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Abstract. This review is a synthesis of work spanning the
last 25 yr. It is largely based on the use of climate networks
to identify climate subsystems/major modes and to subse-
quently study how their collective behavior explains decadal
variability. The central point is that a network of coupled
nonlinear subsystems may at times begin to synchronize.
If during synchronization the coupling between the subsys-
tems increases, the synchronous state may, at some coupling
strength threshold, be destroyed shifting climate to a new
regime. This climate shift manifests itself as a change in
global temperature trend. This mechanism, which is consis-
tent with the theory of synchronized chaos, appears to be a
very robust mechanism of the climate system. It is found in
the instrumental records, in forced and unforced climate sim-
ulations, as well as in proxy records spanning several cen-
turies.

1 Introduction

The flow chart in Fig. 1 provides the outline of this review.
The story starts in the mid 1980s when new and exciting ap-
proaches to nonlinearly analyze time series made their ap-
pearance in atmospheric sciences. At that time very few in
the atmospheric sciences community had heard terminology
such as fractals, chaos theory, strange attractors, and the like.
Soon reports of fractality and low dimensionality in climate
records and other geophysical data begun to surface. These
climate records represented dynamics over different time
scales ranging from very long (thousands of years; Nicolis
and Nicolis, 1984) to very short (hours; Tsonis and Elsner,

1988). Virtually every report suggested underlying attractors
of dimensions between 3 and 8. These early results suggested
that climate variability may indeed be described by relatively
few differential equations. This resulted in both enthusiasm
and hope that climate variability may be tamed after all, and
in fierce opposition. Fortunately, this tug of war did not elim-
inate interest in this new theory; rather it led to a deeper un-
derstanding of the nonlinear character of nature and to new
insights about the properties of the climate system. This re-
view is a small part of what we have learned so far and it
largely draws from our work over the years.

The initial opposition to those dimension estimates
seemed to be that in all these studies the sample size was
simply too small. While this issue has been debated exten-
sively (Smith, 1988; Nerenberg and Essex, 1990; Tsonis,
1992; Tsonis et al., 1994), it still remains contentious. In a
sense, it is näıve to imagine that our climate system (a spa-
tially extended system of infinite dimensional state space) is
described by a grand attractor let alone a low dimensional
attractor. If that were true, then all observables representing
different processes should have the same dimension, which
is not likely the case based on the myriad of reported dimen-
sions. In Tsonis and Elsner (1989), it was suggested that if
low dimensional attractors exist they are associated with sub-
systems each operating at different space and/or time scales.
In his study on dimension estimates, Lorenz (1991) concurs
with the suggestion of Tsonis and Elsner (1989). These sub-
systems may be nonlinear and exhibit a variety of complex
behaviors. All subsystems are connected with each other,
as in a web, with various degrees of connectivity. Accord-
ingly, any subsystem may transmit information to another

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



560 A. A. Tsonis and K. L. Swanson: On the origins of decadal climate variability

Fig. 1.Flow chart of the outline of this review.

subsystem thereby perturbing its behavior. This information
plays the role of an ever present external noise, which per-
turbs the subsystem and, depending on the connectivity of a
subsystem to another subsystem, the effect can be dramatic
or negligible. Subsystems with weak connectivities will be
approximately independent and as such they may exhibit low
dimensional chaos. It is also possible that the connectivity
between subsystems may vary in time and this effect may
dictate the variability of the climate system.

Thus, evidence of low dimensional chaos leads to the no-
tion of climate subsystems. Given this, the question arises.
If subsystems exist in the climate system what are they and
what physics can we infer from them?

2 Searching for subsystems

Answers on the nature, geographical basis, and physical
mechanisms underlying these subsystems are provided by re-
cent developments in graph theory and networks. Networks
relate to the underlying topology of complex systems with
many interacting parts. They have found many applications
in many fields of sciences. In the interest of completeness, a
short introduction to networks is offered next.

A network is a system of interacting agents. In the litera-
ture an agent is called a node. The nodes in a network can be
anything. For example, in the network of actors, the nodes are

Fig. 2. Illustration of a regular, a small-world and a random network
(after Watts and Strogatz, 1998).

actors that are connected to other actors if they have appeared
together in a movie. In a network of species, the nodes are
species that are connected to other species they interact with.
In the network of scientists, the nodes are scientists that are
connected to other scientists if they have collaborated. In the
grand network of humans, each node is an individual, which
is connected to people he or she knows. There are four basic
types of networks.

a. Regular (ordered) networks

These networks are networks with a fixed number of
nodes, each node having the same number of links con-
necting it in a specific way to a number of neighboring
nodes (Fig. 2, left panel). If each node is linked to all
other nodes in the network, then the network is a fully
connected network. When the number of links per node
is high, regular networks have a high (local) clustering
coefficient. In this case loss of a number of links does
not break the network into non-communicating parts. In
this case the network is stable, which may not be the
case for regular networks with small local clustering.
Also, unless networks are fully connected, they have a
large diameter. The diameter of a network is defined
as the maximum shortest path between any pair of its
nodes. It relates to the characteristic path length, which
is the average number of links in the shortest path be-
tween two nodes. The smaller the diameter, the easier is
the communication in the network.

b. Classical random networks

In these networks the nodes are connected at random
(Fig. 2, right panel). In this case the degree distribu-
tion is a Poisson distribution (the degree distribution,
pk, gives the probability that a node in the network is
connected tok other nodes). The problem with these
networks is that they have very small clustering coeffi-
cient and thus are not very stable. Removal of a num-
ber of nodes at random, may fracture the network into
non-communicating parts. On the other hand, they are
characterized by a small diameter. Far away nodes can
be connected as easily as nearby nodes. In this case in-
formation may be transported all over the network much
more efficiently than in ordered networks. Thus, random
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networks exhibit efficient information transfer but they
are not stable.

c. Small-world networks

In nature we should not expect to find either very reg-
ular or completely random networks. Rather we should
find networks that are efficient in processing informa-
tion and at the same time are stable. Work in this direc-
tion led to a new type of network, which was proposed
twelve years ago by the American mathematicians Dun-
can Watts and Steven Strogatz and is called small-world
network (Watts and Strogatz, 1998). A small-world net-
work is a superposition of regular and classical random
graphs. Such networks exhibit a high degree of local
clustering but a small number of long-range connec-
tions making them as efficient in transferring informa-
tion as random networks. Those long-range connections
do not have to be designed. A few long-range connec-
tions added at random will do the trick (Fig. 2, middle
panel). The degree distribution of small-world networks
is also a Poisson distribution.

d. Networks with a given degree distribution.

The small-world architecture can explain phenomena
such as the six-degrees of separation (most people are
friends with their immediate neighbors but we all have
one or two friends a long way away), but it really is not
a model found often in the real world. In the real world,
the architecture of a network is neither random nor
small-world, but rather comes in a variety of distribu-
tions such as truncated power-law distributions, Gaus-
sian distributions, power-law distributions, and distribu-
tions consisting of two power-laws separated by a cut-
off value (for a review see Strogatz, 2001). The most
interesting and common of such networks are the so-
called scale-free networks. Consider a map showing an
airline’s routes. This map has a few hubs connecting
with many other points (super nodes) and many points
connected to only a few other points, a property associ-
ated with power law distributions. Such a map is highly
clustered, yet it allows motion from a point to another
far away point with just a few connections. As such,
this network has the property of small-world networks,
but this property is not achieved by local clustering and
a few random connections. It is achieved by having a
few elements with a large number of links and many el-
ements having very few links. Thus, even though they
share the same property, the architecture of scale-free
networks is different than that of small-world networks.
Such inhomogeneous networks have been found to per-
vade biological, social, ecological, and economic sys-
tems, the internet, and other systems (Albert et al., 1999;
Liljeros et al., 2001; Jeong et al., 2001; Pastor-Satorras
and Vespignani, 2001; Bouchaud and Mezard, 2000;
Barabasi and Bonabeau, 2003). These networks are re-

ferred to as scale-free because they show a power-law
distribution of the number of links per node. Lately, it
was also shown that, in addition to the power-law de-
gree distribution, many real scale-free networks con-
sist of self-repeating patterns on all length scales (Song
et al., 2005). These properties are very important be-
cause they imply some kind of self-organization within
the network. Scale-free networks are not only efficient
in transferring information, but due to the high degree
of local clustering they are also very stable (Barabasi
and Bonabeau, 2003). Because there are only a few su-
per nodes, chances are that accidental removal of some
nodes will not include the super nodes. In this case the
network would not become disconnected. This is not the
case with weakly connected regular or random networks
(and to a lesser degree with small-world networks),
where accidental removal of the same percentage of
nodes makes them more prone to failure (Barabasi and
Bonabeau, 2003).

The topology of the network can reveal important and
novel features of the system it represents (Albert and
Barabasi, 2002; Strogatz, 2001; da F. Costa et al., 2007). One
such feature is communities (Newman and Girvan, 2004).
Communities represent groups of densely connected nodes
with only a few connections between groups. It has been
conjectured that each community represents a subsystem,
which operates relatively independent of the other communi-
ties (Arenas et al., 2006). Thus, identification of these com-
munities can offer useful insights about dynamics. In addi-
tion, communities can be associated to network functions
such as in metabolic networks where certain groups of genes
have been identified that perform specific functions (Holme
et al., 2003; Guimera and Amaral, 2005). Recently, concepts
from network theory have been applied to climate data or-
ganized as networks with impressive results (Tsonis et al.,
2006, 2007, 2008; 2011; Tsonis and Swanson, 2008; Ya-
masaki et al., 2008; Gozolchiani et al., 2008; Swanson and
Tsonis, 2009; Elsner et al., 2009).

Figure 3 is an example of a climate network showing the
area weighted connectivity (number of edges) at each ge-
ographic location for the 500 hPa height field. More accu-
rately it shows the fraction of the total global area that a
point is connected to. This is a more appropriate way to
show the architecture of the network because the network is
a continuous network defined on a sphere (see Tsonis et al.,
2006 for details). These data are derived from the global Na-
tional Center for Environmental Prediction/ National Center
for Atmospheric Research (NCEP/NCAR) atmospheric re-
analysis data set (Kistler et al., 2001). In Fig. 3 we observe
two very interesting features. In the tropics it appears that
all nodes possess more or less the same (and high) num-
ber of connections, which is a characteristic of fully con-
nected networks. In the extratropics it appears that certain
nodes possess more connections than the rest, which is a
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Fig. 3. Total number of links (connections) at each geographic location. More accurately it shows the fraction of the total global area that a
point is connected to. This is a more appropriate way to show the architecture of the network because the network is a continuous network
defined on a sphere. The uniformity observed in the tropics indicates that each node possesses the same number of connections. This is
not the case in the extratropics where certain nodes possess more links than the rest. The definition of a link is based on cross-correlations
at lag zero (r) between the time series of any pair of points (nodes). Note that since the values are monthly anomalies, there is very little
autocorrelation in the time series. A pair is considered as connected if the absolute value of their cross-correlation|r| ≥ 0.5. This criterion
is based on parametric and non-parametric significance tests. According to the t-test, a value ofr = 0.5 is statistically significant above the
99 % level. In addition, randomization experiments where the values of the time series of one node in a pair are scrambled and then are
correlated to the unscrambled values of the time series of the other node indicate that a value ofr = 0.5 will not arise by chance. The choice
of r = 0.5 while it guarantees statistical significance is somewhat arbitrary. We find that while other values might affect the connectivity
structure of the network, the effect of different correlation thresholds (between 0.4 and 0.6) does not affect the conclusions. Obviously, as
the threshold|r| → 1 we end up with a random network and asr → 0 we remain with just one fully connected community. The use of the
correlation coefficient to define links in networks is not new. Correlation coefficients have been used to successfully derive the topology of
gene expression networks (Farkas et al., 2003) and to study financial markets (Mantegna, 1999). Other ways to define a link exist. Donges et
al. (2009a, b), for example, have used the mutual information instead when they construct the networks. We believe that any way to define
a link is adequate if it delineates features of the system. In our case it is consistent with the known features in the climate systems, such as
ENSO, NAO, PNA, etc.

characteristic of scale-free networks. In the Northern Hemi-
sphere, we clearly see the presence of regions where such
super nodes exist in China, North America and Northeast
Pacific Ocean. Similarly, several super nodes are visible in
the Southern Hemisphere. These differences between tropics
and extratropics have been delineated in the corresponding
degree distributions, which suggest that indeed the extratrop-
ical network is a scale-free network characterized by a power
law degree distribution (Tsonis et al., 2006). As is the case
with all scale-free networks, the extratropical network is also
a small-world network (Tsonis et al., 2006).

An interesting observation in Fig. 3 is that super nodes
may be associated with major teleconnection patterns. For
example, the super nodes in North America and North-
east Pacific Ocean are located where the well-known Pacific

North America (PNA) pattern (Wallace and Gutzler, 1981) is
found. In the Southern Hemisphere, we also see super nodes
over the southern tip of South America, Antarctica and South
Indian Ocean that are consistent with some of the features of
the Pacific South America (PSA) pattern (Mo and Higgins,
1998). Interestingly, no such super nodes are evident where
the other major pattern, the North Atlantic Oscillation (NAO)
(Thompson and Wallace, 1998; Pozo-Vazquez et al., 2001;
Huang et al., 1998) is found. This, however, does not indi-
cate that NAO is an insignificant feature of the climate sys-
tem. Since NAO is not strongly connected to the tropics, the
high connectivity of the tropics with other regions is mask-
ing NAO out (Tsonis et al., 2008). Indeed if we consider only
the extratropics the resulted network is dominated by NAO
(Fig. 4).
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Fig. 4.Same as Fig. 3 but only for the extratropics (north of 30◦).

This is also indicated by the community structure of the
500 hPa network (Fig. 3) shown in Fig. 5 (for details see
Tsonis et al., 2011). The total number of communities is
47. Many of these communities, however, consist of very
few points in the boundaries between a small number of
dominant communities (think of a country whose population
is dominated by two races but also includes small groups
of other races). Evidently the effective number of commu-
nities is, arguably, four (delineated as purple, blue, green,
and yellow-red areas). We observe that three of the effective
four communities correspond to a latitudinal division 90◦ S–
30◦ S, 30◦ S–30◦ N, and 30◦ N–90◦ N. This three-zone sepa-
ration is not a trivial separation into Northern Hemisphere
winter, Southern Hemisphere summer, and the rest of the
world, because when we repeat the analysis with yearly aver-
ages rather than seasonal values, we also see evidence of this
three-zone separation. This separation is consistent with the
transition from a barotropic atmosphere (where pressure de-
pends on density only; appropriate for the tropics-subtropics)
to a baroclinic atmosphere (where pressure depends on both
density and temperature; appropriate for higher latitudes).
Another possibility is that it reflects the well known three-
zone distribution of variance of the surface pressure field.
Within the third community (green area) another commu-
nity (yellow-red) is embedded. This community is consistent
with the presence of major atmospheric teleconnection pat-
terns such as the Pacific North America (PNA) pattern and
the North Atlantic Oscillation (NAO) (Wallace and Gutzler,
1981; Barnston and Livezey, 1987). We note here that NAO
(which has been lately suggested of being a three-pole pat-
tern rather than a dipole; Tsonis et al., 2008) and AO (Arctic
Oscillation; Thompson and Wallace, 1998) are often inter-
preted as manifestations of the same dynamical mode, even
though in some cases more physical meaning is given to
NAO (Ambaum et al., 2001). In any case, here we do not

Fig. 5. Community structure of the network in Fig. 3. The number
below the shading key indicates the total number of communities
(see text for more details).

make a distinction between NAO and AO. We note that sim-
ilar results are obtained for other observed fields (such as the
surface air temperature and sea level pressure, where influ-
ences of ENSO and PDO are present) as well as in model
simulated fields (Tsonis et al., 2011). We note that in spa-
tially extended systems it is possible that spatial correlation
may produce spurious small-world networks (Bialonski et
al., 2010; Hlinka et al., 2012; Paluš et al., 2011). For our
climate networks, we have shown (Tsonis et al., 2011) that
the network structure derived from spatio-temporal surro-
gate data on a sphere, which are spatially correlated with a
decorrelation distance of 3000 km, is not consistent with the
network structure of the observed fields. This provides confi-
dence that our networks and their structures are not an artifact
of spatial correlations

In summary, the results outlined in this section suggest
that climate networks are characterized by supernodes and
a small number of communities, which relate to major tele-
connection patterns/climate modes. Having established this,
we proceed with our discovery of a mechanism for climate
shifts based on the interaction of major climate modes.

3 Interaction between subsystems

One of the most important events in recent climate his-
tory is the climate shift in the mid-1970s (Graham, 1994).
In the Northern Hemisphere 500-hPa atmospheric flow, the
shift manifested itself as a collapse of a persistent wave-3
anomaly pattern and the emergence of a strong wave-2 pat-
tern. The shift was accompanied by sea-surface temperature
(SST) cooling in the central Pacific and warming off the coast
of western North America (Miller et al., 1994). The shift
brought sweeping long-range changes in the climate of the
Northern Hemisphere. Incidentally, after the dust settled, a
new long era of frequent El Niño events superimposed on
a sharp global temperature increase begun. While several
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possible triggers for the shift have been suggested and in-
vestigated (Graham, 1994; Miller et al., 1994; Graham et al.,
1994), the actual physical mechanism that led to this shift is
not clear. Understanding the dynamics of such phenomena is
essential for our ability to make useful prediction of climate
change. A major obstacle to this understanding is the extreme
complexity of the climate system, which makes it difficult to
disentangle causal connections leading to the observed cli-
mate behavior.

First a network from four major climate indices was con-
structed. The indices represent the Pacific Decadal Oscilla-
tion (PDO), the North Atlantic Oscillation (NAO), the El
Niño/Southern Oscillation (ENSO), and the North Pacific In-
dex (NPI) (Barnston and Livezey, 1987; Hurell, 1995; Man-
tua et al., 1997; Trenberth and Hurrell, 1994). These indices
represent regional but dominant modes of climate variabil-
ity, with time scales ranging from months to decades. NAO
and NPI are the leading modes of surface pressure variabil-
ity in northern Atlantic and Pacific Oceans, respectively, the
PDO is the leading mode of SST variability in the north-
ern Pacific and ENSO is a major signal in the tropics. To-
gether these four modes capture the essence of climate vari-
ability in the Northern Hemisphere. Each of these modes is
assumed to represent a subsystem involving different mech-
anisms over different geographical regions. Indeed, some of
their dynamics have been adequately explored and explained
by simplified models, which represent subsets of the com-
plete climate system and are governed by their own dynamics
(Elsner and Tsonis, 1993; Schneider et al., 2002; Marshall et
al., 2001; Suarez and Schopf, 1998). For example, ENSO has
been modeled by a simplified delayed oscillator in which the
slower adjustment time scales of the ocean supply the system
with the memory essential to oscillation. Monthly-mean val-
ues in the interval 1900–2000 are available for all indices
(http://jisao.washington.edu/datasets, for NAO, PDO and
El Nino, http://climatedataguide.ucar.edu/guidance/north-
pacific-index-npi-trenberth-and-hurrell, for NPI).

An important aspect in the collective behavior of cou-
pled nonlinear oscillators is synchronization and coupling
strength. The theory of synchronized chaos predicts that in
many cases when such systems synchronize, an increase
in coupling between the oscillators may destroy the syn-
chronous state and alter the system’s behavior (Heagy et al.,
1995; Pecora et al., 1997). It should be noted that in those
studies, coupling strength is determined by a parameter that
is allowed to increase and the focus is in the perfect syn-
chronization among the modes (i.e., the cross-correlation be-
tween outputs of the synchronized coupled systems is one),
rather than weaker types of synchronization, such as phase
synchronization (Boccaletti et al., 2002; Maraun and Kurths,
2005) or clustered synchronization (Zhou and Kurths, 2006),
which are also important in climate interactions. In view
of this theory, we investigated whether our climate modes
synchronize and when they do how synchronization relates
to coupling strength between the modes. It is vital to note

that synchronization and coupling are not interchangeable;
for example, it is trivial to construct a pair of coupled sim-
ple harmonic oscillators whose displacements are in quadra-
ture (and hence perfectly uncorrelated), but whose phases are
strongly coupled (Vanassche et al., 2003). In our case, syn-
chronization is defined from the sum of cross-correlations of
all pairs in the network over a sliding time window, and cou-
pling is measured by how well the phase between pairs of
climate modes is predicted using information about the cur-
rent phase (Tsonis et al., 2007). Note that according to our
definition of coupling strength, if the modes are perfectly
synchronized, their states are equivalent and thus coupling
strength cannot increase further. Since our network of modes
represents signals of a complex physical system where noise
is also present, synchronization cannot be perfect but statisti-
cally significant (for details see Tsonis et al., 2007). As such
it is possible for the modes to enter into a synchronized state
in a period when the coupling strength is decreasing and that
desynchronization may not happen when coupling strength
is maximum.

The results from the observations are summarized in
Fig. 6. This figure shows the yearly anomaly values of
global temperature (blue negative anomalies, red positive
anomalies). The black solid line is a smoothed version of
this record. It is evident from the smoothed version that on
decadal time scales there are times when the global tem-
perature trend is shifting from negative to positive and vice-
versa. These shifts are superimposed on a low frequency sig-
nal known as global warming. Here we are not interested on
the origins of the low frequency signal. Rather we are in-
terested in the departures from this signal over decadal time
scales. The part of the black line that is colored yellow indi-
cates that the four climate modes are synchronized during a
period when the coupling between the modes isnot increas-
ing. The part colored green indicates periods when the modes
are synchronized and the coupling is increasing. Thus, we see
that the network synchronized six times in the periods 1908–
1913, 1921–1925, 1932–1943, 1952–1957, 1975–1979, and
1998–2003. In the periods 1921–1925, 1932–1938, 1952–
1957 synchronization is not associated with an increasing
coupling strength and no change in the temperature trend
is taking place. However, in the periods 1908–1913, 1939–
1943, 1975–1979, and 1998–2003 synchronization is associ-
ated with an increase in coupling strength. As the modes keep
on synchronizing and the coupling strength keeps on increas-
ing, at some coupling threshold the synchronized state is de-
stroyed and climate shifts into a new state characterized by
a reversal in global temperature trend. This mechanism ap-
pears to be an intrinsic mechanism of the climate system as it
is found in both control and forced climate simulation (Tso-
nis et al., 2007; Wang et al., 2009). It also appears to be a very
robust mechanism. In all 13 synchronization events found in
the observations and model simulations, once the modes be-
gin to synchronize while the coupling is increasing, desyn-
chronization and the impeding shift happen at some coupling
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Fig. 6. Summary of synchronization events, coupling between the modes during these events, and climate shifts. See text for details.

strength threshold. Due to noise/uncertainties in the data,
synchronization cannot be perfect and this threshold is not
always the same or always maximum at desynchronization.
Once the modes are desynchronized, the coupling may con-
tinue to increase as the modes may fall into phase with each
other. This is consistent with the general theory of synchro-
nized chaos where coupling strength may keep on increasing
after desynchronization. No shift ever occurred when during
the synchronous state the coupling strength was decreasing.
Lately Tsonis and Swanson (2011) extended their analysis
to consider proxy data for climate modes going back sev-
eral centuries. While noise in the proxy data in some cases
masks the mechanism, it was found that significant coher-
ence between both synchronization and coupling and global
temperature exists. These results provide further support that
the mechanism discussed here for climate shifts is a robust
feature of the climate system.

The above results refer to the collective behavior of the
four major modes used in the network. As such they do
not offer insights on the specific details of the mechanism.
For example, do small distance values (strong synchroniza-
tion) result from all modes synchronizing or from a subset of
them? When the network is synchronized, does the coupling
increase require that all modes must become coupled with
each other? To answer these questions, Wang et al. (2009)
split the network of four modes into its six pair components
and investigated the contribution of each pair in each syn-
chronization event and in the overall coupling of the network.
It was found that one mode is behind all climate shifts. This
mode is the NAO. This North Atlantic mode is without ex-
ception the common ingredient in all shifts and when it is
not coupled with any of the Pacific modes no shift ensues.
In addition, in all cases where a shift occurs NAO is neces-
sarily coupled to north Pacific. In some cases it may also be

coupled to the tropical Pacific (ENSO) as well, but in none
of the cases is NAO only coupled to ENSO. Thus, results in-
dicate that not only is NAO the instigator of climate shifts
but that the likely evolution of a shifts has a path where the
north Atlantic couples to north Pacific, which in turn couples
to the tropics. Solid dynamical arguments and past work of-
fer a concrete picture of how the physics may play out. NAO
with its huge mass re-arrangement in north Atlantic affects
the strength of the westerly flow across mid-latitudes. At the
same time through its twin, the arctic Oscillation (AO), it im-
pacts sea level pressure patterns in the northern Pacific. This
process is part of the so-called intrinsic mid-latitude Northern
Hemisphere variability (Vimont et al., 2001, 2003). Then this
intrinsic variability through the seasonal footprinting mech-
anism (Vimont et al., 2001, 2003) couples with equatorial
wind stress anomalies, thereby acting as a stochastic forcing
of ENSO. This view is also consistent with a recent studies
showing that PDO modulates ENSO (Gershunov and Bar-
nett, 1998; Verdon and Franks, 2006). Another possibility
of how NAO couples to north Pacific may be through the
five lobe circumglobal waveguide pattern (Branstator, 2002).
It has been shown that this waveguide pattern projects onto
NAO indices and its features contribute to variability at lo-
cations throughout the Northern Hemisphere. Finally, North
Atlantic variations have been linked to Northern Hemisphere
mean surface temperature multidecadal variability through
redistribution of heat within the northern Atlantic with the
other oceans left free to adjust to these Atlantic variations
(Zhang et al., 2007)1. Thus, NAO, being the major mode of
variability in the northern Atlantic, impacts both ENSO vari-

1 In Elsner (2007) it is shown that global temperature Granger
causes (leads) North Atlantic SST. It may be that the discrepancy
between these two studies lies in the bi-directionality between the
two variables, which is often the case in Granger causes.
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ability and global temperature variability. Recently, a study
has shown how ENSO with its effects on PNA can, through
vertical propagation of the Rossby waves influence the lower
stratosphere and how in turn the stratosphere can influence
NAO through downward progression of Rossby wave (In-
eson and Scaife, 2009). These results coupled with our re-
sults suggest the following 3-D super-loop: NAO→ PDO→

ENSO→ PNA → stratosphere→ NAO, which captures the
essence of decadal variability in the Northern Hemisphere
and possibly the globe.

This co-variability of climate modes and its influence on
global temperature has recently been confirmed by a differ-
ent approach. Wyatt et al. (2011) analyzed the lagged covari-
ance structure of a network of climate indices and discov-
ered the so called stadium wave; a sequence of lagged at-
mospheric and oceanic teleconnections leading to Northern
Hemisphere temperature reversals every about 30 yr. Lately,
Wang et al. (2012) investigate whether the collective role of
these modes is extended within a regime, i.e., to shorter time
scales. They applied nonlinear prediction in order to assess
directional influences in the climate system. They showed
evidence that input from four major climate modes from the
Atlantic and Pacific improves the prediction of global tem-
perature and thus these modes Granger cause global temper-
ature. Moreover, they found that this causality is not a result
of a particular mode dominating but a result of the nonlinear
collective behavior in the network of the four modes.

4 Conclusions

The above synthesis describes some new approaches that
have been applied lately to climate data. The findings pre-
sented here and in the references may settle the issue of di-
mensionality of climate variability over decadal scales, as
they support the view that over these scales, climate collapses
into distinct subsystems whose interplay dictates decadal
variability. At the same time these results provide clues as
to what these subsystems might be. As such, while weather
may be complicated, climate may be complex but not com-
plicated. Moreover, it appears that the interaction between
these subsystems may be largely responsible for the observed
decadal climate variability. A consequence of these results is
that a dynamical reconstruction directly from a small num-
ber of climate modes/subsystems may be attempted to ex-
tract differential equations, which model the network of ma-
jor modes. Such an approach may provide an alternative and
direct window to study decadal variability in climate. Work
in this area is in progress and will be reported in the future
elsewhere.
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