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Abstract. Despite the tremendous progress that has beeperature and wind components at typical model levels are
made in data assimilation (DA) methodology, observing sys-increased by about 1.5 times when the number of eigenvec-
tems that reduce observation errors, and model improvetors is doubled. We have proposed four different calibration
ments that reduce background errors, the analyses producethemes to compensate for the missing trailing eigenvectors.
by the best available DA systems are still different from the Results show that the method with calibration for a small
truth. Analysis error and error covariance are important sincenumber of eigenvectors cannot pick up the observation im-
they describe the accuracy of the analyses, and are directlgacts over the regions with fewer observations as well as a
related to the future forecast errors, i.e., the forecast qualitypenchmark with a large number of eigenvectors, but proper
In addition, analysis error covariance is critically important calibrations do enhance and improve the impact signals over
in building an efficient ensemble forecast system (EFS). regions with more data.

Estimating analysis error covariance in an ensemble-based When compared with the observation locations, the
Kalman filter DA is straightforward, but it is challenging method generally captures the OIS over regions with more
in variational DA systems, which have been in operation atobservation data, including satellite data over the southern
most NWP (Numerical Weather Prediction) centers. In thisoceans. Over the tropics, some observation impacts may be
study, we use the Lanczos method in the NCEP (the Nationamissed due to the smaller background errors specified in the
Centers for Environmental Prediction) Gridpoint Statistical GSI, which is not related to the method. It is found that a
Interpolation (GSI) DA system to look into other important large number of eigenvectors are needed to retrieve impact
aspects and properties of this method that were not exploitedignals that resemble the banded structures from satellite ob-
before. We apply this method to estimate the observation imservations, particularly over the tropics. Another benefit from
pact signals (OIS), which are directly related to the analy-the Lanczos method is that the dominant eigenvectors can be
sis error variances. It is found that the smallest eigenvaluaused in preconditioning the conjugate gradient algorithm in
of the transformed Hessian matrix converges to one as théhe GSI to speed up the convergence.
number of minimization iterations increases. When more ob-
servations are assimilated, the convergence becomes slower
and more eigenvectors are needed to retrieve the observation
impacts. It is also found that the OIS over data-rich regionsl Introduction

can be represented by the eigenvectors with dominant eigen- )
values. In recent years, there have been many active research and

puted due to computational expense, the OIS is severely ur-D-Var (Derber, 1987; Rabier et al., 2000) and ensem-
derestimated, and the analysis error variance is consequentfjle Kalman filters (EnKFs) (Bishop et al., 2001; Anderson,

overestimated. It is found that the mean OIS values for tem2001; Whitaker and Hamill, 2002; Tippett et al., 2003; Zu-
panski, 2005; Whitaker et al., 2007; Kalnay et al., 2007;
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Szunyogh et al., 2008). More observations, more accuratat NWP centers. A recent description and comparison about
observing systems, and the improved DA systems havéiow analysis error covariance is being used in ensemble ini-
played key roles in providing more accurate initial condi- tial perturbation techniques are given in Tables 1 and 2 in
tions for numerical weather prediction (NWP) models. TheseWei et al. (2008).
developments have improved the weather forecasts signif- There have been several efforts to estimate analysis error
icantly, particularly over the short and medium ranges. Invariance and covariance outside EnKF. For example, Buizza
addition, there has also been tremendous progress in NWEt al. (2005) suggested that the spread of initial states of three
model development, with more accurate physics parameterieenters (NCEP, ECMWF and CMC) could be considered as
zation schemes and increased computing power, which pea crude lower-bound estimate of the analysis error variance.
mits the use of higher resolution forecast models. In spite ofSwanson and Roebber (2008) used the NCEP and ECMWF
all this progress in observing systems that reduces the obreanalysis data, and suggested that the reanalysis difference
servation errors and in model improvement that reduces theould be considered as a “shadow” of the analysis error. They
background errors, the analyses produced by the best avaifound that the analysis difference contains certain aspects of
able DA systems are still quite different from the true state. the true flow-dependent analysis error and has significant im-
Analysis error and error covariance are important for anypact on the short-time forecast skills in downstream regions.
DA system since they describe the accuracies of the analysiSimilarly, Langland et al. (2008) looked at the differences
fields generated by the DA system. The analysis fields frombetween the NCEP and FNMOC analyses from 1 January to
DA are supposed to be the best possible estimates of natur80 June 2007. The authors found that the differences and root
They are used as the initial states for NWP weather forecastsnean of the squared daily differences in 500 hPa temperature
The associated error and error covariance are also importarre closely related to the distribution of radiosonde observa-
because they are related to the future forecast error and errdions. The large differences between the two analyses were
covariance as they evolve during the forecast time intervalfound to be associated with the regions with mostly satellite
Therefore, analysis error and error covariance directly deterobservations. Park et al. (2008) studied the ensemble per-
mine the forecast errors and error covariance, i.e., the qualitjormance from TIGGE (the THORPEXInteractive Grand
of forecast. Global Ensemble) data. They argued that the mean analysis
In addition, analysis error covariance is critically impor- from different centers will probably be the best to be used
tant in building an efficient ensemble forecast system (EFS)as a reference analysis in comparing the performance of an
In the past years, with the advances of new development andnsemble from each center. The analysis error could be esti-
implementation of the EFS at some major NWP centers (Tothmated from the deviation between that analysis and the mean
and Kalnay, 1993, 1997; Molteni et al., 1996; Houtekamerof centers. Bowler et al. (2008) also argued that the mean of
et al., 1996), the forecasting capability has been improvecanalyses from multi-centers is generally better than the anal-
to a new level compared with the traditional single deter-ysis from any one center.
ministic forecast. These centers include the National Centers By using the analysis data from NCEP, ECMWF, UKMO,
for Environmental Prediction (NCEP), the European Cen-CMC and FNMOC, Wei et al. (2010) introduced a new
tre for Medium-Range Weather Forecasting (ECMWF), themethod for estimating the analysis error variance. The
Canadian Meteorological Center (CMC), the United King- method computes the anomaly of each center’s analysis by
dom Meteorological Office (UKMO) and the Fleet Numer- removing the long-term mean using a recursive filter. The
ical Meteorological and Oceanography Center (FNMOC).spread over the average anomaly (SPA) from different cen-
Different ensemble systems and their performances havéers is then computed. These authors found that the time av-
been evaluated and reviewed by various authors, e.g., Hamikraged distribution of SPA is even more related to the obser-
et al. (2000), Wei and Toth (2003), Buizza et al. (2005), vation network density, compared with the spread around the
Bowler (2006), Wei et al. (2006, 2008), Leutbecher andcenter mean analysis. Furthermore, the typical systematic er-
Palmer (2008) and Park et al. (2008). rors that appear in the spread around the center mean over
In ensemble forecasting, a limited number of different nu- high altitude regions are completely removed. The instanta-
merical forecasts are generated to represent the variabilitpeous values of SPA at any cycle for various variables bear a
of our knowledge about the possible evolution of a dynami-strong resemblance to the elusive analysis error variance.
cal system. A consensus in the scientific community is that While analysis error covariance in an ensemble based
the initial ensemble perturbations should sample the probaKalman filter is readily available (Bishop et al., 2001; Ander-
bility density function (PDF) that is represented by the anal-son, 2001; Whitaker and Hamill, 2002; Tippett et al., 2003;
ysis error covariance. Thus, in an operational environment aZupanski, 2005; Whitaker et al., 2007; Kalnay et al., 2007;
a NWP center, the analysis error covariance of the DA sys-Szunyogh et al., 2008), it is not straightforward to obtain in
tem that produces the initial analysis field for the forecasts3-D/4-D-Var systems, which have been in operation at most
should play a key role in generating the initial perturbations.
So far, the analysis error variance/covariance has been used 1 THORPEX: The Observing System Research and Predictabil-
to a certain extent only by a few different ensemble methodsty Experiment.
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major NWP centers. In the NCEP global EFS, an ensemlyze near-surface observations over the continental USA and
ble transform with rescaling (ETR) has been used to gendomains in Alaska, Hawaii, Puerto Rico and Guam (Pon-
erate the initial perturbations as described in detail in Weideca and Manikin, 2009; Manikin and Pondeca, 2009). In
et al. (2005, 2008). In the ETR method, the initial perturba-the RTMA application, only the observations near the sur-
tions depend on the accurate analysis error covariance, whicface are assimilated and only some of the surface variables
should be provided by the DA system in operation. At NCEP,are estimated, such as temperature, dew point, surface hu-
the operational DA system is the Gridpoint Statistical Inter- midity at 2m, in addition to the 10-m wind, etc. Another
polation (GSI), a three-dimensional variational analysis (3-advantage of the RTMA, in comparison to the global 3-D-
D-Var) system (Derber et al., 1991; Parrish and Derber, 1992Var GSI presented in this paper, is that the analysis variables
Wu et al., 2002; Derber et al., 2003; Kleist et al., 2009). Inin the regional GSI are directly temperature and wind com-
the variational analysis system, the analysis is found by minponents, and therefore their analysis errors can be estimated
imizing the cost function, written in terms of the background directly, whereas the global GSI analysis variables are the
fields, the observations, and their respective error covariancetream function, unbalanced velocity potential, etc., which
matrices. The analysis error covariance matrix in 3-D/4-D-make the estimates of variances of wind components com-
Var is determined by the background and observation erroplicated. Furthermore, the RTMA focuses on small regions;
covariance matrices, and it can not be computed directly dughis avoids the pole problem during the transformations be-
to its huge memory demand. tween different variables.

Unlike the DA systems at NCEP and ECMWF, which are  In this paper, we use the Lanczos method in the NCEP
formulated in the model space, the Naval Research Labglobal 3-D-Var GSI DA system to study some of its as-
oratory Atmospheric Variational Data Assimilation System pects and properties that were not exploited in Fisher and
(NAVDAS) system at the US Naval Research Laboratory Courtier (1995) and Pondeca and Manikin (2009). The prop-
(NRL) is formulated on the observation space (Daley anderties in question are very important not only in understand-
Barker, 2001; Xu et al., 2005). Daley and Barker (2001) pro-ing the method but also in practical applications. In partic-
posed a local approximation in their NAVDAS to take advan- ular, we apply this method to estimate the observation im-
tage of the block-diagonal pre-conditioner and Cholesky depact signals (OIS) which are the square root of the differ-
composition of the diagonal blocks. The method produces arence between the background and analysis error variances.
estimate of the analysis error variance at any location baseth this method, only a small number of eigenvectors can be
on the observations and background within the observatiotomputed due to the computational expenses. Thus, the error
prism in which the location is contained. It has been im- reduction is severely underestimated, and the analysis error
plemented successfully at FNMOC and NRL, and it gener-variance is overestimated. In our study, we propose and com-
ates the analysis error variance estimate from the NAVDASpare four different calibration schemes to compensate for
for both global and regional ensemble forecast systems athe missing trailing singular vectors. Without proper calibra-
FNMOC (McLay et al., 2007, 2008; Reynolds et al., 2008; tions, the observation impacts computed using this method
McLay and Reynolds, 2009; Bishop et al., 2009). Similar may be very inaccurate. In addition, we study the sensitivity
to the NCEP global EFS, the initial perturbations at FN- of the OIS to the number of observations employed in the
MOC are generated by using the ET (Ensemble Transform)5SI system. Also studied in this paper are the correlations
method. between the observation locations and the OIS for different

For the 3-D/4-D-Var systems in model space which variables in an operational environment.
have been implemented at most NWP centers, Fisher and Section 2 provides a brief description and formulation of
Courtier (1995) proposed three approximate methods to estithe analysis error variance and OIS. The dominant eigen-
mate the analysis error variance. The most promising amongectors and eigenvalues of the transformed Hessian matrix
them is the Lanczos method which was implemented in theare analyzed in detail in Sect. 3. Section 4 presents four dif-
ECMWF DA system. This method produces the analysis erferent calibration schemes and their results, while the corre-
ror variance estimates by computing the leading eigenvectations between the observations and the OIS are exploited
tors of the Hessian matrix. It takes advantage of the closen Sect. 5. Finally, discussion and conclusions are given in
link between the Lanczos method and the conjugate gradienect. 6.
method used in the minimization procedure. The authors car-
ried out experiments using a simple univariate 3-D-Var on a
cyclic one-dimensional domain with 256 equally-spaced grid2

points. Some testing was also done in ECMWF 3-D-Var sys-r . \icep ) pa system is a unified global/regional three-

tem with 52 eigenvectors included. ; . o )
The Lanczos method is already used in the NCEP Realglmensmnal variational DA system (Derber et al., 1991, Par-

) : : rish and Derber, 1992; Wu et al., 2002; Derber et al., 2003;
Time Mesoscale Analysis (RTMA) o estimate the analy- Kleist et al., 2009). The cost function in the GSI to be mini-
sis errors (Pondeca and Manikin, 2009 and Pondeca et al, N :

2011). The RTMA runs the GSI in 2-D-Var mode to ana- fhized can be expressed as

Introduction of basic formulation
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In order to compensate for the loss of trailing eigenvectors,
1 1 we introduce a calibration facter(k) in this paper so that
J(x) = ExTB—lx + 5 (Hx — yo!RYHx -y, (1)

wherex = x, — x is the analysis incremen, is the back-
ground error covariance matrixg = y — Hx, is the innova-
tion vector R is the observation error covariance matikjs ~ EQ. (5) can be applied to estimate the analysis errors for any
the linearized observation operator, ands the background ~model variables at any levels. Different calibration schemes
state field. It is well known that the analysis incrememtan ~ are discussed in the following sections.

be solved through the minimization of Eqg. (1) (Daley and
Barker, 2001), i.e.,

K
C~> p)A—21H(Qrv)(QRvn)" . ()
k=1

3 Eigenvalues and eigenvectors
T T -1

¥ =%xq—xp=BH (HBH" + Ry —H@x»)l. 2) The diagonal part oC in Eq. (5) represents the reduction
of error variance due to observations in DA. The following
experiments were carried out with GSI at T62L64 resolu-
tion. The number of dominant eigenvectdfscomputed de-
pends on the number of inner loops in the GSI minimization.
A=B—BH”(HBH” +R)"HB, ©) The values ofK that we have tested ar€ = 30, 60, 100,

and 116. The observations and background fields are for
whereBHT (HBH” +R)~1in Egs. (2) and (3) is commonly the 00:00Z cycle on 10 April 2007. The observations that
called the Kalman gain matrix. Fisher and Courtier (1995)we chose were based on the data used in the NCEP opera-
proposed three approximate methods to estimate analysis etional GSI. There were a total of ndat60 data sets, which
ror variance in 3-D/4-D-Var framework. The most promising covered conventional, aircraft, GPS observations as well as
method among these three is the Lanczos method, which useadiances from different satellites. All the operational data
the linkage between the Lanczos algorithm and conjugatevere used in our experiments. To study the sensitivity of
gradient minimization that is widely used in 3-D/4-D-Var error reductions to the observations, we also experimented
system. The Lanczos method uses the relationship betweenith only conventional observations. In this case, rdét
the Hessian matrix and the analysis error covariance. ThusThis includes surface pressure, temperature, specific humid-
a limited number of dominant eigenvectors can be estimatedty, winds, sea-surface temperature, and precipitable water
and used to approximate the second right term in Eq. (3)from rawinsonde. The conventional data also contain the
This method was implemented in the ECMWF 4-D-Var sys- satellite derived winds such as those below 850 mb from
tem to estimate the analysis error covariance (M. Fisher, persatellites JMA IR (Japan Meteorological Agency Infrared)
sonal communication, 2007). and EUMETSAT (European Organisation for the Exploita-

The basic formulations of Lanczos algorithm is describedtion of Meteorological Satellites).

in Appendix A. The final analysis error covariance matrix  Figure 1 shows the eigenvalue distribution as a function of

Let A be the analysis error covariance xof with respect
to the truth. Then in the incremental 3-D-Vat,can be de-
scribed as

can be expressed as in Eq. (A10). the eigenvalue number for different numbers of observation
Let data sets. Shown in the left panels are the eigenvalue dis-

m tributions with 6 observation data sets f&ir= 30, 60, 100,
C=B-A=Y"1-2"H0"v)(Q"v)T, 4 and 116, respectively. On the right hand panels, the same
,;1 (o) (i ) eigenvalue distributions are displayed for the 60 observation

data sets. Since all the eigenvalugsare larger than one and
wherel, ande; = Qyv; are the dominant eigenvalues and diag( Q7 vi)(Q{vx)”1 > 0.0, it follows that the diagonal el-
eigenvectors, respectively, of the transformed Hessian matrixments ofC are always positive, which means
of the cost function in Eq. (1).
It is clear thatC is the analysis error covariance reduction diag(A) < diag(B).
from the background due to the observations. Since itisim-_ == ) ) )
possible to compute all the eigenvectors of the transformed his indicates that the analysis error variance is always less

Hessian matrix in a real application such as GSI due to comthan the background error variance due to the observations

puting resource limit, we can only compute a very limited assimilated. From Eq. (5), it is easy to see that the larger the

number ) of dominant eigenvalues and their Correspond_eigenvalue, the greater the observation impact (and more re-

ing eigenvectors. As a result, many less dominant eigenvecgucuon of error variance). Thus, more dominant eigenvec-

tors are ignored. The error reduction@fand analysis error  10rS With larger eigenvalues have greater impacts than the

covarianced would be underestimated and overestimated,trai”ng eigenvectors with smaller eigenvalues. As the trail-
respectively ing eigenvalue is converging to one, the contribution to error

reduction from the eigenvector is approaching zero, and the
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(a) ndat=6 (e) ndat=60 @
80 1 200 1 6 E T E
2 sol k=30, x10°2 | 2 150t k=30, x10"3 | : E
® ® E E|
g a0l ] £ 100f ] o 5F ndat=6 E
k=3 o S F E
w20 ] W sof ] s 3
> ,F E
ot ] ol ] § 4 E
0 10 20 30 40 0 10 20 30 % E E
Eigenvalue number Eigenvalue number € 3 E 3
(b) ndat=6 (f) ndat=60 g2
sof ] 200} £ 2F E
g ol | k=60, x1072 g 150t k=60, x10"3 =
g g 1> E
g 40 $ 100F E E
=) =] E E
W 20r wos5of 1 Ot | | | | | B
ot 9 ot ] 20 40 60 80 100 120
0 20 40 60 0 20 40 60 number of loops
Eigenvalue number Eigenvalue number
(c) ndat=6 (g) ndat=60 — — — (b) ;
40 200 1 [ N
s 3 | k=100, x10M s 150l | k=100, X103 150 ndat=60 ]
© ©
> > r 7
5 20 g 100} 2 1
o 10 i} b < F 4
0 * £ 100 i
]
Ok = 2 [ 7
0 20 40 60 80 100 0O 20 40 60 80 100 ] N
Eigenvalue number Eigenvalue number 1< B
=}
— = E [ ]
(d) ndat=6 (h) ndat=60 s |
100} 1 200¢ s 3 1
o 80} o 15of | k=116, x10°3 i
150 ’ 4
% eof| k=116, x10"6 5 i
& a0l § 100 1 ol ) B ]
] 20l ] o sob S S S O S S|
20 40 60 80 100 120
Ot 1 ot ] number of loops
0O 20 40 60 80 100 120 0O 20 40 60 80 100 120
Eigenvalue number Eigenvalue number

Fig. 2. The smallest eigenvalues as a function of the number of loops
Fig. 1. The eigenvalue distributionfa) ndat=6, K = 30, (b) (a) for ndat= 6 and(b) for ndat= 60.
ndat=6, K =60, (c) ndat=6, K = 100, (d) ndat=6, K = 116,
(e) ndat= 60, K = 30, (f) ndat= 60, K = 60, (g) ndat= 60, K =

100, andh) ndat= 60, K = 116. . . . T
inner loops. The maximum eigenvalues are very similar in

all cases with different values &, as shown in Fig. 1e-h.
As an example of eigenvector structure, we plotted in

Figs. 3 and 4 the top five normalized eigenvectads ;)
impact is negligible. The smallest eigenvalues for rdét  for temperaturesr and zonal wind component for K =
shown on the left panel of Fig. 1 fak =30,60,100 and  30,60,100 and 116 at 500 hPa. The number of data sets is
116 are displayed in Fig. 2a, while the smallest eigenvaluesidat= 6. From left to right, Fig. 3 shows the largest eigen-
for ndat= 60 are displayed in Fig. 2b. The minimum eigen- vectors oft with different values o', while the top 5 eigen-
values in both cases should approach one (shown in dottedectors oft with the same value & are shown from the top
lines) asK increases. It is clear that the convergence of theto the bottom, respectively. On the top panel, the 1st eigen-
eigenvalue with increasing number of inner loops in the GSlvector fors has a similar dipole structure over North America
is much slower in the case with more observation data tharfor K = 30 and 60, while folK = 100 and 116, their struc-
in the case with a smaller amount of observation data. Thustures are also similar, but different from wh&n= 30 or 60.
one conclusion from this result is that the more observationsThis is also true for the other dominant eigenvectqr3 2,
we have, the larger the number of eigenvectors should b@and 5 shown in the following rows. Wheki = 30, eigen-
included in order to minimize the loss of information from vectors 12, and 3 have high values over North America, but
those observations. When only 6 observation data sets ar@ slightly shifted positions, while eigenvectors 4 and 5 have
used, as in Fig. 1a—d, the eigenvalues decrease faster thderger values over the European region. All of these reflect
when there are more observations, as in Fig. 1e—h. In factthe fact that there is relatively more conventional data cover-
when all the observations are used with nd&0, the eigen- age in North America and European regions. Wikeg: 60,
values decrease at a similar rate with increasing number ofhe top 5 eigenvectors in column 2 show similar structures as
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Eigenvectors of temp at 500mb(ndat=6)

LI TR |
—

-

=
ID?’

e L e

Fig. 3. Top five normalized eigenvectors of the transformed Hessian with respect to temperature at 500 hPa with Rdain the left to
the right on each row: top eigenvectors #%r= 30, 60, 100, and 116. Top to the bottom on each column: eigenvectors 1, 2, 3, 4, and 5 for
each value oK.

whenK = 30 in column 1. When the number of inner loops eigenvectors of, eigenvectors 4 and 5 show the largest am-
K is increased to 100 and 116 as shown in columns 4 angblitudes over the European region wh€n= 30 or 60.

5, the larger amplitudes of the top 5 eigenvectors are mostly Next, we look at the overall observation impacts due to
over the North America area. This is consistent with the con-observations in the GSI. To see the sensitivity of error reduc-
ventional observations at this level, which will be shown later tion to the number of observations, we have computed the
in the paper. error reduction using two different numbers of observation

Figure 4 shows the same as Fig. 3, butifoOverall, the  data sets: ndat 6 and ndat 60. From Eg. (4), the anal-

top 5 eigenvectors af also demonstrate the larger presenceysis error variances depend on the background error vari-
of conventional observations over North America. Like the ances, which are static and pre-defined in most 3-D/4-D-Var
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Eigenvectors of u at 500mb (ndat=6)

T I |
7

Fig. 4. The same as Fig. 3, but far

DA systems. In the NCEP GSI, they are pre-computed usinglegrees of freedom for signal, and mutual information, for
the NMC (National Meteorological Center) method (Parrish quantifying the impacts of observations in a DA system have
and Derber, 1992). The diagonal componentLoére the  been introduced and studied by Rodgers (2000), Xu (2007),
direct impacts from the observations assimilated by the DA.Zupanski et al. (2007) and Fowler and van Leeuwen (2012).
Therefore, unless we have sensible situation-dependent back- First, we consider the OIS without calibration, i.e(k) =
ground error variances, it is more meaningful to look at the1.0 in Eq. (5). From the left to the right, Fig. 5 shows the OIS
diagonal components & (instead ofA) in order to assess for usop, 1500, andg1000 (the subscripts indicate the level in
the direct impacts from the observations. In the following, hPa) with different numbers of inner loops,= 30, 60, 100,

we will show the square root of error variance reduction, i.e.,or 116. The results show that the OIS for all variables in-
Y diag(C) (referred to agbservation impact signar OISin  crease as the number of eigenvectors increases. Rows 1 to 3
the following) for different variables at different levels. Sim- shows the OIS forsgg, 1500, andg1000 With ndat= 6, while

ilar quantities, such as information content, relative entropy,rows 4 to 6 show the OIS for the same variables but for

www.nonlin-processes-geophys.net/19/541/2012/ Nonlin. Processes Geophys., 1955412012
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0IS for u, T, q

B e I )
1 LRG0 LG 42 4% BT B B L BH D GIF 40 O LI LL 28 AL SIF KB W BMOBM MW NI 400 LN om oM B AR A A L 40 AL 433 4dT

T eSO sT e e e b e i

Fig. 5. Observation impact signal (OIS) faggg, 1500, andg1000 From the left to the right on each row, = 30, 60, 100, and 116. Rows 1
to 3 forusgg, 1500, andg10ooWith ndat= 6, and rows 4 to 6 for ndat 60.

ndat= 60. The top two panels show that &sincreases, the eas near Australia, where there are more observations. The
impacts of observations farsgg andsgg increase, particu-  observation locations will be shown in Figs. 9-12.

larly over the conventional data-rich regions such as North Panels in rows 4 to 6 show the OIS values for the same
America. For cases with smaller numbers of eigenvectorsvariables as the top 3 rows, but with nda60. The above

(K = 30,60), the observation impacts over Europe, Asia andconclusions for ndat 6 still hold when many more obser-
areas near Australia are less clear. The impact signals areations are included in the analysis. In this case, there are a
much more pronounced faf = 100 and 116. Panels in row lot more observations in the Southern Hemisphere (SH) that
3 show the OIS for relative humidity near the surfaggoo impact the OIS for the three variables. In ocean areas in the
Again, as more eigenvectors are included, stronger impactropics, there are many moisture observations in the lower
signals are observed in North America, Europe, Asia and aratmosphere, thus also resulting in very strong OIS.
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4 Calibration of observation impacts (a) ndat=6 (d) ndat=60

i i i solid: u, L=64 solid: u, L=64
Results shown in Fig. 5 are the values of OIS for some vari- 25t dotted: u, L=25 1 25| dotted: u, L=25
dashed: u, L=1

ables at specific levels without calibration, i.e(k) = 1.0. dashed: u, L=1

As demonstrated in the above section, the OIS is underes.; 20l
timated due to the missing trailing eigenvectors. However,3
to what extent the OIS is underestimated is not clear from
Fig. 5. To gain a quantitative assessment of underestima-
tion, we have computed the mean OIS values:of, and g ‘
q for K =30, 60,100, and 116 at three typical model levels, T w0 e

20

u/u30

15F 15-

1.0

w0 s‘o“ 100 120 0 so : s‘gl 100 120
lumber of loops umber of loops
namelyL = 1 (lowest level, about 1000 mhj, = 25 (about (b) ndat=6 (&) ndat=60
500 mb) andL = 64 (highest model level, about 0.27 mb). ,,f T ST T

solid: t, L=64 solid: t, L=64

For each of variables at each level, we calculate the ratios ,,; | '\ Zoc
of the mean OIS values witki = 30, 60, 100, and 116 to the ol dashed: , L=1

mean OIS value wittk = 30, i.e., 25%:LK These ratios . 4

2.2r dotted: t, L=25
5ol dashed: t, L=1

181

. 'OIS(x,L,30 " T 8 8
are shown as a function of the number of loops in Fig. 6. The™ s} 16f
left panels of Fig. 6a—c shows these ratiosifor, andg, re- 14f 14]
spectively with ndat 6, while Fig. 6d—f show the same, but  ;,} 12f

with ndat= 60. 10

I I 1.0 I I I
100 120 40 60 80

I I I I I
40 60 80 100 120

With the smaller number of observations (neat), Number of loops Number of loops
Fig. 6a and b shows that the mean OIS values ahd t at o (OQnda=6 o (fndat=60_
all three levels forlKk = 60, 100, and 116 are about$3, 2.0, solid: g, L=64 solid: g, L=64
and 2.2 times larger than the mean OIS valueskfot 30, o dasnenra o | dashena o

respectively. This is equivalent to about 1.5 times increase of
mean OIS wherK is doubled. These ratios fer are even
larger, especially at the highest model level=£ 64) where

8
g 3f
o

values reach over.8 for K =100 and 116, as shown in ot & N

Fig. 6¢. This means that the OIS fgiis even more severely

underestimated compared with the other two variables when als” . . thwe
40 60 80 100 120 40 60 80 100 120

only a limited number of eigenvectors are included. Number of loops Number of loops
When more observations are assimilated with ag0,

as shown in Fig. 6d, e and f, the conclusions are similar, exfig. 6. The ratio of the mean OIS values usikig= 30, 60, 100 and

cept that the ratio for at the top model level is much larger 116 to the mean OIS value usig= 30 as a function pf the number

than for the other two levels (Fig. 6d). In addition, the ra- ©f 100Ps at 1000hPa, 500 hPa and 0.27 hPa(®@ru with ndat= 6,

tio for ¢ at the top model level is also much larger than at ) ! With ndat=6, (c) g with ndat= 6, (d) u with ndat= 60, (e)
the other two levels (Fig. 6f), but not as large as in the caseWIth ndat=60, and() ¢ with ndat=60.
of ndat= 6 (Fig. 6c). All these results clearly show that the
mean OIS values for all variables at these three typical model

levels increase as the number of logpsncreases, in these

two cases with two very different observation data sets. The-4 . p(K)=1.0+ Mk
maximum value oK that we have used is 116, which is too K
small in both cases. The OIS values have not converged when kg:l)‘k
K =116, even with the smaller amount of conventional ob-

servations (ndat 6). Since the minimization algorithm in €2 o(k)=(1.0 Ak
GSI has its own built-in convergence criterion, it will stop Fp(0=(10+ K
once this criterion is satisfied. To test largérwas compu- > Mk
tationally prohibitive; it would be possible, but it is hard to k=1
bypass the GSlI criterion. In addition, computational cost isC3: p(K)=1.0+In(k)
always a concern in an operatio_na_l sysfcem like GSI. T(_) aCc4: p(k)=1.0+ logyo (K.
count for the impacts from the missing eigenvectors, calibra-

)2

tion is inevitable. In scheme<”1 andC2, the calibration factors are functions
The calibration schemes we have tested are terme@f the eigenvalues. The formulation is such that they decay
C1l,C2,C3, andC4, and are defined as follows: with the number of eigenvectors. Less weight is given to

the less dominant eigenvectors, reflecting the fact that the
trailing eigenvectors contribute less to the OIS in Eq. (5).
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(a) Calibration Factor, Solid: C1, Dashed: C2 shows similar impact patterns and magnitudes as scligime
‘ ‘ ‘ Both of these schemes can not achieve the ideal results we
have hoped for.
The results from schemé&3 (column 3 of Fig. 8) show
1 somewhat larger maximum values than the benchmark for all
the variables, while the magnitudes of OIS fréai (column
4 of Fig. 8) are similar to those in the benchmark. However,
i like C1 andC2, both scheme&§3 andC4 do not seem to pick
up the impact patterns over regions in Europe, Asia and Aus-
15 5 %0 & a0 100 150 tralia as well as the benchmark. Overall, schen3ds prob-
NUmbEr of clgenyaldes ably the best among these given the fact that the benchmark
with K =116 is far from converging, as seen from Fig. 6.
From the results of these calibration experiments, one can
conclude that none of the schemes tested can produce OIS
distribution that are as good as the ones from the benchmark
which uses more eigenvectors. There are some regions where
the observations are less dense. These regions will certainly
] need more eigenvectors to yield reasonable OIS values. Our
results indicate that it is hard to use calibration factors which
only increase the magnitudes of some 30 dominant eigenvec-
tors to recover those impact signals. However, two of the cal-
° 20 T, 190 ' ibration schemes do enhance the OIS magnitudes in the re-
gions with dense conventional data network coverage, which

ues forC1 (solid) andC2 (dashed) ina) and C3 (solid) andC4 eigenvectors.

(dashed) in(b) for K = 116 and ndat 60.

Calibration factor

(b) Calibration Factor, Solid: C3, Dashed: C4
T T T

Calibration factor

5 Correlations between observations and observation

Unlike these two schemes, the calibration factors defined in  impact signals
schemes"3 andC4 increase as a function éf This means
that greater weight is given to the more trailing eigenvec-In order to further assess the impacts from observations in
tors in compensating the missing eigenvectors. Note, howthe GSI, we will study the OIS distributions at certain model
ever, that the calibration facto€s3 andC4 do not depend on levels and their correlations with the observation locations.
the eigenvalues. The calibration factors in these four schemekn the following figures, we will plot the horizontal locations
are shown in Fig. 7 as functions of number of eigenvalues forof observations that are located between the vertical levels of
K =116 and ndat 60. To test these calibration schemes, p — 50 mb andp + 50 mb, and compare them with the OIS
we choose the smallest number of loops from our experi-values computed from Eq. (5) at leyel As an example, we
ments, i.e.K = 30. The original OIS values without calibra- choosek = 100 and conventional data set only with ngaé
tion for usgo, 500, andg1ooo are displayed in the first column in the following.
of Fig. 5. Since we are unable to run an ideal case with avery Figure 9 shows the locations of temperature observations
large number of loops to assess the effectiveness of differertbetween 500 mb plus and minus 50 mb, and the OIS for tem-
calibration schemes, we assume that the benchmark to conperature at 500 mb. It is clear that the region with most con-
pare with is the one witlK = 116, which is shown in the last ventional data is North America, followed by Europe, Asia
column of Fig. 5. From the left to the right, columns in Fig. 8 and regions near Australia. The method indeed produces
show the OIS values from schem@g, C2, C3, andC4, re- larger OIS values over these data dense areas. However, it
spectively. Similar to Fig. 5, rows 1 to 3 and rows 4 to 6 in is also noticeable that some sparsely distributed observations
Fig. 8 are the OIS for ndat 6 and ndat= 60, respectively. around the tropics did not generate much OIS. It is expected

By comparison with the results without calibration (first that more eigenvectors are needed in these areas to recover
column of Fig. 5), the OIS values from calibratioti in first some impact from observations.
column of Fig. 8 show a very similar pattern and magnitude Figure 10 shows the same as Fig. 9, but forSimi-
for all the variables. Clearly, the magnitudes are generallylarly the OIS values are generally larger over denser obser-
smaller than those in the “ideal case”. Further more, the revation areas. As for, some observations around the trop-
sults fromC1 with ndat= 6 fail to pick up much impact over ics do not produce much OIS. In Fig. 11, we display the
regions in Europe, Asia and Australia as in the benchmarksame as Fig. 10, but for surface level (around 1000 mb).
(last column of Fig. 5). Schem@2 (column 2 of Fig. 8) also  Around this lower level, there are many satellite-derived,
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0IS for wu, T, q (k=30, 4 calibration factors

B e N e o

Fig. 8. OIS with four calibration schemes faisqg, 1500, @ndg1000 From the left to the right on each column: OIS values from schemes
C1,C2,C3, andC4, respectively. Rows 1 to 3 on each column: 4gpg, 1500, andg1gog With ndat= 6. Rows 4 to 6 on each column: the
same variables for ndat 60.

scatterometer-type wind observations (such as from JMA IR Figure 12 is the same as Fig. 11, but for relative humidity
and EUMETSAT) in SH and the tropics as shown in Fig. 11. g1000 The observations over Europe are equally as dense as
Our method does produce strong OIS in the SH, but not muclover North America. Our method does generate some strong
signal can be seen in the tropics. In addition, the method doe®IS impacts over these regions. Similarly, in Asia and Aus-
not produce a distribution that resembles the satellite datdralia, the dense observations are correlated well with the
coverage across the tropics. It is expected that it will take astrong OIS signals. Interestingly, a few sparse observations in
lot more eigenvectors to cover these satellite data, particuthe SH oceans are also captured by OIS. However, there are
larly in the tropics. also some sparse observations around the tropics near Africa
and South America (SA) that are missed by the OIS.
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t obs (500mb+/—50mb) and OIS at 500mb(ndat=6,k=100)
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Fig. 9.Circles represent the locations of temperature observations between 5080mhb and 500 mh- 50 mb, and contour lines represent
the OIS for temperature at 500 mb.

u obs (500mb+/—50mb) and OIS at 500mb(ndat=6,k=100)
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Fig. 10. The same as Fig. 9, but far

As described in previous sections, OIS is able to capturan this section indicate that many of the sparse observations
some of the observation impacts, especially over the regionfn the tropics can not be captured, while the sparse obser-
with dense conventional observations. Results in this secvations in the southern oceans can be reflected in our OIS.
tion indicate that most satellite observations in the south-This is related to the fact that the background error variances
ern oceans can be captured. However, to capture the satgfthe diagonal parts d) around the tropics are lower than in
lite band structures in the tropics, the number of eigenvectorshe extra-tropics. Since the observation errors do not depend
we have tested is clearly not enough. All the results showron latitude in the GSI, the smaller background errors around
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u obs (1000mb+/—50mb) and OIS at 1000mb(ndat=6,k=100)

90S

0 60E 120E 180 120W 60W 0
Fig. 11.The same as Fig. 10, but for surface level (around 1000 mb).

q obs (1000mb+/—-50mb) and OIS at 1000mb(ndat=6,k=100)
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Fig. 12.The same as Fig. 11, but for relative humidjty

the tropics reduce the impact of the observations, and pulhumber of observations in the tropics, but the increments are
the analysis closer to the background. As a result, the analyvery small. As explained, this is due to the smaller back-
sis increment is also reduced. This can also be confirmed bground error values used in the GSI. Thus, the OIS values
looking at the analysis increments in Eq. (2). are also very small around the tropics. When Figs. 11 and 12
Corresponding to the observation locations and the OlSare compared with Fig. 13a and d, respectively, we see that
in Figs. 9-12, Fig. 13a—d shows the analysis increments foareas around the tropics which do not show much OIS are

1500, 4500, #1000, @Ndg1000 If we compare Figs. 9 and 10 with also approximately the areas where the analysis increments
Fig. 13a and b, we can clearly see that there are a reasonabdge small.
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(a) tincrement, L=25 (500mb) (b) u increment, L=25 (500mb)

905
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60E 1206 180 1200 60w 0 60E 1206 180 120W 60W

-6 =5 -4 -3 -2 -1 1 2 3 4 5 6 -0.025 -0.02 -0.015 -0.001 —0.005 0.005 0.001 0.015 0.02 0.025

Fig. 13. The analysis increments ¢d) 1500, (b) u500, (C) #1000 @and(d) g1000

6 Discussion and conclusions Our results show that the convergence is faster when smaller
numbers of observations are used. If more observations are
This paper represents another effort in estimating the analysigsed, the converging speed is slower and a larger number of
error variance, using the Lanczos method proposed by Fishegigenvectors should be included in order to minimize the loss
and Courtier (1995), in the NCEP global 3-D-Var GSI DA of information from the missing eigenvectors.
system. We have applied this method to the global 3-D-Var The top five corresponding normalized eigenvectors are
GSI and studied other different aspects of this method thaglso studied. In general, the structures for the largest eigen-
were not exploited in Fisher and Courtier (1995) and Pon-vectors wherk is small show larger impacts in the regions
deca and Manikin (2009). The properties of convergence irwhere conventional data are dominantklfs increased, the
different calibration schemes discovered in this paper haveéDIS can represent other areas with fewer observations. For
greatly improved our understanding of the method and itsthe same number df, the less dominant eigenvectors may
implications in practical applications in an operational en- convey the impact signals from the less dominant observation
vironment. Our focus is on estimating the observation im-regions.
pact signals (OIS) which are the square root of the difference  When the OIS values are computed with a different num-
between the background and analysis error variances. Thiger of data sets, the results show that the impact signals
guantity is a direct measure of the error reduction due to then the data rich regions are stronger with largér At the
observations assimilated. same time, more signals in the regions with fewer observa-
The OIS values for different variables at typical model lev- tions start to emerge as the number of inner loops increases.
els are computed for various numbers of inner logps the ~ When the number of observations is increased, the method
GSI with different numbers of observation sets. As expectedcan clearly pick up the impact signals from the observations.
the smallest eigenvalue of the transformed Hessian matriXAs only a limited number of eigenvectors can be computed
converges to one ak increases. However, the rate of con- due to the computational constraint, the error reduction is
vergence depends on the number of observations assimilatedeverely underestimated. To estimate to what extent we are
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losing the information from the missing eigenvectors, we example, an explicit or implicit preconditioner based on an
computed the mean OIS values far, andg at three typical  approximation to the Hessian matrix can be chosen (Fisher,
model levels (i.e., top, middle and bottom) for different val- 1998). In this case, the time spent on computing the dominant
ues ofK with two different numbers of observation data sets. eigenvectors can be offset by the time saved from this pre-
It is found that the OIS values & = 60,100 and 116 are  conditioning. Therefore, this method is very suitable for an
about 15, 2.0, and 2.2 times the value of OIS &t = 30, re- operational 3-D/4-D-Var system to estimate the observation
spectively. This is roughly 1.5 times the increase of the mearimpacts, and it can be used as part of a routine verification
OIS whenK is doubled. These ratios are much larger for the package.
relative humidity at the top model level.

All of our results indicate that without proper calibra- i
tions, the estimates of observation impacts are not accuratéppend'x A
To overcome this difficulty, we have proposed and investi- . . . .
gated four different calibration schemes to compensate foP@Sic formulation of Lanczos algorithm in 3-D-Var GS

the missing trailing eigenvectors. Different schemes give dlf-.l_he basic 3-D-Var equations in GSI are described in

ferent weights on a dnfferent number of eigenvectors. OurEqs. (1)-(3). Since different preconditioning strategies are
results show that the first two schemes cannot pick up theuseol in ECMWF and NCEP DA systems, the equations and
impact signals over the regions with less conventional data inderivations of the analysis error covarian'ce are different. In
comparison with the “ideal case”, which has the largest UM~ Gl et '
ber of inner loops. It is found that scher@8 performs better '
than other schemes and can boost the OIS values in the data= B~ 'x. (A1)
rich regions to the level in the “ideal case”. However, it seems ] ] . ]
that none of them can pick up the impacts in the regions with! N€ gradient of cost function with respecttads
less observation data as well as the “ideal case”. The benef'g =V, J(x)=B 1+ HTRH)x — HTR 1y,
of calibrations lies in the fact that they do enhance the OIS e 1
magnitudes in the regions with more traditional data cover- =Mx —H" Ry, (A2)
age, which would be missed without calibrations. and the Hessian matrM can be written as
We also studied the correlations between the observation
locations and the OIS distributions for various variables at,, 32J (x) _Bly gTR1g — Ao~1 (A3)
different levels. Itis found that the method generally picksup  ~ 9x2 S
the impact signals over the regions with conventional ObserEquation (A2) is equivalent to
vations, particularly over the data dense areas. It even picks
up the satellite observation impacts over the southern oceandlx = g + H Ry, (A4)
However, with the number of inner loops we have used, th
method cannot show the satellite band structure over the tro
ics. A lot more eigenvectors are required to recover the wholey = v, j (x) =BV, J(x) =x + BH'R Y (Hx — yo). (A5)
satellite observation impacts. The area in which the method
performs worst is the tropics. This is found to be due to The preconditioned conjugate gradient method used to min-
the fact that the background errors produced by the NMcimize the cost function defined in Eq. (1) in GSI can be ex-
method are generally smaller over the tropics than over théressed as:
extra-tropics, and the observation errors do not change witrJt
latitude. As a result, the observation impacts over the trop-
ics are reduced. This also leads to the smaller analysis incre&k+1 = VxJ (¥k+1)
ments over the tropics. hi =Bgj i1 (A6)
In conclusion, the method presented in this paper withg, ., = —hy 1 + Brdy
proper calibration is capable and effective in estimating the _
major observation impacts from the observations assimilatedp k=
in the GSI, especially over those regions with more conven-whereq; is the step sized; ande; are the search directions
tional data coverage. Since those gradient vectors can be geim x andz, and the conjugate factor is
erated by the operational global GSI almost at no cost, the T
computational expense in estimating the dominant eigenvec = (8rt1— 8k) hk+1' (A7)
tors is completely manageable with the current NCEP com- (8k+1— 807 dx

puting resources. , ) , ) g andhy are two independent variables and can be normal-
Another benefit of using this method is that the eigenvec-i, .4 such that
tors can be used in preconditioning the conjugate gradient

algorithm in minimization to speed up the convergence. Forg} = cig; andhj, = cihy, (A8)

S[he gradient with respect tpis

k+1 =X +oydy

—8p+1+ Brek.
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