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Abstract. Plasma is a highly complex system exhibiting a
rich variety of nonlinear dynamical phenomena. In the last
two decades or so there has been a spurt of growth in explor-
ing unconventional nonlinear dynamical methods of analysis,
like chaos theory, multi fractal analysis, self organized crit-
icality etc. of experimental data from different plasma sys-
tems. Investigation of fluctuating plasma parameters is very
important since they are correlated with transport of parti-
cles, and energy. In time series analysis, it is considered
of key importance to determine whether the data measured
from the system is regular, deterministically chaotic, or ran-
dom. The two important parameters that are in general es-
timated are the correlation dimension and the Lyapunov ex-
ponent. Though correlation dimension helps in determining
the complexity of a system, Lyapunov exponent reveals if
the system is chaotic or not and also helps in prediction to
some extent. In spite of its extensive usage, estimation of
Lyapunov exponent can be quite tedious and sometimes suf-
fers from some disadvantages like reliability in the presence
of noise, requirement of phase space reconstruction etc., and
hence it is necessary to explore other possibilities of esti-
mating the chaoticity of a data. In this paper we have anal-
ysed for chaoticity, the nonlinear floating potential fluctua-
tions from a glow discharge plasma system by the 0–1 test
and compared it with the results obtained from Lyapunov ex-
ponent.

1 Introduction

Chaos theory which emerged as a subsection of nonlinear
dynamics has gained a significant importance in the last two
to three decades especially since it could explain several of
the experimental observations not only in physics but also in
other areas like biology, environmental sciences etc. Chaotic
systems may seem random, and unpredictable, but it has been
shown that they can be modeled by equations that can be for-
mulated without much difficulty. Ever since the first experi-

mental observation of chaos in a large magnetized plasma de-
vice (Cheung and Wong, 1987) many experiments have been
carried out in this area in different plasma systems (Ding et
al., 1993; Lin and Jeng-Mei, 1995; Klinger et al., 1995; Din-
klage et al., 1999; Jaman and Iyengar, 2007; Jaman et al.,
2008).

Plasma systems being inherently a complex medium can
exhibit a wide range of behaviour from chaos to order and
vice versa by changing a parameter externally. In many of
the experiments, order to chaos has been verified from power
spectral analysis only and in some cases only by estimation
of the correlation dimension without verifying through Lya-
punov exponents. In any experimental data it is always wise
to cross check the results by as many techniques as possi-
ble since it increases the confidence level of the techniques
and also the experimental results.Gottwald and Melbourne
(2004) proposed a new test called the 0–1 test to determine
if the time series was of chaotic nature or not, wherein a 0
implied regular and a 1 implied a chaotic series. Some of the
advantages of this test over the estimation of the largest Lya-
punov exponent are that (a) it does not require phase space
reconstruction, (b) the dimension of the dynamical system
does not pose practical limitations on the method as is the
case for traditional methods involving phase-space recon-
struction, (c) the form of the underlying equations are irrel-
evant, (d) the input is the time-series data and the output is
0 or 1, depending on whether the dynamics is non chaotic or
chaotic, and (e) the test is universally applicable to any de-
terministic dynamical system. In this paper we have carried
out a detailed analysis of the chaotic fluctuations of floating
potential in a glow discharge plasma using the power spec-
trum, Lyapunov exponents and the 0–1 test. The Largest
Lyapunov exponent was estimated by Rosenstein’s method
(Rosenstein et al., 1993) which can be applied to short data
sets. In Sect. 2 we briefly describe the methodology of the
0–1 test followed by Results and Discussion in Sect. 3 and
conclusions in Sect. 4.
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Fig. 1. Schematic diagram of the hollow cathode discharge tube.
The cathode and the anode are a hollow tube and a wire of stainless
steel, respectively.

2 Methodology

The 0–1 test was initially proposed by Gottwald and Mel-
bourne (2004) which was subsequently modified and made
simpler (Gottwald and Melbourne, 2005). This test yields a
binary type of result: 0 for regular (periodic/quasi periodic)
and 1 for chaotic signals. Ifx(n) is an observable in time, we
can define dimensionless displacements in the(p,q) plane as
follows:

p(n) =

N∑
j=1

×(n)cos(jc) (1)

and

q(n) =

N∑
j=1

×(n)cos(jc) (2)

wherec is a constant chosen at random between(0,2π). If
the system dynamics is chaotic, the motion in the(p,q) plane
would be unbounded, while it would be bounded for regular
(periodic/quasiperiodic) motion. The mean square displace-
ment is expressed as

M(n) = lim
N→∞

(1/N)

N∑
j=1

[p(j +n)−p(n)]2

+[q(j +n)−q(n)]2,n= 1,2,.. (3)

For regular dynamics (periodic or quasi periodic), it is
quite likely thatM(n) will be a bounded function ofn but not
for chaotic dynamics. From this one can define the asymp-
totic growth rate of the mean square displacementk

k = lim
n→∞

logM(n)

log(n)
(4)

for which k = 0 signifies regularity whilek = 1 indicates
presence of chaoticity. Since we had estimatedk for about
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Fig. 2. Top plots are the quasi periodic data(a) and its fft(b), while
the bottom plots are the chaotic data(c) and its fft(d).

hundred values ofc, the median ofk was estimated and if
it was very small(<0.05) we concluded that the system dy-
namics was regular and chaotic if it was'1.

3 Results and discussion

The experiments were performed in a hollow cathode glow
discharge plasma similar to the one used in the earlier ex-
periments byJaman and Iyengar(2007) as shown in Fig.1,
but with an increased diameter by a factor of 2. The plasma
floating potential fluctuations were monitored by a Langmuir
probe with a sampling frequency of about 2 MHz for Fig.2a
and 500 kHz for Fig.2b, respectively.

Keeping the gas filling pressure constant, we varied the
discharge voltage until we could ionize the neutral gas. At
this instant, the fluctuating component of the floating po-
tential monitored by a Langmuir probe was initially quasi
periodic and with increase in discharge voltage it contin-
ued to remain so as in Fig.2a, until a threshold value of
discharge voltage, beyond which it became chaotic as seen
in Fig. 2c. The difference between the two cases was that
in the quasi periodic case there was a faint reddish plasma
around the anode which changed to a bluish glow confined
to the cathode region for the chaotic one. The fft (fast fourier
transform) of the quasi periodic oscillations shows a large
peak at about 7.5 kHz and some distinct frequencies of re-
duced amplitudes, whereas for the chaotic case there is a
clear signature of turbulence seen in the up to about 5 kHz
and with much reduced amplitude beyond, which not shown
here. The largest Lyapunov exponent estimated by Rosen-
stein’s (1994) method for the quasi periodic case was about
0.002 for Fig.2a which increased to 0.02 for Fig.2c, as seen
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Fig. 3. Largest Lyapunov exponent shows a clear jump when the
floating potential fluctuations exhibiting a transition from quasi pe-
riodic to chaos.
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in Fig. 3. Though it is positive for the quasiperiodic and the
chaotic signals, it is very small for the former and shows an
increase by a factor of 10 for the latter indicating the clear
presence of chaoticity.

Next we carried out the 0–1 test (Gottwald and Mel-
bourne, 2004) after filtering out the frequencies above
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Fig. 5. (a) corresponds to the value ofk as a function ofc, with
the median value shown in the box, and(b) is a plot ofM(n) which
shows an increasing value withn and hence a positive slope con-
firming the presence of chaos.

200 kHz for both the data sets, choosing at random, about
100 values ofc ranging fromπ/5 to 6×π/5. Figure4 and
Fig. 5 show the graphs ofk vs c andM(n) vsn for the quasi
periodic and chaotic data, respectively. Figure4a shows a
significant portion wherek is very low of the order of 0.04,
and theM(n) vs n also shows almost a zero slope. For the
chaotic datak vs c is around 1, whileM(n) vs n is showing
a positive slope.

k-median for the quasi periodic was about 0.05 for the
quasi periodic while it was about 0.9 for the chaotic case.
From this we can concluded that this is a very efficient test
for chaos in an experimental time series. There may be some
difficulties since almost experimental results have in them
some noise that one may have to filter out. The other pre-
caution that one has to take is probably the over sampling.
We are in the process of carrying out a detailed investigation
of the validity of 0–1 test taking into account features like
over sampling, filtering, surrogates etc which are a part of
our future plans.
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4 Conclusions

We have applied the 0–1 test to the time series obtained from
a glow discharge plasma experiment, and it looks to be very
effective and simpler than the estimation of the largest Lya-
punov exponent since we are working directly on the time
series and also there is less ambiguity that may arise in the
estimation of the largest Lyapunov exponent. We will be car-
rying out a detailed analysis of the same for various types of
filtering, over sampling etc as a part of our future plans.
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