wg =0, thenP[E|D] = P[E|D], which leads taP[E|D] =
we further assume&[E] = P[E] = 0.5, then relations (25a) p[E] so thata(E) =2. On the other hand, i&(E) =
and (25b) become the same relations as shown in Eq. (7a) amngl then P[E|D] = P[E] so thatP[ED] = P[E]P[D] and
(7b). In this special case each partition divides the previouslfurther, P[ED] = P[E] — P[ED] = P[E]— P[E]P[D] =
divided subareas into two equal subareas and the dispersiop[E]P[D], thereforeP[E|D] = P[E] and Wz =0. This
coefficientd is independent of the partitioning. proves the first property (1) implying th& and E are in-

dependent. The other two properties correspond to positive
) ) ) ] correlation betweerD and E, and P[E|D] > P[E|D] or
6 Weights of evidence model for information P[E|D] > P[E] and negative correlation betweénandE,
integration in predictive mapping P[E|D] < P[E|D] or P[E|D] < P[E], respectively.

Several methods have been developed for combining mul-

tiple layers of evidenceHjE5...E;;) to map the posterior 7 Application of information integration processes in
probability P[D|E] E5...E;] for prediction of mineral de- mineral resources assessment

posits. The weights of evidence method is one of the most

commonly used methods for integration of evidential lay- 7.1 Study area and data

ers for predictive purposes (Bonham-Carter et al., 1988; o

Agterberg 1989a, b; Agterberg and Bonham-Carter, 1990;10 demonstrate the application of the new model (13), a case
Bonham-Carter, 1994). Under the assumption of conditionalStudy was chosen for prediction of locations for Sn mineral
independency Eq. (11a to c) the weights of evidence method€POSits in the Gejiu mineral district, Yunnan, southwest-
gives the following logistic model for calculating posterior €M China. The geology of the study area is illustrated in

probability Fig. 4. The study area41688 knf) is mostly underlain by
a sequence of Paleozoic to Mesozoic sedimentary rocks (the
PID|EYES. E¥]= 1 28) Gejiu and other formations) and igneous rocks, including Pa-
172 %n 1+e*(W0+WEI+WE5+"'+WE;§) leozoic volcanic rocks and Mesozoic intrusive rocks. The
Gejiu batholith, which is located in the center of the Gejiu
whereWp and W, are weights as shown below district, is a key factor for Sn mineralization. The Gejiu
formation is hosted by limestone with minor dolomite and
W, =In <L{)]> is the main rock formation hosting most of the discovered
P[D] Sn deposits (Fig. 4). The main faults and folds in the east-

3 ern part of the study area have N-S and E-W orientations,

_ In(P[Ei|D]> We —In P[E;|D] 29) while the main faults and folds in its western parts are NE—
~\p[e;)D1/)" B\ PLE;|D] SW, NW-SE and E-W trending. The intersections of three
groups of fault systems are diagrammed in Fig. 5. These

In order to compare the logistic model (28) and the newfault systems control the general configuration of the min-
model (12), we will show the association between the€ralization and distribution of ore bodies in this area. The
weightsWg and W shown in Eq. (29) and the singularity main trend of Fhe mjneralization in the eastern area is in the
indices(E) anda(E) in Eq. (13). NNE-SSW orientation; however, the ore fields are concen-
trated along the intersections of NNE-SSW and E-W faults.

We can see from theirdefinitigns that the main differences_l_h ; | bl iated with th - lizati
betweenWs, W; anda(E), a(E) are that the former in- e mineral assemblages associated with the mineralization

volve PLE| D], PLE|D] but the latter involve only?[E] and include pyrrhotite, pyrite, cassiterite, galena, sphalerite and

~ . o arsenopyrite. The Sn ores also contain relatively high con-
P[E]. Since the latter do not involve any associations of pat- Py y Mg

terns and the complementary event it is relatively easier centrations of the trace elements Pb, Zn, Cu, As, Sb, Bi, Au,
. o - dAg. M hensive d ipti f th logy,
to calculate the singularity indicesE) and«(E) than the and /g ore comprehensive descriptions of the geology

weightsWg and W:. Otherwise, these two types of indices ggochemlstry and mineralogy of the area can be found in
E . . - meg et al. (2004) and Yu et al. (1988).
carry the same type of information about the association o

E;
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Fig. 4. Simplified geology of Gejiu mineral district. Pink polygons Fig. 6. Local geochemical anomalies extracted from concentration

distributed in the center of the study area stand for Gejiu BatholithvV@léléments Sn, As, Cu, Pb, Zn and Cd. First singularity index
of felsic intrusions, yellow polygons for Gejiu formation of lime- was cathe concentration valuesues of Iculated from of each element
stone, black lines represent faults, white areas for other sedimentargd these singularity maps were combined by means of principal
rocks, and dots for Sn mineral deposits. component analysis. The patterns in red are the binary patterns cre-
' ated from the score on the first component. Details can be found in
Cheng et al. (2009).

7.2 Results

Each information layer to be combined (binary patterns of
which are shown in Figs. 4 through 7) divides the study area
into two subclasses of reduced area that represent favorable
and unfavorable regions for predicting mineral deposits. If
we define a square of sizexl1 kn? as the measuring unit,
the total study area occupies about 1688 units. There are a to-
tal of 11 units occupied by Sn mineral deposits, from which
the prior probability of a randomly chosen square from the
area containing mineral deposits can be estimate®| 8§ =
Fig. 5. Faults systems. Black lines represent faults. Blue circleso'oq65' Slrmlarly, one can calculate the number Qf units oc-
stand for 6 km buffer zones around intersections of three fault sysCUPied by binary patterns and the number occupied by both
tems. binary patterns and mineral deposits. Table 1 gives the results
obtained from the four binary maps Gf, Bf, La and Ra. The
In the author’s previous studies, four factors related tosecond and third columns in Table 1 show the areas (number
mineralization were identified according to a hydrothermal of units) of the favorable patterns of each binary map and the
mineral deposit genesis model; accordingly, four binary lay-numbers of mineral deposits occurring in each of the patterns
ers were constructed using various GIS and spatial analysi§# points on pattern). From these two columns, one can cal-
techniques. These four layers are: (1) Gejiu formation ofculate the probability of patterns for each of the four binary
carbonates (Gf) (Fig. 4); (2) the 6 km buffer zone around themaps; for example, probability of Geijiu formatiadhGf] =
intersections of three groups of faults (Bf) (Fig. 5); (3) lo- 747/1688= 0.44 andP[Gf] = 1— P[Gf] = 0.56, represent-
cal geochemical anomalies (La) delineated from concentraing the probabilities that patterns exist on the Gejiu forma-
tion values of the elements Sn, As, Zn, Pb, Cu and Cd intion and the complementary event (on other rock types).
stream sediment samples (Fig. 6); and (4) regional geochen®ne can also calculate the probability that a unit area of a
ical anomalies (Ra) delineated from values of Sn, As, Zn,given binary pattern contains mineral deposits, for example,
Pb, Cu and Cd in stream sediment samples (Fig. 7). Morel = P[Gf|D] =7/11=0.64 and 1—d = P[Gf|D] = 0.36;
detailed information about the definition of the four binary these values represent, respectively, the conditional proba-
layers can be found in Cheng et al. (2009). This paper willbilities of mineral deposits on and off the pattern Gf. From
use these four binary layers to calculate the posterior probathese probabilities and conditional probabilities, one can cal-
bility map according to relation (12) and to demonstrate theculate the singularity indices(E) and« (E) for each binary
processes of combining layers and the singularities of thepattern; for exampleg(Gf) = 2InP[Gf|D]/In P[Gf] =1.11
created posterior probability map. anda(Gf) = 2InP[Gf|D]/In P[Gf] = 3.46. The statistics for
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Table 1. Statistics obtained from each of the four layers of binary maps.

Area # Wgp s(Wg) Wi s(Wg) C s(C) tvalue o a(E) Aa

points omax— %min
Rock Type (Gf) 747 7 0.35 0.38 —0.40 049 075 0.63 1.2 111 3.46 2.35
Dist. to Inter. (Bf) 515 6.4 0.66 0.40 —0.52 047 1.18 0.61 1.92 091 479 3.88
Geochem. | (La) 188 8 1901 0.36 —1.19 058 3.10 0.68 454 029 2201 21.72
Geochem. Il (Ra) 309 6 112 0.41-0.61 045 1.73 0.61 2.84 0.71 7.8 7.09

Post Prob

T o 005+ - 0010
[ o.010-0023
[ loozs-o037

137 - 0.080

[l oosr-
[ 0.0s0-0340

Fig. 7. Regional geochemical anomalies extracted by applying S-AFig. 8. Posterior probability map created by means of weights of

filtering to the scores calculated from the first principal componentevidence method applied to the four evidential layers in Figs. 4 to
fractal derived from logarithmic transformed concentration values7,

of elements Sn, As, Cu, Pb, Zn and Cd. The patterns in red are the
binary patterns created from the decomposed patterns by means of
S-A method. Details can be found in Cheng et al. (2009). for occurrences of mineral deposits. Using model (12), four
layers of binary maps were combined; the posterior proba-
bility map that emerged is shown in Fig. 8. The areas with
other binary patterns are similarly calculated and are showrigh posterior probability values contain most of the known
in Table 1. mineral deposits; some areas with high posterior probabili-
The other values shown in Table 1 are statistics used irfies in which mineral deposits have not yet been found can
the weights of evidence method. ValuesgW) stands for ~ be considered target areas for further exploration.
standard deviation oV and t-value is for Student’s statistic ~ To validate the multifractality of the posterior probabil-
value of the contrast of weightG= Wg — W. Theresultsin ity map, one can apply various multifractal modeling tech-
Table 1 show that the four binary maps are all positively cor-niques. In this case study, since we only use four evi-
related withD. Among them, the local geochemical anoma- dence layers which corresponding to four partition gener-
lies (La) show the highest contrast of weights with t-value ation, the results are far from a fully converged multifrac-
(Student’s statistic) = 4.54 (for calculation oW, s(W),and  tal field. Therefore, it is not possible to validate the multi-
t-values ofC, see Bonham-Carter, 1994). The values of sin-fractality of the posterior probability map in Fig. 8. In fur-
gularity indicesa(E) =0.29< 2 anda(E) =22.01> 2 also  ther study more evidence layers could be added to gener-
imply that the singularity related to pattern La is strong. In ate a more realistic multifractal posterior probability map,
general, the ranges of singularitye = amax—amin are all  especially to show those areas with high posterior proba-
positive which implies that all four layers are positively as- bility but without known mineral deposits that remain to
sociated withD. In addition, the ranks of the ranges of sin- be discovered. In order to display the frequency distribu-
gularity Aa are similar to the ranks of the t-values which tion of the posterior probability on Fig. 8, first, the value of
implies that the range of singularity can be used as a statisposterior probability was transformed by logarithmic trans-
tic measuring the degree of correlation betwdemand the  formation (natural logs). Next equal interval classification
patterns. Since all four map layers are associated with thevas applied to the transformed posterior probability val-
location of D, these four layers must be combined in order to ues. All together, 21 classes were determined: the starting
create a posterior probability map that shows the best areaslass with mid-point value of-7.1289, the last class with
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100 - B L s probability of points and evidence layers with singularity in-
! 7R20'20?)02’;O7 dices as coefficients, which quantify degree of spatial corre-
010 ' lation between binary patterns and location point events (e.g.,
= mineral deposits). This feature is important for three reasons:
£001 - first, it links the concepts and methods of multifractal model-
- ing developed in nonlinear processes in geophysics and infor-
0.00 r mation integration modeling commonly employed for spatial
0.00 decision support. Secondly, the newly deV(_anped Iog—lingar
oot 010 100 model can not only be used as an alternative model for in-

formation integration but also provides relatively simpler in-
dices in comparison with the weights of evidence method.

Fig. 9. Relationship between posterior probabiltyD|G] and the This is because the singularity indices involved in the new

probability of the area (G) with cutoff value of posterior probability. Model do not require calculation of probabilities and con-
ditional probabilities related to complementary point events.

In addition, as the end product of a multiplicative cascade

mid-point value of-1.4354 and each class interval equal to Process, the posterior probability may possess multifractality
0.299. Cumulative frequencies of map units in each clasgvith singularities that can be further investigated for char-
were calculated and these values are plotted in Fig. 9. Irfcterization of the spatial distribution of the point events.
Fig. 9 the posterior probability corresponding to the mid- Moreover, the results and formulation developed in the cur-
point value of each class, denoted”D|G] and the prob- ~ rent research might be useful for further study of more gen-
ability of the cumulative number of map units occupying €ralized multiplicative cascade processes. It must be kept
these classes, denotedmigs], are plotted. The result gener- in mind that a large number of evidential layers are usually
ally shows a power-law relationship between the cumulativeneeded to create posterior probability maps that are represen-
area and the mid-point class value of posterior probability,tative of multifractal fields. However, when the number of bi-
P[D|G]=0.0009P[G]~ 14653 Since the posterior probabil- hary patterns increases, the dependency among the patterns
ity P[D|G]is the value at boundary @, the average poste- and between patterns and point events becomes inevitable.
rior probability in G should also follow power-law relations Therefore, a more general model overcoming these depen-
with P[G] with exponent—0.4653 which gives the singu- dency problems has to be developed.
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