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Abstract. Despite the tremendous progress that has been
made in data assimilation (DA) methodology, observing sys-
tems that reduce observation errors, and model improve-
ments that reduce background errors, the analyses produced
by the best available DA systems are still different from the
truth. Analysis error and error covariance are important since
they describe the accuracy of the analyses, and are directly
related to the future forecast errors, i.e., the forecast quality.
In addition, analysis error covariance is critically important
in building an efficient ensemble forecast system (EFS).

Estimating analysis error covariance in an ensemble-based
Kalman filter DA is straightforward, but it is challenging
in variational DA systems, which have been in operation at
most NWP (Numerical Weather Prediction) centers. In this
study, we use the Lanczos method in the NCEP (the National
Centers for Environmental Prediction) Gridpoint Statistical
Interpolation (GSI) DA system to look into other important
aspects and properties of this method that were not exploited
before. We apply this method to estimate the observation im-
pact signals (OIS), which are directly related to the analy-
sis error variances. It is found that the smallest eigenvalue
of the transformed Hessian matrix converges to one as the
number of minimization iterations increases. When more ob-
servations are assimilated, the convergence becomes slower
and more eigenvectors are needed to retrieve the observation
impacts. It is also found that the OIS over data-rich regions
can be represented by the eigenvectors with dominant eigen-
values.

Since only a limited number of eigenvectors can be com-
puted due to computational expense, the OIS is severely un-
derestimated, and the analysis error variance is consequently
overestimated. It is found that the mean OIS values for tem-

perature and wind components at typical model levels are
increased by about 1.5 times when the number of eigenvec-
tors is doubled. We have proposed four different calibration
schemes to compensate for the missing trailing eigenvectors.
Results show that the method with calibration for a small
number of eigenvectors cannot pick up the observation im-
pacts over the regions with fewer observations as well as a
benchmark with a large number of eigenvectors, but proper
calibrations do enhance and improve the impact signals over
regions with more data.

When compared with the observation locations, the
method generally captures the OIS over regions with more
observation data, including satellite data over the southern
oceans. Over the tropics, some observation impacts may be
missed due to the smaller background errors specified in the
GSI, which is not related to the method. It is found that a
large number of eigenvectors are needed to retrieve impact
signals that resemble the banded structures from satellite ob-
servations, particularly over the tropics. Another benefit from
the Lanczos method is that the dominant eigenvectors can be
used in preconditioning the conjugate gradient algorithm in
the GSI to speed up the convergence.

1 Introduction

In recent years, there have been many active research and
developments in data assimilation (DA) method, such as
4-D-Var (Derber, 1987; Rabier et al., 2000) and ensem-
ble Kalman filters (EnKFs) (Bishop et al., 2001; Anderson,
2001; Whitaker and Hamill, 2002; Tippett et al., 2003; Zu-
panski, 2005; Whitaker et al., 2007; Kalnay et al., 2007;
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Szunyogh et al., 2008). More observations, more accurate
observing systems, and the improved DA systems have
played key roles in providing more accurate initial condi-
tions for numerical weather prediction (NWP) models. These
developments have improved the weather forecasts signif-
icantly, particularly over the short and medium ranges. In
addition, there has also been tremendous progress in NWP
model development, with more accurate physics parameteri-
zation schemes and increased computing power, which per-
mits the use of higher resolution forecast models. In spite of
all this progress in observing systems that reduces the ob-
servation errors and in model improvement that reduces the
background errors, the analyses produced by the best avail-
able DA systems are still quite different from the true state.

Analysis error and error covariance are important for any
DA system since they describe the accuracies of the analysis
fields generated by the DA system. The analysis fields from
DA are supposed to be the best possible estimates of nature.
They are used as the initial states for NWP weather forecasts.
The associated error and error covariance are also important
because they are related to the future forecast error and error
covariance as they evolve during the forecast time interval.
Therefore, analysis error and error covariance directly deter-
mine the forecast errors and error covariance, i.e., the quality
of forecast.

In addition, analysis error covariance is critically impor-
tant in building an efficient ensemble forecast system (EFS).
In the past years, with the advances of new development and
implementation of the EFS at some major NWP centers (Toth
and Kalnay, 1993, 1997; Molteni et al., 1996; Houtekamer
et al., 1996), the forecasting capability has been improved
to a new level compared with the traditional single deter-
ministic forecast. These centers include the National Centers
for Environmental Prediction (NCEP), the European Cen-
tre for Medium-Range Weather Forecasting (ECMWF), the
Canadian Meteorological Center (CMC), the United King-
dom Meteorological Office (UKMO) and the Fleet Numer-
ical Meteorological and Oceanography Center (FNMOC).
Different ensemble systems and their performances have
been evaluated and reviewed by various authors, e.g., Hamill
et al. (2000), Wei and Toth (2003), Buizza et al. (2005),
Bowler (2006), Wei et al. (2006, 2008), Leutbecher and
Palmer (2008) and Park et al. (2008).

In ensemble forecasting, a limited number of different nu-
merical forecasts are generated to represent the variability
of our knowledge about the possible evolution of a dynami-
cal system. A consensus in the scientific community is that
the initial ensemble perturbations should sample the proba-
bility density function (PDF) that is represented by the anal-
ysis error covariance. Thus, in an operational environment at
a NWP center, the analysis error covariance of the DA sys-
tem that produces the initial analysis field for the forecasts
should play a key role in generating the initial perturbations.
So far, the analysis error variance/covariance has been used
to a certain extent only by a few different ensemble methods

at NWP centers. A recent description and comparison about
how analysis error covariance is being used in ensemble ini-
tial perturbation techniques are given in Tables 1 and 2 in
Wei et al. (2008).

There have been several efforts to estimate analysis error
variance and covariance outside EnKF. For example, Buizza
et al. (2005) suggested that the spread of initial states of three
centers (NCEP, ECMWF and CMC) could be considered as
a crude lower-bound estimate of the analysis error variance.
Swanson and Roebber (2008) used the NCEP and ECMWF
reanalysis data, and suggested that the reanalysis difference
could be considered as a “shadow” of the analysis error. They
found that the analysis difference contains certain aspects of
the true flow-dependent analysis error and has significant im-
pact on the short-time forecast skills in downstream regions.
Similarly, Langland et al. (2008) looked at the differences
between the NCEP and FNMOC analyses from 1 January to
30 June 2007. The authors found that the differences and root
mean of the squared daily differences in 500 hPa temperature
are closely related to the distribution of radiosonde observa-
tions. The large differences between the two analyses were
found to be associated with the regions with mostly satellite
observations. Park et al. (2008) studied the ensemble per-
formance from TIGGE (the THORPEX1 Interactive Grand
Global Ensemble) data. They argued that the mean analysis
from different centers will probably be the best to be used
as a reference analysis in comparing the performance of an
ensemble from each center. The analysis error could be esti-
mated from the deviation between that analysis and the mean
of centers. Bowler et al. (2008) also argued that the mean of
analyses from multi-centers is generally better than the anal-
ysis from any one center.

By using the analysis data from NCEP, ECMWF, UKMO,
CMC and FNMOC, Wei et al. (2010) introduced a new
method for estimating the analysis error variance. The
method computes the anomaly of each center’s analysis by
removing the long-term mean using a recursive filter. The
spread over the average anomaly (SPA) from different cen-
ters is then computed. These authors found that the time av-
eraged distribution of SPA is even more related to the obser-
vation network density, compared with the spread around the
center mean analysis. Furthermore, the typical systematic er-
rors that appear in the spread around the center mean over
high altitude regions are completely removed. The instanta-
neous values of SPA at any cycle for various variables bear a
strong resemblance to the elusive analysis error variance.

While analysis error covariance in an ensemble based
Kalman filter is readily available (Bishop et al., 2001; Ander-
son, 2001; Whitaker and Hamill, 2002; Tippett et al., 2003;
Zupanski, 2005; Whitaker et al., 2007; Kalnay et al., 2007;
Szunyogh et al., 2008), it is not straightforward to obtain in
3-D/4-D-Var systems, which have been in operation at most

1 THORPEX: The Observing System Research and Predictabil-
ity Experiment.
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major NWP centers. In the NCEP global EFS, an ensem-
ble transform with rescaling (ETR) has been used to gen-
erate the initial perturbations as described in detail in Wei
et al. (2005, 2008). In the ETR method, the initial perturba-
tions depend on the accurate analysis error covariance, which
should be provided by the DA system in operation. At NCEP,
the operational DA system is the Gridpoint Statistical Inter-
polation (GSI), a three-dimensional variational analysis (3-
D-Var) system (Derber et al., 1991; Parrish and Derber, 1992;
Wu et al., 2002; Derber et al., 2003; Kleist et al., 2009). In
the variational analysis system, the analysis is found by min-
imizing the cost function, written in terms of the background
fields, the observations, and their respective error covariance
matrices. The analysis error covariance matrix in 3-D/4-D-
Var is determined by the background and observation error
covariance matrices, and it can not be computed directly due
to its huge memory demand.

Unlike the DA systems at NCEP and ECMWF, which are
formulated in the model space, the Naval Research Lab-
oratory Atmospheric Variational Data Assimilation System
(NAVDAS) system at the US Naval Research Laboratory
(NRL) is formulated on the observation space (Daley and
Barker, 2001; Xu et al., 2005). Daley and Barker (2001) pro-
posed a local approximation in their NAVDAS to take advan-
tage of the block-diagonal pre-conditioner and Cholesky de-
composition of the diagonal blocks. The method produces an
estimate of the analysis error variance at any location based
on the observations and background within the observation
prism in which the location is contained. It has been im-
plemented successfully at FNMOC and NRL, and it gener-
ates the analysis error variance estimate from the NAVDAS
for both global and regional ensemble forecast systems at
FNMOC (McLay et al., 2007, 2008; Reynolds et al., 2008;
McLay and Reynolds, 2009; Bishop et al., 2009). Similar
to the NCEP global EFS, the initial perturbations at FN-
MOC are generated by using the ET (Ensemble Transform)
method.

For the 3-D/4-D-Var systems in model space which
have been implemented at most NWP centers, Fisher and
Courtier (1995) proposed three approximate methods to esti-
mate the analysis error variance. The most promising among
them is the Lanczos method which was implemented in the
ECMWF DA system. This method produces the analysis er-
ror variance estimates by computing the leading eigenvec-
tors of the Hessian matrix. It takes advantage of the close
link between the Lanczos method and the conjugate gradient
method used in the minimization procedure. The authors car-
ried out experiments using a simple univariate 3-D-Var on a
cyclic one-dimensional domain with 256 equally-spaced grid
points. Some testing was also done in ECMWF 3-D-Var sys-
tem with 52 eigenvectors included.

The Lanczos method is already used in the NCEP Real-
Time Mesoscale Analysis (RTMA) to estimate the analy-
sis errors (Pondeca and Manikin, 2009 and Pondeca et al.,
2011). The RTMA runs the GSI in 2-D-Var mode to ana-

lyze near-surface observations over the continental USA and
domains in Alaska, Hawaii, Puerto Rico and Guam (Pon-
deca and Manikin, 2009; Manikin and Pondeca, 2009). In
the RTMA application, only the observations near the sur-
face are assimilated and only some of the surface variables
are estimated, such as temperature, dew point, surface hu-
midity at 2 m, in addition to the 10-m wind, etc. Another
advantage of the RTMA, in comparison to the global 3-D-
Var GSI presented in this paper, is that the analysis variables
in the regional GSI are directly temperature and wind com-
ponents, and therefore their analysis errors can be estimated
directly, whereas the global GSI analysis variables are the
stream function, unbalanced velocity potential, etc., which
make the estimates of variances of wind components com-
plicated. Furthermore, the RTMA focuses on small regions;
this avoids the pole problem during the transformations be-
tween different variables.

In this paper, we use the Lanczos method in the NCEP
global 3-D-Var GSI DA system to study some of its as-
pects and properties that were not exploited in Fisher and
Courtier (1995) and Pondeca and Manikin (2009). The prop-
erties in question are very important not only in understand-
ing the method but also in practical applications. In partic-
ular, we apply this method to estimate the observation im-
pact signals (OIS) which are the square root of the differ-
ence between the background and analysis error variances.
In this method, only a small number of eigenvectors can be
computed due to the computational expenses. Thus, the error
reduction is severely underestimated, and the analysis error
variance is overestimated. In our study, we propose and com-
pare four different calibration schemes to compensate for
the missing trailing singular vectors. Without proper calibra-
tions, the observation impacts computed using this method
may be very inaccurate. In addition, we study the sensitivity
of the OIS to the number of observations employed in the
GSI system. Also studied in this paper are the correlations
between the observation locations and the OIS for different
variables in an operational environment.

Section 2 provides a brief description and formulation of
the analysis error variance and OIS. The dominant eigen-
vectors and eigenvalues of the transformed Hessian matrix
are analyzed in detail in Sect. 3. Section 4 presents four dif-
ferent calibration schemes and their results, while the corre-
lations between the observations and the OIS are exploited
in Sect. 5. Finally, discussion and conclusions are given in
Sect. 6.

2 Introduction of basic formulation

The NCEP GSI DA system is a unified global/regional three-
dimensional variational DA system (Derber et al., 1991; Par-
rish and Derber, 1992; Wu et al., 2002; Derber et al., 2003;
Kleist et al., 2009). The cost function in the GSI to be mini-
mized can be expressed as
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J (x) =
1

2
xT B−1x +

1

2
(Hx − y0)

T R−1(Hx − y0), (1)

wherex = xa − xb is the analysis increment,B is the back-
ground error covariance matrix,y0 = y−Hxb is the innova-
tion vector,R is the observation error covariance matrix,H is
the linearized observation operator, andxb is the background
state field. It is well known that the analysis incrementx can
be solved through the minimization of Eq. (1) (Daley and
Barker, 2001), i.e.,

x = xa − xb = BHT (HBHT
+ R)−1

[y − H(xb)]. (2)

Let A be the analysis error covariance ofxa with respect
to the truth. Then in the incremental 3-D-Var,A can be de-
scribed as

A = B − BHT (HBHT
+ R)−1HB, (3)

whereBHT (HBHT
+ R)−1 in Eqs. (2) and (3) is commonly

called the Kalman gain matrix. Fisher and Courtier (1995)
proposed three approximate methods to estimate analysis er-
ror variance in 3-D/4-D-Var framework. The most promising
method among these three is the Lanczos method, which uses
the linkage between the Lanczos algorithm and conjugate
gradient minimization that is widely used in 3-D/4-D-Var
system. The Lanczos method uses the relationship between
the Hessian matrix and the analysis error covariance. Thus,
a limited number of dominant eigenvectors can be estimated
and used to approximate the second right term in Eq. (3).
This method was implemented in the ECMWF 4-D-Var sys-
tem to estimate the analysis error covariance (M. Fisher, per-
sonal communication, 2007).

The basic formulations of Lanczos algorithm is described
in Appendix A. The final analysis error covariance matrix
can be expressed as in Eq. (A10).

Let

C = B − A =

m∑
k=1

(1− λ−1
k )(Qn

kvk)(Q
n
kvk)

T , (4)

whereλk andek = Qn
kvk are the dominant eigenvalues and

eigenvectors, respectively, of the transformed Hessian matrix
of the cost function in Eq. (1).

It is clear thatC is the analysis error covariance reduction
from the background due to the observations. Since it is im-
possible to compute all the eigenvectors of the transformed
Hessian matrix in a real application such as GSI due to com-
puting resource limit, we can only compute a very limited
number (K) of dominant eigenvalues and their correspond-
ing eigenvectors. As a result, many less dominant eigenvec-
tors are ignored. The error reduction ofC and analysis error
covarianceA would be underestimated and overestimated,
respectively.

In order to compensate for the loss of trailing eigenvectors,
we introduce a calibration factorρ(k) in this paper so that

C ≈

K∑
k=1

ρ(k)(1− λ−1
k )(Qn

kvk)(Q
n
kvk)

T . (5)

Eq. (5) can be applied to estimate the analysis errors for any
model variables at any levels. Different calibration schemes
are discussed in the following sections.

3 Eigenvalues and eigenvectors

The diagonal part ofC in Eq. (5) represents the reduction
of error variance due to observations in DA. The following
experiments were carried out with GSI at T62L64 resolu-
tion. The number of dominant eigenvectorsK computed de-
pends on the number of inner loops in the GSI minimization.
The values ofK that we have tested areK = 30,60,100,
and 116. The observations and background fields are for
the 00:00 Z cycle on 10 April 2007. The observations that
we chose were based on the data used in the NCEP opera-
tional GSI. There were a total of ndat= 60 data sets, which
covered conventional, aircraft, GPS observations as well as
radiances from different satellites. All the operational data
were used in our experiments. To study the sensitivity of
error reductions to the observations, we also experimented
with only conventional observations. In this case, ndat= 6.
This includes surface pressure, temperature, specific humid-
ity, winds, sea-surface temperature, and precipitable water
from rawinsonde. The conventional data also contain the
satellite derived winds such as those below 850 mb from
satellites JMA IR (Japan Meteorological Agency Infrared)
and EUMETSAT (European Organisation for the Exploita-
tion of Meteorological Satellites).

Figure 1 shows the eigenvalue distribution as a function of
the eigenvalue number for different numbers of observation
data sets. Shown in the left panels are the eigenvalue dis-
tributions with 6 observation data sets forK = 30,60,100,
and 116, respectively. On the right hand panels, the same
eigenvalue distributions are displayed for the 60 observation
data sets. Since all the eigenvaluesλk are larger than one and
diag[(Qn

kvk)(Q
n
kvk)

T
] > 0.0, it follows that the diagonal el-

ements ofC are always positive, which means

diag(A) < diag(B).

This indicates that the analysis error variance is always less
than the background error variance due to the observations
assimilated. From Eq. (5), it is easy to see that the larger the
eigenvalue, the greater the observation impact (and more re-
duction of error variance). Thus, more dominant eigenvec-
tors with larger eigenvalues have greater impacts than the
trailing eigenvectors with smaller eigenvalues. As the trail-
ing eigenvalue is converging to one, the contribution to error
reduction from the eigenvector is approaching zero, and the
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Fig. 1. The eigenvalue distribution:(a) ndat= 6, K = 30, (b)
ndat= 6, K = 60, (c) ndat= 6, K = 100, (d) ndat= 6, K = 116,
(e) ndat= 60, K = 30, (f) ndat= 60, K = 60, (g) ndat= 60, K =

100, and(h) ndat= 60,K = 116.

impact is negligible. The smallest eigenvalues for ndat= 6
shown on the left panel of Fig. 1 forK = 30,60,100, and
116 are displayed in Fig. 2a, while the smallest eigenvalues
for ndat= 60 are displayed in Fig. 2b. The minimum eigen-
values in both cases should approach one (shown in dotted
lines) asK increases. It is clear that the convergence of the
eigenvalue with increasing number of inner loops in the GSI
is much slower in the case with more observation data than
in the case with a smaller amount of observation data. Thus,
one conclusion from this result is that the more observations
we have, the larger the number of eigenvectors should be
included in order to minimize the loss of information from
those observations. When only 6 observation data sets are
used, as in Fig. 1a–d, the eigenvalues decrease faster than
when there are more observations, as in Fig. 1e–h. In fact,
when all the observations are used with ndat= 60, the eigen-
values decrease at a similar rate with increasing number of
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Fig. 2.The smallest eigenvalues as a function of the number of loops
(a) for ndat= 6 and(b) for ndat= 60.

inner loops. The maximum eigenvalues are very similar in
all cases with different values ofK, as shown in Fig. 1e–h.

As an example of eigenvector structure, we plotted in
Figs. 3 and 4 the top five normalized eigenvectors (Qn

kvk)

for temperaturet and zonal wind componentu for K =

30,60,100, and 116 at 500 hPa. The number of data sets is
ndat= 6. From left to right, Fig. 3 shows the largest eigen-
vectors oft with different values ofK, while the top 5 eigen-
vectors oft with the same value ofK are shown from the top
to the bottom, respectively. On the top panel, the 1st eigen-
vector fort has a similar dipole structure over North America
for K = 30 and 60, while forK = 100 and 116, their struc-
tures are also similar, but different from whenK = 30 or 60.
This is also true for the other dominant eigenvectors 2,3,4,

and 5 shown in the following rows. WhenK = 30, eigen-
vectors 1,2, and 3 have high values over North America, but
in slightly shifted positions, while eigenvectors 4 and 5 have
larger values over the European region. All of these reflect
the fact that there is relatively more conventional data cover-
age in North America and European regions. WhenK = 60,
the top 5 eigenvectors in column 2 show similar structures as
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Fig. 3. Top five normalized eigenvectors of the transformed Hessian with respect to temperature at 500 hPa with ndat= 6. From the left to
the right on each row: top eigenvectors forK = 30,60,100, and 116. Top to the bottom on each column: eigenvectors 1, 2, 3, 4, and 5 for
each value ofK.

whenK = 30 in column 1. When the number of inner loops
K is increased to 100 and 116 as shown in columns 4 and
5, the larger amplitudes of the top 5 eigenvectors are mostly
over the North America area. This is consistent with the con-
ventional observations at this level, which will be shown later
in the paper.

Figure 4 shows the same as Fig. 3, but foru. Overall, the
top 5 eigenvectors ofu also demonstrate the larger presence
of conventional observations over North America. Like the

eigenvectors oft , eigenvectors 4 and 5 show the largest am-
plitudes over the European region whenK = 30 or 60.

Next, we look at the overall observation impacts due to
observations in the GSI. To see the sensitivity of error reduc-
tion to the number of observations, we have computed the
error reduction using two different numbers of observation
data sets: ndat= 6 and ndat= 60. From Eq. (4), the anal-
ysis error variances depend on the background error vari-
ances, which are static and pre-defined in most 3-D/4-D-Var

Nonlin. Processes Geophys., 19, 541–557, 2012 www.nonlin-processes-geophys.net/19/541/2012/
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Fig. 4. The same as Fig. 3, but foru.

DA systems. In the NCEP GSI, they are pre-computed using
the NMC (National Meteorological Center) method (Parrish
and Derber, 1992). The diagonal components ofC are the
direct impacts from the observations assimilated by the DA.
Therefore, unless we have sensible situation-dependent back-
ground error variances, it is more meaningful to look at the
diagonal components ofC (instead ofA) in order to assess
the direct impacts from the observations. In the following,
we will show the square root of error variance reduction, i.e.,√

diag(C) (referred to asobservation impact signalor OIS in
the following) for different variables at different levels. Sim-
ilar quantities, such as information content, relative entropy,

degrees of freedom for signal, and mutual information, for
quantifying the impacts of observations in a DA system have
been introduced and studied by Rodgers (2000), Xu (2007),
Zupanski et al. (2007) and Fowler and van Leeuwen (2012).

First, we consider the OIS without calibration, i.e.,ρ(k) =

1.0 in Eq. (5). From the left to the right, Fig. 5 shows the OIS
for u500, t500, andq1000 (the subscripts indicate the level in
hPa) with different numbers of inner loops,K = 30,60,100,
or 116. The results show that the OIS for all variables in-
crease as the number of eigenvectors increases. Rows 1 to 3
shows the OIS foru500, t500, andq1000 with ndat= 6, while
rows 4 to 6 show the OIS for the same variables but for

www.nonlin-processes-geophys.net/19/541/2012/ Nonlin. Processes Geophys., 19, 541–557, 2012
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Fig. 5. Observation impact signal (OIS) foru500, t500, andq1000. From the left to the right on each row,K = 30,60,100, and 116. Rows 1
to 3 foru500, t500, andq1000with ndat= 6, and rows 4 to 6 for ndat= 60.

ndat= 60. The top two panels show that asK increases, the
impacts of observations foru500 and t500 increase, particu-
larly over the conventional data-rich regions such as North
America. For cases with smaller numbers of eigenvectors
(K = 30,60), the observation impacts over Europe, Asia and
areas near Australia are less clear. The impact signals are
much more pronounced forK = 100 and 116. Panels in row
3 show the OIS for relative humidity near the surfaceq1000.
Again, as more eigenvectors are included, stronger impact
signals are observed in North America, Europe, Asia and ar-

eas near Australia, where there are more observations. The
observation locations will be shown in Figs. 9–12.

Panels in rows 4 to 6 show the OIS values for the same
variables as the top 3 rows, but with ndat= 60. The above
conclusions for ndat= 6 still hold when many more obser-
vations are included in the analysis. In this case, there are a
lot more observations in the Southern Hemisphere (SH) that
impact the OIS for the three variables. In ocean areas in the
tropics, there are many moisture observations in the lower
atmosphere, thus also resulting in very strong OIS.

Nonlin. Processes Geophys., 19, 541–557, 2012 www.nonlin-processes-geophys.net/19/541/2012/



M. Wei et al.: Estimation and calibration of observation impact signals 549

4 Calibration of observation impacts

Results shown in Fig. 5 are the values of OIS for some vari-
ables at specific levels without calibration, i.e.,ρ(k) = 1.0.
As demonstrated in the above section, the OIS is underes-
timated due to the missing trailing eigenvectors. However,
to what extent the OIS is underestimated is not clear from
Fig. 5. To gain a quantitative assessment of underestima-
tion, we have computed the mean OIS values ofu, t, and
q for K = 30,60,100, and 116 at three typical model levels,
namelyL = 1 (lowest level, about 1000 mb),L = 25 (about
500 mb) andL = 64 (highest model level, about 0.27 mb).
For each of variablesx at each level, we calculate the ratios
of the mean OIS values withK = 30,60,100, and 116 to the
mean OIS value withK = 30, i.e., OIS(x,L,K)

OIS(x,L,30)
. These ratios

are shown as a function of the number of loops in Fig. 6. The
left panels of Fig. 6a–c shows these ratios foru, t, andq, re-
spectively with ndat= 6, while Fig. 6d–f show the same, but
with ndat= 60.

With the smaller number of observations (ndat= 6),
Fig. 6a and b shows that the mean OIS values ofu and t at
all three levels forK = 60,100, and 116 are about 1.5,2.0,

and 2.2 times larger than the mean OIS values forK = 30,
respectively. This is equivalent to about 1.5 times increase of
mean OIS whenK is doubled. These ratios forq are even
larger, especially at the highest model level (L = 64) where
values reach over 4.5 for K = 100 and 116, as shown in
Fig. 6c. This means that the OIS forq is even more severely
underestimated compared with the other two variables when
only a limited number of eigenvectors are included.

When more observations are assimilated with ndat= 60,
as shown in Fig. 6d, e and f, the conclusions are similar, ex-
cept that the ratio foru at the top model level is much larger
than for the other two levels (Fig. 6d). In addition, the ra-
tio for q at the top model level is also much larger than at
the other two levels (Fig. 6f), but not as large as in the case
of ndat= 6 (Fig. 6c). All these results clearly show that the
mean OIS values for all variables at these three typical model
levels increase as the number of loopsK increases, in these
two cases with two very different observation data sets. The
maximum value ofK that we have used is 116, which is too
small in both cases. The OIS values have not converged when
K = 116, even with the smaller amount of conventional ob-
servations (ndat= 6). Since the minimization algorithm in
GSI has its own built-in convergence criterion, it will stop
once this criterion is satisfied. To test largerK was compu-
tationally prohibitive; it would be possible, but it is hard to
bypass the GSI criterion. In addition, computational cost is
always a concern in an operational system like GSI. To ac-
count for the impacts from the missing eigenvectors, calibra-
tion is inevitable.

The calibration schemes we have tested are termed
C1,C2,C3, andC4, and are defined as follows:
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Fig. 6.The ratio of the mean OIS values usingK = 30,60,100, and
116 to the mean OIS value usingK = 30 as a function of the number
of loops at 1000 hPa, 500 hPa and 0.27 hPa for:(a) u with ndat= 6,
(b) t with ndat= 6, (c) q with ndat= 6, (d) u with ndat= 60, (e) t

with ndat= 60, and(f) q with ndat= 60.

C1 : ρ(k)=1.0+
λk

K∑
k=1

λk

C2 : ρ(k)=(1.0+
λk

K∑
k=1

λk

)2

C3 : ρ(k)=1.0+ ln(k)

C4 : ρ(k)=1.0+ log10(k).

In schemesC1 andC2, the calibration factors are functions
of the eigenvalues. The formulation is such that they decay
with the number of eigenvectors. Less weight is given to
the less dominant eigenvectors, reflecting the fact that the
trailing eigenvectors contribute less to the OIS in Eq. (5).
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Fig. 7. Four calibration factors as functions of number of eigenval-
ues forC1 (solid) andC2 (dashed) in(a) andC3 (solid) andC4
(dashed) in(b) for K = 116 and ndat= 60.

Unlike these two schemes, the calibration factors defined in
schemesC3 andC4 increase as a function ofk. This means
that greater weight is given to the more trailing eigenvec-
tors in compensating the missing eigenvectors. Note, how-
ever, that the calibration factorsC3 andC4 do not depend on
the eigenvalues. The calibration factors in these four schemes
are shown in Fig. 7 as functions of number of eigenvalues for
K = 116 and ndat= 60. To test these calibration schemes,
we choose the smallest number of loops from our experi-
ments, i.e.,K = 30. The original OIS values without calibra-
tion for u500, t500, andq1000are displayed in the first column
of Fig. 5. Since we are unable to run an ideal case with a very
large number of loops to assess the effectiveness of different
calibration schemes, we assume that the benchmark to com-
pare with is the one withK = 116, which is shown in the last
column of Fig. 5. From the left to the right, columns in Fig. 8
show the OIS values from schemesC1,C2,C3, andC4, re-
spectively. Similar to Fig. 5, rows 1 to 3 and rows 4 to 6 in
Fig. 8 are the OIS for ndat= 6 and ndat= 60, respectively.

By comparison with the results without calibration (first
column of Fig. 5), the OIS values from calibrationC1 in first
column of Fig. 8 show a very similar pattern and magnitude
for all the variables. Clearly, the magnitudes are generally
smaller than those in the “ideal case”. Further more, the re-
sults fromC1 with ndat= 6 fail to pick up much impact over
regions in Europe, Asia and Australia as in the benchmark
(last column of Fig. 5). SchemeC2 (column 2 of Fig. 8) also

shows similar impact patterns and magnitudes as schemeC1.
Both of these schemes can not achieve the ideal results we
have hoped for.

The results from schemeC3 (column 3 of Fig. 8) show
somewhat larger maximum values than the benchmark for all
the variables, while the magnitudes of OIS fromC4 (column
4 of Fig. 8) are similar to those in the benchmark. However,
like C1 andC2, both schemesC3 andC4 do not seem to pick
up the impact patterns over regions in Europe, Asia and Aus-
tralia as well as the benchmark. Overall, schemeC3 is prob-
ably the best among these given the fact that the benchmark
with K = 116 is far from converging, as seen from Fig. 6.
From the results of these calibration experiments, one can
conclude that none of the schemes tested can produce OIS
distribution that are as good as the ones from the benchmark
which uses more eigenvectors. There are some regions where
the observations are less dense. These regions will certainly
need more eigenvectors to yield reasonable OIS values. Our
results indicate that it is hard to use calibration factors which
only increase the magnitudes of some 30 dominant eigenvec-
tors to recover those impact signals. However, two of the cal-
ibration schemes do enhance the OIS magnitudes in the re-
gions with dense conventional data network coverage, which
in general can be greatly underestimated due to the missing
eigenvectors.

5 Correlations between observations and observation
impact signals

In order to further assess the impacts from observations in
the GSI, we will study the OIS distributions at certain model
levels and their correlations with the observation locations.
In the following figures, we will plot the horizontal locations
of observations that are located between the vertical levels of
p − 50 mb andp + 50 mb, and compare them with the OIS
values computed from Eq. (5) at levelp. As an example, we
chooseK = 100 and conventional data set only with ndat= 6
in the following.

Figure 9 shows the locations of temperature observations
between 500 mb plus and minus 50 mb, and the OIS for tem-
perature at 500 mb. It is clear that the region with most con-
ventional data is North America, followed by Europe, Asia
and regions near Australia. The method indeed produces
larger OIS values over these data dense areas. However, it
is also noticeable that some sparsely distributed observations
around the tropics did not generate much OIS. It is expected
that more eigenvectors are needed in these areas to recover
some impact from observations.

Figure 10 shows the same as Fig. 9, but foru. Simi-
larly the OIS values are generally larger over denser obser-
vation areas. As fort , some observations around the trop-
ics do not produce much OIS. In Fig. 11, we display the
same as Fig. 10, but for surface level (around 1000 mb).
Around this lower level, there are many satellite-derived,
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Fig. 8. OIS with four calibration schemes foru500, t500, andq1000. From the left to the right on each column: OIS values from schemes
C1,C2,C3, andC4, respectively. Rows 1 to 3 on each column: foru500, t500, andq1000 with ndat= 6. Rows 4 to 6 on each column: the
same variables for ndat= 60.

scatterometer-type wind observations (such as from JMA IR
and EUMETSAT) in SH and the tropics as shown in Fig. 11.
Our method does produce strong OIS in the SH, but not much
signal can be seen in the tropics. In addition, the method does
not produce a distribution that resembles the satellite data
coverage across the tropics. It is expected that it will take a
lot more eigenvectors to cover these satellite data, particu-
larly in the tropics.

Figure 12 is the same as Fig. 11, but for relative humidity
q1000. The observations over Europe are equally as dense as
over North America. Our method does generate some strong
OIS impacts over these regions. Similarly, in Asia and Aus-
tralia, the dense observations are correlated well with the
strong OIS signals. Interestingly, a few sparse observations in
the SH oceans are also captured by OIS. However, there are
also some sparse observations around the tropics near Africa
and South America (SA) that are missed by the OIS.
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Fig. 9.Circles represent the locations of temperature observations between 500 mb− 50 mb and 500 mb+ 50 mb, and contour lines represent
the OIS for temperature at 500 mb.

Fig. 10. The same as Fig. 9, but foru.

As described in previous sections, OIS is able to capture
some of the observation impacts, especially over the regions
with dense conventional observations. Results in this sec-
tion indicate that most satellite observations in the south-
ern oceans can be captured. However, to capture the satel-
lite band structures in the tropics, the number of eigenvectors
we have tested is clearly not enough. All the results shown

in this section indicate that many of the sparse observations
in the tropics can not be captured, while the sparse obser-
vations in the southern oceans can be reflected in our OIS.
This is related to the fact that the background error variances
(the diagonal parts ofB) around the tropics are lower than in
the extra-tropics. Since the observation errors do not depend
on latitude in the GSI, the smaller background errors around
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Fig. 11.The same as Fig. 10, but for surface level (around 1000 mb).

Fig. 12.The same as Fig. 11, but for relative humidityq.

the tropics reduce the impact of the observations, and pull
the analysis closer to the background. As a result, the analy-
sis increment is also reduced. This can also be confirmed by
looking at the analysis increments in Eq. (2).

Corresponding to the observation locations and the OIS
in Figs. 9–12, Fig. 13a–d shows the analysis increments for
t500,u500,u1000, andq1000. If we compare Figs. 9 and 10 with
Fig. 13a and b, we can clearly see that there are a reasonable

number of observations in the tropics, but the increments are
very small. As explained, this is due to the smaller back-
ground error values used in the GSI. Thus, the OIS values
are also very small around the tropics. When Figs. 11 and 12
are compared with Fig. 13a and d, respectively, we see that
areas around the tropics which do not show much OIS are
also approximately the areas where the analysis increments
are small.
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Fig. 13. The analysis increments of(a) t500, (b) u500, (c) u1000, and(d) q1000.

6 Discussion and conclusions

This paper represents another effort in estimating the analysis
error variance, using the Lanczos method proposed by Fisher
and Courtier (1995), in the NCEP global 3-D-Var GSI DA
system. We have applied this method to the global 3-D-Var
GSI and studied other different aspects of this method that
were not exploited in Fisher and Courtier (1995) and Pon-
deca and Manikin (2009). The properties of convergence in
different calibration schemes discovered in this paper have
greatly improved our understanding of the method and its
implications in practical applications in an operational en-
vironment. Our focus is on estimating the observation im-
pact signals (OIS) which are the square root of the difference
between the background and analysis error variances. This
quantity is a direct measure of the error reduction due to the
observations assimilated.

The OIS values for different variables at typical model lev-
els are computed for various numbers of inner loopsK in the
GSI with different numbers of observation sets. As expected,
the smallest eigenvalue of the transformed Hessian matrix
converges to one asK increases. However, the rate of con-
vergence depends on the number of observations assimilated.

Our results show that the convergence is faster when smaller
numbers of observations are used. If more observations are
used, the converging speed is slower and a larger number of
eigenvectors should be included in order to minimize the loss
of information from the missing eigenvectors.

The top five corresponding normalized eigenvectors are
also studied. In general, the structures for the largest eigen-
vectors whenK is small show larger impacts in the regions
where conventional data are dominant. IfK is increased, the
OIS can represent other areas with fewer observations. For
the same number ofK, the less dominant eigenvectors may
convey the impact signals from the less dominant observation
regions.

When the OIS values are computed with a different num-
ber of data sets, the results show that the impact signals
in the data rich regions are stronger with largerK. At the
same time, more signals in the regions with fewer observa-
tions start to emerge as the number of inner loops increases.
When the number of observations is increased, the method
can clearly pick up the impact signals from the observations.
As only a limited number of eigenvectors can be computed
due to the computational constraint, the error reduction is
severely underestimated. To estimate to what extent we are
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losing the information from the missing eigenvectors, we
computed the mean OIS values foru, t, andq at three typical
model levels (i.e., top, middle and bottom) for different val-
ues ofK with two different numbers of observation data sets.
It is found that the OIS values atK = 60,100, and 116 are
about 1.5,2.0, and 2.2 times the value of OIS atK = 30, re-
spectively. This is roughly 1.5 times the increase of the mean
OIS whenK is doubled. These ratios are much larger for the
relative humidity at the top model level.

All of our results indicate that without proper calibra-
tions, the estimates of observation impacts are not accurate.
To overcome this difficulty, we have proposed and investi-
gated four different calibration schemes to compensate for
the missing trailing eigenvectors. Different schemes give dif-
ferent weights on a different number of eigenvectors. Our
results show that the first two schemes cannot pick up the
impact signals over the regions with less conventional data in
comparison with the “ideal case”, which has the largest num-
ber of inner loops. It is found that schemeC3 performs better
than other schemes and can boost the OIS values in the data
rich regions to the level in the “ideal case”. However, it seems
that none of them can pick up the impacts in the regions with
less observation data as well as the “ideal case”. The benefit
of calibrations lies in the fact that they do enhance the OIS
magnitudes in the regions with more traditional data cover-
age, which would be missed without calibrations.

We also studied the correlations between the observation
locations and the OIS distributions for various variables at
different levels. It is found that the method generally picks up
the impact signals over the regions with conventional obser-
vations, particularly over the data dense areas. It even picks
up the satellite observation impacts over the southern oceans.
However, with the number of inner loops we have used, the
method cannot show the satellite band structure over the trop-
ics. A lot more eigenvectors are required to recover the whole
satellite observation impacts. The area in which the method
performs worst is the tropics. This is found to be due to
the fact that the background errors produced by the NMC
method are generally smaller over the tropics than over the
extra-tropics, and the observation errors do not change with
latitude. As a result, the observation impacts over the trop-
ics are reduced. This also leads to the smaller analysis incre-
ments over the tropics.

In conclusion, the method presented in this paper with
proper calibration is capable and effective in estimating the
major observation impacts from the observations assimilated
in the GSI, especially over those regions with more conven-
tional data coverage. Since those gradient vectors can be gen-
erated by the operational global GSI almost at no cost, the
computational expense in estimating the dominant eigenvec-
tors is completely manageable with the current NCEP com-
puting resources.

Another benefit of using this method is that the eigenvec-
tors can be used in preconditioning the conjugate gradient
algorithm in minimization to speed up the convergence. For

example, an explicit or implicit preconditioner based on an
approximation to the Hessian matrix can be chosen (Fisher,
1998). In this case, the time spent on computing the dominant
eigenvectors can be offset by the time saved from this pre-
conditioning. Therefore, this method is very suitable for an
operational 3-D/4-D-Var system to estimate the observation
impacts, and it can be used as part of a routine verification
package.

Appendix A

Basic formulation of Lanczos algorithm in 3-D-Var GSI

The basic 3-D-Var equations in GSI are described in
Eqs. (1)–(3). Since different preconditioning strategies are
used in ECMWF and NCEP DA systems, the equations and
derivations of the analysis error covariance are different. In
the GSI, let

z = B−1x. (A1)

The gradient of cost function with respect tox is

g = ∇xJ (x) = (B−1
+ H T R−1H )x − H T R−1y0

= Mx − H T R−1y0, (A2)

and the Hessian matrixM can be written as

M =
∂2J (x)

∂x2
= B−1

+ H T R−1H = A−1. (A3)

Equation (A2) is equivalent to

Mx = g + H T R−1y0. (A4)

The gradient with respect toz is

h = ∇zJ (x) = B∇xJ (x) = x + BH T R−1(Hx − y0). (A5)

The preconditioned conjugate gradient method used to min-
imize the cost function defined in Eq. (1) in GSI can be ex-
pressed as:

xk+1 = xk + αkdk

gk+1 = ∇xJ (xk+1)

hk = Bgk+1 (A6)

dk+1 = −hk+1 + βkdk

ek+1 = −gk+1 + βkek,

whereαk is the step size,dk andek are the search directions
in x andz, and the conjugate factor is

βk =
(gk+1 − gk)

T hk+1

(gk+1 − gk)
T dk

. (A7)

gk andhk are two independent variables and can be normal-
ized such that

gn
k = ckgk andhn

k = ckhk, (A8)
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whereck =
1√

gT
k hk

.

It can be shown that the two sets form a bi-orthogonal sys-
tem such that〈
gn

i , hn
j

〉
= δij , (A9)

whereδij is a Kronecker delta function.
By using the relations in Eqs. (A1)–(A9), it can be shown

that the final analysis error covariance matrix can be ex-
pressed as

A = B −

m∑
k=1

(1− λ−1
k )(Qn

kvk)(Q
n
kvk)

T , (A10)

wherem is the total number of inner iterations and also the
number of gradients inx andz, λk andvk are the dominant
eigenvalues and eigenvectors of am × m tri-diagonal matrix
Tm consisting of different coefficients as

Tm =


δ1 θ1 0 0
η1 δ2 θ2 0
0 η2 δ3 •

0 0 • •

 , (A11)

where δk+1 =
1

αk+1
+

βk

αk
, ηk+1 = −

ck

αkck+1
, θk = −

βk−1ck

αk−1ck−1
and

Qn
m = [hn

1,h
n
2,h

n
3 .......hn

m]. (A12)

It can be shown thatλk and ek = Qn
kvk are the dominant

eigenvalues and eigenvectors of the transformed Hessian ma-
trix.
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