
Nonlin. Processes Geophys., 19, 57–68, 2012
www.nonlin-processes-geophys.net/19/57/2012/
doi:10.5194/npg-19-57-2012
© Author(s) 2012. CC Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Multiplicative cascade processes and information integration for
predictive mapping

Q. Cheng1,2

1State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083,
Wuhan 430074, China
2Department of Earth and Space Science and Engineering, Department of Geography, York University, Toronto,
M3J1P3, Canada

Correspondence to:Q. Cheng (qiuming@yorku.ca)

Received: 1 April 2010 – Revised: 5 December 2011 – Accepted: 22 December 2011 – Published: 11 January 2012

Abstract. This paper presents a new model proposed on the
basis of multiplicative cascade process (MCP) theory for in-
tegrating spatial information to be used for mineral resources
prediction and environmental impact assessment. Probabil-
ity of a spatial point event is defined as the probability that
a small map calculating unit (map unit) randomly selected
from a study area contains one or more points. The proba-
bility that such unit randomly selected from a subarea with
known spatial binary map patterns (evidential layers) con-
tains one or more points is defined as the posterior point event
probability. In this paper, processes of integrating multiple
binary map patterns that divide the study area into smaller
areas with updated posterior probabilities are viewed as mul-
tiplicative cascade processes resulting in a new log-linear
model for calculating conditional probabilities from the mul-
tiple evidential input layers. The coefficients (weights) in-
volved in this model measuring degree of spatial correlation
between point event and the evidential layers are found to
be associated with singularity indices involved in multifrac-
tal modeling. It is demonstrated that the model is simple
and easy to be implemented in comparison with the exist-
ing weights of evidence model which is commonly applied
in spatial decision modeling. In addition, the posterior prob-
ability as the end product of a multiplicative cascade process
can be used to describe multifractality and singularity which
are useful properties for characterizing spatial distribution of
predicted point events. A case study of tin mineral poten-
tial mapping in the Gejiu mineral district in China is used to
illustrate principles and use of the modeling process. Four
binary layers: formation of limestone, buffer distance for in-
tersections of three groups of faults, local and regional geo-
chemical anomalies of elements As, Sn, Cu, Pb, Zn and Cd,
were combined for mapping potential areas for occurrence of
tin mineral deposits.

1 Introduction

Singular physical, chemical and biological processes can re-
sult in anomalous energy release, mass accumulation or mat-
ter concentration that, generally, are all confined to narrow
intervals in space or time (Cheng, 2007a). Singularity is a
property of non-linear natural processes, examples of which
include cloud formation (Schertzer and Lovejoy, 1987), rain-
fall (Veneziano, 2002), hurricanes (Sornette, 2004), flooding
(Malamud et al., 1996; Cheng 2008), landslides (Malamud
et al., 2004), forest fires (Malamud et al., 1996) and earth-
quakes (Turcotte, 1997; Cheng et al., 1994a). The end prod-
ucts of these non-linear processes can all be modeled as frac-
tals or multifractals.

Hydrothermal processes are special types of singular pro-
cess occurring in the Earth’s crust; they can produce ore de-
posits characterized by high concentrations of metals and
aggregate spatial distributions with fractal or multifractal
properties (Mandelbrot, 1989; Carlson, 1991; Cheng et al.,
1994b; Blenkinsop, 1994; Agterberg, 1995; Cheng and
Agterberg 1996; Cheng, 2003; Raines, 2008; Hronsky,
2009). Hydrothermal mineral deposits also often exhibit
non-linear features with respect to ore element and associ-
ated toxic element concentration values in rock and related
surface media such as water, soil, stream sediment, till, hu-
mus and vegetation (Cheng et al., 1994a; Turcotte, 2002; Xie
and Bao, 2004; Agterberg, 2007a; Xie et al., 2007; Cheng
and Agterberg 2009; Ford and Blenkinsop, 2009; Hronsky,
2009). These properties can be used for delineating target
areas for finding undiscovered mineral deposits in support
of mineral exploration and mineral resources planning. For
example, element concentration anomalies in various media
are commonly identified by geochemical exploration tech-
niques for recognition of target areas for predicting mineral
deposits. Based on mineral deposit genetic models, specific
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geological features that control formation of mineral deposits
can also be used to reduce the sizes of areas favorable for po-
tential occurrences of undiscovered mineral deposits. For ex-
ample, hydrothermal mineral deposits may occur around in-
trusive rocks; thus certain buffer distance around intrusions
can be delineated as favorable area for occurrence of min-
eral deposits. Combining buffer zone around intrusions with
other types of geological, geophysical and geochemical fac-
tors such as fault structures that control distribution of min-
eral deposits can further reduce the target areas for mineral
exploration. This paper aims to demonstrate that the concepts
of multiplicative cascade processes (MCP) and singularities
as the end products of MCP can be applied to model the
processes of combining multiple geo-variables (evidence) to
map potential areas for discovering new mineral deposits. A
new model is developed to associate the posterior probabil-
ity of a unit area containing mineral deposits and conditions
observed in the unit area as multiple attributes. Using this
model, posterior probabilities can be calculated from the in-
put conditions and their associations with mineral deposits.
These posterior probabilities can be considered as resulting
from multiplicative cascade processes that may depict mul-
tifractality and singularities which can be characterized by
fractal and multifractal models.

2 Multifractal model and singularity distribution

In order to show the potential association between multi-
plicative cascade processes and information integration pro-
cesses we first briefly introduce the concepts of multiplica-
tive process, simple multifractal model and associated singu-
larities. There are several formulisms for representing mul-
tifractals; for example, deterministic and stochastic models.
More information about various multifractal models can be
found in Schertzer et al. (1997). Complete review of various
multifractal models is out of the scope of this paper. Here we
will only present some assumptions and relevant mathemat-
ical notation for deterministic multifractals. Similar discus-
sions can be partially applied to stochastic multifractal mod-
els. Assume a measure,µ, defined in a small area of linear
measuring size,ε satisfies

µ(ε) ∝ εα (1)

where∝ stands for “proportional to” andα is the singular-
ity index, also known as the coarse Hölder exponent;µ is
a function of scaleε which possesses isotropic scale invari-
ance property so that the following ratio of logarithmic trans-
formations ofµ andε gives scale independent index whenε

approaches zero

α ∝
log[µ(ε)]

logε
(2)

The values ofα usually vary in a finite interval [αmin, αmax]
for deterministic multifractals, but for other models, for ex-
ample, whole family of the Universal Multifractal models

(Schertzer and Lovejoy, 1987) that include both theβ-model
(Frisch et al., 1978) and the log-normal model (Yaglom,
1966), the bound of singularity might be infinite (Lovejoy
and Schertzer, 2007). For some models the value of singu-
larity can be negative and fractal dimension can be also neg-
ative. According to the distribution of the value ofα, the
entire mapped area can be classified into subsets or fractals,
each of which possesses different singularity valueαi and,
accordingly, different fractal dimensions (f (αi) ≤ 2). This is
the reason that the field ofµ is described by the term “multi-
fractality”. The fractal dimension functionf (α) and the sin-
gularity α can be estimated by various multifractal methods
such as the method based on partition function (Halsey et al.,
1986) and gliding box multifractal method (Cheng, 1999),
just to name a few. For convenience of discussion, in this pa-
per, we will use several terminologies pertaining to the multi-
fractal model on the basis of partition function (Halsey et al.,
1986), the entire study area can be partitioned into smaller
subareas of equal sizeε × ε and the measure of each such
small area can be defined asµ(ε). Three functions: mass
exponent function,τ(q), coarse Ḧolder exponent,α(q), and
fractal spectrum function,f (α), can be introduced. They are
associated according to the following relations (Halsey et al.,
1986)∑

[µ(ε)]q ∝ ετ(q)

α(q) = τ ′(q)

f (α) = aq −τ(q)

(3)

whereq is the order of moment and the summation in the first
equation is applied for all subareas of equal sizeε× ε with
positive measureµ. From this formulation we can extract
the following properties. Whenq = 0 andα(0), f (α(0)) =

−τ (0), reaching the maximum value off (α) which corre-
sponds to the box-counting fractal dimension. If the mea-
sure covers the entire 2-D set, then the box-counting di-
mension equals 2, otherwise it is less than 2; whenq =

1 and α(1), f (α(1)) = α(1) − τ (1). If the first moment∑
µ(ε) = constant, thenτ(1) = 0 andf (α(1)) = α(1). If we

assume the numberNα(ε) of areas with sizeε×ε covering
the entire subset bearing the singularityα, and the fractal di-
mensionf (α) of this subset are related by

Nα(ε) ∝ ε−f (α) (4)

The total measure of the subset can be expressed as

Nα(ε)µα (ε) ∝ ε−f (α)+α (5)

Since the total measure of the subset is less than the total
measure of the entire set, the following relation must hold
true:

α ≥ f (α) (6)

If relation (6) is not true, then the total measure on the sub-
set (5) would become infinity whenε → 0. The frequency
distribution of measure characterized by singularityα in the
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mapped area can be described by the fractal dimension spec-
trum function f (α); this function reaching its maximum
valuef (α(0)) or the box-counting dimension of the support
of µ at α(0). This implies that the majority of the area has
measure characterized byα ≈ α(0), whereas areas with val-
uesα > α(0) or α < (0) are more irregular and with fractal
dimensionsf (α) <f (α(0)). Since the relation (6) holds true
for all α andf (α), the singular areas with enrichment of the
measure due toα < 2 must have dimensionf (α) < 2 and
those areas with measure depletion due toα > 2 must have
dimensionf (α) ≤ 2; the equal sign applies only atα(0) (≥2).

3 Multiplicative cascade processes and multifractal
distributions

The theory and concepts of multiplicative cascade processes
play a fundamental role in explaining the generic conse-
quence of scale invariant dynamics including turbulent in-
termittency and other non-linear processes (Schertzer and
Lovejoy 1985, 2007; Schertzer et al., 1997). There are sev-
eral types of cascade models such as the log-normal model
(Yaglom, 1966),α-model (Schertzer and Lovejoy, 1984) and
p-model (Meneveau and Sreenivasan, 1987), to just name a
few. A review of these models can be found in Schertzer et
al. (1997). The model of de Wijs is a simple binomial mul-
tiplicative cascade model for generating log-normal distribu-
tion (de Wijs 1951). It became a multifractal model known
as p-model (Meneveau and Sreenivasan, 1987). This model
has been used to demonstrate generation of multifractal fields
and their basic properties of singularities (Agterberg 2001,
2007a; Cheng, 2005; Ford and Blenkinsop, 2009). Other
modifications to the model, for example, a cascade model
with functional redistribution rate (Agterberg, 2007b) and
a cascade model with variable partition processes (Cheng,
2005), are also available. A one-dimensional de Wijs’ cas-
cade model is to be used in this paper for convenience in
introducing the association between MCP and information
integration processes. The de Wijs’ cascade model involves
the partitioning of each unit segment into two sub-segments
of equal size. The amount of measure (µ) in the unit seg-
ment then can be written asd ×µ for one half and (1-d)×µ

for the other half (0< d < 1) so that total mass is preserved,
dµ+ (1−d)µ = µ. The coefficient of dispersion,d, is in-
dependent of segment size. At the beginning of the pro-
cess,µ for the first segment can be set equal to unity. If
d > 1/2, the maximum quantity of measure in small seg-
ment unit aftern subdivisions isµ = dn, and the minimum
value isµ = (1−d)n; if d < 1/2, the maximum and mini-
mum values are switched. The general value of the measure
in small segments aftern subdivisions can be represented
asµ = dk(1−d)n−k, where 0≤ k ≤ n. The number of seg-

ments with this value is

(
k

n

)
. In a random cascade, larger

and smaller values are assigned to segments using a discrete

random variable. The frequency distribution of the measure
converges to a multifractal (Mandelbrot, 1989).

Let k/n = ξ , whereξ is a value with 0≤ ξ ≤ 1; then the
value ofµ(ξ) = [dξ (1−d)1−ξ

]
n. The number of cells with

sizeεn = (1/2)n andµ(ξ) becomesN(εn) =

(
k

n

)
. There-

fore, the multifractal patterns generated by this cascade pro-
cess have many local maxima and minima, with singularity
expressed as follows (Feder, 1988; Halsey et al., 1986)

α = −
ξ ln(d)+(1−ξ)ln(1−d)

ln2
(7a)

f (α) = −
ξ lnξ +(1−ξ)ln(1−ξ)

ln2
(7b)

The fractal dimension spectrumf (α) characterizes the distri-
bution of measure with singularityα. The maximum and the
minimum values ofα from Eq. (7a) areαmin = −log2(1−d)

andαmax= −log2[d], assumingd > 1/2, therefore, the gen-
eral value of singularity becomes the combination of the max
and min values ofα, α = ξαmax+(1−ξ)αmin. It can be seen
that the range of singularityα is related to the choice ofd,
1αmax= αmax−αmin = log2[d/(1−d)]. As the valued ap-
proaches 1/2, the value range of singularity is reduced. If
d = 1/2, then1αmax= 0. According to the fractal dimen-
sion function, the sets with the maximum and the minimum
singularity values have dimensionsf (α(0)) = f (α(1)) = 0
and the areas withα(1/2) = −1/2log2[d(1− d)] have di-
mensionf (α(1/2)) = 1. It should be kept in mind that the
relations (7a) and (7b) hold forp-model, and for other types
of models the singularity range can be unbounded.

4 Information integration processes for mapping
mineral potential

Identifying target areas favorable for undiscovered mineral
deposits is essential not only for estimating the total min-
eral resource potential in the study area but also for explo-
ration for new mineral deposits. Various techniques and
models have been developed for facilitating the process of
predictive mapping for undiscovered mineral deposits (e.g.,
Bonham-Carter, 1994). These methods including weights of
evidence model, logistic regression, fuzzy logic, and fuzzy
weights of evidence are commonly used to create predictive
maps by combining multiple geoscience layers of informa-
tion (i.e., evidence) associated with the occurrence of mineral
deposits (e.g., Bonham-Carter, 1994; Cheng and Agterberg,
1999). The layers of spatial evidence are often derived from
multiple data sources, at multiple scales and in various for-
mats. Integrating these types of geoinformation can reduce
the spatial extent of target areas and update information about
the sought-after mineral deposits. The weights of evidence
method is a spatial decision support model integrating map
layers of information for prediction of spatial events (often
but not limited to point events) (Bonham-Carter et al., 1988).
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Fig. 1 Schematic diagram showing location of mineral deposits (D) shown as 
stars are highly associated with igneous batholith . Relatively fewer mineral 
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Fig. 1. Schematic diagram showing location of mineral deposits
(D) shown as stars are highly associated with igneous batholithE1.
Relatively fewer mineral deposits are located outside of batholith
labeled asẼ1.

Successive overlay of evidential layers progressively parti-
tions the study area into smaller sub-areas with updated pos-
terior probability of containing points per unit area. In this
paper it will be shown that the process of integrating layers of
information has similarities with the multiplicative cascade
process introduced previously. For convenience without loss
of generality, we will use binary evidential layers as an ex-
ample to illustrate this relationship. We need to define some
notations as follows.

Let T represent a study area (a 2-D set);{Ei ,Ẽi}(i =

1,2,...,n) represent series of maps of mutually exclusive bi-
nary patterns,Ei and Ẽi , Ei ∩ Ẽi = φ, and Ei ∪ Ẽi = T ,
where “∩” and “∪” stand for intersection and union, respec-
tively. From now on an intersection of sets appears like a
product of them. Superimposing these binary patterns di-
vides the study areaT into smaller sub-areas. For example,
four possible intersections:EiEj , EiẼj , ẼiEj , ẼiẼj can be
formed when two maps,{Ei ,Ẽi} and{Ej ,Ẽj } are combined.
To illustrate the definitions and binary patterns and their as-
sociations with mineral deposits (D), several schematic dia-
grams are provided in Figs. 1 to 3 to present two binary maps,
igneous batholith and alteration zone, considered as control-
ling factors for the occurrence of hydrothermal mineral de-
positsD. Each of the two binary maps divides the study area
into two sub-classes: favorable areas (E) and unfavorable ar-
eas (Ẽ) for formation of mineral deposits,E ∪ Ẽ = T and
EẼ = 8. In this artificial example, 10 discovered mineral
deposits are labeled as dots on the map and 60 % of them
are located on the igneous batholith (E1) and 40 % off the
igneous batholith (̃E1), 70 % of points on alteration zone
(E2) and 30 % off alteration zone (Ẽ2). The binary patterns
are defined according to certain geological features, some of
them with natural boundaries such as contacts between rock
formations, while other patterns could be defined as man-
made features with thresholds such as geological anomalies
with concentration values above a certain cutoff value.
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Fig. 2 Schematic diagram showing location of mineral deposits (D) shown as 
stars are highly associated with alteration zone labeled as . Relatively fewer 
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Fig. 2. Schematic diagram showing location of mineral deposits
(D) shown as stars are highly associated with alteration zone la-
beled asE2. Relatively fewer mineral deposits are located outside
of alternation zone labeled as̃E2.
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Fig. 3 Schematic diagram showing mineral deposits (D) shown as stars and two 
binary maps partitioning the study area into four subareas labeled as 
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Fig. 3. Schematic diagram showing mineral deposits (D) shown
as stars and two binary maps partitioning the study area into four
subareas labeled asE1E2, E1Ẽ2, Ẽ1E2 andẼ1Ẽ2, respectively.

In order to associate point events (e.g., mineral deposits in
a mineral district) with these binary maps, we define prob-
abilities and conditional probabilities as follows. Assume a
small map unit is defined (for example pixel of image) so that
each point ofD occupies only one map unit, then the number
of map units occupied by mineral deposits and by map pat-
ternsEi andẼi can be used to estimate the probabilities and
conditional probabilities. For example, the prior probability,
P [D], of a randomly selected map unit containing a mineral
deposit can be estimated by the number of map units occu-
pied by mineral deposits,n(D), divided by the total number
of map units occupied byT , n(T ) as

P [D] =
n(D)

n(T )
(8)
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We denote prior probability of mineral deposits asP [D].
Similarly, we can define the probabilities of eventsEi,Ej

and their intersections. The conditional probability ofD

given condition of patternsEi and Ẽi can be accordingly
defined and denoted asP [D|Ei ] andP [D|Ẽi ], respectively.
These conditional probabilities can be estimated as the ratio
of the number of map units occupied both by mineral de-
posits and by patternEi or Ẽi over the total number of map
units occupied byEi or Ẽi , respectively

P [D|Ei] =
n(DEi )
n(Ei )

P [D|Ẽi] =
n(DẼi )

n(Ẽi )

(9)

wheren(DE) andn(DẼ) represent the number of map units
occupied both by mineral deposits and by patternEi or
Ẽi , respectively. IfP [D] is considered as the initial mea-
sure of mineral deposits in the entire area, each addition of
an evidential layer of binary pattern (Ei and Ẽi) will pro-
duce one sub-area (favorable area) with a conditional (pos-
terior) probability that is increased (enhanced),P [D|Ei] >

P [D], and another sub-area (unfavorable areas) with a con-
ditional (posterior) probability that is decreased (depleted),
P [D|Ẽi] < P [D].

Similarly, we can define probabilities and conditional
probabilities forD and any possible multiple intersections
of patterns, for example,

P [D|E∗

1E∗

2...E∗
n] (10)

whereE∗

1E∗

2...E∗
n(E∗

i = Ei or Ẽi) is an intersection ofn pat-
terns. In the following sections we will discuss properties of
the process of integrating map patterns.

In order to ensure the process of integration of binary pat-
terns can reduce the areas with unique intersection of pat-
terns, we make the further assumption: all probabilities and
conditional probabilities are positive and all patterns are con-
ditionally independent from each other with respect toD,

P [D] > 0, P [Ei] > 0, P [Ẽi] > 0 (11a)

P [Ei |D] > 0, P [Ẽi |D] > 0 (11b)

P [E∗

1E∗

2...E∗
n|D] = P [E∗

1|D]P [E∗

2|D]...P [E∗
n|D] (11c)

The main goal of information integration processes is to
combine multiple binary map patterns to divide the entire
area into smaller areas on the basis of unique intersections
of patternsP [E∗

1E∗

2...E∗
n] and to calculate the correspond-

ing posterior probabilitiesP [D|E∗

1E∗

2...E∗
n]. The posterior

probability map shows areas with high or low probabilities
of having mineral deposits and this type of information is
useful for mineral exploration. In the following sections we
will investigate information integration model from the point
of view of cascade processes.

From the conditional independency condition (11c) we
can derive the following relation between conditional proba-
bility and the probabilities of patterns

2lnP [E∗

1E∗

2...E∗
n|D] =

α(E∗

1)lnP [E∗

1]+α(E∗

2)lnP [E∗

2]+ ...+α(E∗
n)lnP [E∗

n]

2lnP [D|E∗

1E∗

2...E∗
n] =

P [D]

P [E∗

1E∗

2 ...E∗
n]

{
α
(
E∗

1

)
lnP [E∗

1]+α
(
E∗

2

)
lnP [E∗

2]+

....+α
(
E∗

n

)
lnP [E∗

n]
} (12)

where each coefficient can be expressed as

α(E∗

i ) = α(Ei) orα(Ẽi)

α(Ei) = 2 lnP [Ei |D]

lnP [Ei ]

α(Ẽi) = 2 lnP [Ẽi |D]

lnP [Ẽi ]

(13)

This form (12) is a log-linear model associating the con-
ditional probabilitiesP [D|E∗

1E∗

2...E∗
n] and each probabil-

ity of patternP [E∗

i ]. Therefore, the form (12) with coef-
ficients (13) provides a new model for calculating posterior
probability. This model will be compared with weights of
evidence model in Sect. 5.

5 Information integration processes and multifractal
distribution

5.1 Conditional independent cascade processes

In order to show the similarity between the information inte-
gration model discussed in Sect. 3 and generalized binomial
cascade processes, the simple one-dimensional de Wijs’s
multiplicative cascade processes introduced in Sect. 2 will
be compared with each other. The de Wijs’s cascade pro-
cesses involve binary partitioning of each unit segment into
two equal segments in each generation. For random parti-
tioning, knowledge of the details of the partition is not re-
quired, so we can use probability notation to represent the
processes. Comparing the notations used for information in-
tegration with those introduced in de Wijs’ model, we can
define a measure as the proportion of map units containing
D as well as measures for the proportions of map units onD

and the various patternsEi using joint probabilities. Suppose
initial measure in the entire area is defined as

µ =
n(D)

n(T )
= P [D] (14)

and measures on each pair of subareas for patternsEi andẼi

after a partition as

µ[Ei] =P [DEi]

µ[Ẽi] =P [DẼi]
(15)
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Similarly, we consider the ratio of the linear size of setE∗

and the size of the entire area as the measuring scale

ε2
=

n(E∗)

n(T )
= P [E∗

] (16)

The dispersion coefficientdi and 1− di as proportions of
measures redistributed inEi andẼi involved in the partition
can be expressed as

di =
µ[Ei ]

µ[D]
= P [Ei |D]

1−di =
µ[Ẽi ]

µ[D]
= P [Ẽi |D]

(17)

According to the definitions of the probabilities of the events
P [E∗

1E∗

2...E∗
n], the area sizes of these events (number of map

units containing a specific combination of patterns) are pro-
portional to the probabilities

n(E∗

1E∗

2...E∗
n) = n(T )P [E∗

1E∗

2...E∗
n] (18)

wheren(T ) is the total number of map units covering the
entire study area. Due to the property that every further par-
tition will reduce the total area into two subareas, the size
of the partitioned subareas generally decreases with increase
of numbers of partitions. Further the positive probability re-
quirement and conditional independency assumption given
in Eq. (11a to c) ensure the following monotonically de-
scending relationship

P [E∗

1E∗

2...E∗

k−1] > P [E∗

1E∗

2...E∗

k ] (19)

Relation (19) must be true because, otherwise, if
P [E∗

1E∗

2...E∗

k−1] = P [E∗

1E∗

2...Ek] it would follow that

P [E∗

1E∗

2...Ẽk] = P [E∗

1E∗

2...E∗

k−1] − P [E∗

1E∗

2...Ek] = 0,

and, therefore,P [E∗

1E∗

2...Ẽk|D] = 0, according to the
conditional independency assumption (11c) it must exist
one evidence so thatP [E∗

i |D] = 0, which would violate
the condition (11a to b). The relation (19) indicates that
the sizes of the subareas defined by the intersection of
patternsE∗

1E∗

2...E∗
n monotonically decrease with increasing

number of partitions. Keep in mind that without conditional
independency assumption amongE∗

1E∗

2...E∗
n (Eq. 11c) the

strict monotonic relation (19) may not be held and some
subareas delineated by intersection of sets may not approach
to zero. In comparison with the relations (1) and (2), the end
product may show multifractal distribution with singularities
expressed as

P [DE∗

k1
E∗

k2
...E∗

kn
] ∝P [E∗

k1
E∗

k2
...E∗

kn
]
α/2

P [D|E∗

k1
E∗

k2
...E∗

kn
] ∝P [E∗

k1
E∗

k2
...E∗

kn
]
α/2−1 (20)

The form (20) may be not valid in general but its validity in
some special cases will be proved as to be discussed in the
next section. If the form (20) holds true, then the singularity
index valueα determines the rate of change of the posterior
probability when the number of partitions is increased with
reduction of areas proportioned toP [E∗

1E∗

2...E∗
n] in three sit-

uations:

1. if and only if α > 2, thenP [D|E∗

1E∗

2...E∗
n] decreases;

2. if and only if α < 2, thenP [D|E∗

1E∗

2...E∗
n] increases;

3. if and only if α = 2, then P [D|E∗

1E∗

2...E∗
n] is un-

changed.

These three properties imply that the posterior probability in-
creases when singularity indexα < 2, decreases whenα > 2
and remains unchanged whenα = 2.

5.2 Independent and constant cascade processes

To demonstrate the analogies between the de Wijs model and
the pattern partitions, we will make following assumptions in
addition to the conditional independency assumption (11c):

(1) All partitions are independent from each other

P [E∗

1E∗

2...E∗
n] =P [E∗

1]P [E∗

2]...P [E∗
n] (21)

(2) All binary events have the same probability and the same
conditional probability

P [Ei] =P [E],P [Ẽi] =P [Ẽ]

d = P [Ei |D] =P [E|D],1−d = P [Ẽi |D] =P [Ẽ|D] (22)

Now we can derive the probability ofD on the subarea with
k occurrences ofE and n− k times Ẽ when combining n
binary patternsE∗

1E∗

2...E∗
n as

P [DEkẼn−k
] =P [D]P [EkẼn−k

|D] =

P [D](P [E|D])k
(
P [Ẽ|D]

)n−k

= P [D]dk (1−d)n−k
(23)

Accordingly, the probability ofP [EkẼn−k
] can be written as

P [EkẼn−k
] = (P [E])k

(
P [Ẽ]

)n−k

(24)

Therefore, the quantity ofD on subareas defined withk times
E andn−k timesẼ can be written asµ = P [D]dk(1−d)n−k

and the number of such subareas asN =

(
k

n

)
. Let k/n =

ξ and considering the size of subareas is proportional to
P [EkẼn−k

]; then

α = 2
ξ lnP [E|D]+(1−ξ)lnP [Ẽ|D]

ξ lnP [E]+(1−ξ)lnP [Ẽ]
(25a)

f (α) = 2
ξ lnξ +(1−ξ)ln(1−ξ)

ξ lnP [E]+(1−ξ)lnP [Ẽ]
(25b)

According to relation (25a), we obtain the maximum and
minimum singularities as

α(E) = 2lnP [E|D]/lnP [E]

α(Ẽ) = 2lnP [Ẽ|D]/lnP [Ẽ]
(26)
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and further the following forms

P [E|D] =P [E]
α(E)/2

P [Ẽ|D] =P [Ẽ]
α(Ẽ)/2

P [D|E] =P [D]P [E]
α(E)/2−1

P [D|Ẽ] =P [D]P [Ẽ]
α(Ẽ)/2−1

(27)

The Eq. (27) is a special form of Eq. (20). Therefore, from
Eqs. (25a) and (26) it follows that the general value of singu-
larity is a linear combination of the valuesα(E) andα(Ẽ). If
we further assumeP [E] = P [Ẽ] = 0.5, then relations (25a)
and (25b) become the same relations as shown in Eq. (7a) and
(7b). In this special case each partition divides the previously
divided subareas into two equal subareas and the dispersion
coefficientd is independent of the partitioning.

6 Weights of evidence model for information
integration in predictive mapping

Several methods have been developed for combining mul-
tiple layers of evidence (E∗

1E∗

2...E∗
n) to map the posterior

probability P [D|E∗

1E∗

2...E∗
n] for prediction of mineral de-

posits. The weights of evidence method is one of the most
commonly used methods for integration of evidential lay-
ers for predictive purposes (Bonham-Carter et al., 1988;
Agterberg 1989a, b; Agterberg and Bonham-Carter, 1990;
Bonham-Carter, 1994). Under the assumption of conditional
independency Eq. (11a to c) the weights of evidence method
gives the following logistic model for calculating posterior
probability

P [D|E∗

1E∗

2...E∗
n] =

1

1+e
−(W0+WE∗

1
+WE∗

2
+...+WE∗

n
)

(28)

whereW0 andWE∗ are weights as shown below

Wo = ln

(
P [D]

P [D̃]

)

WEi
= ln

(
P [Ei |D]

P [Ei |D̃]

)
,W

Ẽi
= ln

(
P [Ẽi |D]

P [Ẽi |D̃]

)
(29)

In order to compare the logistic model (28) and the new
model (12), we will show the association between the
weightsWE andW

Ẽ
shown in Eq. (29) and the singularity

indices(E) andα(Ẽ) in Eq. (13).
We can see from their definitions that the main differences

betweenWE , W
Ẽ

and α(E), α(Ẽ) are that the former in-
volveP [E|D̃], P [Ẽ|D̃] but the latter involve onlyP [E] and
P [Ẽ]. Since the latter do not involve any associations of pat-
terns and the complementary eventD̃, it is relatively easier
to calculate the singularity indicesα(E) andα(Ẽ) than the
weightsWE andW

Ẽ
. Otherwise, these two types of indices

carry the same type of information about the association of

patternsE, Ẽ and eventD as can be concluded from the fol-
lowing properties:

(1)WE = 0↔ α(E) = 2,W
Ẽ

= 0↔ α(Ẽ) = 2;

(2)WE > 0↔ α(E) < 2,W
Ẽ

> 0↔ α(Ẽ) < 2;

(3)WE < 0↔ α(E) > 2,W
Ẽ

< 0↔ α(Ẽ) > 2;

We just need to prove the first property (1) and the other
two properties can be proved similarly. For example, if
WE = 0, thenP [E|D] =P [E|D̃], which leads toP [E|D] =

P [E] so thatα(E) = 2. On the other hand, ifα(E) =

2, thenP [E|D] = P [E] so thatP [ED] = P [E]P [D] and
further, P [ED̃] = P [E] − P [ED] = P [E] − P [E]P [D] =

P [E]P [D̃], therefore,P [E|D̃] = P [E] and WE = 0. This
proves the first property (1) implying thatD andE are in-
dependent. The other two properties correspond to positive
correlation betweenD and E, and P [E|D] > P [E|D̃] or
P [E|D] > P [E] and negative correlation betweenD andE,
P [E|D] < P [E|D̃] or P [E|D] < P [E], respectively.

7 Application of information integration processes in
mineral resources assessment

7.1 Study area and data

To demonstrate the application of the new model (13), a case
study was chosen for prediction of locations for Sn mineral
deposits in the Gejiu mineral district, Yunnan, southwest-
ern China. The geology of the study area is illustrated in
Fig. 4. The study area (≈1688 km2) is mostly underlain by
a sequence of Paleozoic to Mesozoic sedimentary rocks (the
Gejiu and other formations) and igneous rocks, including Pa-
leozoic volcanic rocks and Mesozoic intrusive rocks. The
Gejiu batholith, which is located in the center of the Gejiu
district, is a key factor for Sn mineralization. The Gejiu
formation is hosted by limestone with minor dolomite and
is the main rock formation hosting most of the discovered
Sn deposits (Fig. 4). The main faults and folds in the east-
ern part of the study area have N–S and E–W orientations,
while the main faults and folds in its western parts are NE–
SW, NW–SE and E–W trending. The intersections of three
groups of fault systems are diagrammed in Fig. 5. These
fault systems control the general configuration of the min-
eralization and distribution of ore bodies in this area. The
main trend of the mineralization in the eastern area is in the
NNE–SSW orientation; however, the ore fields are concen-
trated along the intersections of NNE–SSW and E–W faults.
The mineral assemblages associated with the mineralization
include pyrrhotite, pyrite, cassiterite, galena, sphalerite and
arsenopyrite. The Sn ores also contain relatively high con-
centrations of the trace elements Pb, Zn, Cu, As, Sb, Bi, Au,
and Ag. More comprehensive descriptions of the geology,
geochemistry and mineralogy of the area can be found in
Qing et al. (2004) and Yu et al. (1988).
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 1 

 
Fig. 4 Simplified geology of Gejiu mineral district. Pink polygons distributed in 
the center of the study area stand for Gejiu Batholith of felsic intrusions, yellow 
polygons for Gejiu formation of limestone, black lines represent faults, white 
areas for other sedimentary rocks, and dots for Sn mineral deposits.  
 

Fig. 4. Simplified geology of Gejiu mineral district. Pink polygons
distributed in the center of the study area stand for Gejiu Batholith
of felsic intrusions, yellow polygons for Gejiu formation of lime-
stone, black lines represent faults, white areas for other sedimentary
rocks, and dots for Sn mineral deposits.

 
Fig. 5 Faults systems. Black lines represent faults. Blue circles stand for 6km 
buffer zones around intersections of three fault systems.  
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Fig. 5. Faults systems. Black lines represent faults. Blue circles
stand for 6 km buffer zones around intersections of three fault sys-
tems.

In the author’s previous studies, four factors related to
mineralization were identified according to a hydrothermal
mineral deposit genesis model; accordingly, four binary lay-
ers were constructed using various GIS and spatial analysis
techniques. These four layers are: (1) Gejiu formation of
carbonates (Gf) (Fig. 4); (2) the 6 km buffer zone around the
intersections of three groups of faults (Bf) (Fig. 5); (3) lo-
cal geochemical anomalies (La) delineated from concentra-
tion values of the elements Sn, As, Zn, Pb, Cu and Cd in
stream sediment samples (Fig. 6); and (4) regional geochem-
ical anomalies (Ra) delineated from values of Sn, As, Zn,
Pb, Cu and Cd in stream sediment samples (Fig. 7). More
detailed information about the definition of the four binary
layers can be found in Cheng et al. (2009). This paper will
use these four binary layers to calculate the posterior proba-
bility map according to relation (12) and to demonstrate the
processes of combining layers and the singularities of the
created posterior probability map.

 
Fig. 6 Local geochemical anomalies extracted from concentration val
elements Sn, As, Cu, Pb, Zn and Cd. First singularity index was ca
the concentration values

ues of 
lculated from 

 of each element and these singularity maps were 
combined by means of principal component analysis. The patterns in red are the 
binary patterns created from the score on the first component. Details can be 
found in Cheng et al. (2009). 
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Fig. 6. Local geochemical anomalies extracted from concentration
valelements Sn, As, Cu, Pb, Zn and Cd. First singularity index
was cathe concentration valuesues of lculated from of each element
and these singularity maps were combined by means of principal
component analysis. The patterns in red are the binary patterns cre-
ated from the score on the first component. Details can be found in
Cheng et al. (2009).

7.2 Results

Each information layer to be combined (binary patterns of
which are shown in Figs. 4 through 7) divides the study area
into two subclasses of reduced area that represent favorable
and unfavorable regions for predicting mineral deposits. If
we define a square of size 1× 1 km2 as the measuring unit,
the total study area occupies about 1688 units. There are a to-
tal of 11 units occupied by Sn mineral deposits, from which
the prior probability of a randomly chosen square from the
area containing mineral deposits can be estimated asP [D] =

0.0065. Similarly, one can calculate the number of units oc-
cupied by binary patterns and the number occupied by both
binary patterns and mineral deposits. Table 1 gives the results
obtained from the four binary maps Gf, Bf, La and Ra. The
second and third columns in Table 1 show the areas (number
of units) of the favorable patterns of each binary map and the
numbers of mineral deposits occurring in each of the patterns
(# points on pattern). From these two columns, one can cal-
culate the probability of patterns for each of the four binary
maps; for example, probability of Geijiu formationP [Gf] =

747/1688= 0.44 andP [G̃f] = 1−P [Gf] = 0.56, represent-
ing the probabilities that patterns exist on the Gejiu forma-
tion and the complementary event (on other rock types).
One can also calculate the probability that a unit area of a
given binary pattern contains mineral deposits, for example,
d = P [Gf|D] = 7/11= 0.64 and 1− d = P [G̃f|D] = 0.36;
these values represent, respectively, the conditional proba-
bilities of mineral deposits on and off the pattern Gf. From
these probabilities and conditional probabilities, one can cal-
culate the singularity indicesα(E) andα(Ẽ) for each binary
pattern; for example,α(Gf) = 2lnP [Gf|D]/lnP [Gf] = 1.11
andα(G̃f) = 2lnP [G̃f|D]/lnP [G̃f] = 3.46. The statistics for
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Table 1. Statistics obtained from each of the four layers of binary maps.

Area # WE s(WE) W
Ẽ

s(W
Ẽ

) C s(C) t-value α α(Ẽ) 1α

points αmax−αmin

Rock Type (Gf) 747 7 0.35 0.38 −0.40 0.49 0.75 0.63 1.2 1.11 3.46 2.35
Dist. to Inter. (Bf) 515 6.4 0.66 0.40 −0.52 0.47 1.18 0.61 1.92 0.91 4.79 3.88
Geochem. I (La) 188 8 1.91 0.36 −1.19 0.58 3.10 0.68 4.54 0.29 22.01 21.72
Geochem. II (Ra) 309 6 1.12 0.41−0.61 0.45 1.73 0.61 2.84 0.71 7.8 7.09

 
Fig. 7 Regional geochemical anomalies extracted by applying S-A 
filtering to the scores calculated from the first principal component 

fractal 
derived from 

logarithmic transformed concentration values of elements Sn, As, Cu, Pb, Zn and 
Cd. The patterns in red are the binary patterns created from the decomposed 
patterns by means of S-A method. Details can be found in Cheng et al. (2009). 
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Fig. 7. Regional geochemical anomalies extracted by applying S-A
filtering to the scores calculated from the first principal component
fractal derived from logarithmic transformed concentration values
of elements Sn, As, Cu, Pb, Zn and Cd. The patterns in red are the
binary patterns created from the decomposed patterns by means of
S-A method. Details can be found in Cheng et al. (2009).

other binary patterns are similarly calculated and are shown
in Table 1.

The other values shown in Table 1 are statistics used in
the weights of evidence method. Value ofs(W) stands for
standard deviation ofW and t-value is for Student’s statistic
value of the contrast of weightsC = WE −W

Ẽ
. The results in

Table 1 show that the four binary maps are all positively cor-
related withD. Among them, the local geochemical anoma-
lies (La) show the highest contrast of weights with t-value
(Student’s statistic)t = 4.54 (for calculation ofW,s(W), and
t-values ofC, see Bonham-Carter, 1994). The values of sin-
gularity indicesα(E) = 0.29< 2 andα(Ẽ) = 22.01> 2 also
imply that the singularity related to pattern La is strong. In
general, the ranges of singularity1α = αmax–αmin are all
positive which implies that all four layers are positively as-
sociated withD. In addition, the ranks of the ranges of sin-
gularity 1α are similar to the ranks of the t-values which
implies that the range of singularity can be used as a statis-
tic measuring the degree of correlation betweenD and the
patterns. Since all four map layers are associated with the
location ofD, these four layers must be combined in order to
create a posterior probability map that shows the best areas
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Fig. 8 Posterior probability map created by means of weights of evidence 
method applied to the four evidential layers in Figs. 4 to 7.   
 

Post Prob 

Fig. 8. Posterior probability map created by means of weights of
evidence method applied to the four evidential layers in Figs. 4 to
7.

for occurrences of mineral deposits. Using model (12), four
layers of binary maps were combined; the posterior proba-
bility map that emerged is shown in Fig. 8. The areas with
high posterior probability values contain most of the known
mineral deposits; some areas with high posterior probabili-
ties in which mineral deposits have not yet been found can
be considered target areas for further exploration.

To validate the multifractality of the posterior probabil-
ity map, one can apply various multifractal modeling tech-
niques. In this case study, since we only use four evi-
dence layers which corresponding to four partition gener-
ation, the results are far from a fully converged multifrac-
tal field. Therefore, it is not possible to validate the multi-
fractality of the posterior probability map in Fig. 8. In fur-
ther study more evidence layers could be added to gener-
ate a more realistic multifractal posterior probability map,
especially to show those areas with high posterior proba-
bility but without known mineral deposits that remain to
be discovered. In order to display the frequency distribu-
tion of the posterior probability on Fig. 8, first, the value of
posterior probability was transformed by logarithmic trans-
formation (natural logs). Next equal interval classification
was applied to the transformed posterior probability val-
ues. All together, 21 classes were determined: the starting
class with mid-point value of−7.1289, the last class with
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Fig. 9 Relationship between posterior probability P[D|G] and  the probability of the 
area (G) with cutoff value of posterior probability. Fig. 9. Relationship between posterior probabilityP [D|G] and the
probability of the area (G) with cutoff value of posterior probability.

mid-point value of−1.4354 and each class interval equal to
0.299. Cumulative frequencies of map units in each class
were calculated and these values are plotted in Fig. 9. In
Fig. 9 the posterior probability corresponding to the mid-
point value of each class, denoted asP [D|G] and the prob-
ability of the cumulative number of map units occupying
these classes, denoted asP [G], are plotted. The result gener-
ally shows a power-law relationship between the cumulative
area and the mid-point class value of posterior probability,
P [D|G] = 0.0009P [G]

−1.4653. Since the posterior probabil-
ity P [D|G] is the value at boundary ofG, the average poste-
rior probability inG should also follow power-law relations
with P [G] with exponent−0.4653 which gives the singu-
larity α/2= 0.4653 andα = 1.08< 2 implying a general en-
richment of posterior probability at the peaks when the size
of areaG decreases.

8 Conclusions and discussion

Multiplicative cascade processes are non-linear processes
commonly observed in geoscience that can create end prod-
ucts that follow multifractal distribution with multi-scale sin-
gularities. Singularity is a natural property of mineralization,
which involves enrichment and depletion of ore and associ-
ated elements in the Earth’s crust as well as in other relevant
secondary media such as tills, soils, lake and stream sedi-
ments, humus and vegetation surrounding mineral deposits.
Mapping such singularities is an effective way to delineate
areas favorable for occurrence of mineral deposits and esti-
mate the likelihood of the presence of undiscovered mineral
resources in a given area.

To support decision-making and to map areas for predic-
tion of mineral deposits, multiple layers of information that
are positively associated with the location of mineral deposits
must often be combined. This information integration pro-
cess can be considered as a type of multiplicative cascade
process that updates the posterior probability by combining
evidence layers. The model proposed in this paper provides
an alternative log-linear relationship associating conditional

probability of points and evidence layers with singularity in-
dices as coefficients, which quantify degree of spatial corre-
lation between binary patterns and location point events (e.g.,
mineral deposits). This feature is important for three reasons:
first, it links the concepts and methods of multifractal model-
ing developed in nonlinear processes in geophysics and infor-
mation integration modeling commonly employed for spatial
decision support. Secondly, the newly developed log-linear
model can not only be used as an alternative model for in-
formation integration but also provides relatively simpler in-
dices in comparison with the weights of evidence method.
This is because the singularity indices involved in the new
model do not require calculation of probabilities and con-
ditional probabilities related to complementary point events.
In addition, as the end product of a multiplicative cascade
process, the posterior probability may possess multifractality
with singularities that can be further investigated for char-
acterization of the spatial distribution of the point events.
Moreover, the results and formulation developed in the cur-
rent research might be useful for further study of more gen-
eralized multiplicative cascade processes. It must be kept
in mind that a large number of evidential layers are usually
needed to create posterior probability maps that are represen-
tative of multifractal fields. However, when the number of bi-
nary patterns increases, the dependency among the patterns
and between patterns and point events becomes inevitable.
Therefore, a more general model overcoming these depen-
dency problems has to be developed.
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